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Figure 12.13 f .x; y/ has different limits as .x; y/! .0; 0/

along different straight lines. The line y D x; z D 1 lies on the

graph.
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Figure 12.14 f .x; y/ has the same limit 0 as .x; y/! .0; 0/

along any straight line but has limit 1 as .x; y/! .0; 0/ along

y D x2. The curve y D x2; z D 1 lies on the graph.

E X A M P L E 4 Investigate the limiting behaviour of f .x; y/ D
2x2y

x4
C y2

as .x; y/

approaches .0; 0/.

Solution As in Example 3, f .x; y/ vanishes identically on the coordinate axes, so

lim.x;y/!.0;0/ f .x; y/ must be 0 if it exists at all. If we examine f .x; y/ at points of

the ray y D kx, we obtain

f .x; kx/ D
2kx3

x4
C k2x2

D

2kx

x2
C k2

! 0; as x ! 0 .k ¤ 0/:

Thus, f .x; y/ ! 0 as .x; y/ ! .0; 0/ along any straight line through the origin. We

might be tempted to conclude, therefore, that lim.x;y/!.0;0/ f .x; y/ D 0, but this is

incorrect. Observe the behaviour of f .x; y/ along the curve y D x2:

f .x; x
2
/ D

2x
4

x4
C x4

D 1:

Thus, f .x; y/ does not approach 0 as .x; y/ approaches the origin along this curve, so

lim.x;y/!.0;0/ f .x; y/ does not exist. The level curves of f are pairs of parabolas of

the form y D kx2, y D x2=k with the origin removed. See Figure 12.14 for the first

octant part of the graph of f:

E X A M P L E 5 Show that the function f .x; y/ D
x2y

x2
C y2

does have a limit at

the origin; specifically,

lim
.x;y/!.0;0/

x2y

x2
C y2

D 0:

Solution This function is also defined everywhere except at the origin. Observe that

since x2
� x2

C y2, we have

jf .x; y/� 0j D

ˇ

ˇ

ˇ

ˇ

x2y

x2
C y2

ˇ

ˇ

ˇ

ˇ

� jyj �

p

x2
C y2;

which approaches zero as .x; y/ ! .0; 0/. (See Figure 12.15.) Formally, if � > 0 is

given and we take ı D �, then jf .x; y/ � 0j < � whenever 0 <
p

x2
C y2 < ı, so

f .x; y/ has limit 0 as .x; y/! .0; 0/ by Definition 2.

As for functions of one variable, continuity of a function f at a point of its domain is

defined directly in terms of the limit. (See, for instance, Example 2.)
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Figure 12.15 lim
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D E F I N I T I O N

3

The function f .x; y/ is continuous at the point .a; b/ if

lim
.x;y/!.a;b/

f .x; y/ D f .a; b/:

It remains true that sums, differences, products, quotients, and compositions of con-

tinuous functions are continuous. The functions of Examples 3 and 4 above are con-

tinuous wherever they are defined, that is, at all points except the origin. There is no

way to define f .0; 0/ so that these functions become continuous at the origin. They

show that the continuity of the single-variable functions f .x; b/ at x D a and f .a; y/

at y D b does not imply that f .x; y/ is continuous at .a; b/. In fact, even if f .x; y/

is continuous along every straight line through .a; b/, it still need not be continuous

at .a; b/. (See Exercises 16–17 below.) Note, however, that the function f .x; y/ of

Example 5, although not defined at the origin, has a continuous extension to that point.

If we extend the domain of f by defining f .0; 0/ D lim.x;y/!.0;0/ f .x; y/ D 0, then

f is continuous on the whole xy-plane.

As for functions of one variable, the existence of a limit of a function at a point

does not imply that the function is continuous at that point. The function

f .x; y/ D

�

0 if .x; y/ ¤ .0; 0/

1 if .x; y/ D .0; 0/

satisfies lim.x;y/!.0;0/ f .x; y/ D 0, which is not equal to f .0; 0/, so f is not contin-

uous at .0; 0/. Of course, we can make f continuous at .0; 0/ by redefining its value at

that point to be 0.

E X E R C I S E S 12.2

In Exercises 1–12, evaluate the indicated limit or explain why it

does not exist.

