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Solution We begin by calculating the first- and second-order partial derivatives of

the function f :

f1.x; y/ D y.1� x
2
/ e

�.x2Cy2/=2
;

f2.x; y/ D x.1� y
2
/ e

�.x2Cy2/=2
;

f11.x; y/ D xy.x
2
� 3/ e

�.x2Cy2/=2
;

f12.x; y/ D .1 � x
2
/.1 � y

2
/ e

�.x2Cy2/=2
;

f22.x; y/ D xy.y
2
� 3/ e

�.x2Cy2/=2
:

At any critical point f1 D 0 and f2 D 0, so the critical points are the solutions of the

system of equations

y.1 � x
2
/ D 0 .A/

x.1� y
2
/ D 0: .B/

Equation (A) says that y D 0 or x D ˙1. If y D 0, then equation (B) says that

x D 0. If either x D �1 or x D 1, then equation (B) forces y D ˙1. Thus, there are

five points satisfying both equations: .0; 0/, .1; 1/, .1;�1/, .�1; 1/, and .�1;�1/. We

classify them using the second derivative test.

At .0; 0/ we have A D C D 0, B D 1, so that B2
� AC D 1 > 0. Thus, f has a

saddle point at .0; 0/.

At .1; 1/ and .�1;�1/ we have A D C D �2=e < 0, B D 0. It follows that

B2
� AC D �4=e2 < 0. Thus, f has local maximum values at these points. The

value of f is 1=e at each point.

At .1;�1/ and .�1; 1/ we have A D C D 2=e > 0, B D 0. If follows that

B2
� AC D �4=e2 < 0. Thus, f has local minimum values at these points. The

value of f at each of them is �1=e.

Indeed, f has absolute maximum and minimum values, namely, the values ob-

tained above as local extrema. To see why, observe that f .x; y/ approaches 0 as the

point .x; y/ recedes to infinity in any direction because the negative exponential dom-

inates the power factor xy for large x2
C y

2. Pick a number between 0 and the local

maximum value 1=e found above, say, the number 1=.2e/. For some R, we must have

jf .x; y/j � 1=.2e/ whenever x2
C y2

� R2. On the closed disk x2
C y2

� R2, f

must have absolute maximum and minimum values by Theorem 2. These cannot occur

on the boundary circle x2
C y2

D R2 because jf j is smaller there (� 1=.2e/) than it

is at the critical points considered above. Since f has no singular points, the absolute

maximum and minimum values for the disk, and therefore for the whole plane, must

occur at those critical points.

E X A M P L E 9
Find the shape of a rectangular box with no top having given vol-

ume V and the least possible total surface area of its five faces.

Solution If the horizontal dimensions of the box are x, y, and its height is z (see

Figure 13.6), then we want to minimize

x

z

y

Figure 13.6 Dimensions of a box

S D xy C 2yz C 2xz

subject to the restriction that xyz D V; the required volume. We can use this restriction

to reduce the number of variables on which S depends, for instance, by substituting

z D
V

xy
:
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Then S becomes a function of the two variables x and y:

S D S.x; y/ D xy C
2V

x
C

2V

y
:

A real box has positive dimensions, so the domain of S should consist of only those

points .x; y/ that satisfy x > 0 and y > 0. If either x or y approaches 0 or1, then

S !1, so the minimum value of S must occur at a critical point. (S has no singular

points.) For critical points we solve the equations

0 D
@S

@x
D y �

2V

x2
” x

2
y D 2V;

0 D
@S

@y
D x �

2V

y2
” xy

2
D 2V:

Thus, x2y � xy2
D 0, or xy.x � y/ D 0. Since x > 0 and y > 0, this implies that

x D y. Therefore, x3
D 2V , x D y D .2V /1=3, and z D V=.xy/ D 2�2=3V 1=3

D

x=2. Since there is only one critical point, it must minimize S . (Why?) The box

having minimal surface area has a square base but is only half as high as its horizontal

dimensions.

Remark The preceding problem is a constrained extreme-value problem in three

variables; the equation xyz D V is a constraint limiting the freedom of x, y, and z.

We used the constraint to eliminate one variable, z, and so to reduce the problem to a

free (i.e., unconstrained) problem in two variables. In Section 13.3 we will develop a

more powerful method for solving constrained extreme-value problems.

E X E R C I S E S 13.1

In Exercises 1–17, find and classify the critical points of the given

functions.

1. f .x; y/ D x2
C 2y

2
� 4x C 4y

2. f .x; y/ D xy � x C y 3. f .x; y/ D x3
C y

3
� 3xy

4. f .x; y/ D x4
C y

4
� 4xy 5. f .x; y/ D

x

y
C

8

x
� y

6. f .x; y/ D cos.x C y/ 7. f .x; y/ D x siny

8. f .x; y/ D cosx C cos y 9. f .x; y/ D x2
y e

�.x2Cy2/

10. f .x; y/ D
xy

2C x4
C y4

11. f .x; y/ D x e�x3Cy3

12. f .x; y/ D
x2

x2
C y2

13. f .x; y/ D
xy

x2
C y2

14. f .x; y/ D
1

1 � x C y C x2
C y2

15. f .x; y/ D

�

1C
1

x

��

1C
1

y

��

1

x
C

1

y

�

16.I f .x; y; z/ D xyz � x
2
� y

2
� z

2

17.I f .x; y; z/ D xy C x
2
z � x

2
� y � z

2

18.I Show that f .x; y; z/ D 4xyz � x4
� y4

� z4 has a local

maximum value at the point .1; 1; 1/.

