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732 CHAPTER 12 Partial Differentiation

or

BEWARE! Make sure you

understand the difference between

the graph of a function and a level

curve or level surface of that

function. (See the discussion

following this example.) Here, the

surface z D f .x; y/ is the graph of

the function f; but it is also a level

surface of a different function g.

z D f .a; b/C f1.a; b/.x � a/C f2.a; b/.y � b/:

(See Figure 12.31.) This result was obtained by a different argument in Section 12.3.

Students sometimes confuse graphs of functions with level curves or surfaces of those

functions. In the above example, we are talking about a level surface of the function

g.x; y; z/ that happens to coincide with the graph of a different function, f .x; y/. Do

not confuse that surface with the graph of g, which is a three-dimensional hypersurface

in 4-space having equationw D g.x; y; z/. Similarly, do not confuse the tangent plane

to the graph of f .x; y/ (i.e., the plane obtained in the above example) with the tangent

line to the level curve of f .x; y/ passing through .a; b/ and lying in the xy-plane. This

line has an equation involving only x and y: f1.a; b/.x � a/C f2.a; b/.y � b/ D 0.

E X A M P L E 8
Find a vector tangent to the curve of intersection of the two sur-

faces z D x2
� y2 and xyz C 30 D 0 at the point .�3; 2; 5/.

Solution The coordinates of the given point satisfy the equations of both surfaces so

the point lies on the curve of intersection of the two surfaces. A vector tangent to this

curve at that point will be perpendicular to the normals to both surfaces, that is, to the

vectors

n1 D r.x
2
� y

2
� z/

ˇ

ˇ

ˇ

ˇ

.�3;2;5/

D 2xi � 2yj � k

ˇ

ˇ

ˇ

ˇ

.�3;2;5/

D �6i � 4j � k;

n2 D r.xyz C 30/

ˇ

ˇ

ˇ

ˇ

.�3;2;5/

D .yziC xzjC xyk/

ˇ

ˇ

ˇ

ˇ

.�3;2;5/

D 10i � 15j � 6k:

For the tangent vector T we can therefore use the cross product of these normals:

T D n1 � n2 D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i j k

�6 �4 �1

10 �15 �6

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 9i � 46jC 130k:

M Remark Maple’s VectorCalculus package defines a function Gradient that takes a

pair of arguments—an expression and a list of variables—and produces the gradient of

the expression with respect to those variables:

> with(VectorCalculus):

> f := x^2+y^3+z^4; G := Gradient(f, [x,y,z]);

f WD x2
C y3

C z4

G WD 2 x Nex C 3 y
2
Ney C 4 z

3
Nez

Although the result for G looks like a vector, it is actually something different, namely

a vector field, which is a vector-valued function of a vector variable. This fact is

conveyed by the bars that appear over the basis vectors in the output. We will deal

extensively with vector fields in Chapters 15 and 16 and will say little about them here

except to note that evaluating the Gradient at a particular point requires the evalVF

function, which takes two arguments: a vector field and a vector at which to evaluate

it.

> evalVF(G,<2,3,-1>);

4 ex C 27 ey � 4 ez

Observe that the output is a vector, not a vector field; there are no bars on the basis

vectors.

If you want to define a gradient function (let us call it grad) such that you would

get the above value by using the input grad(f)(2,3,-1), you could use

> grad := g -> ((u,v,w) ->

> evalVF(Gradient(g,[x,y,z]),<u,v,w>));
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E X E R C I S E S 12.7

In Exercises 1–6, find:

(a) the gradient of the given function at the point indicated,

(b) an equation of the plane tangent to the graph of the given

function at the point whose x and y coordinates are given, and

(c) an equation of the straight line tangent, at the given point, to

the level curve of the given function passing through that

point.

1. f .x; y/ D x2
� y

2 at .2;�1/

2. f .x; y/ D
x � y

x C y
at .1; 1/

3. f .x; y/ D
x

x2
C y2

at .1; 2/

4. f .x; y/ D exy at .2; 0/

5. f .x; y/ D ln.x2
C y

2
/ at .1;�2/

6. f .x; y/ D
p

1C xy2 at .2;�2/

In Exercises 7–9, find an equation of the tangent plane to the level

surface of the given function that passes through the given point.

7. f .x; y; z/ D x2
y C y

2
z C z

2
x at .1;�1; 1/

8. f .x; y; z/ D cos.x C 2y C 3z/ at
�

�

2
; �; �

�

9. f .x; y; z/ D y e�x2

sin z at .0; 1; �=3/

In Exercises 10–13, find the rate of change of the given function at

the given point in the specified direction.

