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ON p-ADIC PERIODS FOR MIXED TATE MOTIVES OVER A
NUMBER FIELD

ANDRE CHATZISTAMATIOU AND SINAN UNVER

ABSTRACT. For a number field, we have a Tannaka category of mixed Tate
motives at our disposal. We construct p-adic points of the associated Tannaka
group by using p-adic Hodge theory. Extensions of two Tate objects yield
functions on the Tannaka group, and we show that evaluation at our p-adic
points is essentially given by the inverse of the Bloch-Kato exponential map.
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INTRODUCTION

For a number field E, one has an abelian category of mixed Tate motives MT(E)
[DGO5]. A mixed Tate motive comes equipped with a weight filtration W, and the
associated graded pieces are sums of Tate objects. There is a natural fibre functor
w defined by

w(M) = P Hom(Q(n), gr'y, (M));
neZ
we denote by G, the corresponding Tannaka group.

If O denotes the ring of integers of E and = € Spec(O) is a closed point, then
Deligne and Goncharov construct a Tannaka subcategory MT(O,,) of MT(E) con-
sisting of motives which are unramified at x [DG05, 1.6]. We will denote its group
of tensor automorphisms by G.

This work has been supported by the SFB/TR 45 “Periods, moduli spaces and arithmetic of
algebraic varieties”.
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To a mixed Tate motive M we can attach its p-adic realization M,, which is a
representation of the Galois group of F with coefficients in Q,. If the point z lies
over the prime p, then we can restrict in order to obtain a p-adic representation
M, ), for the Galois group of the completion E, at . We will show that M, , is
always semistable. Furthermore, M, , is crystalline if and only if M is unramified
at z,i.e. M € MT(O,) (Theorem2:2Z3). In fact, p-adic representations attached to
mixed Tate motives are contained in an abelian subcategory which admits a fibre
functor 7 similar to w. Denoting by H, the corresponding Tannaka group over Q,,
p-adic realization yields a group homomorphism

H, — G, ®g Qp.

The main purpose of this paper is to construct an E, s -valued point ns of
H., where Spec(E; &) is a 1-dimensional affine space over the field E,. The E,-
valued points of Spec(E; ) correspond naturally to the extensions of the canonical
logarithm log : ng — FE to E*. Therefore, any choice of such an extension
induces via 7ns an E,-valued point of H; and G,,. For the Tannaka subcategory of
crystalline representations the picture is simpler: if H; ..;s denotes their Tannaka
group and 7 : H; — H: .ris is the projection, then mong factors through Spec(Ey)
and we obtain an E,-valued point 1 of H; .s. We denote by n%" the image of n
in Gg.

To state our main theorem, we need to recall how extensions M of Q(0) by Q(n)
in MT(O,) give rise to functions on G, for n > 1. The natural isomorphisms
a: Q — Hom(Q(n),gr',, M) and B : Hom(Q(0),grly M) — Q induce elements
a"l e w(M)¥ and Bt € w(M); we set M(nu") = a~t(ne - B71(1)).

Theorem (Theorem 2:33). For all n > 1, the map
Extirr(0,)(Q0), Q) = B, M — M(1;"),

is the composition of the p-adic realization

Extyrr(o,)(Q(0), Q(n)) = Exty,y (Qp(0), Qp(n))
and the inverse of the Bloch-Kato exponential map (2.31]).

1. FILTERED ¢-MODULES AND MIXED TATE FILTERED ¢-MODULES

1.1. Mixed Tate filtered ¢-modules.

1.1.1. Let K be a p-adic field with residue field k, i.e. char(K) = 0, K is com-
plete with respect to a fixed discrete valuation and the residue field k is perfect of
characteristic p. Let W (k) be the ring of Witt vectors of k, o : W (k) — W (k) the
Frobenius lift and K the field of fractions of W (k).

1.1.2.  We denote by MF}? the category of filtered ¢-modules, i.e. the objects are
triples (M, ¢, F'), where (M, ) is an isocrystal over Ky and F is a descending,
exhaustive and separated filtration on Mg = M ®g, K. We denote by M F ;;’N
the category of filtered (¢, N)-modules, i.e. objects are tuples (M, ¢, N, F) with
(M,¢,F) € MFI‘? and N : M — M is a Ky-linear endomorphism such that N¢ =
pdpN. We consider MF;? as full subcategory of MF;;’N via the functor (M, ¢, F') —
(M, ,0,F).
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The Dieudonné-Manin classification [Ma63, II, §4.1] implies, by descent, that
every isocrystal (M, ¢) over Ky admits a slope decomposition

