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E X E R C I S E S 12.4

In Exercises 1–6, find all the second partial derivatives of the given

function.

1. z D x2
.1C y

2
/ 2. f .x; y/ D x2

C y
2

3. w D x3
y

3
z

3 4. z D
p

3x2
C y2

5. z D x ey
� y e

x

6. f .x; y/ D ln
�

1C sin.xy/
�

7. How many mixed partial derivatives of order 3 can a function

of three variables have? If they are all continuous, how many

different values can they have at one point? Find the mixed

partials of order 3 for f .x; y; z/ D x exy cos.xz/ that involve

two differentiations with respect to z and one with respect

to x.

Show that the functions in Exercises 8–12 are harmonic in the

plane regions indicated.

8. f .x; y/ D A.x2
� y2/C Bxy in the whole plane (A and B

are constants.)

9. f .x; y/ D 3x2y � y3 in the whole plane (Can you think of

another polynomial of degree 3 in x and y that is also

harmonic?)

10. f .x; y/ D
x

x2
C y2

everywhere except at the origin

11. f .x; y/ D ln.x2
C y2/ everywhere except at the origin

12. tan�1.y=x/ except at points on the y-axis

13.P Show that w D e3xC4y sin.5z/ is harmonic in all of R
3
, that

is, it satisfies everywhere the 3-dimensional Laplace equation

@2w

@x2
C

@2w

@y2
C

@2w

@z2
D 0:

14.P Assume that f .x; y/ is harmonic in the xy-plane. Show that

each of the functions z f .x; y/, x f .y; z/, and y f .z; x/ is

harmonic in the whole of R
3
. What condition should the

constants a, b, and c satisfy to ensure that f .ax C by; cz/ is

harmonic in R
3
?

15.P Let the functions u.x; y/ and v.x; y/ have continuous second

partial derivatives and satisfy the Cauchy–Riemann

equations

@u

@x
D

@v

@y
and

@v

@x
D �

@u

@y
:

Show that u and v are both harmonic.

16.I Let F.x; y/ D

8

<

:

2xy.x2
� y2/

x2
C y2

; if .x; y/ ¤ .0; 0/

0; if .x; y/ D .0; 0/

Calculate F1.x; y/, F2.x; y/, F12.x; y/, and F21.x; y/ at

points .x; y/ ¤ .0; 0/. Also calculate these derivatives at

.0; 0/. Observe that F21.0; 0/ D 2 and F12.0; 0/ D �2. Does

this result contradict Theorem 1? Explain why.

The heat (diffusion) equation

17.P Show that the function u.x; t/ D t�1=2
e

�x2=4t satisfies the

partial differential equation

@u

@t
D

@2u

@x2
:

This equation is called the one-dimensional heat equation

because it models heat diffusion in an insulated rod (with

u.x; t/ representing the temperature at position x at time t )

and other similar phenomena.

18.P Show that the function u.x; y; t/ D t�1
e

�.x2Cy2/=4t satisfies

the two-dimensional heat equation

@u

@t
D

@2u

@x2
C

@2u

@y2
:

19.P By comparing the results of Exercises 17 and 18, guess a

solution to the three-dimensional heat equation

@u

@t
D

@2u

@x2
C

@2u

@y2
C

@2u

@z2
:

Verify your guess. (If you’re feeling lazy, use Maple.)

Biharmonic functions

A function u.x; y/ with continuous partials of fourth order is

biharmonic if
@2u

@x2
C

@2u

@y2
is a harmonic function.

20.P Show that u.x; y/ is biharmonic if and only if it satisfies the

biharmonic equation

@4u

@x4
C 2

@4u

@x2@y2
C

@4u

@y4
D 0

21. Verify that u.x; y/ D x4
� 3x2y2 is biharmonic.

22. Show that if u.x; y/ is harmonic, then v.x; y/ D xu.x; y/

and w.x; y/ D yu.x; y/ are biharmonic.

Use the result of Exercise 22 to show that the functions in

Exercises 23–25 are biharmonic.

23. x ex siny 24. y ln.x2
C y

2
/

25.
xy

x2
C y2

26.P Propose a definition of a biharmonic function of three

variables, and prove results analogous to those of Exercises 20

and 22 for biharmonic functions u.x; y; z/.

