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(a)
d

dt

�

u.t/C v.t/
�

D u0
.t/C v0

.t/

(b)
d

dt

�

�.t/u.t/
�

D �
0
.t/u.t/C �.t/u0

.t/

(c)
d

dt

�

u.t/ � v.t/
�

D u0
.t/ � v.t/C u.t/ � v0

.t/

(d)
d

dt

�

u.t/� v.t/
�

D u0
.t/� v.t/C u.t/� v0

.t/

(e)
d

dt

�

u
�

�.t/
�

�

D �
0
.t/u0�

�.t/
�

:

Also, at any point where u.t/ ¤ 0,

(f)
d

dt
ju.t/j D

u.t/ � u0.t/

ju.t/j
:

Remark Formulas (b), (c), and (d) are versions of the Product Rule. Formula (e) is

a version of the Chain Rule. Formula (f) is also a case of the Chain Rule applied to

juj D
p

u � u. All have the obvious form. Note that the order of the factors is the same

in the terms on both sides of the cross product formula (d). It is essential that the order

be preserved because, unlike the dot product or the product of a vector with a scalar,

the cross product is not commutative.

Remark The formula for the derivative of a cross product is a special case of that

for the derivative of a 3 � 3 determinant. (See Section 10.3.) Since every term in

the expansion of a determinant of any order is a product involving one element from

each row (or column), the general Product Rule implies that the derivative of an n � n

determinant whose elements are functions will be the sum of n such n�n determinants,

each with the elements of one of the rows (or columns) differentiated. For the 3 � 3

case we have

d

dt

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11.t/ a12.t/ a13.t/

a21.t/ a22.t/ a23.t/

a31.t/ a32.t/ a33.t/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a0
11.t/ a0

12.t/ a0
13.t/

a21.t/ a22.t/ a23.t/

a31.t/ a32.t/ a33.t/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

C

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11.t/ a12.t/ a13.t/

a0
21.t/ a0

22.t/ a0
23.t/

a31.t/ a32.t/ a33.t/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

C

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

a11.t/ a12.t/ a13.t/

a21.t/ a22.t/ a23.t/

a
0
31.t/ a

0
32.t/ a

0
33.t/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:

E X A M P L E 6
Show that the speed of a moving particle remains constant over an

interval of time if and only if the acceleration is perpendicular to

the velocity throughout that interval.

Solution Since
�

v.t/
�2
D v.t/ � v.t/, we have

2v.t/
dv

dt
D

d

dt

�

v.t/

�2

D

d

dt

�

v.t/ � v.t/
�

D a.t/ � v.t/C v.t/ � a.t/ D 2v.t/ � a.t/:

If we assume that v.t/ ¤ 0, it follows that dv=dt D 0 if and only if v � a D 0. The

speed is constant if and only if the velocity is perpendicular to the acceleration.
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E X A M P L E 7
If u is three times differentiable, calculate and simplify the triple

product derivative

d

dt

�

u �
�

du

dt
�

d 2u

dt2

�

�

:

Solution Using various versions of the Product Rule, we calculate

d

dt

�

u �
�

du

dt
�

d 2u

dt2

�

�

D

du

dt
�

�

du

dt
�

d 2u

dt2

�

C u �
�

d 2u

dt2
�

d 2u

dt2

�

C u �
�

du

dt
�

d3u

dt3

�

D 0C 0C u �
�

du

dt
�

d3u

dt3

�

D u �
�

du

dt
�

d3u

dt3

�

:

The first term vanishes because du=dt is perpendicular to its cross product with an-

other vector; the second term vanishes because of the cross product of identical vectors.

E X E R C I S E S 11.1

In Exercises 1–14, find the velocity, speed, and acceleration at time

t of the particle whose position is r.t/. Describe the path of the

particle.

1. r D iC t j 2. r D t2iC k

3. r D t2jC tk 4. r D iC t jC tk

5. r D t2i� t2jC k 6. r D t iC t2jC t2k

7. r D a cos t iC a sin t jC ctk

8. r D a cos!t iC bjC a sin!t k

9. r D 3 cos t iC 4 cos t jC 5 sin t k

10. r D 3 cos t iC 4 sin t jC tk

11. r D aet iC bet jC cet k

12. r D at cos!t iC at sin!t jC b ln t k

13. r D e�t cos.et
/iC e�t sin.et

/j � et k

14. r D a cos t sin t iC a sin2
t jC a cos t k

15. A particle moves around the circle x2
C y2

D 25 at constant

speed, making one revolution in 2 s. Find its acceleration

when it is at .3; 4/.

