Math 204 Homework 13.

Problems from W.E. Boyce, R.C. Diprima, D.B. Meade
Section 10.4 , p. 485: Problems: 12, 19,28, 36,

Section 10.5 , p. 493: Problems: 7, 12, 20,
Section 10.6 , p. 500: Problems: 2, 6, 15,
Section 10.7 , p. 510: Problems: 2(a,b), 15,
and the following problems:
Consider the problem:

$$
\begin{gather*}
u_{t t}(x, t)=4 u_{x x}(x, t), \quad x \in(0,1), t>0 \tag{1}\\
u(0, t)=u(1, t)=0, \quad t>0 \tag{2}\\
u(x, 0)=f(x), \quad u_{t}(x, 0)=g(x) t>0 \tag{3}
\end{gather*}
$$

where f, g are twice continuously differentiable functions on $[0,1]$.
Problem A. Show that if u is a solution of the problem (1)-(3), then

$$
\int_{0}^{1}\left[\left(u_{t}(x, t)\right)^{2}+\left(u_{x}(x, t)\right)^{2}\right] d x=\int_{0}^{1}\left[\left(f^{\prime}(x)\right)^{2}+(g(x))^{2}\right] d x .
$$

Problem B. Find the solution of the problem solution of the problem (1)-(3) for

$$
f(x)=4 \sin (\pi x)+\sin (5 \pi x), \quad g(x)=0, x \in[0,1] .
$$