M 27. Use Maple to verify directly that the function of Exercise 25 is

biharmonic.
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12.5 The Chain Rule
The Chain Rule for functions of one variable is a formula that gives the derivative of a

composition f
�

g.x/
�

of two functions f and g:

d

dx
f
�

g.x/
�

D f
0�
g.x/

�

g
0
.x/:

The situation for several variables is more complicated. If f depends on more than

one variable, and any of those variables can be functions of one or more other vari-

ables, we cannot expect a simple formula for partial derivatives of the composition to

cover all possible cases. We must come to think of the Chain Rule as a procedure for

differentiating compositions rather than as a formula for their derivatives. In order to

motivate a formulation of the Chain Rule for functions of two variables, we begin with

a concrete example.

E X A M P L E 1
Suppose you are hiking in a mountainous region for which you

have a map. Let .x; y/ be the coordinates of your position on

the map (i.e., the horizontal coordinates of your actual position in the region). Let

z D f .x; y/ denote the height of land (above sea level, say) at position .x; y/. Suppose

you are walking along a trail so that your position at time t is given by x D u.t/ and

y D v.t/. (These are parametric equations of the trail on the map.) At time t your

altitude above sea level is given by the composite function

z D f
�

u.t/; v.t/
�

D g.t/;

a function of only one variable. How fast is your altitude changing with respect to time

at time t?

Solution The answer is the derivative of g.t/:

g
0
.t/ D lim

h!0

g.t C h/ � g.t/

h
D lim

h!0

f
�

u.t C h/; v.t C h/
�

� f
�

u.t/; v.t/
�

h

D lim
h!0

f
�

u.t C h/; v.t C h/
�

� f
�

u.t/; v.t C h/
�

h

C lim
h!0

f
�

u.t/; v.t C h/
�

� f
�

u.t/; v.t/
�

h
:

We added 0 to the numerator of the Newton quotient in a creative way so as to separate

the quotient into the sum of two quotients, in the first of which the difference of values

of f involves only the first variable of f; and in the second of which the difference

involves only the second variable of f: The single-variable Chain Rule suggests that

the sum of the two limits above is

g
0
.t/ D f1

�

u.t/; v.t/
�

u
0
.t/C f2

�

u.t/; v.t/
�

v
0
.t/:

The above formula is the Chain Rule for
d

dt
f
�

u.t/; v.t/
�

. In terms of Leibniz notation

we have

A version of the Chain Rule

If z is a function of x and y with continuous first partial derivatives, and if x

and y are differentiable functions of t , then

dz

dt
D

@z

@x

dx

dt
C

@z

@y

dy

dt
:
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because f is harmonic. Thus, z D f .x2
� y2; 2xy/ is a harmonic function of x

and y.

In the following example we show that the two-dimensional Laplace differential equation

(see Example 3 in Section 12.4) takes the form

@2z

@r2
C

1

r

@z

@r
C

1

r2

@2z

@�2
D 0

when stated for a function z expressed in terms of polar coordinates r and � .

E X A M P L E 10
(Laplace’s equation in polar coordinates) If z D f .x; y/ has

continuous partial derivatives of second order, and if x D r cos �

and y D r sin � , show that

@2z

@r2
C

1

r

@z

@r
C

1

r2

@2z

@�2
D

@2z

@x2
C

@2z

@y2
:

Solution It is possible to do this in two different ways; we can start with either side

and use the Chain Rule to show that it is equal to the other side. Here, we will calculate

the partial derivatives with respect to r and � that appear on the left side and express

them in terms of partial derivatives with respect to x and y. The other approach,

involving expressing partial derivatives with respect to x and y in terms of partial

derivatives with respect to r and � , is a little more difficult. (See Exercise 24 at the

end of this section.) However, we would have to do it that way if we were not given the

form of the differential equation in polar coordinates and had to find it.

First, note that

@x

@r
D cos �;

@x

@�
D �r sin �;

@y

@r
D sin �;

@y

@�
D r cos �:

Thus,

BEWARE! This is a difficult but

important example. Examine each

step carefully to make sure you

understand what is being done.

@z

@r
D

@z

@x

@x

@r
C

@z

@y

@y

@r
D cos �

@z

@x
C sin �

@z

@y
:

Now differentiate with respect to r again. Remember that r and � are independent

variables, so the factors cos � and sin � can be regarded as constants. However, @z=@x

and @z=@y depend on x and y and, therefore, on r and � .