19. Find the maximum and minimum values of

f .x; y/ D xy e�x
2�y4

.

20. Find the maximum and minimum values of

f .x; y/ D
x

.1C x2
C y2/

.

21.I Find the maximum and minimum values of

f .x; y; z/ D xyz e�x
2�y2�z2

. How do you know that such

extreme values exist?

22. Find the minimum value of f .x; y/ D x C 8y C
1

xy
in the

first quadrant x > 0, y > 0. How do you know that a

minimum exists?

23. Postal regulations require that the sum of the height and girth

(horizontal perimeter) of a package should not exceed L units.

Find the largest volume of a rectangular box that can satisfy

this requirement.

24. The material used to make the bottom of a rectangular box is

twice as expensive per unit area as the material used to make

the top or side walls. Find the dimensions of the box of given

volume V for which the cost of materials is minimum.

25. Find the volume of the largest rectangular box (with faces

parallel to the coordinate planes) that can be inscribed inside
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the ellipsoid
x2

a2
C

y2

b2
C

z2

c2
D 1:

26. Find the three positive numbers a, b, and c, whose sum is 30

and for which the expression ab2c3 is maximum.

27. Find the critical points of the function z D g.x; y/ that

satisfies the equation e2zx�x2
� 3e2zyCy2

D 2.

28.I Classify the critical points of the function g in the previous

exercise.

29.I Let f .x; y/ D .y � x2/.y � 3x2/. Show that the origin is a

critical point of f and that the restriction of f to every

straight line through the origin has a local minimum value at

the origin. (That is, show that f .x; kx/ has a local minimum

value at x D 0 for every k and that f .0; y/ has a local

minimum value at y D 0.) Does f .x; y/ have a local

minimum value at the origin? What happens to f on the

curve y D 2x2? What does the second derivative test say

about this situation?

30.A Verify by completing the square (i.e., without appealing to

Theorem 8 of Section 10.7) that the quadratic form

Q.u; v/ D
�

x; y
�

�

A B

B C

��

x

y

�

D Au
2
C2BuvCCv

2

is positive definite if A > 0 and

ˇ

ˇ

ˇ

ˇ

A B

B C

ˇ

ˇ

ˇ

ˇ

> 0, negative

definite if A < 0 and

ˇ

ˇ

ˇ

ˇ

A B

B C

ˇ

ˇ

ˇ

ˇ

> 0, and indefinite if
ˇ

ˇ

ˇ

ˇ

A B

B C

ˇ

ˇ

ˇ

ˇ

< 0. This gives independent confirmation of the

assertion in the remark preceding Example 7.

31.I State and prove (using square completion arguments rather

than appealing to Theorem 8 of Section 10.7) a result

analogous to that of Exercise 30 for a quadratic form

Q.u; v;w/ involving three variables. What are the

implications of this for a critical point .a; b; c/ of a function

f .x; y; z/ all of whose second partial derivatives are known at

.a; b; c/?

13.2 Extreme Values of Functions Defined on Restricted Domains
Much of the previous section was concerned with techniques for determining whether

a critical point of a function provides a local maximum or minimum value or is a

saddle point. In this section we address the problem of determining absolute maximum

and minimum values for functions that have them—usually functions whose domains

are restricted to subsets of R
2 (or R

n) having nonempty interiors. In Example 8 of

How to find extreme values of a

continuous function f on a

closed, bounded domain D

1. Find any critical or singular

points of f in the interior of

D.

2. Find any points on the

boundary of D where f

might have extreme values.

To do this you can

parametrize the whole

boundary, or parts of it, and

express f as a function of

the parameter(s). If you

break the boundary into

pieces, you must consider

the endpoints of those

pieces. Section 13.3 will

present another alternative

for analyzing f on the

boundary of D.

3. Evaluate f at all the points

found in steps 1 and 2.

Section 13.1 we had to prove that the given function had absolute extreme values. If,

however, we are dealing with a continuous function on a domain that is closed and

bounded, then we can rely on Theorem 2 to guarantee the existence of such extreme

values, but we will always have to check boundary points as well as any interior critical

or singular points to find them. The following examples illustrate the technique.

E X A M P L E 1
Find the maximum and minimum values of f .x; y/ D 2xy on the

closed disk x2
C y2

� 4. (See Figure 13.7.)

Solution Since f is continuous and the disk is closed, f must have absolute maxi-

mum and minimum values at some points of the disk. The first partial derivatives of

f are

f1.x; y/ D 2y and f2.x; y/ D 2x;

so there are no singular points, and the only critical point is .0; 0/, where f has the

value 0.

