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ON p-ADIC PERIODS FOR MIXED TATE MOTIVES OVER A

NUMBER FIELD

ANDRE CHATZISTAMATIOU AND SİNAN ÜNVER

Abstract. For a number field, we have a Tannaka category of mixed Tate
motives at our disposal. We construct p-adic points of the associated Tannaka
group by using p-adic Hodge theory. Extensions of two Tate objects yield
functions on the Tannaka group, and we show that evaluation at our p-adic
points is essentially given by the inverse of the Bloch-Kato exponential map.
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Introduction

For a number field E, one has an abelian category of mixed Tate motives MT (E)
[DG05]. A mixed Tate motive comes equipped with a weight filtration W , and the
associated graded pieces are sums of Tate objects. There is a natural fibre functor
ω defined by

ω(M) =
⊕

n∈Z

Hom(Q(n), grW−2n(M));

we denote by Gω the corresponding Tannaka group.
If O denotes the ring of integers of E and x ∈ Spec(O) is a closed point, then

Deligne and Goncharov construct a Tannaka subcategory MT (Ox) of MT (E) con-
sisting of motives which are unramified at x [DG05, 1.6]. We will denote its group
of tensor automorphisms by Gx.

This work has been supported by the SFB/TR 45 “Periods, moduli spaces and arithmetic of
algebraic varieties”.
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To a mixed Tate motive M we can attach its p-adic realization Mp which is a
representation of the Galois group of E with coefficients in Qp. If the point x lies
over the prime p, then we can restrict in order to obtain a p-adic representation
Mι,p for the Galois group of the completion Ex at x. We will show that Mι,p is
always semistable. Furthermore, Mι,p is crystalline if and only if M is unramified
at x, i.e. M ∈MT (Ox) (Theorem 2.2.3). In fact, p-adic representations attached to
mixed Tate motives are contained in an abelian subcategory which admits a fibre
functor τ similar to ω. Denoting by Hτ the corresponding Tannaka group over Qp,
p-adic realization yields a group homomorphism

Hτ −→ Gω ⊗Q Qp.

The main purpose of this paper is to construct an Ex,st-valued point ηst of
Hτ , where Spec(Ex,st) is a 1-dimensional affine space over the field Ex. The Ex-
valued points of Spec(Ex,st) correspond naturally to the extensions of the canonical

logarithm log : O×
Ex
−→ E to E×. Therefore, any choice of such an extension

induces via ηst an Ex-valued point of Hτ and Gω . For the Tannaka subcategory of
crystalline representations the picture is simpler: if Hτ,cris denotes their Tannaka
group and π : Hτ −→ Hτ,cris is the projection, then π ◦ηst factors through Spec(Ex)
and we obtain an Ex-valued point η of Hτ,cris. We denote by ηurx the image of η
in Gx.

To state our main theorem, we need to recall how extensions M of Q(0) by Q(n)
in MT (Ox) give rise to functions on Gx for n ≥ 1. The natural isomorphisms
α : Q −→ Hom(Q(n), grW−2nM) and β : Hom(Q(0), grW0 M) −→ Q induce elements
α−1 ∈ ω(M)∨ and β−1 ∈ ω(M); we set M(ηurx ) = α−1(ηurx · β

−1(1)).

Theorem (Theorem 2.3.3). For all n ≥ 1, the map

Ext1MT (Ox)(Q(0),Q(n)) −→ Ex, M 7→M(ηurx ),

is the composition of the p-adic realization

Ext1MT (Ox)(Q(0),Q(n)) −→ Ext1crys(Qp(0),Qp(n))

and the inverse of the Bloch-Kato exponential map (2.3.1).

1. Filtered φ-modules and mixed Tate filtered φ-modules

1.1. Mixed Tate filtered φ-modules.

1.1.1. Let K be a p-adic field with residue field k, i.e. char(K) = 0, K is com-
plete with respect to a fixed discrete valuation and the residue field k is perfect of
characteristic p. Let W (k) be the ring of Witt vectors of k, σ : W (k)→ W (k) the
Frobenius lift and K0 the field of fractions of W (k).

1.1.2. We denote by MFφ
K the category of filtered φ-modules, i.e. the objects are

triples (M,φ, F ), where (M,φ) is an isocrystal over K0 and F is a descending,

exhaustive and separated filtration on MK = M ⊗K0
K. We denote by MFφ,N

K

the category of filtered (φ,N)-modules, i.e. objects are tuples (M,φ,N, F ) with

(M,φ, F ) ∈MFφ
K and N : M −→M is a K0-linear endomorphism such that Nφ =

pφN . We consider MFφ
K as full subcategory of MFφ,N

K via the functor (M,φ, F ) 7→
(M,φ, 0, F ).
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The Dieudonné-Manin classification [Ma63, II, §4.1] implies, by descent, that
every isocrystal (M,φ) over K0 admits a slope decomposition

M =
⊕

λ∈Q

Mλ,

with φ(Mλ) = Mλ and (Mλ, φ |Mλ
) is isoclynic of slope λ. From the relation

Nφ = pφN, it follows that N(Mλ) ⊆ Mλ−1. In the following, we will use the
notation:

M≤λ :=
⊕

λ′∈Q

λ′≤λ

Mλ′ , M≥λ :=
⊕

λ′∈Q

λ′≥λ

Mλ′ .

Definition 1.1.3. We say that an object (M,φ, F ) ∈MFφ
K is a mixed Tate filtered

φ-module if the following properties are satisfied:

(1) There is an isomorphism of φ-modules

(M,φ) ∼=
⊕

i∈I

(K0, p
niσ),

for some index set I, and ni ∈ Z.
(2) For all i ∈ Z the natural map

F iMK −→M≥i ⊗K0
K

is an isomorphism.

We say that (M,φ,N, F ) ∈ MFφ,N
K is a mixed Tate filtered (φ,N)-module if

(M,φ, F ) is a mixed Tate filtered φ-module.

We denote by MT φ
K (resp. MT φ,N

K ) the full subcategory of MFφ
K (resp. MFφ,N

K )
with mixed Tate filtered φ-modules (resp. (φ,N)-modules) as objects. The cate-

gories MT φ
K and MT φ,N

K are additive. Again, we consider MT φ
K as full subcategory

of MT φ,N
K .

For (M,φ,N, F ) ∈ MT φ,N
K , it follows from Property (1) that all the slopes of

(M,φ) are integers. From Property (2) we conclude that the Hodge polygon of
(MK , F ) equals the Newton polygon of (M,φ).

Definition 1.1.4. (Tate objects) Let n ∈ Z be an integer. We define the Tate

object K(n) ∈MT φ
K by

K(n) := (K0, p
−nσ, F ),

with F defined by

F j =

{
K if j ≤ −n,

0 if j > −n.

Definition 1.1.5. (Weight filtration) Let (M,φ,N, F ) ∈MT φ,N
K . Let i ∈ Z be an

integer. We define an object W2i(M,φ,N, F ) in MFφ
K by

W2i(M,φ,N, F ) := (M≤i, φ |M≤i
, N |M≤i

, F ∩M≤i).

We define an object grW2i (M,φ,N, F ) in MT φ
K by

grW2i (M,φ,N, F ) := (Mi, φ |Mi
, F̃ ),

where F̃ is defined as follows:

F̃ iMi = Mi, F̃ i+1Mi = 0.
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Note that N(M≤i) ⊂M≤i−1 and N |M≤i
is well-defined.

Proposition 1.1.6. Let (M,φ,N, F ) ∈ MT φ,N
K and i ∈ Z. The following state-

ments hold.

(1) The object W2i(M,φ,N, F ) is contained in MT φ,N
K .

(2) There is an exact sequence

(1.1.1) 0 −→W2(i−1)(M,φ,N, F ) −→W2i(M,φ,N, F ) −→ grW2i (M,φ,N, F ) −→ 0.

