Challenging problems 1

Problem 1. Let $a(t)$ and $b(t)$ be contiinous on $[0, \infty), a(t) \geq a_{0}>$ $0, \forall t \geq 0$ and

$$
b(t) \rightarrow 0, \quad \text { as } t \rightarrow 0
$$

Show that all solutions of the equation

$$
\begin{equation*}
y^{\prime}(t)+a(t) y(t)=b(t) \tag{1}
\end{equation*}
$$

tend to zero as $t \rightarrow \infty$.

Solution: First we mutiply (1) by $e^{\int_{t_{0}}^{t} a(s) d s}$ and obtain

$$
\frac{d}{d t}\left(y(t) e^{\int_{t_{0}}^{t} a(s) d s}\right)=b(t) e^{\int_{t_{0}}^{t} a(s) d s}
$$

Integrating this equality over the interval $\left(t_{0}, t\right)$ we get

$$
y(t)=y\left(t_{0}\right) e^{-\int_{t_{0}}^{t} a(s) d s}+e^{-\int_{t_{0}}^{t} a(s) d s} \int_{t_{0}}^{t} b(s) e^{\int_{t_{0}}^{s} a(\tau) d \tau} d s
$$

Since $a(t) \geq a_{0}>0$ we have

$$
e^{-\int_{t_{0}}^{t} a(s) d s} \leq e^{-c\left(t-t_{0}\right)}
$$

Thus the first term on the right-hand side of (2) tends to zero as $t \rightarrow \infty$.
It is not difficult to show that the second integral also tends to zero as $t \rightarrow \infty$ employing the L'Hospital's rule.

Problem 2. Suppose that a function $f(y)$ is continuous on the interval $(\alpha, \beta]$

$$
f(a)=f(b)=0, \quad \text { and } f(y)>0, \quad \forall y \in(\alpha, \beta)
$$

Show that if $y(t)$ is a solution of the problem

$$
\left\{\begin{array}{l}
y^{\prime}(t)=f(y(t)), \quad t \in(a, b) \tag{A}\\
y(0)=y_{0}, \quad y_{0} \in(a, b)
\end{array}\right.
$$

then

$$
\lim _{t \rightarrow \infty} y(t)=b
$$

Solution: It is clear that the fucntions $y(t)=a, y(t)=b, \forall t \in(a, b)$ are solutions of the equation.

Since $f(y)>0$ for all $y \in(a, b)$, a solution $u(x)$ of the equation satisfying the initial condition $u(0)=y_{0}, y_{0} \in(a, b)$ is a momotonly increasing function for $t \geq 0$.. Because

$$
u^{\prime}(t)=f(u(t))>0, \quad \forall t \geq 0
$$

On the other hand the function $u(t)$ can't reach the value b. Otherwise the equation (A) whould have two different solutions under the intial condition $y\left(t_{0}\right)=b$ for some $t_{1}>0$. As a monotonly increasing and bounded above function, $u(t)$ has limit

$$
\lim _{t \rightarrow \infty} u(t)=d_{0}
$$

Let us show that $b_{0}=b$. Suppose that $b_{0} \neq b$, then since $u(t) \rightarrow b_{0}$ as $t \rightarrow \infty$ we have

$$
\lim _{t \rightarrow \infty} u^{\prime}(t)=0
$$

On the other hand

$$
\lim _{t \rightarrow \infty} u^{\prime}(t)=\lim _{t \rightarrow \infty} f(u(t))=f\left(b_{0}\right)>0
$$

Thus $b_{0}=b$.