16. A particle moves to the right along the curve y D 3=x. If its

speed is 10 when it passes through the point
�

2;
3
2

�

, what is its

velocity at that time?

17. A point P moves along the curve of intersection of the

cylinder z D x2 and the plane x C y D 2 in the direction of

increasing y with constant speed v D 3. Find the velocity of

P when it is at .1; 1; 1/.

18. An object moves along the curve y D x2, z D x3, with

constant vertical speed dz=dt D 3. Find the velocity and

acceleration of the object when it is at the point .2; 4; 8/.

19. A particle moves along the curve r D 3uiC 3u2jC 2u3k in

the direction corresponding to increasing u and with a

constant speed of 6. Find the velocity and acceleration of the

particle when it is at the point .3; 3; 2/.

20. A particle moves along the curve of intersection of the

cylinders y D �x2 and z D x2 in the direction in which x

increases. (All distances are in centimetres.) At the instant

when the particle is at the point .1;�1; 1/, its speed is 9 cm/s,

and that speed is increasing at a rate of 3 cm/s2. Find the

velocity and acceleration of the particle at that instant.

21. Show that if the dot product of the velocity and acceleration of

a moving particle is positive (or negative), then the speed of

the particle is increasing (or decreasing).

22. Verify the formula for the derivative of a dot product given in

Theorem 1(c).

23. Verify the formula for the derivative of a 3 � 3 determinant in

the second remark following Theorem 1. Use this formula to

verify the formula for the derivative of the cross product in

Theorem 1.

24. If the position and velocity vectors of a moving particle are

always perpendicular, show that the path of the particle lies on

a sphere.

25. Generalize Exercise 24 to the case where the velocity of the

particle is always perpendicular to the line joining the particle

to a fixed point P0.

26. What can be said about the motion of a particle at a time when

its position and velocity satisfy r � v > 0? What can be said

when r � v < 0?

In Exercises 27–32, assume that the vector functions encountered

have continuous derivatives of all required orders.

27. Show that
d

dt

�

du

dt
�

d 2u

dt2

�

D

du

dt
�

d3u

dt3
.

28. Write the Product Rule for
d

dt

�

u � .v�w/

�

.

29. Write the Product Rule for
d

dt

�

u� .v�w/

�

.
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30. Expand and simplify:
d

dt

�

u�
�

du

dt
�

d 2u

dt2

�

�

.

31. Expand and simplify:
d

dt

�

.uC u00
/ � .u�u0

/

�

.

32. Expand and simplify:
d

dt

�

.u� u0
/ � .u0

� u00
/

�

.

33. If at all times t the position and velocity vectors of a moving

particle satisfy v.t/ D 2r.t/, and if r.0/ D r0, find r.t/ and

the acceleration a.t/. What is the path of motion?

34.P Verify that r D r0 cos.!t/C .v0=!/ sin.!t/ satisfies the

initial-value problem

d2r

dt2
D �!

2r; r0
.0/ D v0; r.0/ D r0:

(It is the unique solution.) Describe the path r.t/. What is the

path if r0 is perpendicular to v0?

35.P (Free fall with air resistance) A projectile falling under

gravity and slowed by air resistance proportional to its speed

has position satisfying

d 2r

dt2
D �gk � c

dr

dt
;

where c is a positive constant. If r D r0 and dr=dt D v0 at

time t D 0, find r.t/. (Hint: Let w D ect .dr=dt/.) Show that

the solution approaches that of the projectile problem given in

this section as c ! 0.

11.2 Some Applications of Vector Differentiation

Many interesting problems in mechanics involve the differentiation of vector functions.

This section is devoted to a brief discussion of a few of these.

Motion Involving Varying Mass
The momentum p of a moving object is the product of its (scalar) mass m and its

(vector) velocity v; p D mv. Newton’s Second Law of Motion states that the rate of

change of momentum is equal to the external force acting on the object:

F D
dp

dt
D

d

dt

�

mv
�

:

It is only when the mass of the object remains constant that this law reduces to the

more familiar F D ma. When mass is changing you must deal with momentum rather

than acceleration.

