EXERCISES 11.1

In Exercises 1–14, find the velocity, speed, and acceleration at time t of the particle whose position is $r(t)$. Describe the path of the particle.

1. $r = i + ti$ 2. $r = t^2 i + k$

3.
$$
\mathbf{r} = t^2 \mathbf{j} + t \mathbf{k}
$$

4. $\mathbf{r} = \mathbf{i} + t \mathbf{j} + t \mathbf{k}$

$$
5. \mathbf{r} = t^2 \mathbf{i} - t^2 \mathbf{j} + \mathbf{k} \qquad 6. \mathbf{r} = t \mathbf{i} + t^2 \mathbf{j} + t^2 \mathbf{k}
$$

- 7. $\mathbf{r} = a \cos t \mathbf{i} + a \sin t \mathbf{j} + ct\mathbf{k}$
- 8. $\mathbf{r} = a \cos \omega t \mathbf{i} + b \mathbf{j} + a \sin \omega t \mathbf{k}$
- 9. $\mathbf{r} = 3 \cos t \mathbf{i} + 4 \cos t \mathbf{j} + 5 \sin t \mathbf{k}$
- 10. $r = 3 \cos t i + 4 \sin t j + tk$
- 11. $\mathbf{r} = ae^t\mathbf{i} + be^t\mathbf{j} + ce^t\mathbf{k}$
- 12. $\mathbf{r} = at \cos \omega t \mathbf{i} + at \sin \omega t \mathbf{j} + b \ln t \mathbf{k}$

13.
$$
\mathbf{r} = e^{-t} \cos(e^t) \mathbf{i} + e^{-t} \sin(e^t) \mathbf{j} - e^t \mathbf{k}
$$

- 14. $\mathbf{r} = a \cos t \sin t \mathbf{i} + a \sin^2 t \mathbf{j} + a \cos t \mathbf{k}$
- **15.** A particle moves around the circle $x^2 + y^2 = 25$ at constant speed, making one revolution in 2 s. Find its acceleration when it is at $(3, 4)$.
- **16.** A particle moves to the right along the curve $y = 3/x$. If its speed is 10 when it passes through the point $(2, \frac{3}{2})$, what is its velocity at that time?
- 17. A point P moves along the curve of intersection of the cylinder $z = x^2$ and the plane $x + y = 2$ in the direction of increasing y with constant speed $v = 3$. Find the velocity of P when it is at $(1, 1, 1)$.
- **18.** An object moves along the curve $y = x^2$, $z = x^3$, with constant vertical speed $dz/dt = 3$. Find the velocity and acceleration of the object when it is at the point $(2, 4, 8)$.
- 19. A particle moves along the curve $\mathbf{r} = 3u\mathbf{i} + 3u^2\mathbf{j} + 2u^3\mathbf{k}$ in the direction corresponding to increasing u and with a constant speed of 6. Find the velocity and acceleration of the particle when it is at the point $(3, 3, 2)$.
- 20. A particle moves along the curve of intersection of the cylinders $y = -x^2$ and $z = x^2$ in the direction in which x increases. (All distances are in centimetres.) At the instant when the particle is at the point $(1, -1, 1)$, its speed is 9 cm/s, and that speed is increasing at a rate of 3 cm/s^2 . Find the velocity and acceleration of the particle at that instant.
- 21. Show that if the dot product of the velocity and acceleration of a moving particle is positive (or negative), then the speed of the particle is increasing (or decreasing).
- 22. Verify the formula for the derivative of a dot product given in Theorem 1(c).
- 23. Verify the formula for the derivative of a 3×3 determinant in the second remark following Theorem 1. Use this formula to verify the formula for the derivative of the cross product in Theorem 1.
- 24. If the position and velocity vectors of a moving particle are always perpendicular, show that the path of the particle lies on a sphere.
- 25. Generalize Exercise 24 to the case where the velocity of the particle is always perpendicular to the line joining the particle to a fixed point P_0 .
- 26. What can be said about the motion of a particle at a time when its position and velocity satisfy $\mathbf{r} \bullet \mathbf{v} > 0$? What can be said when $\mathbf{r} \bullet \mathbf{v} < 0$?