Proof. It is sufficient to prove the statement for (M,φ, 0, F ), i.e. for objects in

MT φ
K .
For (1). It is obvious that

W2i(W2(i+1)(M,φ, F )) = W2i(M,φ, F ),

for all (M,φ, F ). Therefore we may reduce to the case

W2(i+1)(M,φ, F ) = (M,φ, F ).

In this case M = M≤i ⊕Mi+1, and we have to prove that for all j ∈ Z the map

F j ∩ (M≤i ⊗K0
K) −→ (M≤i)≥j ⊗K0

K

is an isomorphism. Since (M,φ, F ) is an object in MT φ
K , the map is injective. In

particular, the map is an isomorphism for all j ≥ i+ 1.
We need to show the surjectivity for j ≤ i. By assumption, for every m ∈

(M≤i)≥j ⊗K0
K there exists a preimage m′ ∈ F jMK . By definition, the projection

of m′ to Mi+1 ⊗K0
K vanishes, thus m′ ∈ F j ∩ (M≤i ⊗K0

K).
For (2). There is an obvious morphism W2(i−1)(M,φ, F ) −→ W2i(M,φ, F ) in

MT φ
K . The morphism W2i(M,φ, F ) −→ grW2i (M,φ, F ) is defined by the projection

M≤i −→Mi. Since F i+1 ∩ (M≤i ⊗K0
K) = 0, the projection is compatible with the

filtrations. Therefore the sequence (1.1.1) is well-defined.
In order to prove that the sequence is exact we need to show that it is an exact

sequence of φ-modules and an exact sequence of filtered K-vector spaces. The first
statement is obvious. For the second statement we note that all members in the
sequence (1.1.1) are objects in MT φ

K , thus the Hodge polygons equal the Newton
polygons. In particular,

dim(F j ∩M≤i) = dim(F j ∩M≤i−1) + dim F̃ j ,

for all j ∈ Z. This immediately implies the claim. �

Corollary 1.1.7. The category MT φ,N
K is contained in the category of weakly ad-

missible filtered (φ,N)-modules.

Proof. We use the fact that weakly admissible filtered (φ,N)-modules are stable
under extensions. Therefore the claim follows from Proposition 1.1.6 provided we

prove that grW2i (M,φ,N, F ) is weakly admissible for all (M,φ,N, F ) ∈MT φ,N
K and

all i ∈ Z. By Definition 1.1.5, grW2i (M,φ,N, F ) is isomorphic to a direct sum of
Tate objects K(−i). Since Tate objects are (weakly) admissible, we are done. �

In contrast to the category MFφ,N
K , the category of weakly admissible filtered

(φ,N)-modules MFφ,N,wa
K is an abelian category.
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Proposition 1.1.8. Let f : (M,φM , NM , FM ) −→ (M ′, φM ′ , NM ′ , FM ′) be a mor-

phism in MT φ,N
K . We denote by ker(f) and coker(f) the kernel of f and the cok-

ernel of f in MFφ,N,wa
K , respectively. Then ker(f) and coker(f) are contained in

MT φ,N
K . In particular, MT φ,N

K is an abelian category.

Proof. First, consider the full subcategory C of isocrystals over K0 with objects
(M,φ) such that there exists an isomorphism

(M,φ) ∼=
⊕

i∈I

(K0, p
niσ).

It is easy to see that C, as subcategory of the category of isocrystals, contains all
the kernels and cokernels of morphisms in C.

We denote by f0 the induced morphism (M,φM ) −→ (M ′, φM ′). Then

ker(f) = (ker(f0), φ |ker(f0), N |ker(f0), F ∩ (ker(f0)⊗K0
K)).

We know that ker(f0) ∈ C and thus satisfies Property (1) of Definition 1.1.3. It
remains to show that

F i
M ∩ (ker(f0)⊗K0

K) −→ ker(f0)≥i ⊗K0
K

is an isomorphism. We have a commutative diagram

0 // F i
M ∩ (ker(f0)⊗K0

K) //

��

F i
M

//

∼=

��

F i
M ′

∼=

��

0 // ker(f0)≥i ⊗K0
K // M≥i ⊗K0

K // M ′
≥i ⊗K0

K.

Moreover, both rows are exact, which implies Property (2) of Definition 1.1.3.
The claim for the cokernel follows dually. �

1.1.9. The categories MT φ,N
K and MT φ

K are Qp-linear rigid ⊗-categories.

Lemma 1.1.10. The functor

(1.1.2) ω̃ : MT φ,N
K −→ (Qp-vector spaces), (M,φ,N, F ) 7→

⊕

n∈Z

ω̃n(M,φ, F ),

with

ω̃n(M,φ, F ) = HomMTφ

K

(K(n), grW−2n(M,φ, F )),

is a fibre functor. In particular, (MT φ,N
K , ω̃) and (MT φ

K , ω̃) are Tannaka categories.

Proof. It is easy to see that ω̃ is a ⊗-functor. In order to see that ω̃ is exact and
faithful we will prove the existence of an isomorphism

(1.1.3) ω̃K0

∼=
−→ (γ : (M,φ,N, F ) 7→M),

where ω̃K0
(M,φ,N, F ) = ω̃(M,φ,N, F ) ⊗Qp

K0 and γ forgets about φ, N and F .
Since γ is exact and faithful, this will imply the claim.

In order to construct (1.1.3), we observe that there is a functorial isomorphism

HomMTφ

K

(K(n), grW−2n(M,φ,N, F ))⊗Qp
K0 −→M−n,(1.1.4)

φ⊗ a 7→ a · φ(1).

�
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Proposition 1.1.11. An object (M,φ,N, F ) ∈MFφ,N,wa
K belongs to MT φ,N

K if and
only if there exists an increasing exhaustive separated filtration W by subobjects of

(M,φ,N, F ) in MFφ,N,wa
K such that Wi/Wi−1 vanishes if i is odd, and is a sum of

Tate objects K(− i
2 ) if i is even.

Proof. For (M,φ,N, F ) ∈ MT φ,N
K , such a filtration exists by Definition 1.1.5,

Proposition 1.1.6, and the fact that grW2i (M,φ,N, F ) is a sum of Tate objectsK(−i).

Suppose now that (M,φ,N, F ) ∈MFφ,N,wa
K admits a filtration W satisfying the

assumptions. It is easy to see that (M,φ) satisfies Property (1) of Definition 1.1.3.
In general, if

0 −→M1 −→M −→M2 −→ 0

is an exact sequence inMFφ,N,wa
K , andM1,M2 satisfy Property (2), thenM satisfies

Property (2). By induction on i we conclude that Wi ∈MT φ,N
K for all i. �

It is clear that any filtration as in Proposition 1.1.11 has to coincide with the

weight filtration, and that any morphism between two objects in MT φ,N
K has to be

strict with respect to the weight filtrations on these objects.

1.2. The crystalline logarithmic point.

1.2.1. Recall from (1.1.2) that we have a fibre functor ω̃ equipping MT φ
K and

MT φ,N
K with the structure of Tannaka categories (Lemma 1.1.10). Let Gω̃ and

Gst
ω̃ denote the pro-algebraic groups which represent tensor automorphisms of ω̃

on MT φ
K and MT φ,N

K , respectively. In other words, we have Gω̃ = Aut⊗
MTφ

K

ω̃ and

Gst
ω̃ = Aut⊗

MTφ,N

K

ω̃. The goal of this section is to construct a non-trivial K-valued

point η of Gω̃.