We must still consider values of f on the boundary circle x2
C y2

D 4. We

can express f as a function of a single variable on this circle by using a convenient

parametrization of the circle, say,

x D 2 cos t; y D 2 sin t; .�� � t � �/:

We have

f

�

2 cos t; 2 sin t
�

D 8 cos t sin t D g.t/:
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We must find any extreme values of g.t/. We can do this in either of two ways. If we

rewrite g.t/ D 4 sin 2t , it is clear that g.t/ has maximum value 4 (at t D �
4

and �3�
4

)

and minimum value �4 (at t D ��
4

and 3�
4

). Alternatively, we can differentiate g to

find its critical points:

0 D g
0
.t/ D �8 sin2

t C 8 cos2
t ” tan2

t D 1

” t D ˙
�

4
or ˙

3�

4
;

which again yield the maximum value 4 and the minimum value �4. (It is not neces-

sary to check the endpoints t D �� and t D � ; since g is everywhere differentiable

and is periodic with period � , any absolute maximum or minimum will occur at a

critical point.)

In any event, f has maximum value 4 at the boundary points .
p

2;
p

2/ and

.�
p

2;�
p

2/ and minimum value �4 at the boundary points .
p

2;�
p

2/ and

.�
p

2;
p

2/. It is easily shown by the second derivative test (or otherwise) that the

interior critical point .0; 0/ is a saddle point. (See Figure 13.7.)

y

x

x2
C y2

� 4

.
p

2;
p

2/

.0;0/

.
p

2;�
p

2/.�
p

2;�
p

2/

.�
p

2;
p

2/

Figure 13.7 Points that are candidates for

extreme values in Example 1

E X A M P L E 2
Find the extreme values of the function f .x; y/ D x2ye�.xCy/ on

the triangular region T given by x � 0, y � 0, and x C y � 4.

Solution First, we look for critical points:

0 D f1.x; y/ D xy.2� x/e
�.xCy/

0 D f2.x; y/ D x
2
.1 � y/e

�.xCy/

” x D 0; y D 0; or x D 2;

” x D 0 or y D 1:

The critical points are .0; y/ for any y and .2; 1/. Only .2; 1/ is an interior point of

T: (See Figure 13.8.) f .2; 1/ D 4=e3
� 0:199. The boundary of T consists of three

straight line segments. On two of these, the coordinate axes, f is identically zero. The

third segment is given by

y D 4 � x; 0 � x � 4;

so the values of f on this segment can be expressed as a function of x alone:

y

x

4

x C y D 4

�

8
3

;
4
3

�

4

.2;1/

T

Figure 13.8 Points of interest in

Example 2

g.x/ D f .x; 4 � x/ D x
2
.4 � x/e

�4
; 0 � x � 4:

Note that g.0/ D g.4/ D 0 and g.x/ > 0 if 0 < x < 4. The critical points of g are

given by 0 D g0
.x/ D .8x � 3x

2
/e

�4, so they are x D 0 and x D 8=3. We have

g

�

8

3

�

D f

�

8

3
;
4

3

�

D

256

27
e

�4
� 0:174 < f .2; 1/:

We conclude that the maximum value of f over the region T is 4=e3 and that it occurs

at the interior critical point .2; 1/. The minimum value of f is zero and occurs at all

points of the two perpendicular boundary segments. Note that f has neither a local

maximum nor a local minimum at the boundary point .8=3; 4=3/, although g has a

local maximum there. Of course, that point is not a saddle point of f either; it is not a

critical point of f:

E X A M P L E 3
Among all triangles with vertices on a given circle, find those that

have the largest area.
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the ellipsoid
x2

a2
C

y2

b2
C

z2

c2
D 1:

26. Find the three positive numbers a, b, and c, whose sum is 30

and for which the expression ab2c3 is maximum.

27. Find the critical points of the function z D g.x; y/ that

satisfies the equation e2zx�x2
� 3e2zyCy2

D 2.

28.I Classify the critical points of the function g in the previous

exercise.

29.I Let f .x; y/ D .y � x2/.y � 3x2/. Show that the origin is a

critical point of f and that the restriction of f to every

straight line through the origin has a local minimum value at

the origin. (That is, show that f .x; kx/ has a local minimum

value at x D 0 for every k and that f .0; y/ has a local

minimum value at y D 0.) Does f .x; y/ have a local

minimum value at the origin? What happens to f on the

curve y D 2x2? What does the second derivative test say

about this situation?

30.A Verify by completing the square (i.e., without appealing to

Theorem 8 of Section 10.7) that the quadratic form

Q.u; v/ D
�

x; y
�

�

A B

B C

��

x

y

�

D Au
2
C2BuvCCv

2

is positive definite if A > 0 and

ˇ

ˇ

ˇ

ˇ

A B

B C

ˇ

ˇ

ˇ

ˇ

> 0, negative

definite if A < 0 and

ˇ

ˇ

ˇ

ˇ

A B

B C

ˇ

ˇ

ˇ

ˇ

> 0, and indefinite if
ˇ

ˇ

ˇ

ˇ

A B

B C

ˇ

ˇ

ˇ

ˇ

< 0. This gives independent confirmation of the

assertion in the remark preceding Example 7.