In Exercises 27–32, assume that the vector functions encountered have continuous derivatives of all required orders.

\n- **27.** Show that
$$
\frac{d}{dt} \left(\frac{d\mathbf{u}}{dt} \times \frac{d^2 \mathbf{u}}{dt^2} \right) = \frac{d\mathbf{u}}{dt} \times \frac{d^3 \mathbf{u}}{dt^3}
$$
.
\n- **28.** Write the Product Rule for $\frac{d}{dt} \left(\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) \right)$.
\n- **29.** Write the Product Rule for $\frac{d}{dt} \left(\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) \right)$.
\n

30. Expand and simplify:
$$
\frac{d}{dt} \left(\mathbf{u} \times \left(\frac{d\mathbf{u}}{dt} \times \frac{d^2\mathbf{u}}{dt^2} \right) \right)
$$
. **31.** Expand and simplify: $\frac{d}{dt} \left((\mathbf{u} + \mathbf{u}'') \bullet (\mathbf{u} \times \mathbf{u}') \right)$. **32.** Expand and simplify: $\frac{d}{dt} \left((\mathbf{u} \times \mathbf{u}') \bullet (\mathbf{u}' \times \mathbf{u}'') \right)$.

- **33.** If at all times t the position and velocity vectors of a moving particle satisfy $\mathbf{v}(t) = 2\mathbf{r}(t)$, and if $\mathbf{r}(0) = \mathbf{r}_0$, find $\mathbf{r}(t)$ and the acceleration $a(t)$. What is the path of motion?
- **E3** 34. Verify that $\mathbf{r} = \mathbf{r}_0 \cos(\omega t) + (\mathbf{v}_0/\omega)\sin(\omega t)$ satisfies the initial-value problem

$$
\frac{d^2\mathbf{r}}{dt^2} = -\omega^2\mathbf{r}, \qquad \mathbf{r}'(0) = \mathbf{v}_0, \qquad \mathbf{r}(0) = \mathbf{r}_0.
$$

(It is the unique solution.) Describe the path $r(t)$. What is the path if \mathbf{r}_0 is perpendicular to \mathbf{v}_0 ?

23 35. (Free fall with air resistance) A projectile falling under gravity and slowed by air resistance proportional to its speed has position satisfying

$$
\frac{d^2\mathbf{r}}{dt^2} = -g\mathbf{k} - c\frac{d\mathbf{r}}{dt},
$$

where c is a positive constant. If $\mathbf{r} = \mathbf{r}_0$ and $d\mathbf{r}/dt = \mathbf{v}_0$ at time $t = 0$, find $\mathbf{r}(t)$. (*Hint*: Let $\mathbf{w} = e^{ct}(d\mathbf{r}/dt)$.) Show that the solution approaches that of the projectile problem given in this section as $c \to 0$.

EXERCISES 11.3

In Exercises 1–4, find the required parametrization of the first quadrant part of the circular arc $x^2 + y^2 = a^2$.

- 1. In terms of the y-coordinate, oriented counterclockwise
- 2. In terms of the x-coordinate, oriented clockwise
- 3. In terms of the angle between the tangent line and the positive x-axis, oriented counterclockwise
- 4. In terms of arc length measured from $(0, a)$, oriented clockwise
- 5. The cylinders $z = x^2$ and $z = 4y^2$ intersect in two curves, one of which passes through the point $(2, -1, 4)$. Find a parametrization of that curve using $t = y$ as parameter.
- 6. The plane $x + y + z = 1$ intersects the cylinder $z = x^2$ in a parabola. Parametrize the parabola using $t = x$ as parameter.

In Exercises 7–10, parametrize the curve of intersection of the given surfaces. *Note*: The answers are not unique.

