Math 204. Homework 13

Problems from W.E. Boyce, R.C. Diprima, D.B. Meade :

Section 10.6 p. 500, Problems : 19, 20.
Section 10.7 p. 510, Problems : 6 8a,b), 9(a), 12, 22(a)
and the following problems:
Problem 1. Use the method of separation of variables to find the solution of the problem

$$
\left\{\begin{array}{l}
u_{t}(x, t)+b u=a^{2} u_{x x}(x, t), \quad x \in(0, L), t>0 \\
u(0, t)=0, \quad u(L, t)=0, t \geq 0 \\
u(x, 0)=g(x), \quad x \in[0, L]
\end{array}\right.
$$

where $a>0, b>0$ are given numbers and $g(x)$ is a given twice continuously differentiable function on $[0, L]$.
Are the solutions of this problem tending to zero as $t \rightarrow+\infty$?
Problem 2. Use the method of separation of variables to find the solution of the problem

$$
\left\{\begin{array}{l}
u_{t t}(x, t)=u_{x x}(x, t), \quad x \in(0,1), t>0 \\
u(0, t)=0, \quad u(1, t)=0, t \geq 0, \\
u(x, 0)=x(1-x), \quad u_{t}(x, 0)=0, \quad x \in[0,1]
\end{array}\right.
$$

Problem 3. Solve the initial value problem

$$
\left\{\begin{array}{l}
u_{t t}(x, t)=16 u_{x x}(x, t), \quad x \in(-\infty, \infty), t>0 \\
u(x, 0=)=\cos (x), \quad u_{t}(x, 0)=x e^{-x}, t \geq 0
\end{array}\right.
$$

Problem 4. Consider the initial boundary value problem

$$
\left\{\begin{array}{l}
u_{t t}(x, t)=u_{x x}(x, t)+f(x), \quad x \in(0, L), t>0 \\
u(0, t)=A, \quad u(L, t)=B, t \geq 0, \\
u(x, 0)=g(x), u_{t}(x, 0)=h(x), \quad x \in[0, L]
\end{array}\right.
$$

where A, B are given numbers, f, g, h are given functions defined on $[0, L]$ Show that this problem may not have two different solutions.

Hint: Assume that the problem has another solution $v(x, t)$. The function $w(x, t)=$ $u(x, t)-v(x, t)$ will satisfy

$$
\begin{gather*}
w_{t t}(x, t)=w_{x x}(x, t) \quad x \in(0, L), t>0 \tag{1}\\
w(0, t)=0, \quad w(L, t)=0, t \geq 0 \tag{2}\\
w(x, 0)=0, \quad x \in[0, L] \tag{2}
\end{gather*}
$$

Multiply (1) by $w_{t}(x, t)$, integrate the obtained realtion with respect to x over the interval $(0, L)$ and use the conditions (2) and (3).