E X A M P L E 1
(The changing velocity of a rocket) A rocket accelerates by burn-

ing its onboard fuel. If the exhaust gases are ejected with constant

velocity ve relative to the rocket, and if the rocket ejects p% of its initial mass while

its engines are firing, by what amount will the velocity of the rocket change? Assume

the rocket is in deep space so that gravitational and other external forces acting on it

can be neglected.

Solution Since the rocket is not acted on by any external forces (i.e., F D 0), New-

ton’s law implies that the total momentum of the rocket and its exhaust gases will

remain constant. At time t the rocket has mass m.t/ and velocity v.t/. At time t C�t

the rocket’s mass is m C �m (where �m < 0), its velocity is v C �v, and the mass

��m of exhaust gases has escaped with velocity vCve (relative to a coordinate system

fixed in space). Equating total momenta at t and t C�t we obtain

.mC�m/.vC�v/C .��m/.vC ve/ D mv:

Simplifying this equation and dividing by �t gives

.mC�m/
�v

�t
D

�m

�t
ve;

and, on taking the limit as �t ! 0,

m
dv

dt
D

dm

dt
ve:
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Suppose that the engine fires from t D 0 to t D T: By the Fundamental Theorem of

Calculus, the velocity of the rocket will change by

v.T / � v.0/ D

Z T

0

dv

dt
dt D

�Z T

0

1

m

dm

dt
dt

�

ve

D

�

lnm.T / � lnm.0/
�

ve D � ln
�

m.0/

m.T /

�

ve :

Since m.0/ > m.T /, we have ln
�

m.0/=m.T /
�

> 0 and, as was to be expected, the

change in velocity of the rocket is in the opposite direction to the exhaust velocity ve .

If p% of the mass of the rocket is ejected during the burn, then the velocity of the

rocket will change by the amount �ve ln.100=.100 � p//.

Remark It is interesting that this model places no restriction on how great a velocity

the rocket can achieve, provided that a sufficiently large percentage of its initial mass

is fuel. See Exercise 1 at the end of the section.

Circular Motion
The angular speed � of a rotating body is its rate of rotation measured in radians per

unit time. For instance, a lighthouse lamp rotating at a rate of three revolutions per

minute has an angular speed of � D 6� radians per minute. It is useful to represent

the rate of rotation of a rigid body about an axis in terms of an angular velocity vector

rather than just the scalar angular speed. The angular velocity vector, �, has magnitude

equal to the angular speed, �, and direction along the axis of rotation such that if the

extended right thumb points in the direction of �, then the fingers surround the axis in

the direction of rotation.

If the origin of the coordinate system is on the axis of rotation, and r D r.t/ is

the position vector at time t of a point P in the rotating body, then P moves around a

circle of radius D D jr.t/j sin � , where � is the (constant) angle between � and r.t/.

(See Figure 11.4.) Thus, P travels a distance 2�D in time 2�=�, and its linear speed

is

�

D

�

P

r.t/

O

v.t/

Figure 11.4 Rotation with angular

velocity �: v D�� r

distance

time
D

2�D

2�=�
D �D D j�jjr.t/j sin � D j�� r.t/j:

Since the direction of � was defined so that �� r.t/ would point in the direction of

motion of P; the linear velocity of P at time t is given by

dr

dt
D v.t/ D �� r.t/:

E X A M P L E 2
The position vector r.t/ of a moving particle P satisfies the initial-

value problem
8

<

:

dr

dt
D 2i� r.t/

r.0/ D iC 3j:

Find r.t/ and describe the motion of P:

Solution There are two ways to solve this problem. We will do it both ways.

METHOD I. By the discussion above, the given differential equation is consistent

with rotation about the x-axis with angular velocity 2i, so that the angular speed is

2, and the motion is counterclockwise as seen from far out on the positive x-axis.

Therefore, the particle P moves on a circle in a plane x = constant and centred on the

x-axis. Since P is at .1; 3; 0/ at time t D 0, the plane of motion is x D 1, and the

radius of the circle is 3. Therefore, the circle has a parametric equation of the form

r D iC 3 cos.�t/jC 3 sin.�t/k:
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Piecewise Smooth Curves
As observed earlier, a parametric curve C given by r D r.t/ can fail to be smooth at

points where dr=dt D 0. If there are finitely many such points, we will say that the

curve is piecewise smooth.

In general, a piecewise smooth curve C consists of a finite number of smooth

arcs, C1, C2, : : : , Ck , as shown in Figure 11.13.