Definition 1.2.2. For (M,φ, F ) ∈MT φ
K we define

η(M,φ, F ) : MK −→MK

to be the unique endomorphism rendering the following diagram commutative:

(1.2.1) MK =
⊕

i∈Z Mi ⊗K0
K

⊕
i ιi⊗K0

K
//

η(M,φ,F )

��

⊕
i∈Z M≥i ⊗K0

K

(
⊕

i∈Z
πi)

−1

��

MK

⊕
i∈Z F

iMK ,∑
i∈Z

oo

where ιi : Mi −→ M≥i is the obvious inclusion, πi : F iMK −→ M≥i ⊗K0
K is the

projection and therefore by definition an isomorphism (Definition 1.1.3(2)), and∑
i∈Z is the sum over the obvious inclusions.

Lemma 1.2.3. The morphisms η from Definition 1.2.2 define a tensor automor-
phism of the fibre functor ω̃K = ω̃ ⊗Qp

K.

Proof. Via the ⊗-isomorphism (1.1.3) we may identify ω̃⊗Qp
K0 with the forgetful

functor (M,φ, F ) 7→M . After tensoring with K we obtain ω̃K(M,φ, F ) = MK .
First, let us prove that η(M,φ, F ) is an automorphism. We denote by

η(M,φ, F )[i, j] : Mj ⊗K0
K −→Mi ⊗K0

K
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the the composition with the inclusion Mj⊗K0
K −→MK and the projection MK −→

Mi ⊗K0
K. It is easy to see from the definitions that

(1.2.2) η(M,φ, F )[i, j] =

{
0 if i > j,

idMi
if i = j.

Therefore η(M,φ, F ) is an automorphism.
Since the diagram (1.2.1) is functorial, η defines a natural transformation. The

compatibility with the tensor product is obvious. �

1.2.4. Let us explain the construction of η in the formalism of [Del94]. For

(M,φ, F ) ∈MT φ
K there are three filtrations on MK :

(1) the weight filtration:

WiMK =

{
M≤ i

2
⊗K0

K if i is even

M≤ i−1
2
⊗K0

K if i is odd.

(2) The Hodge filtration F .
(3) The filtration

F̄ iMK := M≥i ⊗K0
K for all i ∈ Z.

The three filtration W,F, F̄ satisfy the condition

GrpFGrq
F̄
GrWn MK = 0 for n 6= p+ q,

of [Del94, §1.1]. Induced by F, F̄ , we obtain maps

aF : MK =
⊕

i∈Z

F i ∩W2i −→
⊕

i∈Z

GrW2i MK ,

aF̄ : MK =
⊕

i∈Z

F̄ i ∩W2i −→
⊕

i∈Z

GrW2i MK ,

where F i ∩W2i −→ GrW2i MK is the natural map (and similarly for F̄ ). We obtain a

unipotent automorphism d = aF̄a
−1
F of

⊕
i∈Z GrW2i MK .

It is easy to see that we have the equality

η(M,φ, F ) = a−1
F̄
◦ d ◦ aF̄ .

1.2.5. Let us see in explicit terms how η compares the crystalline structure with the

Hodge filtration. For (M,φ, F ) ∈MT φ
K we say that v1, . . . , vd ∈ ω̃(M,φ, F )⊗Qp

K
is a homogeneous basis if it is a basis of ω̃(M,φ, F ) ⊗Qp

K, and for every vi there
is an integer ni with vi ∈ ω̃ni

(M,φ, F )⊗Qp
K; we set deg(vi) = ni.

Recall that for all integers i we have isomorphisms

ai : M−i ⊗K0
K

∼=
−→ ω̃i(M,φ, F )⊗Qp

K,

bi : F
−i ∩W−2iMK

∼=
−→ ω̃i(M,φ, F ) ⊗Qp

K.

The first map is the inverse of (1.1.4) and the second map is given by the compo-
sition

bi : F
−i ∩W−2iMK

⊂
−→MK

projection
−−−−−−→M−i ⊗K0

K
ai−→ ω̃i(M,φ, F )⊗Qp

K.

For a homogeneous basis {vj} we set

vcrysj := a−1
deg(vj)

(vj), vHodge
j := b−1

deg(vj)
(vj).
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We denote by {vcrys,∨j } the basis dual to {vcrysj }. By definition of η we have

v∨i (η(vj)) = vcrys,∨i (vHodge
j ).

1.2.6. By Lemma 1.2.3, we obtain a K-valued point η ∈ Gω̃(K); we call this point
the logarithmic point. Let us check that η is not the identity.

Proposition 1.2.7. Let n ∈ Z be an integer. We have

(1.2.3) Ext1
MTφ

K

(K(0),K(n)) ∼=

{
K if n > 0

0 if n ≤ 0.

Let

(1.2.4) 0 −→ K(n)
ι
−→ (E, φ, F )

π
−→ K(0) −→ 0

be an extension. For n 6= 0, there are unique sections f : E −→ K0 and v : K0 −→ E
of the underlying maps of K0-isocrystals of ι and π, respectively. The isomorphism
(1.2.3), for n 6= 0, is given by the formula

E 7→ f(η(E, φ, F )(v(1))).

Proof. First, we consider the case n = 0. Let (E, φ, F ) be as in (1.2.4). We have
F 0(EK) = EK and F 1(EK) = 0 by Definition 1.1.3(2). In view of Definition
1.1.3(2) there is an isomorphism (E, φ) ∼= (K0, σ)⊕ (K0, σ), thus there is a section

of π in MT φ
K .

For n 6= 0: From the slope decomposition we obtain natural sections f, v as
φ-modules. If n < 0 then F 1EK = ι(K) which means (E, φ, F ) = K(0)⊕K(n).

For n > 0, we can uniquely write Fn+1EK = K〈a · ι(1) + v(1)〉 with a ∈ K.
Obviously,

f(η(E, φ, F )(v(1))) = a.

It is clear that Fn+1EK is the only invariant for extensions. �

1.2.8. Recall that we have a fibre functor ω̃ (1.1.2) to the category of Qp-vector
spaces. In the obvious way ω̃ factors through the category of graded Qp-vector
spaces. Furthermore, we have an automorphism η of ω̃K (Lemma 1.2.3).

Definition 1.2.9. We define Cη to be the category of pairs (V, η), where V is a
finite dimensional graded Qp-vector space and η : V ⊗ K −→ V ⊗ K is a K-linear
map such that for all n ∈ Z:

(1.2.5) (η − id)(Vn ⊗K) ⊂
⊕

i>n

Vi ⊗K.

Morphisms (V1, η1) −→ (V2, η2) are Qp-linear morphisms τ : V1 −→ V2 which respect
the grading and commute with the endomorphisms ηi, i.e. η2 ◦ (τ ⊗ idK) = (τ ⊗
idK) ◦ η1.

The category Cη is a ⊗-category with

(V1, η1)⊗ (V2, η2) = (V1 ⊗ V2, η1 ⊗ η2).

Proposition 1.2.10. The functor

Ψ : MT φ
K −→ Cη

(M,φ, F ) 7→

(
⊕

n∈Z

ω̃n(M,φ, F ), η(M,φ, F )

)
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is an equivalence of ⊗-categories.

Proof. By Lemma 1.2.3, η is functorial and Ψ is a ⊗-functor. It follows from (1.2.2)
that

(η − id)(ω̃n ⊗K) ⊂
⊕

i>n

ω̃i ⊗K.

We define a functor

Φ : Cη −→MT φ
K

(⊕n∈ZVn, η) 7→
(
⊕n∈Z(V−n ⊗Qp

K0, p
−n ⊗ σ), F

)
,

with the following filtration:

F i := η



⊕

j≥i

V−j ⊗Qp
K


 ,

for all i. Property (1.2.5) implies that Φ is well-defined. From Definition 1.2.2 it
easily follows that Ψ ◦ Φ = idCη

.