10. f .x; y/ D 3x � 4y at .0; 2/ in the direction of the vector �2i

11. f .x; y/ D x2y at .�1;�1/ in the direction of the vector

iC 2j

12. f .x; y/ D
x

1C y
at .0; 0/ in the direction of the vector i � j

13. f .x; y/ D x2
C y2 at .1;�2/ in the direction making a

(positive) angle of 60ı with the positive x-axis

14. Let f .x; y/ D ln jrj, where r D xiC yj. Show that

rf D
r

jrj2
.

15. Let f .x; y; z/ D jrj�n, where r D xiC yjC zk. Show that

rf D
�nr

jrjnC2
.

16.A Show that, in terms of polar coordinates .r; �/ (where

x D r cos � and y D r sin � ), the gradient of a function

f .r; �/ is given by

rf D
@f

@r
OrC

1

r

@f

@�

O�;

where Or is a unit vector in the direction of the position vector

r D x iC y j, and O� is a unit vector at right angles to Or in the

direction of increasing � .

17. In what directions at the point .2; 0/ does the function

f .x; y/ D xy have rate of change �1? Are there directions in

which the rate is �3? How about �2?

18. In what directions at the point .a; b; c/ does the function

f .x; y; z/ D x2
C y2

� z2 increase at half of its maximal rate

at that point?

19. Find rf .a; b/ for the differentiable function f .x; y/ given

the directional derivatives

D
.iCj/=

p
2
f .a; b/ D 3

p

2 and D.3i�4j/=5f .a; b/ D 5:

20. If f .x; y/ is differentiable at .a; b/, what condition should

angles �1 and �2 satisfy in order that the gradient rf .a; b/

can be determined from the values of the directional

derivativesD�1
f .a; b/ and D�2

f .a; b/?

21. The temperature T .x; y/ at points of the xy-plane is given by

T .x; y/ D x2
� 2y2.

(a) Draw a contour diagram for T showing some isotherms

(curves of constant temperature).

(b) In what direction should an ant at position .2;�1/ move

if it wishes to cool off as quickly as possible?

(c) If the ant moves in that direction at speed k (units

distance per unit time), at what rate does it experience the

decrease of temperature?

(d) At what rate would the ant experience the decrease of

temperature if it moved from .2;�1/ at speed k in the

direction of the vector �i � 2j?

(e) Along what curve through .2;�1/ should the ant move in

order to continue to experience maximum rate of cooling?

22. Find an equation of the curve in the xy-plane that passes

through the point .1; 1/ and intersects all level curves of the

function f .x; y/ D x4
C y2 at right angles.

23. Find an equation of the curve in the xy-plane that passes

through the point .2;�1/ and that intersects every curve with

equation of the form x
2
y

3
D K at right angles.

24. Find the second directional derivative of e�x2�y2
at the point

.a; b/ ¤ .0; 0/ in the direction directly away from the origin.

25. Find the second directional derivative of f .x; y; z/ D xyz at

.2; 3; 1/ in the direction of the vector i� j � k.

26. Find a vector tangent to the curve of intersection of the two

cylinders x2
C y

2
D 2 and y2

C z
2
D 2 at the point

.1;�1; 1/.

27. Repeat Exercise 26 for the surfaces x C y C z D 6 and

x2
C y2

C z2
D 14 and the point .1; 2; 3/.

28. The temperature in 3-space is given by

T .x; y; z/ D x
2
� y

2
C z

2
C xz

2
:

At time t D 0 a fly passes through the point .1; 1; 2/, flying

along the curve of intersection of the surfaces z D 3x2
� y2

and 2x2
C 2y2

� z2
D 0. If the fly’s speed is 7, what rate of

temperature change does it experience at t D 0?

29.A State and prove a version of Theorem 6 for a function of three

variables.

30. What is the level surface of f .x; y; z/ D cos.x C 2y C 3z/

that passes through .�; �; �/? What is the tangent plane to

that level surface at that point? (Compare this exercise with

Exercise 8 above.)

31.A If rf .x; y/ D 0 throughout the disk x2
C y2 < r2, prove

that f .x; y/ is constant throughout the disk.