@2z

@r2
D cos �

@

@r

@z

@x
C sin �

@

@r

@z

@y

D cos �
�

cos �
@2z

@x2
C sin �

@2z

@y@x

�

C sin �
�

cos �
@2z

@x@y
C sin �

@2z

@y2

�

D cos2
�
@2z

@x2
C 2 cos � sin �

@2z

@x@y
C sin2

�
@2z

@y2
:

We have used the equality of mixed partials in the last line. Similarly,

@z

@�
D �r sin �

@z

@x
C r cos �

@z

@y
:
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When we differentiate a second time with respect to � , we can regard r as constant,

but each term above is still a product of two functions that depend on � . Thus,

@2z

@�2
D� r

�

cos �
@z

@x
C sin �

@

@�

@z

@x

�

C r

�

� sin �
@z

@y
C cos �

@

@�

@z

@y

�

D� r
@z

@r
� r sin �

�

�r sin �
@

2
z

@x2
C r cos �

@
2
z

@y@x

�

C r cos �
�

�r sin �
@2z

@x@y
C r cos �

@2z

@y2

�

D� r
@z

@r
C r

2
�

sin2
�
@2z

@x2
� 2 sin � cos �

@2z

@x@y
C cos2

�
@2z

@y2

�

:

Combining these results, we obtain the desired formula:

@2z

@r2
C

1

r

@z

@r
C

1

r2

@2z

@�2
D

@2z

@x2
C

@2z

@y2
:

E X E R C I S E S 12.5

In Exercises 1–4, write appropriate versions of the Chain Rule for

the indicated derivatives.

1. @w=@t if w D f .x; y; z/, where x D g.s; t/, y D h.s; t/, and

z D k.s; t/

2. @w=@t if w D f .x; y; z/, where x D g.s/, y D h.s; t/, and

z D k.t/

3. @z=@u if z D g.x; y/, where y D f .x/ and x D h.u; v/

4. dw=dt if w D f .x; y/, x D g.r; s/, y D h.r; t/, r D k.s; t/,

and s D m.t/

5. If w D f .x; y; z/, where x D g.y; z/ and y D h.z/, state

appropriate versions of the Chain Rule for
dw

dz
,

�

@w

@z

�

x

,

and

�

@w

@z

�

x;y

.

6. Use two different methods to calculate @u=@t if

u D
p

x2
C y2, x D est , and y D 1C s2 cos t .

7. Use two different methods to calculate @z=@x if

z D tan�1.u=v/, u D 2x C y, and v D 3x � y.

8. Use two methods to calculate dz=dt given that z D txy2,

x D t C ln.y C t2/, and y D et .

In Exercises 9–12, find the indicated derivatives, assuming that the

function f .x; y/ has continuous first partial derivatives.

9.
@

@x
f .2x; 3y/ 10.

@

@x
f .2y; 3x/

11.
@

@x
f .y

2
; x

2
/ 12.

@

@y
f

�

yf .x; t/; f .y; t/

�

13. Suppose that the temperature T in a certain liquid varies with

depth z and time t according to the formula T D e�tz. Find

the rate of change of temperature with respect to time at a

point that is moving through the liquid so that at time t its

depth is f .t/. What is this rate if f .t/ D et ? What is

happening in this case?

14. Suppose the strengthE of an electric field in space varies with

position .x; y; z/ and time t according to the formula

E D f .x; y; z; t/. Find the rate of change with respect to time

of the electric field strength measured by an instrument

moving along the helix x D sin t , y D cos t , z D t .

In Exercises 15–20, assume that f has continuous partial

derivatives of all orders.

15. If z D f .x; y/, where x D 2s C 3t and y D 3s � 2t , find

(a)
@

2
z

@s2
; .b/

@
2
z

@s@t
; and .c/

@
2
z

@t2
:

16. If f .x; y/ is harmonic, show that f

�

x

x2
C y2

;
�y

x2
C y2

�

is

also harmonic.

17. If x D t sin s and y D t cos s, find
@2

@s@t
f .x; y/.