On the other hand, we have Φ ◦Ψ
∼=
−→ idMTφ

K
via

Φ ◦Ψ(M,φ, F ) −→ (M,φ, F )
⊕

n∈Z

ω̃−n(M,φ, F )⊗Qp
K0

(1.1.4)
−−−−→M.

�

Remark 1.2.11. Via the dictionary of Section 1.2.4, Proposition 1.2.10 is a variant
of [Del94, Proposition 1.2].

1.3. The semistable logarithmic point.

1.3.1. Let K be as in §1.1.1 with residue field k. We denote by νK the valuation
of K.

1.3.2. Recall that we have a homomorphism

[.] : k× −→ O×
K , x 7→ [x],

by taking the Teichmüller lift. Denoting by UK := {x ∈ O×
K ;x ∈ 1 + mK} the

1-units, we obtain a decomposition

O×
K = k× × UK .

The logarithm

(1.3.1) log : O×
K −→ OK

is by definition trivial on the factor k× and is given by

log(u) =
∑

n≥1

(−1)n+1 (u − 1)n

n
for all u ∈ UK .
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1.3.3. We consider O×
K,Q := O×

K ⊗Z Q and K×
Q := K× ⊗Z Q as Q-vector spaces,

therefore we may form the symmetric algebras SymQ(O
×
K,Q) and SymQ(K

×
Q ). The

exact sequence

0 −→ O×
K,Q −→ K×

Q

νK−−→ Q −→ 0

implies that Spec(SymQ(K
×
Q )) is a 1-dimensional affine space over the scheme

Spec(SymQ(O
×
K,Q)). In other words, for x ∈ K× with νK(x) 6= 0, the map

SymQ(O
×
K,Q)[X ] −→ SymQ(K

×
Q ), X 7→ x,

is an isomorphism.
The logarithm (1.3.1) induces a ring homomorphism

(1.3.2) SymQ(O
×
K,Q) −→ K,

because K is torsion free.

Definition 1.3.4. We define the K-algebra Kst by

Kst := SymQ(K
×
Q )⊗SymQ(O

×
K,Q

) K.

By base change, Spec(Kst) is a 1-dimensional affine space over K. We have a
natural logarithm

(1.3.3) logst : K
× −→ Kst, x 7→ x⊗ 1.

The K-valued points of Spec(Kst) admit the following description:

Spec(Kst)(K) = {extensions log : K× −→ K of (1.3.1)}(1.3.4)

f 7→ f∗ ◦ logst .

By an extension log : K× −→ K we mean a homomorphism such that the restriction
to O×

K equals (1.3.1).

1.3.5. The p-adic Hodge theory forK (and fixed valuation νK) depends for semistable
representations on the choice of a logarithm

log : K× −→ K.

It will be important for us that our constructions do not depend on a particular
choice, and for this we have to recall the basic constructions of p-adic Hodge theory.

We denote by R the ring

R := lim
←−
OK̄/pOK̄ ,

where the maps are given by rising to the p-th power x 7→ xp. Denoting by CK = K̂
the p-adic completion of K we have a multiplicative bijection

lim
←−
OCK

−→ R,

where the projective system is defined by rising to the p-th power again. In other
words, we can represent every element x in R by (x(0), x(1), . . . ) with x(n) ∈ OCK

and x(n−1) = (x(n))p.
Let νK̄ (resp. νCK

) be the extension of νK (resp. νK̄) to K̄ (resp. CK). The map

νR : R\{0} −→ Q, x 7→ νCK
(x(0))

can be extended to a valuation

νR : Frac(R)× −→ Q
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with valuation ring R.
Let Bcris be the crystalline period ring; we define

Bst = SymQ(Frac(R)× ⊗Z Q)⊗SymQ(R
×⊗ZQ) Bcris,

where SymQ(R
× ⊗Z Q) −→ Bcris is induced by the crystalline logarithm

logcris : R
× −→ Bcris.

Again, R× = k̄× × (1 +mR); logcris is trivial on k̄× and given by

logcris(u) =
∑

n≥1

(−1)n+1 ([u]− 1)n

n

for u ∈ 1 +mR, where [u] denotes the Teichmüller lift of u in the Witt ring W (R)
of R.

By construction we have a natural logarithm

logst : Frac(R)× −→ Bst, x 7→ x⊗ 1.

The ring Bst has the following properties.

(1) We have a Gal(K̄/K)-action on Bst extending the action on Bcris.
(2) We have a Frobenius map φ : Bst −→ Bst extending the Frobenius map on

Bcris. Moreover,

φ ◦ logst = p logst .

(3) We have a Bcris-linear derivation N : Bst −→ Bst such that

N(logst(x)) = νR(x) for all x ∈ Frac(R)×.

After choosing a logarithm

log : K× −→ K,

which extends (1.3.1), we obtain a morphism of Bcris-algebras

γlog : Bst −→ BdR.

The morphism depends on the choice of log, and the filtration on Bst induced by
the filtration on BdR via γlog depends on log. In order to simplify the compari-
son between different logarithms we will restrict ourselves to logarithms log such
that log(K×

0 ) ⊂ K0. In other words, we will only consider K0-valued points of
Spec(K0,st).

Proposition 1.3.6. For log, log′ ∈ Spec(K0,st)(K0) there is a unique ring homo-
morphism

δlog,log′ : Bst −→ Bst

such that γlog′ ◦ δlog,log′ = γlog. The map δlog,log′ is given by

(1.3.5) δlog,log′ = exp

(
log(x)− log′(x)

νK(x)
N

)

for every x ∈ K0\O
×
K0

.

Proof. Uniqueness follows from the fact that γlog is injective.

Choose p̃ ∈ R with p̃(0) = p. By definition we have

γlog(logst(p̃)) = logdR([p̃]/p) + log(p),
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where logdR is defined by the usual series since [p̃]/p is a 1-unit in BdR. Since
Spec(Bst) is a 1-dimensional affine space over Spec(Bcris), there exists a unique
morphism of Bcris-algebras δlog,log′ such that

δlog,log′(logst(p̃)) = logst(p̃) + log(p)− log′(p).

Obviously, δlog,log′ satisfies γlog′ ◦ δlog,log′ = γlog and the equality (1.3.5). �

By using γlog we obtain a filtration on Bst. The p-adic Hodge theory [CF00,
Thm. A] asserts that the functor

Dst,log :(semistable Qp-representations of Gal(K̄/K)) −→MFφ,N,w.a.
K(1.3.6)

V 7→
(
Bst ⊗Qp

V
)Gal(K̄/K)

is an equivalence of categories. We will use the subscript log in Dst,log to emphasize
the dependence on log.

Denoting by forgetF the functor forgetF (M,φ,N, F ) = (M,φ,N), we get

forgetF ◦Dst,log = forgetF ◦Dst,log′ ,

because only the filtration depends on the embedding to BdR. Proposition 1.3.6
implies that for the filtrations we have the following comparison:

(1.3.7) F i
Dst,log′ (V ) = exp

(
log(x) − log′(x)

νK(x)
N

)
F i
Dst,log(V ),

for all i ∈ Z and all x ∈ K0\O
×
K0

.

Definition 1.3.7. Let K be a p-adic field. We denote by MTGK
the full subcate-

gory of p-adic representations V of Gal(K̄/K) which admit an increasing exhaustive
separated filtration W by subrepresentations of V such that Wi/Wi−1 vanishes if
i is odd, and is a sum of Tate objects Qp(−

i
2 ) if i is even. We call an object of

MTGK
a mixed Tate representation of Gal(K̄/K).

Proposition 1.3.8. Let log ∈ Spec(K0,st)(K0). Then

MTGK
= D−1

st,log(MT φ,N
K ).

In particular, every mixed Tate representation is semistable.