M =P My,

AEQ

with ¢(My) = My and (M, ¢ |ar,) is isoclynic of slope A. From the relation
N¢ = poN, it follows that N(M,) C My_1. In the following, we will use the
notation:

MS)\ = @M}J, Mz)\ = @M}J.
NeQ NeQ
A< N>
Definition 1.1.3. We say that an object (M, ¢, F) € MF;? is a mized Tate filtered
¢-module if the following properties are satisfied:
(1) There is an isomorphism of ¢-modules
(M7 (b) = @(K()apnia)a
i€l
for some index set I, and n; € Z.
(2) For all i € Z the natural map
F'Myg — M>; @, K
is an isomorphism.
We say that (M,¢,N,F) € MF;;’N is a mized Tate filtered (¢, N)-module if
(M, ¢, F) is a mixed Tate filtered ¢-module.

We denote by MT;? (resp. MTI‘?’N) the full subcategory of MF;? (resp. MFI‘?N)
with mixed Tate filtered ¢-modules (resp. (¢, N)-modules) as objects. The cate-
gories M T;; and M T;?’N are additive. Again, we consider M T;; as full subcategory
of MTE™N.

For (M,¢,N,F) € MT", it follows from Property (1) that all the slopes of
(M, @) are integers. From Property (2) we conclude that the Hodge polygon of
(Mg, F) equals the Newton polygon of (M, ¢).

Definition 1.1.4. (Tate objects) Let n € Z be an integer. We define the Tate
object K (n) € MT} by
K(n) := (Ko,p "0, F),

i K ifj<—n,
0 ifj>—n.

with F' defined by

Definition 1.1.5. (Weight filtration) Let (M, ¢, N, F) € MT;;’N. Let i € Z be an
integer. We define an object Wa; (M, ¢, N, F) in MFI‘? by

Wai(M, ¢, N, F) := (M<i, & |mo;s N ey, F OV M<s).
We define an object gry/ (M, ¢, N, F) in MTI‘? by
gry; (M, 6, N, F) = (Mi, ¢ |us,, F),
where F' is defined as follows:
F'M; = M;, F™t'M,; =0.
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Note that N(M<;) C M<;,—; and N |M9’ is well-defined.

Proposition 1.1.6. Let (M,¢,N,F) € MTI‘?’N and i € Z. The following state-
ments hold.

(1) The object Wa; (M, ¢, N, F) is contained in MT;;’N.

(2) There is an exact sequence

(L11) 0= Waqo1)(M,¢,N,F) = Wy (M, ¢, N, F) — gry; (M, $,N,F) — 0.

Proof. Tt is sufficient to prove the statement for (M, ¢,0, F), i.e. for objects in
@
MTY.
For (1). It is obvious that

Wai(Wogip1) (M, ¢, F)) = Wai (M, ¢, F),
for all (M, ¢, F'). Therefore we may reduce to the case
Waiiv1)(M, ¢, F) = (M, ¢, F).
In this case M = M<; ® M1, and we have to prove that for all j € Z the map
Fin(Mc; @K, K) = (M<)>; @k, K

is an isomorphism. Since (M, ¢, F') is an object in MT;?, the map is injective. In
particular, the map is an isomorphism for all j >4 + 1.

We need to show the surjectivity for j < ¢. By assumption, for every m €
(M<;)>; ®K, K there exists a preimage m’ € FV M. By definition, the projection
of m’ to M;11 ®p, K vanishes, thus m’ € FI N (M<; @, K).

For (2). There is an obvious morphism Wy;_1)(M, ¢, F) — Wai(M,, F) in
MTf;. The morphism Wa;(M, ¢, F) — gr¥/ (M, ¢, F) is defined by the projection
Mc<; — M;. Since Fi™' N (M<; ®k, K) = 0, the projection is compatible with the
filtrations. Therefore the sequence ([LI1]) is well-defined.

In order to prove that the sequence is exact we need to show that it is an exact
sequence of ¢g-modules and an exact sequence of filtered K-vector spaces. The first
statement is obvious. For the second statement we note that all members in the
sequence ([LIT)) are objects in M T;;, thus the Hodge polygons equal the Newton
polygons. In particular,

dim(F7 N M<;) = dim(F7 N M<;_) + dim F7,
for all j € Z. This immediately implies the claim. ([l

Corollary 1.1.7. The category MT;;’N is contained in the category of weakly ad-
missible filtered (¢, N)-modules.