31.I State and prove (using square completion arguments rather

than appealing to Theorem 8 of Section 10.7) a result

analogous to that of Exercise 30 for a quadratic form

Q.u; v;w/ involving three variables. What are the

implications of this for a critical point .a; b; c/ of a function

f .x; y; z/ all of whose second partial derivatives are known at

.a; b; c/?

13.2 Extreme Values of Functions Defined on Restricted Domains
Much of the previous section was concerned with techniques for determining whether

a critical point of a function provides a local maximum or minimum value or is a

saddle point. In this section we address the problem of determining absolute maximum

and minimum values for functions that have them—usually functions whose domains

are restricted to subsets of R
2 (or R

n) having nonempty interiors. In Example 8 of

How to find extreme values of a

continuous function f on a

closed, bounded domain D

1. Find any critical or singular

points of f in the interior of

D.

2. Find any points on the

boundary of D where f

might have extreme values.

To do this you can

parametrize the whole

boundary, or parts of it, and

express f as a function of

the parameter(s). If you

break the boundary into

pieces, you must consider

the endpoints of those

pieces. Section 13.3 will

present another alternative

for analyzing f on the

boundary of D.

3. Evaluate f at all the points

found in steps 1 and 2.

Section 13.1 we had to prove that the given function had absolute extreme values. If,

however, we are dealing with a continuous function on a domain that is closed and

bounded, then we can rely on Theorem 2 to guarantee the existence of such extreme

values, but we will always have to check boundary points as well as any interior critical

or singular points to find them. The following examples illustrate the technique.

E X A M P L E 1
Find the maximum and minimum values of f .x; y/ D 2xy on the

closed disk x2
C y2

� 4. (See Figure 13.7.)

Solution Since f is continuous and the disk is closed, f must have absolute maxi-

mum and minimum values at some points of the disk. The first partial derivatives of

f are

f1.x; y/ D 2y and f2.x; y/ D 2x;

so there are no singular points, and the only critical point is .0; 0/, where f has the

value 0.

We must still consider values of f on the boundary circle x2
C y2

D 4. We

can express f as a function of a single variable on this circle by using a convenient

parametrization of the circle, say,

x D 2 cos t; y D 2 sin t; .�� � t � �/:

We have

f

�

2 cos t; 2 sin t
�

D 8 cos t sin t D g.t/:
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We must find any extreme values of g.t/. We can do this in either of two ways. If we

rewrite g.t/ D 4 sin 2t , it is clear that g.t/ has maximum value 4 (at t D �
4

and �3�
4

)

and minimum value �4 (at t D ��
4

and 3�
4

). Alternatively, we can differentiate g to

find its critical points:

0 D g
0
.t/ D �8 sin2

t C 8 cos2
t ” tan2

t D 1

” t D ˙
�

4
or ˙

3�

4
;

which again yield the maximum value 4 and the minimum value �4. (It is not neces-

sary to check the endpoints t D �� and t D � ; since g is everywhere differentiable

and is periodic with period � , any absolute maximum or minimum will occur at a

critical point.)

In any event, f has maximum value 4 at the boundary points .
p

2;
p

2/ and

.�
p

2;�
p

2/ and minimum value �4 at the boundary points .
p

2;�
p

2/ and

.�
p

2;
p

2/. It is easily shown by the second derivative test (or otherwise) that the

interior critical point .0; 0/ is a saddle point. (See Figure 13.7.)

y

x

x2
C y2

� 4

.
p

2;
p

2/

.0;0/

.
p

2;�
p

2/.�
p

2;�
p

2/

.�
p

2;
p

2/

Figure 13.7 Points that are candidates for

extreme values in Example 1

E X A M P L E 2
Find the extreme values of the function f .x; y/ D x2ye�.xCy/ on

the triangular region T given by x � 0, y � 0, and x C y � 4.

Solution First, we look for critical points:

0 D f1.x; y/ D xy.2� x/e
�.xCy/

0 D f2.x; y/ D x
2
.1 � y/e

�.xCy/

” x D 0; y D 0; or x D 2;

” x D 0 or y D 1:

The critical points are .0; y/ for any y and .2; 1/. Only .2; 1/ is an interior point of

T: (See Figure 13.8.) f .2; 1/ D 4=e3
� 0:199. The boundary of T consists of three

straight line segments. On two of these, the coordinate axes, f is identically zero. The

third segment is given by

y D 4 � x; 0 � x � 4;

so the values of f on this segment can be expressed as a function of x alone:

y

x

4

x C y D 4

�

8
3

;
4
3

�

4

.2;1/

T

Figure 13.8 Points of interest in

Example 2

g.x/ D f .x; 4 � x/ D x
2
.4 � x/e

�4
; 0 � x � 4:

Note that g.0/ D g.4/ D 0 and g.x/ > 0 if 0 < x < 4. The critical points of g are

given by 0 D g0
.x/ D .8x � 3x

2
/e

�4, so they are x D 0 and x D 8=3. We have

g

�

8

3

�

D f

�

8

3
;
4

3

�

D

256

27
e

�4
� 0:174 < f .2; 1/:

We conclude that the maximum value of f over the region T is 4=e3 and that it occurs

at the interior critical point .2; 1/. The minimum value of f is zero and occurs at all

points of the two perpendicular boundary segments. Note that f has neither a local

maximum nor a local minimum at the boundary point .8=3; 4=3/, although g has a

local maximum there. Of course, that point is not a saddle point of f either; it is not a

critical point of f:

E X A M P L E 3
Among all triangles with vertices on a given circle, find those that

have the largest area.
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Solution The solution set S of the system of four constraint inequalities is shown in

Figure 13.11. It is the quadrilateral region with vertices .0; 0/, .3; 0/, .2; 2/, and .0; 3/.