Proof. From Proposition 1.1.11 it follows that every object in D−1
st,log(MT φ,N

K ) ad-
mits a filtration W satisfying the properties of Definition 1.3.7.

Now, suppose that V is a p-adic representation of Gal(K̄/K) which admits a
filtration W as in Definition 1.3.7. If we know that V is semistable then clearly

Dst,log(V ) ∈ MT φ,N
K by Proposition 1.1.11, again. Therefore it suffices to prove

that V is semistable.
We use induction on the length of the filtration W of V . If the filtration W has

length ≤ 1, semistability of V follows from those of Qp(n). In general, let n be the
smallest integer such that W2nV = V. Then we have an exact sequence

0→ (W2n−2V )⊗Qp(n)→ V ⊗Qp(n)→ (V/W2n−2V )⊗Qp(n)→ 0.

By the induction hypothesis the terms on the left and right are semistable. More-
over, since the weights of the term on the left are ≤ −2 and the term on the right



ON p-ADIC PERIODS FOR MIXED TATE MOTIVES OVER A NUMBER FIELD 13

has weight 0, we have

F 0DdR((W2n−2V )⊗Qp(n)) = 0

F 0(DdR((V/W2n−2V )⊗Qp(n))) = DdR((V/W2n−2V )⊗Qp(n)).

Therefore [Nek93, Proposition 1.28] shows that the middle term is also semistable.
�

Obviously,

(1.3.8) τ = ω̃ ◦Dst,log

is independent of log, and (MTGK
, τ) is a Tannaka category (by Lemma 1.1.10).

1.3.9. Recall from Lemma 1.1.10 that (MT φ,N
K , ω̃) is a Tannaka category. We will

use the ring Kst (Definition 1.3.4) and logst (1.3.3).

Definition 1.3.10. For a logarithm log ∈ Spec(K0,st)(K0) and (M,φ,N, F ) ∈

MT φ,N
K we define ηst,log(M,φ,N, F ) ∈ EndKst

(M ⊗K0
Kst) by

ηst,log(M,φ,N, F ) := exp

(
log(x) − logst(x)

νK(x)
N

)
η(M,φ, F ),

for x ∈ K×
0 \O

×
K0

. For the definition of η(M,φ, F ) we refer to Definition 1.2.2.

Obviously, ηst,log does not depend on the choice x ∈ K×
0 \O

×
K0

, but it depends
on log.

Lemma 1.3.11. Let log ∈ Spec(K0,st)(K0). The morphisms ηst,log from Definition
1.3.10 define a tensor automorphism of the fibre functor ω̃Kst

= ω̃⊗Qp
Kst. In other

words, ηst,log ∈ Gst
ω̃ (Kst) with Gst

ω̃ = Aut⊗
MTφ,N

K

ω̃.

Proof. Via the ⊗-isomorphism (1.1.3) we may identify ω̃⊗Qp
K0 with the forgetful

functor (M,φ,N, F ) 7→M . After tensoring with Kst we obtain ω̃Kst
(M,φ,N, F ) =

M⊗K0
Kst. Lemma 1.2.3 implies that η(M,φ, F ) is a tensor automorphism, thus it

suffices to prove the statement for exp
(

log(x)−logst(x)
νK(x) N

)
. The functoriality follows

immediately. The compatibility with the ⊗-structure follows from

NM1⊗M2
= NM1

⊗ 1 + 1⊗NM2
.

�

Lemma 1.3.12. The Kst-valued point

ηst = ηst,log ◦Dst,log

of Aut⊗MTGK
τ is independent of the choice of log ∈ Spec(K0,st)(K0).

Proof. Let log, log′ ∈ Spec(K0,st)(K0) and V ∈MTGK
. In view of (1.3.7) we get

(1.3.9) η(forgetNDst,log′(V )) = exp

(
log(x)− log′(x)

νK(x)
N

)
η(forgetNDst,log(V )),
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for very x ∈ K0\O
×
K0

, and forgetN (M,φ,N, F ) = (M,φ, F ). Thus

ηst,log′Dst,log′(V ) = exp

(
log′(x) − logst(x)

νK(x)
N

)
η(forgetNDst,log′(V ))

= exp

(
log(x)− logst(x)

νK(x)
N

)
η(forgetNDst,log(V )) by (1.3.9),

= ηst,logDst,log(V ).

�

Example 1.3.13. By Kummer theory any q ∈ K× defines an extension V of
the Gal(K̄/K)-representation Qp(0) by Qp(1). This in turn gives via Dst,log an

extension of K(0) by K(1) in MT φ,N
K :

0→ K(1)→M → K(0)→ 0,

which may be described as follows. The underlying K0-space of M has a basis e0, e1
such that the following conditions are satisfied:

(1) the action of φ is given by φ(ei) = p−iei for i = 0, 1,
(2) e1 is the image of 1 ∈ K(1),
(3) e0 maps to 1 ∈ K(0).

The filtration is given by F−1MK = MK , F 0MK = K · 〈log(q)e1 + e0〉 and
F 1MK = 0. Finally N is given by Ne0 = −νK(q) · e1 and Ne1 = 0. Then we easily
compute

ηst(V ) =

(
1 0

−νK(q)(log(x)−logst(x))
νK(x) 1

)
·

(
1 0

log(q) 1

)

for the obvious basis of

τ(V ) = Hom(Q(0),Q(0))⊕Hom(Q(1),Q(1)),

and every x ∈ K0\O
×
K0

, or, equivalently, for every x ∈ K\O×
K . If νK(q) 6= 0 then

we can take q = x in order to see that

ηst(V ) =

(
1 0

logst(q) 1

)

holds for all q ∈ K×.

1.4. Tannaka group scheme of mixed Tate filtered φ-modules.

Definition 1.4.1. We define L to be the graded Qp-Lie algebra freely generated
by K∨ (i.e. the dual of K, where K is considered as Qp-vector space) in each degree
i > 0. In other words, L is defined by
(1.4.1)

Hom(graded Qp-Lie algebras)(L, T ) = Hom(graded Qp-vector spaces) (⊕i∈Z>0
K∨, T ) ,

for every graded Qp-Lie algebra T . Via (1.4.1) we get Qp-linear maps

ai : K
∨ −→ Li, for all i > 0.

Obviously, L is concentrated in positive degrees and each Li is a finite dimen-
sional Qp-vector space.
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Definition 1.4.2. For all n > 0, we define a Qp-Lie algebra L≤n by

L≤n = L/ (⊕i>nLi) .

We set L̂ = lim
←−n

L≤n. For every field extension K ⊃ Qp we define L̂K :=

lim
←−n

(L≤n ⊗Qp
K).

We will be only interested in the finite dimensional graded representations of L,
which can be identified with the finite dimensional graded representations of L̂.

1.4.3. There is natural element ǫ ∈ L̂K defined as follows:

(1.4.2) ǫ :=
∑

i>0

(ai ⊗ idK)(id),

with id ∈ K∨⊗Qp
K the canonical element. After choosing a Qp-basis v1, . . . , vd of

K, we see that

ǫ =
∑

i>0

d∑

j=1

ai(v
∨
j )⊗ vj .

Let V be a finite dimensional graded representation of L then exp(ǫ) is a unipo-
tent automorphism of V ⊗Qp

K.

Proposition 1.4.4. The ⊗-functor

Ψ : (finite dim. graded L-modules) −→ Cη

V 7→ (V, exp(ǫ))

is an equivalence of categories.

Proof. Note first that Ψ is well-defined, because (exp(ǫ)− id)(Vn) ⊂ ⊕i>nVi, for all
n, thus (1.2.5) is satisfied.

Let us prove that Ψ is essentially surjective. Let (⊕nVn, η) be an object of Cη.
Since 1− η is nilpotent we can define

ǫ̃ = log(η) = log(1− (1− η)).