Figure 11.13 A piecewise smooth curve

C1

C2

Ck

r1.a1/

r1.b1/ D r2.a2/

rk.bk/

In this case we express C as the sum of the individual arcs:

C D C1 C C2 C � � � C Ck:

Each arc Ci can have its own parametrization

r D ri .t/; .ai � t � bi /;

where vi D dri=dt ¤ 0 for ai < t < bi . The fact that CiC1 must begin at the point

where Ci ends requires the conditions

riC1.aiC1/ D ri .bi / for 1 � i � k � 1:

If also rk.bk/ D r1.a1/, then C is a closed piecewise smooth curve.

The length of a piecewise smooth curve C D C1 C C2 C � � � C Ck is the sum of

the lengths of its component arcs:

length of C D

k
X

iD1

Z bi

ai

ˇ

ˇ

ˇ

ˇ

dri

dt

ˇ

ˇ

ˇ

ˇ

dt:

The Arc-Length Parametrization
The selection of a particular parameter in terms of which to specify a given curve

will usually depend on the problem in which the curve arises; there is no one “right

way” to parametrize a curve. However, there is one parameter that is “natural” in

that it arises from the geometry (shape and size) of the curve itself and not from any

particular coordinate system in which the equation of the curve is to be expressed. This

parameter is the arc length measured from some particular point (the initial point) on

the curve. The position vector of an arbitrary point P on the curve can be specified as

a function of the arc length s along the curve from the initial point P0 to P;

r D r.s/:

This equation is called an arc-length parametrization or intrinsic parametrization

of the curve. Since ds D v.t/ dt for any parametrization r D r.t/, for the arc-

length parametrization we have ds D v.s/ ds. Thus, v.s/ D 1, identically; a curve

parametrized in terms of arc length is traced at unit speed. Although it is seldom

easy (and usually not possible) to find r.s/ explicitly when the curve is given in terms

of some other parameter, smooth curves always have such parametrizations (see Ex-

ercise 28 at the end of this section), and they will prove useful when we develop the

fundamentals of the differential geometry for 3-space curves in the next section.
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Suppose that a curve is specified in terms of an arbitrary parameter t . If the arc

length over a parameter interval Œt0; t �,

s D s.t/ D

Z t

t0

ˇ

ˇ

ˇ

ˇ

d

d�
r.�/

ˇ

ˇ

ˇ

ˇ

d�;

can be evaluated explicitly, and if the equation s D s.t/ can be explicitly solved for

t as a function of s (t D t.s/), then the curve can be reparametrized in terms of arc

length by substituting for t in the original parametrization:

r D r.t.s//:

E X A M P L E 7
Parametrize the circular helix

r D a cos t iC a sin tjC btk

in terms of the arc length measured from the point .a; 0; 0/ in the direction of increas-

ing t . (See Figure 11.12.)

Solution The initial point corresponds to t D 0. As shown in Example 6, we have

ds=dt D
p

a2
C b2, so

s D s.t/ D

Z t

0

p

a2
C b2 d� D

p

a2
C b2 t:

Therefore, t D s=
p

a2
C b2, and the arc-length parametrization is

r.s/ D a cos

�

s
p

a2
C b2

�

iC a sin

�

s
p

a2
C b2

�

jC
bs

p

a2
C b2

k:

E X E R C I S E S 11.3

In Exercises 1–4, find the required parametrization of the first

quadrant part of the circular arc x2
C y2

D a2.

1. In terms of the y-coordinate, oriented counterclockwise

2. In terms of the x-coordinate, oriented clockwise

3. In terms of the angle between the tangent line and the positive

x-axis, oriented counterclockwise

4. In terms of arc length measured from .0; a/, oriented

clockwise

5. The cylinders z D x2 and z D 4y2 intersect in two curves,

one of which passes through the point .2;�1; 4/. Find a

parametrization of that curve using t D y as parameter.

6. The plane x C y C z D 1 intersects the cylinder z D x2 in a

parabola. Parametrize the parabola using t D x as parameter.

In Exercises 7–10, parametrize the curve of intersection of the

given surfaces. Note: The answers are not unique.

7. x2
C y2

D 9 and z D x C y

8. z D
p

1 � x2
� y2 and x C y D 1

9. z D x2
C y

2 and 2x � 4y � z � 1 D 0

10. yz C x D 1 and xz � x D 1

11. The plane z D 1C x intersects the cone z2
D x

2
C y

2 in a

parabola. Try to parametrize the parabola using as parameter:

(a) t D x, (b) t D y, and (c) t D z.