18. Find
@3

@x@y2
f .2x C 3y; xy/ in terms of partial derivatives of

the function f:

19. Find
@2

@y@x
f .y

2
; xy;�x

2
/ in terms of partial derivatives of

the function f:

20. Find
@3

@t2@s
f .s

2
� t; s C t

2
/ in terms of partial derivatives of

the function f:

21. Suppose that u.x; y/ and v.x; y/ have continuous second

partial derivatives and satisfy the Cauchy–Riemann equations

@u

@x
D

@v

@y
and

@v

@x
D �

@u

@y
:

Suppose also that f .u; v/ is a harmonic function of u and v.

Show that f
�

u.x; y/; v.x; y/

�

is a harmonic function of x

and y. Hint: u and v are harmonic functions by Exercise 15 in

Section 12.4.
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22. If r2
D x2

C y2
C z2, verify that u.x; y; z/ D 1=r is

harmonic throughout R
3

except at the origin.

23.I If x D es cos t , y D es sin t , and z D u.x; y/ D v.s; t/, show

that

@2z

@s2
C

@2z

@t2
D .x

2
C y

2
/

 

@2z

@x2
C

@2z

@y2

!

:

24.I (Converting Laplace’s equation to polar coordinates) The

transformation to polar coordinates, x D r cos � , y D r sin � ,

implies that r2
D x2

C y2 and tan � D y=x. Use these

equations to show that

@r

@x
D cos �

@�

@x
D �

sin �

r

@r

@y
D sin �

@�

@y
D

cos �

r
:

Use these formulas to help you express
@2u

@x2
C

@2u

@y2
in terms

of partials of u with respect to r and � , and hence re-prove the

formula for the Laplace differential equation in polar

coordinates given in Example 10.

25. If u.x; y/ D r2 ln r , where r2
D x2

C y2, verify that u is a

biharmonic function by showing that

�

@2

@x2
C

@2

@y2

��

@2u

@x2
C

@2u

@y2

�

D 0:

26. If f .x; y/ is positively homogeneous of degree k and has

continuous partial derivatives of second order, show that

x
2
f11.x; y/C 2xyf12.x; y/C y

2
f22.x; y/

D k.k � 1/f .x; y/:

27.I Generalize the result of Exercise 26 to functions of n

variables.

28.I Generalize the results of Exercises 26 and 27 to expressions

involving mth-order partial derivatives of the function f:

Exercises 29–30 revisit Exercise 16 of Section 12.4. Let

F.x; y/ D

8

ˆ

<

ˆ

:

2xy.x
2
� y2/

x2
C y2

; if .x; y/ ¤ .0; 0/

0; if .x; y/ D .0; 0/.

29. (a) Show that F.x; y/ D �F.y; x/ for all .x; y/.

(b) Show that F1.x; y/ D �F2.y; x/ and

F12.x; y/ D �F21.y; x/ for .x; y/ ¤ .0; 0/.

(c) Show that F1.0; y/ D �2y for all y and, hence, that

F12.0; 0/ D �2.

(d) Deduce that F2.x; 0/ D 2x and F21.0; 0/ D 2.

30. (a) Use Exercise 29(b) to find F12.x; x/ for x ¤ 0.

(b) Is F12.x; y/ continuous at .0; 0/? Why?

31.P Use the change of variables � D x C ct , � D x to transform

the partial differential equation

@u

@t
D c

@u

@x
; .c D constant/;

into the simpler equation @v=@� D 0, where

v.�; �/ D v.x C ct; x/ D u.x; t/. This equation says that

v.�; �/ does not depend on �, so v D f .�/ for some arbitrary

differentiable function f: What is the corresponding “general

solution” u.x; t/ of the original partial differential equation?

32.P Having considered Exercise 31, guess a “general solution”

w.r; s/ of the second-order partial differential equation

@
2

@r@s
w.r; s/ D 0:

Your answer should involve two arbitrary functions.

33.P Use the change of variables r D x C ct , s D x � ct ,

w.r; s/ D u.x; t/ to transform the one-dimensional wave

equation

@2u

@t2
D c

2 @
2u

@x2

to a simpler form. Now use the result of Exercise 32 to find

the general solution of this wave equation in the form given in

Example 4 in Section 12.4.

34.P Show that the initial-value problem for the one-dimensional

wave equation

8

<

:

ut t .x; t/ D c
2uxx.x; t/

u.x; 0/ D p.x/

ut .x; 0/ D q.x/

has the solution

u.x; t/ D
1

2

�

p.x�ct/Cp.xCct/

�

C

1

2c

Z xCct

x�ct

q.s/ ds:

(Note that we have used subscripts x and t instead of 1 and 2

to denote the partial derivatives here. This is common usage

in dealing with partial differential equations.)