For every i > 0 we define a Qp-linear map βi : K
∨ −→ End(V )i by

βi(f) =
∑

n

(idVn+i
⊗ f) ◦ projVn+i⊗K ◦ ǫ̃ ◦ inclVn

,

where inclVn
: Vn −→ V and projVn+i⊗K : V ⊗ K −→ Vn+i ⊗ K is the inclusion

and the projection, respectively. Via (1.4.1) we obtain a graded representation
ρ : L −→ End(V ). We need to show that exp(ρ(ǫ)) = η, or equivalently ρ(ǫ) = ǫ̃.
This is a straight forward computation which we leave to the reader.

Next, we need to prove that Ψ is fully faithful. Clearly, Ψ is faithful. Let V, U
be two graded representations of L, and suppose τ : V −→ U is a morphism which
respects the grading and commutes with exp(ǫ). Then τ commutes with ǫ. Fix a
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basis v1, . . . , vd of K. For v ∈ V we get

τǫ(v) = τ(
∑

i>0

∑

j

ai(v
∨
j )(v) ⊗ vj)

=
∑

i>0

∑

j

τ(ai(v
∨
j )(v)) ⊗ vj ,

ǫτ(v) =
∑

i>0

∑

j

ai(v
∨)j(τ(v)) ⊗ vj .

Therefore τ ◦ ai(v
∨
j ) = ai(v

∨
j ) ◦ τ for all i, j. Since L is generated by the elements

{ai(v
∨
j )}i,j we see that τ is a morphism of L-representations. �

Corollary 1.4.5. There is an equivalence of ⊗-categories

Θ : MT φ
K −→ (finite dim. graded L-modules)

such that

• forg ◦Θ = ω̃, where forg forgets about the L-action.
• exp(ǫ) |Θ(M,φ,F )= η(M,φ, F ).

Proof. Follows immediately from Proposition 1.2.10 and Proposition 1.4.4. �

Corollary 1.4.6. Let U be the pro-algebraic group U = lim
←−n

exp(L/(⊕i>nLi)).

Let Gω̃ be the Tannaka group attached to the fibre functor ω̃ (Lemma 1.1.10).
There is an isomorphism

Gω̃
∼= Gm ⋉ U

such that η ∈ Gω̃(K) corresponds to exp(ǫ) ∈ U(K).

Proof. In view of Corollary 1.4.5, the statement follows from the fact that Gm ⋉U
is the Tannaka group of the fibre functor:

forg : (graded finite dimensional L-modules) −→ (Qp-vector spaces).

The action of Gm on U is induced by the action of Gm on L given by the grading:

Gm × Li −→ Li; (t, x) 7→ ti · x.

�

2. Mixed Tate motives over a number field and logarithmic points

2.1. Mixed Tate motives.

2.1.1. Let E be a number field and S a set of finite places. Let O be the ring of
integers of E, and |Spec(O)| the maximal spectrum of O. We denote by

OS :=
⋂

x∈Spec(O)\S

Ox

the ring of S-integers of E; the elements of OS are integral outside of S. We will be
mainly interested in two cases for S. In the first case, we have S = |Spec(O)| and
OS = E. In the second case, we have S = |Spec(O)|\{x}, for a point x ∈ |Spec(O)|,
and OS = Ox is the local ring at x.
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2.1.2. Deligne and Goncharov defined in [DG05, 1.6] an abelian category of mixed
Tate motivesMT (OS). By definition it is the full subcategory of MT (E) consisting
of objects which are unramified outside S in the following sense. Let x ∈ |Spec(O)|
be a point lying over a prime p; then we say that M ∈ MT (E) is unramified at x
if for all primes ℓ 6= p the corresponding Galois representation Mℓ is unramified at
x, i.e. the inertia subgroup Ix (which is only well-defined up to conjugation) acts
trivially at Mℓ [DG05, Proposition 1.8].

2.1.3. For extensions of Tate objects we know that:

Ext1MT (OS)(Q(0),Q(1)) = O×
S ⊗Q,

Ext1MT (OS)(Q(0),Q(n)) =

{
0 if n ≤ 0,

Ext1MT (E)(Q(0),Q(n)) if n 6= 1,

Ext2MT (OS)(Q(0),Q(n)) = 0 for all n ∈ Z,

(see [DG05, Proposition 1.9]).

2.1.4. Every object of MT (OS) comes equipped with a finite increasing functorial
weight filtration, indexed by even integers. For all n ∈ Z the graded pieces grW2n(M)
are sums of copies of Q(−n).

In view of [DG05, 1.1] the ⊗-functor

ω : MT (OS) −→ (Q-vector spaces),(2.1.1)

ω(M) :=
⊕

n∈Z

Hom(Q(n), grW−2n(M)),

is a fibre functor, therefore MT (OS) is a Tannaka category. We denote by GS,ω

the group scheme of ⊗-automorphisms of ω. By [DG05, 2.1] we can write GS,ω as
a semi-direct product:

GS,ω = Gm ⋉ US,ω,

where US,ω is a unipotent group and GS,ω −→ Gm is induced by the obvious grading
of ω. If S = |Spec(O)| then we simply write Gω = GS,ω.

2.1.5. Functor to p-adic representations. Let x ∈ |Spec(O)| be a point lying over
a prime p. Let K = Ex be the completion of E at the place x. Choose algebraic
closures Ē, K̄, and an embedding ι : Ē −→ K̄.

To M ∈ MT (E) we can attach a Galois representation Mp of Gal(Ē/E) with
coefficients in Qp, which is called the p-adic realization of M . By using ι, we get a
continuous homomorphism

Gal(K̄/K) −→ Gal(Ē/E),

and we can restrictMp in order to obtain a p-adic representationMι,p of Gal(K̄/K).

Proposition 2.1.6. The assignment M 7→Mι,p defines a functor

(.)ι,p : MT (E) −→MTGK
.

See Definition 1.3.7 for MTGK
.

Proof. The p-adic realization is functorial. Thus we only need to show that Mι,p ∈
MTGK

, which follows immediately from the existence of the weight filtration of M
and Definition 1.3.7. �
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The set {ι : Ē −→ Ēx} of embeddings over E is a torsor under the Galois group
Gal(Ē/E), and for every g ∈ Gal(Ē/E) there is a natural transformation:

(2.1.2) αg : (.)ι,p
∼=
−→ (.)ι◦g,p.

Lemma 2.1.7. For the fibre functor τ (defined in (1.3.8)) and the fibre functor ω
defined in (2.1.1) we have a canonical isomorphism

τ ◦ (.)ι,p ∼= ω ⊗Q Qp.

For every g ∈ Gal(Ē/E), the diagram

(2.1.3) τ ◦ (.)ι,p

∼= %%LLLLLLLLLL

(2.1.2)
// τ ◦ (.)ι◦g,p

∼=xxqqqqqqqqqq

ω ⊗Q Qp

is commutative.

Proof. Straightforward. �

2.1.8. Recall that we have constructed a Kst-valued ηst of Aut
⊗τ (Lemma 1.3.12).

Proposition 2.1.9. For every embedding ι, ηx := ηst ◦ (.)ι,p defines a Kst-valued

point of Aut⊗MT (E)ω which is independent of the choice of ι.