Proof. We use the fact that weakly admissible filtered (¢, N)-modules are stable
under extensions. Therefore the claim follows from Proposition provided we
prove that gry/ (M, ¢, N, F') is weakly admissible for all (M, ¢, N, F) € MT;?N and
all i € Z. By Definition [LT.H gry} (M, ¢, N, F) is isomorphic to a direct sum of
Tate objects K (—i). Since Tate objects are (weakly) admissible, we are done. [

In contrast to the category M Ff;’N, the category of weakly admissible filtered
(¢, N)-modules MF ™" is an abelian category.
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PI‘OpOSitiOI‘l 1.1.8. Let f : (M, gf)M, Ny, FM) — (M/, ¢M/,NM’,FM’) be a mor-
phism in MT;?N. We denote by ker(f) and coker(f) the kernel of f and the cok-
ernel of f in MF;;’N’“M, respectively. Then ker(f) and coker(f) are contained in
M TI‘?’N. In particular, M T;?N s an abelian category.

Proof. First, consider the full subcategory C of isocrystals over Ky with objects
(M, ¢) such that there exists an isomorphism

(M7 (b) = @(K()apnig)'
il
It is easy to see that C, as subcategory of the category of isocrystals, contains all

the kernels and cokernels of morphisms in C.
We denote by fo the induced morphism (M, ¢ps) — (M’ dpsr). Then

ker(f) = (ker(fo), @ lker(fo)> NV lker(fo), ' N (ker(fo) ®x, K)).

We know that ker(fp) € C and thus satisfies Property (1) of Definition It
remains to show that

Fi, 0 (ker(fo) @, K) — ker(fo)>i ®k, K

is an isomorphism. We have a commutative diagram

0 —= Fj; N (ker(fo) 9, K) Fi, Fi,

T

0 ——ker(fo)>i @k, K ——— M>; @k, K —— M., @k, K.

Moreover, both rows are exact, which implies Property (2) of Definition
The claim for the cokernel follows dually. O

1.1.9. The categories M T;?’N and M T;g are Q,-linear rigid ®-categories.
Lemma 1.1.10. The functor

(1.1.2)  @: MT;;’N — (Qp-vector spaces), (M,¢,N,F) — @@n(M, o, F),
nez
with
@n (M, ¢, F) = Hom 7o (K (n), g%, (M, ¢, F)),

is a fibre functor. In particular, (MT;;’N, @) and (MT;;,C:J) are Tannaka categories.

Proof. 1t is easy to see that w is a ®-functor. In order to see that @ is exact and
faithful we will prove the existence of an isomorphism

(1.1.3) Br, = (71 (M, ¢,N,F) = M),

where Or, (M, ¢, N, F) = &(M, $, N, F) ®q, Ko and ~y forgets about ¢, N and F.
Since «y is exact and faithful, this will imply the claim.
In order to construct (II3]), we observe that there is a functorial isomorphism

(1.1.4) Hom s (K (n), g%, (M, ¢, N, F)) ©q, Ko = M_p,
dRar— a-P(l).
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Proposition 1.1.11. An object (M, ¢, N, F) € MF}?’N’““ belongs to MT;;’N if and
only if there exists an increasing exhaustive separated filtration W by subobjects of
(M,p,N,F) in MF;?’N’wa such that W; /W;_1 vanishes if i is odd, and is a sum of
Tate objects K(—%) if i is even.

Proof. For (M,¢,N,F) € MTf;’N, such a filtration exists by Definition [.T.5]
Proposition[[L.T.6] and the fact that gr (M, ¢, N, F) is a sum of Tate objects K (—1).
Suppose now that (M, ¢, N, F) € MF}?’N’WI admits a filtration W satisfying the
assumptions. It is easy to see that (M, ¢) satisfies Property (1) of Definition [LT.3l
In general, if
O—=M - M — My —0
is an exact sequence in MFf;’N’wa, and M7, My satisfy Property (2), then M satisfies
Property (2). By induction on i we conclude that W; € M T;?’N for all 1. O

It is clear that any filtration as in Proposition [[LI.T]] has to coincide with the
weight filtration, and that any morphism between two objects in M TI‘?’N has to be
strict with respect to the weight filtrations on these objects.