Several level curves of the linear function F are also shown in the figure. They are

parallel straight lines with slope �2
7

. We want the line that gives F the greatest value

and that still intersects S. Evidently this is the line F D 21 that passes through the

vertex .0; 3/ of S. The maximum value of F subject to the constraints is 21.

Figure 13.11 The shaded region is the

solution set for the constraint inequalities

in Example 4

y

x

3

3

.2;2/

x C 2y D 6

2x C y D 6

F D 35

F D 28

F D 21

F D 14

F D 7

F D 0
F D �7

S

As this simple example illustrates, a linear function with domain restricted by linear

inequalities does not achieve maximum or minimum values at points in the interior

of its domain (if that domain has an interior). Any such extreme value occurs at a

boundary point of the domain or a set of such boundary points. Where an extreme value

occurs at a set of boundary points, that set will always contain at least one vertex. This

phenomenon holds in general for extreme-value problems for linear functions in any

number of variables with domains restricted by any number of linear inequalities. For

problems involving three variables the domain will be a convex region of R
3 bounded

by planes. For a problem involving n variables the domain will be a convex region

in R
n bounded by .n � 1/-dimensional hyperplanes. Such polyhedral regions still

have vertices (where n hyperplanes intersect), and maximum or minimum values of

linear functions subject to the constraints will still occur at subsets of the boundary

containing such vertices. These problems can therefore be solved by evaluating the

linear function to be extremized (it is called the objective function) at all the vertices

and selecting the greatest or least value.

In practice, linear programming problems can involve hundreds or even thousands

of variables and even more constraints. Such problems need to be solved with com-

puters, but even then it is extremely inefficient, if not impossible, to calculate all the

vertices of the constraint solution set and the values of the objective function at them.

Much of the study of linear programming therefore centres on devising techniques for

getting to (or at least near) the optimizing vertex in as few steps as possible. Usually,

this involves criteria whereby large numbers of vertices can be rejected on geometric

grounds. We will not delve into such techniques here but will content ourselves with

one more example to illustrate, in a very simple case, how the underlying geometry of

a problem can be used to reduce the number of vertices that must be considered.

E X A M P L E 5
A tailor has 230 m of a certain fabric and has orders for up to 20

suits, up to 30 jackets, and up to 40 pairs of slacks to be made from

the fabric. Each suit requires 6 m, each jacket 3 m, and each pair of slacks 2 m of the

fabric. If the tailor’s profit is $20 per suit, $14 per jacket, and $12 per pair of slacks,

how many of each should he make to realize the maximum profit from his supply of

the fabric?
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Solution Suppose he makes x suits, y jackets, and z pairs of slacks. Then his profit

will be

P D 20x C 14y C 12z:

The constraints posed in the problem are

x � 0;

y � 0;

z � 0;

x � 20;

y � 30;

z � 40;

6x C 3y C 2z � 230:

The last inequality is due to the limited supply of fabric. The solution set is shown in

Figure 13.12. It has 10 vertices, A;B; : : : ; J: Since P increases in the direction of the

vector rP D 20iC 14jC 12k, which points into the first octant, its maximum value

cannot occur at any of the vertices A;B; : : : ; G. (Think about why.) Thus, we need

look only at the vertices H , I; and J .

H D .20; 10; 40/; P D 1;020 at H:

I D .10; 30; 40/; P D 1;100 at I:

J D .20; 30; 10/; P D 940 at J:

Thus, the tailor should make 10 suits, 30 jackets, and 40 pairs of slacks to realize the

maximum profit, $1,100, from the fabric.

x

y

z

40

E

30

A

F

G H

20

B

C

D

I

J

Figure 13.12 The convex set of points

satisfying the constraints in Example 5

E X E R C I S E S 13.2

1. Find the maximum and minimum values of

f .x; y/ D x � x2
C y2 on the rectangle 0 � x � 2,

0 � y � 1.

2. Find the maximum and minimum values of

f .x; y/ D xy � 2x on the rectangle �1 � x � 1, 0 � y � 1.

3. Find the maximum and minimum values of

f .x; y/ D xy � y2 on the disk x2
C y2

� 1.

4. Find the maximum and minimum values of f .x; y/ D x C 2y

on the disk x2
C y2

� 1.

5. Find the maximum and minimum values of

f .x; y/ D xy � x3y2 over the square 0 � x � 1, 0 � y � 1.

6. Find the maximum and minimum values of

f .x; y/ D xy.1 � x � y/ over the triangle with vertices

.0; 0/, .1; 0/, and .0; 1/.

7. Find the maximum and minimum values of

f .x; y/ D sinx cosy on the closed triangular region bounded

by the coordinate axes and the line x C y D 2� .