Proof. Since τ ◦ (.)ι,p = ω ⊗Q Qp by Lemma 2.1.7, ηst ◦ (.)ι,p is a Kst-valued point

of Aut⊗ω.
The independence of the choice of ι follows from the commutative diagram

(τ ◦ (.)ι,p)⊗Qp
Kst

τ(2.1.2)⊗Kst

��

ηst //

((QQQQQQQQQQQQQ
(τ ◦ (.)ι,p)⊗Qp

Kst

τ(2.1.2)⊗Kst

��

vvlllllllllllll

ω ⊗Q Kst ω ⊗Q Kst

(τ ◦ (.)ι◦g,p)⊗Qp
Kst

ηst //

66mmmmmmmmmmmmm

(τ ◦ (.)ι◦g,p)⊗Qp
Kst,

hhRRRRRRRRRRRRR

where the triangles are commutative by Lemma 2.1.7, and the square is commuta-
tive because ηst is functorial. �

2.2. Crystalline characterization of unramified motives.

2.2.1. Let E be a number field, and let M be a mixed Tate motive over E, i.e. an
object in MT (E). Let ν be a finite place of E, M is unramified at ν [DG05,
Definition 1.4, §1.7] if the coaction [DG05, (1.2.2)]

eM : ω(M)→ Ext1(Q(0),Q(1))⊗ ω(M)

of Ext1(Q(0),Q(1)) = E× ⊗Z Q on ω(M) factors through a coaction of O×
ν ⊗Z Q.
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2.2.2. Recall from Proposition 2.1.6 that Mι,p is a mixed Tate Galois representa-
tion of GK = Gal(K̄/K) for the completion K = Eν at ν. In particular, Mι,p is
semistable (Proposition 1.3.8). In the following we will simply write Mp = Mp,ι.
We call Mp crystalline if the monodromy operator N of Dst(Mp) is trivial, or
equivalently if

(Bcris ⊗Qp
Mp)

GK −→ (Bst ⊗Qp
Mp)

GK

is an isomorphism.

Theorem 2.2.3. Let M be a mixed Tate motive over E and ν a finite place of E.
Then M is unramified at ν if and only if Mp is crystalline.

Proof. First note that the statement that M is unramified at ν is equivalent to the
statement that for every subquotient N of M which is of the form

0→ Q(n+ 1)→ N → Q(n)→ 0,

for some n, the extension class Ext1(Q(n),Q(n+1)) = Ext1(Q(0),Q(1)) = E×⊗Q

lies in O×
ν ⊗Z Q [DG05, §1.4].

Also in the category of p-adic representations of a p-adic field K, a repre-
sentation in Ext1GK

(Qp(0),Qp(1)) that is associated to some q ∈ K× ⊗ Q ⊆

lim
←−n

(K×/(K×)p
n

) ⊗ Q = Ext1GK
(Qp(0),Qp(1)) is crystalline if and only if q ∈

O×
K ⊗Q [Tsu02, Example 2.3.2].
First, suppose that Mp is crystalline, then every subquotient of Mp is crystalline.

So in order to prove that M is unramified at ν we may assume that M = N, where
N is as above with n = 0 (after Tate twist). Therefore we have an extension
in Ext1(Q(0),Q(1)), defined by some q ∈ E× ⊗Z Q, whose p-adic realization is
crystalline at ν. Then the above remark implies that the image of q in E×

ν ⊗Q lies

in Ô×
ν ⊗Q, hence q ∈ O×

ν ⊗Q and M is unramified at ν.
Suppose conversely that M is unramified at ν. We have to show that the mon-

odromy operator N on Dst(Mp) =: D(M) vanishes. Note that N maps the
slope λ piece of D(M) to the slope λ − 1 piece. Therefore, if N is nonzero on
D(M) then there exists an n such that N is nonzero on D(W2nMp/W2n−4Mp) =
D((W2nM/W2n−4M)p). ReplacingM by (W2nM/W2n−4M)⊗Q(n) we may assume

that M is defined by a class in Ext1(Q(0)⊕r,Q(1)⊕s) = Ext1(Q(0),Q(1))⊕rs, M
is unramified, and N is nonzero on D(M). By passing to a subquotient we may
further assume that r = s = 1. This gives an extension in Ext1(Q(0),Q(1)) which
is unramified at ν (and hence defined by some q ∈ O×

ν ⊗ Q) and whose p-adic
realization is not crystalline at ν. This is a contradiction. �

2.2.4. Recall the notation of Section 2.1.1. Let x ∈ |Spec(O)| be a point; in the
following we will work with S = |Spec(O)|\{x}, thus OS = Ox.

Let p be the prime lying under x. In view of Theorem 2.2.3, we know that
MT (Ox) is the full subcategory of MT (E) consisting of motives M such that the
p-adic realization Mp is crystalline at x.

We denote by Gx the group scheme of ⊗-automorphisms of the fibre functor (see
(2.1.1))

(2.2.1) ω : MT (Ox) −→ (Q-vector spaces).

The group scheme Gx is a quotient of Gω = Aut⊗MT (E)ω.
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Lemma 2.2.5. The morphism Spec(Ex,st)
ηx
−→ Gω −→ Gx factors through the struc-

ture morphism Spec(Ex,st) −→ Spec(Ex) and thus defines a point ηurx ∈ Gx(Ex).

Proof. The point ηx was defined in Proposition 2.1.9. If M ∈ MT (Ox) then
Dst(Mι,p) has vanishing monodromy operator N and ηst(Mι,p) = ηst,logDst(Mι,p)
takes values in Ex by Definition 1.3.10. �

2.3. Main theorem.

2.3.1. Let x ∈ |Spec(O)| and let Ex be the completion of E at x. Bloch and Kato
[BK90, Definition 3.10] define an exponential map

(2.3.1) exp : Ex −→ Ext1(Qp(0),Qp(n)), for all n ≥ 1,

where Ext1 is computed in the category of p-adic representation of Gal(Ēx/Ex).
Note that, in fact, the image of the exponential map lies among the crystalline rep-
resentations Ext1crys(Qp(0),Qp(n)) [BK90, Example 3.9]. Via p-adic Hodge theory,
we obtain a map

(2.3.2) Ex −→ Ext1crys(Qp(0),Qp(n)) ∼= Ext1
MTφ

Ex

(Ex(0), Ex(n)),

which, by abuse of notation, will also be called the Bloch-Kato exponential map.

2.3.2. For an extension M ∈ Ext1MT (Ox)(Q(0),Q(n)) with n ≥ 1, there are natural

maps v0 : Q −→ ω(M) and fn : ω(M) −→ Q defined as follows. By definition, there
are isomorphisms α : Q(n) −→ grW−2nM and β : grW0 M −→ Q(0); we define

v0 : Q = Hom(Q(0),Q(0))
β−1

−−→ ω0(M) −→ ω(M),

fn : ω(M) −→ ωn(M)
α−1

−−→ Hom(Q(n),Q(n)) = Q.

Therefore, we can attach to M a function in A1(Gx), defined by

M(t) := fn(t · v0),

for every point t : T −→ Gx.

Theorem 2.3.3. Let E be a number field and O be the ring of integers. Let x ∈
|Spec(O)| be a closed point over a prime p. For the Tannaka category (MT (Ox), ω)
of mixed Tate motives we denote by Gx the group scheme of ⊗-automorphisms of
ω. For all n ≥ 1, the map

Ext1MT (Ox)(Q(0),Q(n)) −→ Ex, M 7→M(ηurx ),

induced by ηurx ∈ Gx(Ex) (see Lemma 2.2.5), is the composition of the p-adic
realization

Ext1MT (Ox)(Q(0),Q(n)) −→ Ext1crys(Qp(0),Qp(n))

and the inverse of the Bloch-Kato exponential map (2.3.1).

Proof. Let us prove that evaluation at the point ηurx has the desired compatibility
with the Bloch-Kato exponential map (see (2.3.2))

exp : Ex −→ Ext1crys(Qp(0),Qp(n))
∼=
−→ Ext1MTEx

(Ex(0), Ex(n)).