32.A Theorem 6 implies that the level curve of f .x; y/ passing

through .a; b/ is smooth (has a tangent line) at .a; b/ provided

f is differentiable at .a; b/ and satisfies rf .a; b/ ¤ 0. Show

that the level curve need not be smooth at .a; b/ if

rf .a; b/ D 0. (Hint: Consider f .x; y/ D y3
�x2 at .0; 0/.)
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742 CHAPTER 12 Partial Differentiation

Solution The given equations can be rewritten in the form

F.u; v; x; y/ D u
2
C v

2
� x D 0

G.u; v; x; y/ D uv � y D 0:

Let

J D
@.F;G/

@.u; v/
D

ˇ

ˇ

ˇ

ˇ

2u 2v

v u

ˇ

ˇ

ˇ

ˇ

D 2.u
2
� v

2
/ D

@.x; y/

@.u; v/
:

If u2
¤ v2, then J ¤ 0 and we can calculate the required partial derivatives:

@u

@x
D �

1

J

@.F;G/

@.x; v/
D �

1

J

ˇ

ˇ

ˇ

ˇ

�1 2v

0 u

ˇ

ˇ

ˇ

ˇ

D

u

2.u2
� v2/

@u

@y
D �

1

J

@.F;G/

@.y; v/
D �

1

J

ˇ

ˇ

ˇ

ˇ

0 2v

�1 u

ˇ

ˇ

ˇ

ˇ

D

�2v

2.u2
� v2/

@v

@x
D �

1

J

@.F;G/

@.u; x/
D �

1

J

ˇ

ˇ

ˇ

ˇ

2u �1

v 0

ˇ

ˇ

ˇ

ˇ

D

�v

2.u2
� v2/

@v

@y
D �

1

J

@.F;G/

@.u; y/
D �

1

J

ˇ

ˇ

ˇ

ˇ

2u 0

v �1

ˇ

ˇ

ˇ

ˇ

D

2u

2.u2
� v2/

:

Thus,

@.u; v/

@.x; y/
D

1

J 2

ˇ

ˇ

ˇ

ˇ

u �2v

�v 2u

ˇ

ˇ

ˇ

ˇ

D

J

J 2
D

1

J
D

1

@.x; y/

@.u; v/

:

Remark Note in the above example that @u=@x ¤ 1=.@x=@u/. This should be con-

trasted with the single-variable situation where, if y D f .x/ and dy=dx ¤ 0, then

x D f �1.y/ and dx=dy D 1=.dy=dx/. This is another reason for distinguishing

between @ and d . It is the Jacobian rather than any single partial derivative that takes

the place of the ordinary derivative in such situations.

Remark Let us look briefly at the general case of invertible transformations from R
n

to R
n. Suppose that y D f.x/ and z D g.y/ are both functions from R

n to R
n whose

components have continuous first partial derivatives. As shown in Section 12.6, the

Chain Rule implies that
0

B

B

B

B

@

@z1

@x1

� � �

@z1

@xn
:
:
:

: : :
:
:
:

@zn

@x1

� � �

@zn

@xn

1

C

C

C

C

A

D

0

B

B

B

B

@

@z1

@y1

� � �

@z1

@yn

:
:
:

: : :
:
:
:

@zn

@y1

� � �

@zn

@yn

1

C

C

C

C

A

0

B

B

B

B

@

@y1

@x1

� � �

@y1

@xn
:
:
:

: : :
:
:
:

@yn

@x1

� � �

@yn

@xn

1

C

C

C

C

A

:

This is just the Chain Rule for the composition z D g
�

f.x/
�

. It follows from Theorem

3(b) of Section 10.7 that the determinants of these matrices satisfy a similar equation:

@.z1 � � � zn/

@.x1 � � � xn/
D

@.z1 � � � zn/

@.y1 � � � yn/

@.y1 � � � yn/

@.x1 � � � xn/
:

If f is one-to-one and g is the inverse of f, then z D g
�

f.x/
�

D x and

@.z1 � � � zn/=@.x1 � � � xn/ D 1, the determinant of the identity matrix. Thus,

@.x1 � � � xn/

@.y1 � � � yn/
D

1

@.y1 � � � yn/

@.x1 � � � xn/

:

In fact, the nonvanishing of either of these determinants is sufficient to guarantee that

f is one-to-one and has an inverse. This is a special case of the Implicit Function

Theorem.

We will encounter Jacobians again when we study transformations of coordinates

in multiple integrals in Chapter 14.
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E X E R C I S E S 12.8

In Exercises 1–12, calculate the indicated derivative from the given

equation(s). What condition on the variables will guarantee the

existence of a solution that has the indicated derivative? Assume

that any general functions F; G, and H have continuous first

partial derivatives.

1.
dx

dy
if xy3

C x
4
y D 2 2.