1.2. The crystalline logarithmic point.

1.2.1. Recall from (CIT2) that we have a fibre functor @ equipping M Tf; and

M TI‘?’N with the structure of Tannaka categories (Lemma [[T.I0). Let Gg and
G%! denote the pro-algebraic groups which represent tensor automorphisms of @
on M T}? and M TE’N, respectively. In other words, we have Gy = AUtf\;;[T;; w and

Gsl = M?}T% ~w. The goal of this section is to construct a non-trivial K-valued
point 7 of G@I.(
Definition 1.2.2. For (M, ¢, F) € MT}? we define

U(M,¢,F) : MK — MK

to be the unique endomorphism rendering the following diagram commutative:

D, Li®K K
(1.2.1) My = @icy Mi @k, K a Dicz M>i @k, K
77(M,¢,F)l l(eaiez 7”)71
MK @iGZ FlMKa
Yiez

where ¢; : M; — Ms>; is the obvious inclusion, m; : FIMyg — M>; g, K is the
projection and therefore by definition an isomorphism (Definition [LT3(2)), and
> icz is the sum over the obvious inclusions.

Lemma 1.2.3. The morphisms n from Definition define a tensor automor-
phism of the fibre functor v = @ ®q, K.

Proof. Via the ®-isomorphism (L.L3) we may identify © ®q, Ko with the forgetful
functor (M, ¢, F) — M. After tensoring with K we obtain g (M, ¢, F) = Mk.
First, let us prove that n(M, ¢, F) is an automorphism. We denote by
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the the composition with the inclusion M; ® g, K — Mg and the projection Mg —

M; ®k, K. It is easy to see from the definitions that
0 if ¢ > j,
idy, ifi=j.

(1.2.2) n(M, ¢, F)li, j] = {

Therefore (M, ¢, F') is an automorphism.
Since the diagram (L21]) is functorial, i defines a natural transformation. The
compatibility with the tensor product is obvious. O

1.2.4. Let us explain the construction of n in the formalism of [Del94]. For
(M,¢,F) € MTI‘? there are three filtrations on Mg:
(1) the weight filtration:

WMy — MS% Qr, K 1fz %s even
MS% ®K, K if i is odd.
(2) The Hodge filtration F'.
(3) The filtration
F'Mpg = M>; @, K foralli € Z.
The three filtration W, F, F satisfy the condition
Gr%Gr%GrZVMK =0 for n # p+q,
of [Del94] §1.1]. Induced by F, F', we obtain maps

aF:MKz@Fiﬂng%@Grg‘;MK,

€L 1€Z
ap : Mg = @FimWQi — @GFZMK,
€L 1E€EL

where F' N Wy — Grg;/ M is the natural map (and similarly for F'). We obtain a
unipotent automorphism d = apay’ of P,z GryY M.
It is easy to see that we have the equality
n(M,¢,F) = az' odoap.

1.2.5. Let us see in explicit terms how 7 compares the crystalline structure with the
Hodge filtration. For (M, ¢, F) € MTj we say that vi, . ..,vq € &(M, ¢, F) ®g, K
is a homogeneous basis if it is a basis of G(M, ¢, F') ®q, K, and for every v; there
is an integer n; with v; € Oy, (M, ¢, F') ®q, K; we set deg(v;) = n;.

Recall that for all integers ¢ we have isomorphisms

a;i: M_; ®k, K = (M, ¢, F) ®q, K,

bi : Fﬁi N W72iMK i (:-)Z(Mv (b? F) ®Qp K.
The first map is the inverse of (ILI4)) and the second map is given by the compo-
sition

bt F'OAW_o; My < My

projection
_—

M_; ®K, K 5 @;(M, ¢, F) ®q, K.

For a homogeneous basis {v;} we set

crys | Hodge ,__ b—l

U= Qg (U): Y deg(v;)(V3)-
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We denote by {ngrys,v} the basis dual to {vj"*"}. By definition of 7 we have

o) (n(v7)) = v (0°0).

1.2.6. By Lemmal[l.2:3] we obtain a K-valued point € G4 (K); we call this point
the logarithmic point. Let us check that n is not the identity.