For this we need to recall the construction of the exponential map. For the rest of
the proof let K := Ex. First there is an exact sequence [BK90, Proposition 1.17]:

(2.3.3) 0→ Qp → Bϕ=1
crys ⊕B+

dR → BdR → 0,
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where the first map sends x to (x, x) and the second one sends (x, y) to x− y.
For n ≥ 1, the Bloch-Kato construction gives a map

K = (Qp(n)⊗BdR)
GK → Ext1crys(Qp(0),Qp(n)).

This map is obtained as follows. First tensor the above exact sequence with Qp(n):

0→ Qp(n)→ (Qp(n)⊗Bϕ=1
crys)⊕ (Qp(n)⊗B+

dR)→ Qp(n)⊗BdR → 0.

Then an element a in K(n) = (Qp(n)⊗BdR)
GK gives a map Qp → Qp(n)⊗BdR,

pulling back the above exact sequence via this map gives the extension we were
looking for.

More explicitly, for a ∈ K the extension constructed above is:

0→ Vn → V → V0 → 0,

where V0 = Qp · t
n ⊗ at−n, Vn = Qp · t

n, and V is a 2-dimensional representation
of GK with basis which can be described as follows. By the exact sequence (2.3.3),
there exists x ∈ Bϕ=1

crys and y ∈ B+
dR such that at−n = x − y. Then V has basis

{(tn ⊗ x, tn ⊗ y), (tn ⊗ 1, tn ⊗ 1)}. For σ ∈ GK ,

σ(tn ⊗ x, tn ⊗ y) = (tn ⊗ x, tn ⊗ y) + γ(σ)(tn ⊗ 1, tn ⊗ 1),

for some γ(σ) ∈ Qp. Therefore

χcyc(σ)
nσ(x) = x+ γ(σ)

and

χcyc(σ)
nσ(y) = y + γ(σ)

Let us now try to find what this extension corresponds to after we apply the
functor (· ⊗Bcrys)

GK . First note that (V ⊗Bcrys)
GK has basis

en := (tn ⊗ 1, tn ⊗ 1)⊗ t−n

and

e0 := (tn ⊗ x, tn ⊗ y)⊗ 1− (tn ⊗ 1, tn ⊗ 1)⊗ x.

That en is invariant under the Galois action is clear. In order to see that e0 is GK

invariant let σ ∈ GK . Then

σ(e0) = (tn ⊗ (x + γ(σ)), tn ⊗ (y + γ(σ))) ⊗ 1− (tn ⊗ 1, tn ⊗ 1)⊗ (x + γ(σ)) = e0.

Now note that ϕ(en) = p−nen and ϕ(e0) = e0. Furthermore en is the image of
1 ∈ K(n) and e0 maps to 1 ∈ K(0) in the exact sequence (note that Qp(0) is
identified with V0 via the map that sends 1 to tn ⊗ at−n):

0→ K(n)→ (V ⊗ Bcrys)
GK → K(0)→ 0.

Therefore in order to compare Bloch-Kato’s construction we need only compute the
filtration on (V ⊗ Bcrys)

GK ⊗K0
K. So we need to compute the 0-th piece of the

filtration on (V ⊗BdR)
GK .

We claim that aen + e0 ∈ Fil0(V ⊗BdR)
GK . This follows immediately from

aen + e0 = (tn ⊗ x, tn ⊗ y)⊗ 1− (tn ⊗ 1, tn ⊗ 1)⊗ y,

and the fact that y ∈ B+
dR. Now Proposition 1.2.7 implies the claim. �

2.4. Archimedian places. In this section we recall the story for archimedian
places; our reference is [Del94] and [BD94].
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2.4.1. Let E be a number field and σ : E −→ C an embedding. To M ∈MT (E) we
can attach a real mixed Tate Hodge structure Mσ. Recall that a real mixed Tate
Hodge structure (H,W,F ) consists of an R-vector space H , an increasing filtration
W of H , and a decreasing filtration F of H ⊗R C such that

GrpFGrq
F̄
GrWn (H ⊗ C) =

{
0 if n is odd,

0 if n is even and (p, q) 6= (n2 ,
n
2 ).

Induced by F, F̄ , we obtain maps

aF : H ⊗ C =
⊕

i∈Z

F−i ∩W−2i −→
⊕

i∈Z

GrW−2iH ⊗ C,

aF̄ : H ⊗ C =
⊕

i∈Z

F̄−i ∩W−2i −→
⊕

i∈Z

GrW−2iH ⊗ C,

where F i ∩W2i −→ GrW2i H ⊗ C is the natural map (and similarly for F̄ ). For the

automorphism d = aF̄a
−1
F of

⊕
i∈Z GrW−2iH ⊗ C we know that

(d− 1)(GrW−2iH ⊗ C) ⊂
⊕

j>i

GrW−2jH ⊗ C,

by [Del94, p.510], and d̄ = d−1 [Del94, p.513].

2.4.2. Let C be the category of pairs (⊕iHi, d) where ⊕iHi is a graded R-vector
space and d : ⊕iHi ⊗ C −→ ⊕iHi ⊗ C is an automorphism satisfying the conditions
d̄ = d−1 and (d− 1)(Hi) ⊂ ⊕j>iHj , for all i.

Proposition 2.4.3. [Del94, p.514] The functor

(Real mixed Tate Hodge structures) −→ C

(H,W,F ) 7→ (⊕i∈ZGrW−2iH, d)

is an equivalence of categories.

The maps d define a C-valued ⊗-automorphism for the fibre functor

ω̃ : (Real mixed Tate Hodge structures) −→ (R-vector spaces),

ω̃(H,W,F ) =
⊕

i∈Z

GrW−2iH.

2.4.4. Recall the definition of ω in (2.1.1). For the functor

Rσ : MT (E) −→ (Real mixed Tate Hodge structures), M 7→Mσ,

we have an isomorphism

(2.4.1) ω ⊗Q R ∼= ω̃ ◦ R,

depending on the choice (2πi)n as a generator for the real vector space underlying
R(n), in other words we have to choose a square root of −1 in C. In order to avoid
this choice one can define

ω̃(H,W,F ) =
⊕

n∈Z

in ·GrW−2nH,

as in [BD94, p.111], but we won’t do that.
Via Equation (2.4.1), d defines a C-valued point of Gω , the ⊗-automorphisms of

the fibre functor ω. We define ǫ = log(d), ǫ defines a C-valued point of Lie(Gω).
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The dictionary for the notation of [BD94, p.111] is

d = b−1, ǫ = −2 ·N,

and N is purely imaginary.

2.4.5. For z ∈ E\{0, 1} there is a polylogarithm motive {z} ∈ MT (E) (strictly
speaking it is a pro-object). The motive {z} is defined as a subquotient of the
motivic paths from the tangent vector t0 = z, in the tangent space at 0, to z (see
[DG05, Theorem 4.4]). The Q-Hodge realization of {z} is described in [BD94, p.98]
and uniquely determines {z}.

For every k ∈ Z≥0 we have natural isomorphisms

αk : grW−2k{z}
∼=
−→ Q(k);

we define v0 ∈ ω({z}) and fk ∈ ω({z})∨ by

v0 : Q = Hom(Q(0),Q(0))
α−1

0−−→ ω0({z})

fk : ω({z}) −→ ωk({z})
αk−−→ Hom(Q(k),Q(k)) = Q.

We denote by (v0, {z}, fk) ∈ A1(Lie Gω) the function

X 7→ fk(X · v0).

By [BD94, Proposition 2.7] we have

(v0, {z}, fk)(ǫ) =

{
2i
∑

ℓ bℓ
log(zz̄)

ℓ! Im(Lik−ℓ(z)) if k is even,

2i
∑

ℓ bℓ
log(zz̄)

ℓ! Re(Lik−ℓ(z)) if k is odd.

Here, {bℓ} are the Bernoulli numbers and Li is the polylogarithm. For k even,
the result does not depend on the choice of the square root of −1; for k odd it is
independent up to a sign.
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