1. lim
.x;y/!.2;�1/

xy C x
2 2. lim

.x;y/!.0;0/

p

x2
C y2

3. lim
.x;y/!.0;0/

x2
C y2

y
4. lim

.x;y/!.0;0/

x

x2
C y2

5. lim
.x;y/!.1;�/

cos.xy/

1 � x � cosy
6. lim

.x;y/!.0;1/

x2.y � 1/2

x2
C .y � 1/2

7. lim
.x;y/!.0;0/

y3

x2
C y2

8. lim
.x;y/!.0;0/

sin.x � y/

cos.x C y/

9. lim
.x;y/!.0;0/

sin.xy/

x2
C y2

10. lim
.x;y/!.1;2/

2x2
� xy

4x2
� y2

11. lim
.x;y/!.0;0/

x
2
y

2

x2
C y4

12. lim
.x;y/!.0;0/

x
2
y

2

2x4
C y4

13. How can the function

f .x; y/ D
x2
C y2

� x3y3

x2
C y2

; .x; y/ ¤ .0; 0/;

be defined at the origin so that it becomes continuous at all

points of the xy-plane?

14. How can the function

f .x; y/ D
x3
� y3

x � y
; .x ¤ y/;

9780134154367_Calculus   709 05/12/16   4:05 pm

AASKAR
Highlight

AASKAR
Highlight

AASKAR
Highlight

AASKAR
Highlight

AASKAR
Highlight

AASKAR
Highlight



ADAMS & ESSEX: Calculus: a Complete Course, 9th Edition. Chapter 12 – page 696 October 17, 2016

696 CHAPTER 12 Partial Differentiation

But Z D X2
� Y 2, so we must have

�t D
9

.1 � 2t/2
:

This is a cubic equation in t , so we might expect to have to solve it numerically, for

instance, by using Newton’s Method. However, if we try small integer values of t ,

we will quickly discover that t D �1 is a solution. The graphs of both sides of the

equation are shown in Figure 12.19(b). They show that t D �1 is the only real solution.

Calculating the corresponding values of X and Z, we obtain .1; 0; 1/ as a candidate

for Q. The distance from this point to P is
p

5.

CASE II If t D �1=2, then X D 3=2, Z D 1=2, and Y D ˙
p

X2
�Z D ˙

p

7=2,

and the distance from these points to P is
p

17=2.

Since 17
4
< 5, the points .3=2;˙

p

7=2; 1=2/ are the points on z D x2
�y2 closest

to .3; 0; 0/, and the distance from .3; 0; 0/ to the surface is
p

17=2 units.

E X E R C I S E S 12.3

In Exercises 1–10, find all the first partial derivatives of the

function specified, and evaluate them at the given point.

1. f .x; y/ D x � y C 2; .3; 2/

2. f .x; y/ D xy C x2
; .2; 0/

3. f .x; y; z/ D x3
y

4
z

5
; .0;�1;�1/

4. g.x; y; z/ D
xz

y C z
; .1; 1; 1/

5. z D tan�1
�

y

x

�

; .�1; 1/

6. w D ln.1C exyz
/; .2; 0;�1/

7. f .x; y/ D sin.x
p

y/;

�

�

3
; 4

�

8. f .x; y/ D
1

p

x2
C y2

; .�3; 4/

9. w D x.y ln z/
; .e; 2; e/

10. g.x1; x2; x3; x4/ D
x1 � x

2
2

x3 C x
2
4

; .3; 1;�1;�2/

In Exercises 11–12, calculate the first partial derivatives of the

given functions at .0; 0/. You will have to use Definition 4.

11. f .x; y/ D

8

<

:

2x
3
� y

3

x2
C 3y2

; if .x; y/ ¤ .0; 0/

0; if .x; y/ D .0; 0/.

12. f .x; y/ D

8

<

:

x2
� 2y2

x � y
; if x ¤ y

0; if x D y.

In Exercises 13–22, find equations of the tangent plane and normal

line to the graph of the given function at the point with specified

values of x and y.

13. f .x; y/ D x2
� y

2 at .�2; 1/

14. f .x; y/ D
x � y

x C y
at .1; 1/

15. f .x; y/ D cos.x=y/ at .�; 4/

16. f .x; y/ D exy at .2; 0/

17. f .x; y/ D
x

x2
C y2

at .1; 2/

18. f .x; y/ D y e�x2

at .0; 1/

19. f .x; y/ D ln.x2
C y

2
/ at .1;�2/

20. f .x; y/ D
2xy

x2
C y2

at .0; 2/

21. f .x; y/ D tan�1
.y=x/ at .1;�1/

22. f .x; y/ D
p

1C x3y2 at .2; 1/

23. Find the coordinates of all points on the surface with equation

z D x4
� 4xy3

C 6y2
� 2 where the surface has a horizontal

tangent plane.

24. Find all horizontal planes that are tangent to the surface with

equation z D xye�.x2Cy2/=2. At what points are they

tangent?

In Exercises 25–31, show that the given function satisfies the given

partial differential equation.