Proposition 1.2.7. Let n € Z be an integer. We have

LK ifn>0
(1.2.3) Ext}wT;; (K(0), K(n)) = {0 i#n<o0.
Let
(1.2.4) 0= Kn) % (E,¢,F) 5 K(0)—0

be an extension. For n # 0, there are unique sections f : B — Ko andv: Ko = E
of the underlying maps of Kg-isocrystals of v and w, respectively. The isomorphism

(LZ3), for n # 0, is given by the formula
E v f(n(E, ¢, F)(v(1))).
Proof. First, we consider the case n = 0. Let (F, ¢, F) be as in (LZ4). We have
F°(Erg) = Ex and F'(Ex) = 0 by Definition [LT3(2). In view of Definition
[CT3(2) there is an isomorphism (E, ¢) = (Ko, 0) @ (Ko, o), thus there is a section
of min MT}.
For n # 0: From the slope decomposition we obtain natural sections f,v as
¢-modules. If n < 0 then F1Ex = ((K) which means (E, ¢, F) = K(0) ® K(n).
For n > 0, we can uniquely write F"™'Ex = K{(a - (1) + v(1)) with a € K.
Obviously,
f(E, ¢, F)(v(1))) = a.
It is clear that F"t!Ey is the only invariant for extensions. ([
1.2.8. Recall that we have a fibre functor @ (I.I2) to the category of Q,-vector

spaces. In the obvious way @ factors through the category of graded Q,-vector
spaces. Furthermore, we have an automorphism 7 of @x (Lemma [[L.2.3]).

Definition 1.2.9. We define C, to be the category of pairs (V,n), where V is a
finite dimensional graded Q,-vector space and n: V ® K — V ® K is a K-linear
map such that for all n € Z:

(1.2.5) (n—id)(V, e K) c PViw K.
i>n
Morphisms (Vi,m) — (Va,n2) are Qp-linear morphisms 7 : V3 — V, which respect
the grading and commute with the endomorphisms 7;, i.e. n2 0 (T @ idg) = (7 ®
’LdK) ] 771.
The category C, is a ®-category with
(Vi,m) ® (Va,m2) = (Vi ®@ Va, i @ ).

Proposition 1.2.10. The functor

U MTY —C,

(M, ¢, F) <E[9an<M,¢,F),n<M,¢,F>>

nez
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is an equivalence of ®-categories.

Proof. By Lemmal[l.2:3] 7 is functorial and ¥ is a ®-functor. It follows from ([L2:2)
that

(n—id)(@n ® K) C Pas o K.
i>n
We define a functor
®:C,— MTy,
(@nEZVn,T]) — (@nGZ(V,n ®Qp Ko,p*n ® 0_)7 F) 7

with the following filtration:

Fi=n|@V;®e, K |,

Jjzi

for all 7. Property (LZX) implies that ® is well-defined. From Definition it
easily follows that ¥ o & = idc, .

On the other hand, we have ® o ¥ =, idMT;ﬁ via

®oV(M, ¢, F) = (M, ¢, F)

P o-n(M, ¢, F) 0, Ko LD, .

neZ
(Il

Remark 1.2.11. Via the dictionary of Section [[.2.4] Proposition [[[2.10is a variant
of [Del94] Proposition 1.2].

1.3. The semistable logarithmic point.

1.3.1. Let K be as in §L.T.1] with residue field k. We denote by vk the valuation
of K.

1.3.2. Recall that we have a homomorphism
[]: k" = O, x|z,

by taking the Teichmiiller lift. Denoting by Ux = {z € O;x € 1+ mg} the
1-units, we obtain a decomposition

O =k xUkg.
The logarithm
(1.3.1) log: O — Ok
is by definition trivial on the factor £* and is given by

log(u) = Z(—l)"“u for all u € Uk.

n
n>1
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1.3.3. We consider OIX(Q = O ®z Q and K(S = K* @7 Q as Q-vector spaces,
therefore we may form the symmetric algebras Symg(Op ) and Symg(Kg). The
exact sequence
0—=0Ko—= K~ Q—0
implies that Spec(Symg(K()) is a 1-dimensional affine space over the scheme
Spec(Symg (O ¢))- In other words, for € K* with vk (x) # 0, the map
Symg (O o)[X] = Symg(Kg), X~ z,

is an isomorphism.
The logarithm (L3)) induces a ring homomorphism

(1.3.2) Symg(Ok o) = K,
because K is torsion free.
Definition 1.3.4. We define the K-algebra K by

Ky := Symg(Kg) Dsymg(OF o) K.