8. Find the maximum value of f .x; y/ D sinx siny sin.x C y/

over the triangle bounded by the coordinate axes and the line

x C y D � .

9. The temperature at all points in the disk x2
C y2

� 1 is given

by T D .x C y/ e�x2�y2

. Find the maximum and minimum

temperatures at points of the disk.

10. Find the maximum and minimum values of

f .x; y/ D
x � y

1C x2
C y2

on the upper half-plane y � 0.

11. Find the maximum and minimum values of xy2
C yz2 over

the ball x2
C y2

C z2
� 1.

12. Find the maximum and minimum values of xz C yz over the

ball x2
C y2

C z2
� 1.

13. Consider the function f .x; y/ D xy e�xy with domain the

first quadrant: x � 0; y � 0. Show that

limx!1 f .x; kx/ D 0. Does f have a limit as .x; y/ recedes

arbitrarily far from the origin in the first quadrant? Does f

have a maximum value in the first quadrant?

14. Repeat Exercise 13 for the function f .x; y/ D xy2 e�xy .

15. In a certain community there are two breweries in competition,

so that sales of each negatively affect the profits of the other. If

brewery A produces x litres of beer per month and brewery B

produces y litres per month, then brewery A’s monthly profit

$P and brewery B’s monthly profit $Q are assumed to be

P D 2x �
2x

2
C y

2

106
;

Q D 2y �
4y2
C x2

2 � 106
:

Find the sum of the profits of the two breweries if each

brewery independently sets its own production level to

maximize its own profit and assumes its competitor does

likewise. Find the sum of the profits if the two breweries

cooperate to determine their respective productions to

maximize that sum.
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16.I Equal angle bends are made at equal distances from the two

ends of a 100 m long straight length of fence so the resulting

three-segment fence can be placed along an existing wall to

make an enclosure of trapezoidal shape. What is the largest

possible area for such an enclosure?

17. MaximizeQ.x; y/ D 2x C 3y subject to the constraints

x � 0, y � 0, y � 5, x C 2y � 12, and 4x C y � 12.

18. Minimize F.x; y; z/ D 2x C 3y C 4z subject to the

constraints x � 0, y � 0, z � 0, x C y � 2, y C z � 2, and

x C z � 2.

19. A textile manufacturer produces two grades of fabric

containing wool, cotton, and polyester. The deluxe grade has

composition (by weight) 20% wool, 50% cotton, and 30%

polyester, and it sells for $3 per kilogram. The standard grade

has composition 10% wool, 40% cotton, and 50% polyester,

and it sells for $2 per kilogram. If he has in stock 2,000 kg of

wool and 6,000 kg each of cotton and polyester, how many

kilograms of fabric of each grade should he manufacture to

maximize his revenue?

20. A 10-hectare parcel of land is zoned for building densities of 6

detached houses per hectare, 8 duplex units per hectare, or 12

apartments per hectare. The developer who owns the land can

make a profit of $40,000 per house, $20,000 per duplex unit,

and $16,000 per apartment that he builds. Municipal bylaws

require him to build at least as many apartments as the total of

houses and duplex units. How many of each type of dwelling

should he build to maximize his profit?

13.3 Lagrange Multipliers

A constrained extreme-value problem is one in which the variables of the function to

be maximized or minimized are not completely independent of one another, but must

satisfy one or more constraint equations or inequalities. For instance, the problems

maximize f .x; y/ subject to g.x; y/ D C

and

minimize f .x; y; z; w/ subject to g.x; y; z; w/ D C1;

and h.x; y; z; w/ D C2

have, respectively, one and two constraint equations, while the problem

maximize f .x; y; z/ subject to g.x; y; z/ � C

has a single constraint inequality.

Generally, inequality constraints can be regarded as restricting the domain of the

function to be extremized to a smaller set that still has interior points. Section 13.2 was

devoted to such problems. In each of the first three examples of that section we looked

for free (i.e., unconstrained) extreme values in the interior of the domain, and we also

examined the boundary of the domain, which was specified by one or more constraint

equations. In Example 1 we parametrized the boundary and expressed the function

to be extremized as a function of the parameter, thus reducing the boundary case to

a free problem in one variable instead of a constrained problem in two variables. In

Example 2 the boundary consisted of three line segments, on two of which the function

was obviously zero. We solved the equation for the third boundary segment for y

in terms of x, again in order to express the values of f .x; y/ on that segment as a

function of one free variable. A similar approach was used in Example 3 to deal with

the triangular boundary of the domain of the area function A.�; �/.

The reduction of extremization problems with equation constraints to free prob-

lems with fewer independent variables is only feasible when the constraint equations

can be solved either explicitly for some variables in terms of others or parametrically

for all variables in terms of some parameters. It is often very difficult or impossible to

solve the constraint equations, so we need another technique.

