Math 208 Homework 9.

Problems from P.M. Fitzpatrick, Advanced Calculus.

Section 10.3, p.288: Problems: 1, 4, 9, 10,
Section 11.1, p.297: Problems: 5, 6, 9, 12
and the following problem:
Problem 1. Show that the the mapping $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defind by

$$
\begin{equation*}
F(u)=\|u\|^{2} u \tag{1}
\end{equation*}
$$

is continuous and

$$
(F(u)-F(v), u-v) \geq 0, \quad \forall u, v \in \mathbb{R}^{n}
$$

Problem 2. Show that the the mapping $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defind by (1) satisfies the Lipschitz condition in each bounded set of \mathbb{R}^{n}.
Problem 3. Give an example of mapping $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ that is continuous on \mathbb{R}^{n}, but not Lipscitz continuous.