25.P z D x e
y
; x

@z

@x
D

@z

@y

26.P z D
x C y

x � y
; x

@z

@x
C y

@z

@y
D 0

27.P z D

p

x2
C y2; x

@z

@x
C y

@z

@y
D z

28.P w D x
2
C yz; x

@w

@x
C y

@w

@y
C z

@w

@z
D 2w

29.P w D
1

x2
C y2

C z2
; x

@w

@x
C y

@w

@y
C z

@w

@z
D �2w

30.P z D f .x2
C y2/, where f is any differentiable function of

one variable,

y
@z

@x
� x

@z

@y
D 0:

31.P z D f .x2
� y2/, where f is any differentiable function of

one variable,

y
@z

@x
C x

@z

@y
D 0:
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32. Give a formal definition of the three first partial derivatives of

the function f .x; y; z/.

33. What is an equation of the “tangent hyperplane” to the graph

w D f .x; y; z/ at
�

a; b; c; f .a; b; c/

�

?

34.I Find the distance from the point .1; 1; 0/ to the circular

paraboloid with equation z D x2
C y2.

35.I Find the distance from the point .0; 0; 1/ to the elliptic

paraboloid having equation z D x2
C 2y2.

36.I Let f .x; y/ D

8

<

:

2xy

x2
C y2

; if .x; y/ ¤ .0; 0/

0; if .x; y/ D .0; 0/.

Note that f is not continuous at .0; 0/. (See Example 3 of

Section 12.2.) Therefore, its graph is not smooth there. Show,

however, that f1.0; 0/ and f2.0; 0/ both exist. Hence, the

existence of partial derivatives does not imply that a function

of several variables is continuous. This is in contrast to the

single-variable case.

37. Determine f1.0; 0/ and f2.0; 0/ if they exist, where

f .x; y/ D

8

<

:

.x3
C y/ sin

1

x2
C y2

; if .x; y/ ¤ .0; 0/

0; if .x; y/ D .0; 0/.

38. Calculate f1.x; y/ for the function in Exercise 37. Is f1.x; y/

continuous at .0; 0/?

39.I Let f .x; y/ D

8

<

:

x3
� y3

x2
C y2

; if .x; y/ ¤ .0; 0/

0; if .x; y/ D .0; 0/.

Calculate f1.x; y/ and f2.x; y/ at all points .x; y/ in the

plane. Is f continuous at .0; 0/? Are f1 and f2 continuous at

.0; 0/?

40.I Let f .x; y; z/ D

8

<

:

xy2z

x4
C y4

C z4
; if .x; y; z/ ¤ .0; 0; 0/

0; if .x; y; z/ D .0; 0; 0/.

Find f1.0; 0; 0/, f2.0; 0; 0/, and f3.0; 0; 0/. Is f continuous

at .0; 0; 0/? Are f1, f2, and f3 continuous at .0; 0; 0/?

12.4 Higher-Order Derivatives

Partial derivatives of second and higher orders are calculated by taking partial deriva-

tives of already calculated partial derivatives. The order in which the differentiations

are performed is indicated in the notations used. If z D f .x; y/, we can calculate four

partial derivatives of second order, namely, two pure second partial derivatives with

respect to x or y,

@2z

@x2
D

@

@x

@z

@x
D f11.x; y/ D fxx.x; y/;

@2z

@y2
D

@

@y

@z

@y
D f22.x; y/ D fyy.x; y/;

and two mixed second partial derivatives with respect to x and y,

@2z

@x@y
D

@

@x

@z

@y
D f21.x; y/ D fyx.x; y/;

@2z

@y@x
D

@

@y

@z

@x
D f12.x; y/ D fxy.x; y/:

Again, we remark that the notations f11, f12, f21, and f22 are usually preferable

to fxx , fxy , fyx, and fyy , although the latter are often used in partial differential

equations. Note that f12 indicates differentiation of f first with respect to its first

variable and then with respect to its second variable; f21 indicates the opposite order

of differentiation. The subscript closest to f indicates which differentiation occurs

first.

Similarly, if w D f .x; y; z/, then

@5w

@y@x@y2@z
D

@

@y

@

@x

@

@y

@

@y

@w

@z
D f32212.x; y; z/ D fzyyxy.x; y; z/:

9780134154367_Calculus   716 05/12/16   4:07 pm

AASKAR
Highlight

AASKAR
Highlight

AASKAR
Highlight

AASKAR
Highlight

AASKAR
Highlight

AASKAR
Highlight

AASKAR
Highlight

AASKAR
Highlight

AASKAR
Highlight

AASKAR
Highlight

AASKAR
Highlight


	1Chapter12.1
	Calculus  chapter 12-13 7
	Calculus  chapter 12-13 8

	2Chapter 12.2
	3Chapter 12.3