Remark The initial-value problem in Exercise 34 gives the

small lateral displacement u.x; t/ at position x at time t of a

vibrating string held under tension along the x-axis. The function

p.x/ gives the initial displacement at position x, that is, the

displacement at time t D 0. Similarly, q.x/ gives the initial

velocity at position x. Observe that the position at time t depends

only on values of these initial data at points no further than ct

units away. This is consistent with the previous observation that

the solutions of the wave equation represent waves travelling with

speed c.

Redo the examples and exercises listed in Exercises 35–40

using Maple to do the calculations.

M 35. Example 10 M 36. Exercise 16

M 37. Exercise 19 M 38. Exercise 20

M 39. Exercise 23 M 40. Exercise 34
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12.6 Linear Approximations, Differentiability, and Differentials

As observed in Section 4.9, the tangent line to the graph y D f .x/ at x D a provides
y

xxa

P D .a; f .a//

y D f .x/

L.x/
f .x/

Figure 12.25 The linearization of f at

x D a

a convenient approximation for values of f .x/ for x near a (see Figure 12.25):

f .x/ � L.x/ D f .a/C f
0
.a/.x � a/:

Here, L.x/ is the linearization of f at a; its graph is the tangent line to y D f .x/

there. The mere existence of f 0.a/ is sufficient to guarantee that the error in the

approximation (the vertical distance between the curve and tangent at x) is small com-

pared with the distance h D x � a between a and x, that is,

lim
h!0

f .aC h/ �L.aC h/

h
D lim

h!0

f .aC h/ � f .a/ � f 0.a/h

h

D lim
h!0

f .aC h/ � f .a/

h
� f

0
.a/

D f
0
.a/ � f

0
.a/ D 0:

Similarly, the tangent plane to the graph of z D f .x; y/ at .a; b/ is z D L.x; y/,

where

L.x; y/ D f .a; b/C f1.a; b/.x � a/C f2.a; b/.y � b/

is the linearization of f at .a; b/. We can use L.x; y/ to approximate values of

f .x; y/ near .a; b/:

f .x; y/ � L.x; y/ D f .a; b/C f1.a; b/.x � a/C f2.a; b/.y � b/:

E X A M P L E 1
Find an approximate value for f .x; y/ D

p

2x2
C e2y at .2:2;�0:2/.

Solution It is convenient to use the linearization at .2; 0/, where the values of f and

its partials are easily evaluated:

f1.x; y/ D
2x

p

2x2
C e2y

;

f2.x; y/ D
e2y

p

2x2
C e2y

;

f .2; 0/ D 3;

f1.2; 0/ D
4

3
;

f2.2; 0/ D
1

3
:

Thus, L.x; y/ D 3C
4

3
.x � 2/C

1

3
.y � 0/, and

f .2:2;�0:2/ � L.2:2;�0:2/ D 3C
4

3
.2:2 � 2/C

1

3
.�0:2 � 0/ D 3:2 :

(For the sake of comparison, f .2:2;�0:2/ � 3:2172 to 4 decimal places.)

Unlike the single-variable case, the mere existence of the partial derivatives f1.a; b/

and f2.a; b/ does not even imply that f is continuous at .a; b/, let alone that the

error in the linearization is small compared with the distance
p

.x � a/2 C .y � b/2

between .a; b/ and .x; y/. We adopt this latter condition as our definition of what it

means for a function of two variables to be differentiable at a point.
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Thus, F D F.T; V;N1; : : : ; Nn/: F is known as the Helmholtz free energy, which is

called a thermodynamic potential. It can be more practical to use F; which depends

explicitly on T; rather than E when an experiment is run at constant temperature.

Legendre transformations can be done in terms of any or all of the conjugate pairs.

In the case of the Helmholtz free energy, only the conjugates T and S are used. Other

specific Legendre transformations lead to other thermodynamic potentials. For exam-

ple, the Gibbs free energy, G D E � TS C PV; is widely used in chemistry, where

processes normally take place at constant temperature and pressure. (See Exercise 30

below.)

