Challenging problems 1

Problem 1. Let a(t) and b(t) be contiinous on $[0, \infty)$, $a(t) \ge a_0 > 0$, $\forall t \ge 0$ and

 $b(t) \to 0$, as $t \to 0$.

Show that all solutions of the equation

$$y'(t) + a(t)y(t) = b(t)$$

tend to zero as $t \to \infty$.

Problem 2. Suppose that a function f(y) is continuous on the interval [a, b]

$$f(a) = f(b) = 0$$
, and $f(y) > 0$, $\forall y \in (a, b)$.

Show that if y(t) is a solution of the problem

$$\begin{cases} y'(t) = f(y(t)), & t \in (a, b), \\ y(0) = y_0, & y_0 \in (a, b), \end{cases}$$

then

$$\lim_{t \to \infty} y(t) = b.$$