The Method of Lagrange Multipliers
A technique for finding extreme values of f .x; y/ subject to the equality constraint

g.x; y/ D 0 is based on the following theorem:
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T H E O R E M

4

Suppose that f and g have continuous first partial derivatives near the point

P0 D .x0; y0/ on the curve C with equation g.x; y/ D 0. Suppose also that, when

restricted to points on C, the function f .x; y/ has a local maximum or minimum value

at P0. Finally, suppose that

(i) P0 is not an endpoint of C, and

(ii) rg.P0/ ¤ 0.
Then there exists a number �0 such that .x0; y0; �0/ is a critical point of the

Lagrange function

L.x; y; �/ D f .x; y/C �g.x; y/:

PROOF Together, (i) and (ii) imply that C is smooth enough to have a tangent line at

P0 and thatrg.P0/ is normal to that tangent line. Ifrf .P0/ is not parallel torg.P0/,

then rf .P0/ has a nonzero vector projection v along the tangent line to C at P0. (See

Figure 13.13.) Therefore, f has a positive directional derivative at P0 in the direction

of v and a negative directional derivative in the opposite direction. Thus, f .x; y/

increases or decreases as we move away from P0 along C in the direction of v or �v,

and f cannot have a maximum or minimum value at P0. Since we are assuming that f

does have an extreme value at P0, it must be that rf .P0/ is parallel to rg.P0/. Since

rg.P0/ ¤ 0, there must exist a real number �0 such that rf .P0/ D ��0rg.P0/, or

r.f C �0g/.P0/ D 0:

The two components of the above vector equation assert that @L=@x D 0 and @L=@y D

0 at .x0; y0; �0/. The third equation that must be satisfied by a critical point of L is

@L=@� D g.x; y/ D 0. This is satisfied at .x0; y0; �0/ because P0 lies on C. Thus,

.x0; y0; �0/ is a critical point of L.x; y; �/.

rf .P0/

rg.P0/

CP0

v

g.x; y/ D 0

Figure 13.13 If rf .P0/ is not a multiple

of rg.P0/, then rf .P0/ has a nonzero

projection v tangent to the level curve of g

through P0

Theorem 4 suggests that to find candidates for points on the curve g.x; y/ D 0 at which

f .x; y/ is maximum or minimum, we should look for critical points of the Lagrange

function

L.x; y; �/ D f .x; y/C �g.x; y/:

At any critical point of L we must have

0 D
@L

@x
D f1.x; y/C �g1.x; y/;

0 D
@L

@y
D f2.x; y/C �g2.x; y/;

9

>

>

=

>

>

;

that is, rf is parallel to rg,

and 0 D
@L

@�
D g.x; y/; the constraint equation:

Note that it is assumed that the constrained problem does, in fact, have a solution.

Theorem 4 does not guarantee that a solution exists; it only provides a means for find-

ing a solution already known to exist. It is usually necessary to satisfy yourself that

the problem you are trying to solve has a solution before using this method to find the

solution.

Let us put the method to a concrete test:

E X A M P L E 1
Find the shortest distance from the origin to the curve x2y D 16.
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Solving such a system can be very difficult. It should be noted that, in using the method

of Lagrange multipliers instead of solving the constraint equations, we have traded the

problem of having to solve two equations for two variables as functions of a third one

for a problem of having to solve five equations for numerical values of five unknowns.

E X A M P L E 5
Find the maximum and minimum values of f .x; y; z/ D xyC 2z

on the circle that is the intersection of the plane x C y C z D 0

and the sphere x2
C y2

C z2
D 24.

Solution The function f is continuous, and the circle is a closed bounded set in

3-space. Therefore, maximum and minimum values must exist. We look for critical

points of the Lagrange function

L D xy C 2z C �.x C y C z/C �.x
2
C y

2
C z

2
� 24/:

Setting the first partial derivatives of L equal to zero, we obtain

y C �C 2�x D 0; .A/

x C �C 2�y D 0; .B/

2C �C 2�z D 0; .C/

x C y C z D 0; .D/

x
2
C y

2
C z

2
� 24 D 0: .E/

Subtracting (A) from (B) we get .x � y/.1 � 2�/ D 0. Therefore, either � D 1
2

or

When none of the equations

factors, try to combine two or

more of them to produce an

equation that does factor.

x D y. We analyze both possibilities.

CASE I If � D 1
2

, we obtain from (B) and (C)

x C �C y D 0 and 2C �C z D 0:

Thus, x C y D 2 C z. Combining this with (D), we get z D �1 and x C y D 1.

Now, by (E), x2
C y2

D 24 � z2
D 23. Since x2

C y2
C 2xy D .x C y/2 D 1,

we have 2xy D 1 � 23 D �22 and xy D �11. Now .x � y/2 D x2
C y2

� 2xy D

23C 22 D 45, so x � y D ˙3
p

5. Combining this with x C y D 1, we obtain two

critical points arising from � D
1
2

, namely,
�

.1 C 3
p

5/=2; .1 � 3
p

5/=2;�1

�

and
�

.1 � 3
p

5/=2; .1C 3
p

5/=2;�1

�

. At both of these points we find that f .x; y; z/ D

xy C 2z D �11 � 2 D �13.

CASE II If x D y, then (D) implies that z D �2x, and (E) then gives 6x2
D 24, so

x D ˙2. Therefore, points .2; 2;�4/ and .�2;�2; 4/ must be considered. We have

f .2; 2;�4/ D 4 � 8 D �4 and f .�2;�2; 4/ D 4C 8 D 12.