Legendre transformations are very important in other areas of classical and mod-

ern physics. Historically, they appear in classical mechanics, where the functional

expression of the energy, known as the Hamiltonian, is expressed in terms of Legendre

transformations of a function known as the Lagrangian. (See Exercise 32 for a problem

developing this relationship.) These notions extend to modern physics, which is often

cast in terms of Lagrangians.

E X E R C I S E S 12.6

In Exercises 1–6, use suitable linearizations to find approximate

values for the given functions at the points indicated.

1. f .x; y/ D x2
y

3 at .3:1; 0:9/

2. f .x; y/ D tan�1
�

y

x

�

at .3:01; 2:99/

3. f .x; y/ D sin.�xy C lny/ at .0:01; 1:05/

4. f .x; y/ D
24

x2
C xy C y2

at .2:1; 1:8/

5. f .x; y; z/ D
p

x C 2y C 3z at .1:9; 1:8; 1:1/

6. f .x; y/ D x eyCx2

at .2:05;�3:92/

In Exercises 7–10, write the differential of the given function and

use it to estimate the value of the function at the given point by

starting with a known value at a nearby point.

7. z D x2
e

3y
; at x D 3:05; y D �0:02

8. g.s; t/ D s2
=t; g.2:1; 1:9/

9. F.x; y; z/ D
p

x2
C y C 2C z2; F .0:7; 2:6; 1:7/

10. u D x sin.x C y/; at x D
�

2
C

1

20
; y D

�

2
�

1

30

11. The edges of a rectangular box are each measured to within an

accuracy of 1% of their values. What is the approximate

maximum percentage error in

(a) the calculated volume of the box,

(b) the calculated area of one of the faces of the box, and

(c) the calculated length of a diagonal of the box?

C 12. The radius and height of a right-circular conical tank are

measured to be 25 ft and 21 ft, respectively. Each measure-

ment is accurate to within 0.5 in. By about how much can the

calculated volume of the tank be in error?

C 13. By approximately how much can the calculated area of the

conical surface of the tank in Exercise 12 be in error?

C 14. Two sides and the contained angle of a triangular plot of land

are measured to be 224 m, 158 m, and 64ı, respectively. The

length measurements were accurate to within 0.4 m and the

angle measurement to within 2ı. What is the approximate

maximum percentage error if the area of the plot is calculated

from these measurements?

C 15. The angle of elevation of the top of a tower is measured at two

points A and B on the ground in the same direction from the

base of the tower. The angles are 50ı at A and 35ı at B , each

measured to within 1ı. The distance AB is measured to be

100 m with error at most 0.1%. What is the calculated height

of the building, and by about how much can it be in error? To

which of the three measurements is the calculated height most

sensitive?

C 16. By approximately what percentage will the value of

w D
x2y3

z4
increase or decrease if x increases by 1%, y

increases by 2%, and z increases by 3%?

17. Find the Jacobian matrix for the transformation

f.r; �/ D .x; y/, where

x D r cos � and y D r sin �:

(Although .r; �/ can be regarded as polar coordinates in the

xy-plane, they are Cartesian coordinates in their own

r� -plane.)

18. Find the Jacobian matrix for the transformation

f.R; �; �/ D .x; y; z/, where

x D R sin� cos �; y D R sin� sin �; z D R cos�:

Here, .R; �; �/ are spherical coordinates in xyz-space, as

introduced in Section 10.6.

19. Find the Jacobian matrix Df.x; y; z/ for the transformation of

R
3

to R
2

given by

f.x; y; z/ D .x2
C yz; y

2
� x ln z/:

Use Df.2; 2; 1/ to help you find an approximate value for

f.1:98; 2:01; 1:03/.

20. Find the Jacobian matrix Dg.1; 3; 3/ for the transformation of

R
3

to R
3

given by

g.r; s; t/ D .r2
s; r

2
t; s

2
� t

2
/
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and use the result to find an approximate value for

g.0:99; 3:02; 2:97/.

21. Prove that if f .x; y/ is differentiable at .a; b/, then f .x; y/ is

continuous at .a; b/.