By base change, Spec(K;) is a 1-dimensional affine space over K. We have a
natural logarithm

(1.3.3) log,, : K* - Ky, x—zQ1L.
The K-valued points of Spec(K ;) admit the following description:
(1.3.4) Spec(Kst)(K) = {extensions log : K* — K of (L3)}

f= ffolog,, .
By an extension log : K* — K we mean a homomorphism such that the restriction
to O equals (L3.0).
1.3.5.  The p-adic Hodge theory for K (and fixed valuation vk ) depends for semistable
representations on the choice of a logarithm
log: K* — K.
It will be important for us that our constructions do not depend on a particular

choice, and for this we have to recall the basic constructions of p-adic Hodge theory.
We denote by R the ring

R:=1mOg /pOkg,

where the maps are given by rising to the p-th power z — 2”. Denoting by Cx = K
the p-adic completion of K we have a multiplicative bijection

@1 OCK — R,
where the projective system is defined by rising to the p-th power again. In other
words, we can represent every element z in R by (z(©, 21 .. .) with (™ € O¢,.

and x(n_l) = (x("))p -
Let v (resp. voy ) be the extension of vk (resp. vi) to K (resp. Ck). The map

vr:R\{0} - Q, zr— vo, (x(o))
can be extended to a valuation

vg : Frac(R)* — Q
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with valuation ring R.
Let B.r;s be the crystalline period ring; we define
By = Symg(Frac(R)* ®z Q) ®symg(R* ©,Q) Beris,
where Symg(R* ®z Q) — Bepis is induced by the crystalline logarithm
log,,is : R* — Beris.

Again, RX = k* x (1 +mg); log,,;, is trivial on kX and given by

n

log,,.;s(u) = Z(_l)nJrl M

n
n>1

for u € 1+ mpg, where [u] denotes the Teichmiiller lift of w in the Witt ring W(R)
of R.

By construction we have a natural logarithm
log,,; : Frac(R)* — Bst, x+—z® 1.

The ring Bg: has the following properties.

(1) We have a Gal(K /K)-action on B,; extending the action on Bys.
(2) We have a Frobenius map ¢ : Bs; — By extending the Frobenius map on
B.ris. Moreover,

¢ olog, =plogy .
(3) We have a Bp;s-linear derivation N : Bg; — By such that
N(log,(x)) = vr(z) for all z € Frac(R)™.
After choosing a logarithm
log: K* — K,
which extends (L3.]), we obtain a morphism of B.,;s-algebras
Mog : Bst — Buar.

The morphism depends on the choice of log, and the filtration on B, induced by
the filtration on Bgr via 70g depends on log. In order to simplify the compari-
son between different logarithms we will restrict ourselves to logarithms log such
that log(K;) C Kp. In other words, we will only consider Kp-valued points of
Spec(Ko,st)-

Proposition 1.3.6. For log,log’ € Spec(Ky s;)(Ko) there is a unique ring homo-
morphism

5log,log/ : Bst — By
such that Yieg © Olog,log’ = Vog- LThe map diog 10g’ 5 given by
log(z) — log/(x) )
1.3.5 Olog log’ = €XP <—N
(1:3.5) foe-lo vk (z)
for every x € Ko\Og, .

Proof. Uniqueness follows from the fact that 7,4 is injective.
Choose p € R with p(9) = p. By definition we have

Mo (1085, (D)) = logar([Pl/p) + log(p),



12 ANDRE CHATZISTAMATIOU AND SINAN UNVER

where log,p is defined by the usual series since [p]/p is a l-unit in Bgr. Since
Spec(Bst) is a 1-dimensional affine space over Spec(Bgris), there exists a unique
morphism of Ber;s-algebras djog 10, such that

Jtog log’ (1084 (P)) = log, (p) + log(p) — log'(p).
Obviously, diog,10g’ Satisfies Viog © dlog,10g’ = Nog and the equality (L3.5). O

By using viog we obtain a filtration on Bg. The p-adic Hodge theory [CEF00,
Thm. A] asserts that the functor

(1.3.6)  Dat10g :(semistable Q,-representations of Gal(K /K)) — M FN "
V — (Bst ®Qp V)Gal(K/K)
is an equivalence of categories. We will use the subscript log in Dy 10, to emphasize
the dependence on log.
Denoting by forget the functor forget (M, ¢, N, F) = (M, ¢, N), we get

forget p o Dyt 10g = forgety o Dy joq7,

because only the filtration depends on the embedding to Byg. Proposition [[.3.0]
implies that for the filtrations we have the following comparison:

log(x) —log/(x) N> i

(1.3.7) Ff)st,lcg/(v) = exp ( Vi (2) Dt 10g(V)?

for all i € Z and all x € Ko\Og, .

Definition 1.3.7. Let K be a p-adic field. We denote by MT¢,, the full subcate-
gory of p-adic representations V of Gal(K /K) which admit an increasing exhaustive
separated filtration W by subrepresentations of V' such that W;/W;_; vanishes if
i is odd, and is a sum of Tate objects Q,(—%) if i is even. We call an object of
MTg, a mized Tate representation of Gal(K/K).

