Challenging problems 1

Problem 1. Let a(t) and b(t) be contiinous on $[0, \infty)$, $a(t) \ge a_0 > 0$, $\forall t \ge 0$ and

$$b(t) \to 0$$
, as $t \to 0$.

Show that all solutions of the equation

$$y'(t) + a(t)y(t) = b(t)$$
 (1)

tend to zero as $t \to \infty$.

Solution: First we mutiply (1) by $e^{\int_{t_0}^{t} a(s)ds}$ and obtain

$$\frac{d}{dt}\left(y(t)e^{\int_{t_0}^t a(s)ds}\right) = b(t)e^{\int_{t_0}^t a(s)ds}$$

Integrating this equality over the interval (t_0, t) we get

$$y(t) = y(t_0)e^{-\int_{t_0}^t a(s)ds} + e^{-\int_{t_0}^t a(s)ds} \int_{t_0}^t b(s)e^{\int_{t_0}^s a(\tau)d\tau}ds$$

Since $a(t) \ge a_0 > 0$ we have

$$e^{-\int_{t_0}^t a(s)ds} \le e^{-c(t-t_0)}$$

Thus the first term on the right-hand side of (2) tends to zero as $t \to \infty$.

It is not difficult to show that the second integral also tends to zero as $t \to \infty$ employing the L'Hospital's rule.

Problem 2. Suppose that a function f(y) is continuous on the interval $(\alpha, \beta]$

$$f(a) = f(b) = 0$$
, and $f(y) > 0$, $\forall y \in (\alpha, \beta)$.

Show that if y(t) is a solution of the problem

$$\begin{cases} y'(t) = f(y(t)), & t \in (a, b), \\ y(0) = y_0, & y_0 \in (a, b), \end{cases}$$
(A)

then

$$\lim_{t \to \infty} y(t) = b.$$

Solution: It is clear that the functions y(t) = a, y(t) = b, $\forall t \in (a, b)$ are solutions of the equation.

Since f(y) > 0 for all $y \in (a, b)$, a solution u(x) of the equation satisfying the initial condition $u(0) = y_0, y_0 \in (a, b)$ is a momotonly increasing function for $t \ge 0$. Because

$$u'(t) = f(u(t)) > 0, \quad \forall t \ge 0.$$

On the other hand the function u(t) can't reach the value b. Otherwise the equation (A) whould have two different solutions under the initial condition $y(t_0) = b$ for some $t_1 > 0$. As a monotonly increasing and bounded above function, u(t) has limit

$$\lim_{t \to \infty} u(t) = d_0.$$

Let us show that $b_0 = b$. Suppose that $b_0 \neq b$, then since $u(t) \rightarrow b_0$ as $t \rightarrow \infty$ we have

$$\lim_{t \to \infty} u'(t) = 0.$$

On the other hand

$$\lim_{t \to \infty} u'(t) = \lim_{t \to \infty} f(u(t)) = f(b_0) > 0.$$

Thus $b_0 = b$.