22.A Prove the following version of the Mean-Value Theorem: If

f .x; y/ has first partial derivatives continuous near every

point of the straight line segment joining the points .a; b/ and

.aC h; b C k/, then there exists a number � satisfying

0 < � < 1 such that

f .aC h; b C k/ Df .a; b/C hf1.aC �h; b C �k/

C kf2.aC �h; b C �k/:

(Hint: Apply the single-variable Mean-Value Theorem to

g.t/ D f .aC th; b C tk/.) Why could we not have used this

result in place of Theorem 3 to prove Theorem 4 and hence

the version of the Chain Rule given in this section?

23.A Generalize Exercise 22 as follows: show that, if f .x; y/ has

continuous partial derivatives of second order near the point

.a; b/, then there exists a number � satisfying 0 < � < 1 such

that, for h and k sufficiently small in absolute value,

f .aC h; b C k/ Df .a; b/C hf1.a; b/C kf2.a; b/

C h
2
f11.aC �h; b C �k/

C 2hkf12.aC �h; b C �k/

C k
2
f22.aC �h; b C �k/:

Hence, show that there is a constantK such that for all

values of h and k that are sufficiently small in absolute

value,
ˇ

ˇ

ˇ
f .a C h; b C k/ � f .a; b/ � hf1.a; b/ � kf2.a; b/

ˇ

ˇ

ˇ

� K.h2
C k2/.

Thermodynamics and Legendre Transformations

24.A Use the Gibbs equation

dE D T dS � P dV C �1 dN1 C � � � C �n dNn

and the fact that, being additive in its extensive variables,

E D E.S; V;N1; : : : ; Nn/ is necessarily homogeneous of

degree 1, to establish the Gibbs-Duhem equation

0 D S dT � V dP CN1 d�1 C � � � CNn d�n:

(Hint: Use Euler’s Theorem, Theorem 2 of Section 12.5.)

25.A The equation of state for an ideal gas in the form of

E D E.S; V;N /, using extensive variables only, is rarely

quoted. It is

E D
3h2N

4�m

�

N

V

�2=3

e

�

2S
3N k

� 5
3

�

:

However, it is common to see PV D NkT; or E D 3
2
NkT

instead. Here k is the Boltzmann constant, h is Planck’s

constant, and m is the mass of one atom. Deduce these

common forms from the explicit formula for E given as a

function of S , V; and N .

26.A If f 00.x/ > 0 for all x, show that the Legendre transformation

f �.p/ is the maximum value of the function g.x/ D px � f .x/

considered as a function of x alone with p fixed.

In Exercises 27–29 give an explicit formula for the Legendre

transformation f �.p/ of the given function f .x/.

27. f .x/ D x2 28. f .x/ D x4

29. f .x/ D ln.2C 3x/

30. Use differentials to show that the Gibbs free energy,

G D E � TS C PV , depends on T and P alone when the

numbers of molecules of each type are fixed. Determine the

partial derivatives of G with respect to the new variables T

and P:

31. Entropy can be written as a function, S D S.E; V;N1; � � � ; Nn/.

Legendre transformations can be performed on it too,

although they are not so well-known. The resulting functions

are called Massieu-Planck functions. Show that one of these,

the Massieu’s potential, ˆ D S � 1
T
E, depends on

temperature instead of energy.

32.I In classical mechanics, the energy of a system is expressed in

terms of a function called the Hamiltonian. When the energy

is independent of time, the Hamiltonian depends only on the

positions, qi , and the momenta, pi , of the particles in the

system, that is, H D H.q1; � � � ; qn; p1; � � � ; pn/. There is also

another function, called the Lagrangian, that depends on the

positions qi and the velocities Pqi , that is,

L D L.q1; � � � ; qn; Pq1; � � � ; Pqn/, such that the Hamiltonian is a

Legendre transformation of the Lagrangian with respect to the

velocity variables:

H.q1; � � � ; qn; p1; � � � ; pn/

D

X

i

pi Pqi � L.q1; � � � ; qn; Pq1; � � � ; Pqn/:

(a) What variables are conjugate in this Legendre

transformation? What partial derivatives of L are

implicitly determined by it?

(b) In the absence of external forces, the principle of least

action requires that
@L

@qi

D Ppi . By taking the differential

of H and using the result of part (a), show that
@H

@qi

D � Ppi and
@H

@pi

D Pqi . These are known as

Hamilton’s equations.

(c) Use Hamilton’s equations to show that the Hamiltonian,
1
2
.q2
C p2/, represents a harmonic oscillator because it is

equivalent to the differential equation Rq C q D 0.
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