Proposition 1.3.8. Let log € Spec(Ko st)(Ko). Then
MTg, = D_}

st,log

(MTE™).
In particular, every mixed Tate representation is semistable.

Proof. From Proposition [[LT11] it follows that every object in D;t}log(M T;?N ) ad-
mits a filtration W satisfying the properties of Definition 3.7

Now, suppose that V is a p-adic representation of Gal(K/K) which admits a
filtration W as in Definition [[37 If we know that V is semistable then clearly
D 10g(V) € M Tfé’N by Proposition [LT.TI] again. Therefore it suffices to prove
that V' is semistable.

We use induction on the length of the filtration W of V. If the filtration W has
length < 1, semistability of V follows from those of Q,(n). In general, let n be the

smallest integer such that W5,V = V. Then we have an exact sequence
0— (Wznfz‘/) & Qp(n) - V® Qp(n) — (V/W2n72V) ® Qp(n) — 0.

By the induction hypothesis the terms on the left and right are semistable. More-
over, since the weights of the term on the left are < —2 and the term on the right
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has weight 0, we have
F°Dap((Wan—2V) ® Qy(n)) =0
FO(Dar((V/Wan-2V) ® Qp(n))) = Dar((V/Wan-2V) @ Qy(n)).

Therefore [Nek93| Proposition 1.28] shows that the middle term is also semistable.
O

Obviously,
(138) T=wo Dst,log
is independent of log, and (MTg,,7) is a Tannaka category (by Lemma [[LTT0).
1.3.9. Recall from Lemma [LTI0 that (MT"™, &) is a Tannaka category. We will

use the ring Kg; (Definition [34]) and log,, (L33).

Definition 1.3.10. For a logarithm log € Spec(Ko,st)(Ko) and (M,¢,N,F) €
MTPN we define 15,105(M, ¢, N, F) € Endg.,,(M @, Ky) by

10g($) - logst (‘T)
vi ()

nst,log(M7¢7N7 F) = eXp( N) n(M7¢7F)7

for z € K\Oj . For the definition of n(M, ¢, F') we refer to Definition

Obviously, 7,¢,10g does not depend on the choice x € KOX\(’)IX(O, but it depends
on log.

Lemma 1.3.11. Letlog € Spec(Ko t)(Ko). The morphisms nst 10g from Definition
[1.3.10 define a tensor automorphism of the fibre functor Wy ,, = W ®q, Kst. In other

words, Nstlog € GH(Kg) with G = Aut;?;[T@NcD.
K

Proof. Via the ®-isomorphism (L.L3) we may identify © ®q, Ko with the forgetful
functor (M, ¢, N, F) — M. After tensoring with K; we obtain wg_, (M, ¢, N, F) =
M @, Kst. Lemmal[[23 implies that (M, ¢, F') is a tensor automorphism, thus it

log(w)*l(og)st(m)
VKT
immediately. The compatibility with the ®-structure follows from

suffices to prove the statement for exp ( N ) The functoriality follows

NM1®M2 :]\71\41 ®1+1®NM2.

Lemma 1.3.12. The K -valued point

Nst = Tst,log © Dst,log

ofM%TGKT is independent of the choice of log € Spec(Ko,st)(Ko).-

Proof. Let log,log’ € Spec(Ko st)(Ko) and V € MTg, . In view of (L3.7) we get

log(x) —log'(x)

(1.3.9)  n(forget y Dyt 10g (V) = exp < vi (z)

N> W(forgetNDst,log(V))a
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for very x € Ko\Og,, and forget (M, ¢, N, F) = (M, ¢, F). Thus

lo ! ) —lo st\ &
Mot tog Dstog: (V) = exp ( g/( ZK(x)g ()
1 —
~ ep < og(z) — log,, ()
vi (z)
= nst,logDst,log(V)'

N) n(forget y Dyt 105 (V')

N) n(forgety Deriog(V)) by (3,

O

Example 1.3.13. By Kummer theory any ¢ € K™ defines an extension V' of
the Gal(K/K)-representation Q,(0) by @Q,(1). This in turn gives via Dyt 10g an
extension of K(0) by K (1) in MT}?’N:

0—-K(1)— M— K(0)—0,

which may be described as follows. The underlying Ky-space of M has a basis eg, e1
such that the following conditions are satisfied:

(1) the action of ¢ is given by ¢(e;) = p~ie; for i = 0,1,
(2) e; is the image of 1 € K(1),
(3) ep maps to 1 € K(0).