Which of these choices for t leads to a single parametrization

that represents the whole parabola? What is that para-

metrization? What happens with the other two choices?

12.I The plane x C y C z D 1 intersects the sphere

x
2
C y

2
C z

2
D 1 in a circle C. Find the centre r0 and radius

r of C. Also find two perpendicular unit vectors Ov1 and Ov2

parallel to the plane of C. (Hint: To be specific, show that

Ov1 D .i � j/=
p

2 is one such vector; then find a second that is

perpendicular to Ov1.) Use your results to construct a

parametrization of C.

13. Find the length of the curve r D t2iC t2jC t3k from t D 0

to t D 1.

14. For what values of the parameter � is the length s.T / of the

curve r D t iC �t2jC t3k, .0 � t � T / given by

s.T / D T C T
3?

15. Express the length of the curve r D at2 iC bt jC c ln t k,

.1 � t � T /, as a definite integral. Evaluate the integral if

b2
D 4ac.

16. Describe the parametric curve C given by

x D a cos t sin t; y D a sin2
t; z D bt:

What is the length of C between t D 0 and t D T > 0?
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E X E R C I S E S 11.4

Find the unit tangent vector OT.t/ for the curves in Exercises 1–4.

1. r D t i � 2t2jC 3t3k

2. r D a sin!t iC a cos!t k

3. r D cos t sin t iC sin2
t jC cos t k

4. r D a cos t iC b sin t jC tk

5. Show that if �.s/ D 0 for all s, then the curve r D r.s/ is a

straight line.

6.A Show that if �.s/ D 0 for all s, then the curve r D r.s/ is a

plane curve. Hint: Show that r.s/ lies in the plane through

r.0/ with normal OB.0/.

7.A Show that if �.s/ D C is a positive constant and �.s/ D 0 for

all s, then the curve r D r.s/ is a circle. Hint: Find a circle

having the given constant curvature. Then use Theorem 3.

8.A Show that if the curvature �.s/ and the torsion �.s/ are both

nonzero constants, then the curve r D r.s/ is a circular helix.

Hint: Find a helix having the given curvature and torsion.

11.5 Curvature and Torsion for General Parametrizations
The formulas developed above for curvature and torsion as well as for the unit normal

and binormal vectors are not very useful if the curve we want to analyze is not ex-

pressed in terms of the arc-length parameter. We will now consider how to find these

quantities in terms of a general parametrization r D r.t/. We will express them all in

terms of the velocity, v.t/, the speed, v.t/ D jv.t/j, and the acceleration, a.t/. First,

observe that

v D
dr

dt
D

dr

ds

ds

dt
D v OT

a D
dv

dt
D

dv

dt

OTC v
d OT

dt

D

dv

dt

OTC v
d OT

ds

ds

dt
D

dv

dt

OTC v2
� ON

v� a D v
dv

dt

OT� OTC v3
� OT� ON D v3

� OB:

Note that OB is in the direction of v� a. From these formulas we obtain useful formulas

for OT, OB, and �:

OT D
v

v
; OB D

v� a

jv� aj
; � D

jv� aj

v3
:

There are several ways to calculate ON. Perhaps the easiest is

ON D OB� OT:

Sometimes it may be easier to use
d OT

dt
D

d OT

ds

ds

dt
D v

d OT

ds
D v� ON to calculate

ON D
1

v�

d OT

dt
D

�

v

d OT

dt
D

d OT

dt

�

ˇ

ˇ

ˇ

ˇ

ˇ

d OT

dt

ˇ

ˇ

ˇ

ˇ

ˇ

:

The torsion remains to be calculated. Observe that

da

dt
D

d

dt

�

dv

dt

OTC v2
� ON
�

:
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This differentiation will produce several terms. The only one that involves OB is the one

that comes from evaluating v2
�.d ON=dt/ D v3

�.d ON=ds/ D v3
�.� OB�� OT/. Therefore,
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�� OB

for certain scalars � and �. Since v� a D v3
� OB, it follows that
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Hence,

� D
.v� a/ � .da=dt/

jv� aj2
:

E X A M P L E 1
Find the curvature, the torsion, and the Frenet frame at a general

point on the curve

r D .t C cos t/iC .t � cos t/jC
p

2 sin tk:

Describe this curve.

Solution We calculate the various quantities using the recipe given above. First, the

preliminaries:
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Thus, we have
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