We conclude that the maximum value of f on the circle is 12, and the minimum

value is �13.
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E X E R C I S E S 13.3

1. Use the method of Lagrange multipliers to maximize x3y5

subject to the constraint x C y D 8.

2. Find the shortest distance from the point .3; 0/ to the parabola

y D x
2

(a) by reducing to an unconstrained problem in one variable,

and

(b) by using the method of Lagrange multipliers.

3. Find the distance from the origin to the plane

x C 2y C 2z D 3

(a) using a geometric argument (no calculus),

(b) by reducing the problem to an unconstrained problem in

two variables, and

(c) using the method of Lagrange multipliers.

4. Find the maximum and minimum values of the function

f .x; y; z/ D x C y � z over the sphere x2
C y2

C z2
D 1.

5. Use the Lagrange multiplier method to find the greatest and

least distances from the point .2; 1;�2/ to the sphere with

equation x2
C y2

C z2
D 1. (Of course, the answer could be

obtained more easily using a simple geometric argument.)

6. Find the shortest distance from the origin to the surface

xyz2
D 2.

7. Find a, b, and c so that the volume V D 4�abc=3 of an

ellipsoid
x

2

a2
C

y
2

b2
C

z
2

c2
D 1 passing through the point

.1; 2; 1/ is as small as possible.

8. Find the ends of the major and minor axes of the ellipse

3x2
C 2xy C 3y2

D 16.

9. Find the maximum and minimum values of f .x; y; z/ D xyz

on the sphere x2
C y2

C z2
D 12.

10. Find the maximum and minimum values of x C 2y � 3z over

the ellipsoid x2
C 4y2

C 9z2
� 108.

11. Find the distance from the origin to the surface xy2z4
D 32.

12. Find the maximum value of
Pn

iD1 xi on the n-sphere
Pn

iD1 x
2
i D 1 in R

n
.

13. Find the maximum and minimum values of the function

f .x; y; z/ D x over the curve of intersection of the plane

z D x C y and the ellipsoid x2
C 2y2

C 2z2
D 8.

14. Find the maximum and minimum values of

f .x; y; z/ D x2
C y2

C z2 on the ellipse formed by the

intersection of the cone z2
D x

2
C y

2 and the plane

x � 2z D 3.

15. Find the maximum and minimum values of

f .x; y; z/ D 4� z on the ellipse formed by the intersection of

the cylinder x2
C y2

D 8 and the plane x C y C z D 1.

16. Find the maximum and minimum values of

f .x; y; z/ D x C y
2
z subject to the constraints y2

C z
2
D 2

and z D x.

17.I Use the method of Lagrange multipliers to find the shortest

distance between the straight lines x D y D z and

x D �y; z D 2. (There are, of course, much easier ways to

get the answer. This is an object lesson in the folly of shooting

sparrows with cannons.)

18. Find the most economical shape of a rectangular box with no

top.

19. Find the maximum volume of a rectangular box with faces

parallel to the coordinate planes if one corner is at the origin

and the diagonally opposite corner lies on the plane

4x C 2y C z D 2.

20. Find the maximum volume of a rectangular box with faces

parallel to the coordinate planes if one corner is at the origin

and the diagonally opposite corner is on the first octant part of

the surface xy C 2yz C 3xz D 18.

21. A rectangular box having no top and having a prescribed

volume Vm3 is to be constructed using two different

materials. The material used for the bottom and front of the

box is five times as costly (per square metre) as the material

used for the back and the other two sides. What should be the

dimensions of the box to minimize the cost of materials?

22.I Find the maximum and minimum values of xy C z2 on the

ball x2
C y2

C z2
� 1. Use Lagrange multipliers to treat the

boundary case.

23.I Repeat Exercise 22 but handle the boundary case by

parametrizing the sphere x2
C y2

C z2
D 1 using

x D sin� cos �; y D sin� sin �; z D cos�;

where 0 � � � � and 0 � � � 2� .

24.A If ˛, ˇ, and  are the angles of a triangle, show that

sin
˛

2
sin

ˇ

2
sin



2
�

1

8
:

For what triangles does equality occur?

25.I Suppose that f and g have continuous first partial derivatives

throughout the xy-plane, and suppose that g2.a; b/ ¤ 0. This

implies that the equation g.x; y/ D g.a; b/ defines y

implicitly as a function of x near the point .a; b/. Use the

Chain Rule to show that if f .x; y/ has a local extreme value at

.a; b/ subject to the constraint g.x; y/ D g.a; b/, then for

some number � the point .a; b; �/ is a critical point of the

function

L.x; y; �/ D f .x; y/C �g.x; y/:

This constitutes a more formal justification of the method of

Lagrange multipliers in this case.

26.A What is the shortest distance from the point .0;�1/ to the

curve y D
p

1 � x2? Can this problem be solved by the

Lagrange multiplier method? Why?

27.A Example 3 showed that the method of Lagrange multipliers

might fail to find a point that extremizes f .x; y/ subject to the

constraint g.x; y/ D 0 if rg D 0 at the extremizing point.

Can the method also fail if rf D 0 at the extremizing point?

Why?
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