7.
$$
x^2 + y^2 = 9
$$
 and $z = x + y$
\n8. $z = \sqrt{1 - x^2 - y^2}$ and $x + y = 1$
\n9. $z = x^2 + y^2$ and $2x - 4y - z - 1 = 0$

- 10. $yz + x = 1$ and $xz x = 1$
- 11. The plane $z = 1 + x$ intersects the cone $z^2 = x^2 + y^2$ in a parabola. Try to parametrize the parabola using as parameter:

(a) $t = x$, (b) $t = y$, and (c) $t = z$.

Which of these choices for t leads to a single parametrization that represents the whole parabola? What is that parametrization? What happens with the other two choices?

- **I** 12. The plane $x + y + z = 1$ intersects the sphere $x^{2} + y^{2} + z^{2} = 1$ in a circle C. Find the centre r_{0} and radius r of C. Also find two perpendicular unit vectors $\hat{\mathbf{v}}_1$ and $\hat{\mathbf{v}}_2$ parallel to the plane of C. (*Hint:* To be specific, show that $\hat{\mathbf{v}}_1 = (\mathbf{i} - \mathbf{j})/\sqrt{2}$ is one such vector; then find a second that is perpendicular to $\hat{\mathbf{v}}_1$.) Use your results to construct a parametrization of C.
	- **13.** Find the length of the curve $\mathbf{r} = t^2 \mathbf{i} + t^2 \mathbf{j} + t^3 \mathbf{k}$ from $t = 0$ to $t = 1$.
	- **14.** For what values of the parameter λ is the length $s(T)$ of the curve $\mathbf{r} = t\mathbf{i} + \lambda t^2\mathbf{j} + t^3\mathbf{k}$, $(0 \le t \le T)$ given by $s(T) = T + T^3$?
	- **15.** Express the length of the curve $\mathbf{r} = at^2 \mathbf{i} + bt \mathbf{j} + c \ln t \mathbf{k}$, $(1 \le t \le T)$, as a definite integral. Evaluate the integral if $h^2 = 4ac$
	- **16.** Describe the parametric curve \mathcal{C} given by

 $x = a \cos t \sin t$, $y = a \sin^2 t$, $z = bt$.

What is the length of C between $t = 0$ and $t = T > 0$?

EXERCISES 11.4

Find the unit tangent vector $\hat{\mathbf{T}}(t)$ for the curves in Exercises 1–4. 1. $\mathbf{r} = t\mathbf{i} - 2t^2\mathbf{j} + 3t^3\mathbf{k}$

- 2. $\mathbf{r} = a \sin \omega t \mathbf{i} + a \cos \omega t \mathbf{k}$
- 3. $\mathbf{r} = \cos t \sin t \mathbf{i} + \sin^2 t \mathbf{j} + \cos t \mathbf{k}$
- 4. $\mathbf{r} = a \cos t \mathbf{i} + b \sin t \mathbf{j} + t\mathbf{k}$
- 5. Show that if $\kappa(s) = 0$ for all s, then the curve $\mathbf{r} = \mathbf{r}(s)$ is a straight line.
- \bullet 6. Show that if $\tau(s) = 0$ for all s, then the curve $\mathbf{r} = \mathbf{r}(s)$ is a plane curve. *Hint*: Show that $r(s)$ lies in the plane through $\mathbf{r}(0)$ with normal $\hat{\mathbf{B}}(0)$.
- \bullet 7. Show that if $\kappa(s) = C$ is a positive constant and $\tau(s) = 0$ for all s, then the curve $\mathbf{r} = \mathbf{r}(s)$ is a circle. *Hint*: Find a circle having the given constant curvature. Then use Theorem 3.
- **8.** Show that if the curvature $\kappa(s)$ and the torsion $\tau(s)$ are both nonzero constants, then the curve $\mathbf{r} = \mathbf{r}(s)$ is a circular helix. *Hint*: Find a helix having the given curvature and torsion.