@x

@y
if xy3

D y � z

3.
@z

@y
if z2
C xy

3
D

xz

y
4.
@y

@z
if eyz

� x
2
z lny D �

5.
@x

@w
if x2

y
2
C y

2
z

2
C z

2
t
2
C t

2
w

2
� xw D 0

6.
dy

dx
if F.x; y; x2

� y
2
/ D 0

7.
@u

@x
if G.x; y; z; u; v/ D 0

8.
@z

@x
if F.x2

� z
2
; y

2
C xz/ D 0

9.
@w

@t
if H.u2

w; v
2
t; wt/ D 0

10.
@y

@x

!

u

if xyuv D 1 and x C y C uC v D 0

11.
@x

@y

!

z

if x2
C y

2
C z

2
Cw

2
D 1, and

x C 2y C 3z C 4w D 2

12.
du

dx
if x2

y C y
2
u � u

3
D 0 and x2

C yu D 1

13. If x D u3
C v3 and y D uv � v2 are solved for u and v in

terms of x and y, evaluate

@u

@x
;

@u

@y
;

@v

@x
;

@v

@y
; and

@.u; v/

@.x; y/

at the point where u D 1 and v D 1.

14. Near what points .r; s/ can the transformation

x D r
2
C 2s; y D s

2
� 2r

be solved for r and s as functions of x and y? Calculate the

values of the first partial derivatives of the solution at the

origin.

15. Evaluate the Jacobian @.x; y/=@.r; �/ for the transformation to

polar coordinates: x D r cos � , y D r sin � . Near what points

.r; �/ is the transformation one-to-one and therefore invertible

to give r and � as functions of x and y?

16. Evaluate the Jacobian @.x; y; z/=@.R; �; �/, where

x D R sin� cos �; y D R sin� sin �; and z D R cos�:

This is the transformation from Cartesian to spherical

coordinates in 3-space that we discussed in Section 10.6. Near

what points is the transformation one-to-one and hence

invertible to give R, �, and � as functions of x, y, and z?

17. Show that the equations

8

<

:

xy
2
C zuC v

2
D 3

x3z C 2y � uv D 2

xuC yv � xyz D 1

can be solved for x, y, and z as functions of u and v near the

point P0 where .x; y; z; u; v/ D .1; 1; 1; 1; 1/, and find

.@y=@u/v at .u; v/ D .1; 1/.

18. Show that the equations

�

xey
C uz � cos v D 2

u cos y C x2v � yz2
D 1

can be

solved for u and v as functions of x, y, and z near the point

P0 where .x; y; z/ D .2; 0; 1/ and .u; v/ D .1; 0/, and find

.@u=@z/x;y at .x; y; z/ D .2; 0; 1/.

19. Find dx=dy from the system

F.x; y; z; w/ D 0; G.x; y; z;w/ D 0; H.x; y; z; w/ D 0:

20. Given the system

F.x; y; z; u; v/ D 0

G.x; y; z; u; v/ D 0

H.x; y; z; u; v/ D 0;

how many possible interpretations are there for @x=@y?

Evaluate them.

21. Given the system

F.x1; x2; : : : ; x8/ D 0

G.x1; x2; : : : ; x8/ D 0

H.x1; x2; : : : ; x8/ D 0;

how many possible interpretations are there for the partial
@x1

@x2

? Evaluate

�

@x1

@x2

�

x4;x6;x7;x8

.

22. If F.x; y; z/ D 0 determines z as a function of x and y,

calculate @2z=@x2, @2z=@x@y, and @2z=@y2 in terms of the

partial derivatives of F:

23. If x D uC v, y D uv, and z D u2
C v2 define z as a

function of x and y, find @z=@x, @z=@y, and @2z=@x@y.

24. A certain gas satisfies the law pV D T �
4p

T 2
,

where p D pressure, V D volume, and T D temperature.

(a) Calculate @T=@p and @T=@V at the point where

p D V D 1 and T D 2.

(b) If measurements of p and V yield the values

p D 1˙ 0:001 and V D 1˙ 0:002, find the approximate

maximum error in the calculated value T D 2.

25. If F.x; y; z/ D 0, show that

 

@x

@y

!

z

 

@y

@z

!

x

 

@z

@x

!

y

D �1.

Derive analogous results for F.x; y; z; u/ D 0 and for

F.x; y; z; u; v/ D 0. What is the general case?

26.I If the equations F.x; y; u; v/ D 0 and G.x; y; u; v/ D 0 are

solved for x and y as functions of u and v, show that

@.x; y/

@.u; v/
D

@.F;G/

@.u; v/

,

@.F;G/

@.x; y/
:
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