The filtration is given by F~!My = Mg, FOMg = K - (log(q)e1 + eo) and
F1My = 0. Finally N is given by Neg = —vk(q) - e; and Nej = 0. Then we easily

compute
1 0 1 0
s V)= —v log(z)—log,, (x : ( )
1st(V) < s (g)Iog(e)log,, (x) 1) log(q) 1

for the obvious basis of

7(V) = Hom(Q(0), Q(0)) & Hom(Q(1), Q(1)),

and every x € Ko\Op, , or, equivalently, for every x € K\Of. If vk (q) # 0 then
we can take ¢ = x in order to see that

nee(V) = <1og:t<q> (1)>

holds for all ¢ € K*.
1.4. Tannaka group scheme of mixed Tate filtered ¢-modules.

Definition 1.4.1. We define £ to be the graded Q,-Lie algebra freely generated
by KV (i.e. the dual of K, where K is considered as Q,-vector space) in each degree
i > 0. In other words, £ is defined by

(1.4.1)

Hom(graded Qp-Lie algebras) (‘Ca T) = Hom(graded Qp-vector spaces) (@i€Z>oKV7 T) )
for every graded Qp-Lie algebra 7. Via (LZI]) we get Qp-linear maps
a;: KV — L;, foralli>D0.

Obviously, £ is concentrated in positive degrees and each £; is a finite dimen-
sional Q,-vector space.
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Definition 1.4.2. For all n > 0, we define a Q,-Lie algebra L<, by
Lan = L) (@isnLi).
We set £ = lgln L<y. For every field extension K D Q, we define Lx =
Im (L<n ®q, K).

We will be only interested in the finite dimensional graded representations of L,
which can be identified with the finite dimensional graded representations of L.

1.4.3. There is natural element € € ﬁK defined as follows:

(1.4.2) €= (a; ®idg)(id),

>0

with id € KV ®q, K the canonical element. After choosing a Q,-basis v, ..., v4 of
K, we see that

d
€= ZZai(v;/) ® ;.

i>0 j=1

Let V be a finite dimensional graded representation of £ then exp(e) is a unipo-
tent automorphism of V ®q, K.

Proposition 1.4.4. The ®-functor

U : (finite dim. graded L-modules) — C,
V= (V,exp(e))

is an equivalence of categories.

Proof. Note first that ¥ is well-defined, because (exp(e) —id)(V;,) C @isn Vi, for all
n, thus (CLZ0) is satisfied.

Let us prove that ¥ is essentially surjective. Let (6,V,,n) be an object of C,.
Since 1 — 7 is nilpotent we can define

€ =log(n) =log(1 — (1 —n)).

For every i > 0 we define a Q,-linear map 3; : KV — End(V'); by

Bi(f) = (idy,., ® f) o projy, , e © € o incly,,

n

where incly, : Vi, — V and projy, .ok : V ® K — Vhy; @ K is the inclusion
and the projection, respectively. Via ([L4I) we obtain a graded representation
p: L — End(V). We need to show that exp(p(e)) = 5, or equivalently p(e) = €.
This is a straight forward computation which we leave to the reader.

Next, we need to prove that ¥ is fully faithful. Clearly, ¥ is faithful. Let V,U
be two graded representations of £, and suppose 7 : V — U is a morphism which
respects the grading and commutes with exp(e). Then 7 commutes with e. Fix a
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basis vy, ...,vq of K. For v € V we get
Te(v) = T(Z Z ai(v))(v) ® v;)
i>0 j
DO r(aiw)) () @ vj,
i>0

er(v) =YY ai(v);(7(v) @ v;.

i>0 j

Therefore 7 0 a;(v}') = a;(v)') o 7 for all i, j. Since L is generated by the elements
{ai(v})}i; we see that 7 is a morphism of L-representations. O

Corollary 1.4.5. There is an equivalence of ®-categories
O: MTf; — (finite dim. graded L-modules)
such that

o forg o © = @, where forg forgets about the L-action.
o exp(e) lor,p.r)=N(M, ¢, F).

Proof. Follows immediately from Proposition and Proposition [L4.4] O
Corollary 1.4.6. Let U be the pro-algebraic group U = lim exp(L/(Bi>nLli)).

Let Gy be the Tannaka group attached to the fibre functor & (Lemma[L1.10).
There is an isomorphism

Ga, = Gm x U
such that n € Gz(K) corresponds to exp(e) € U(K).

Proof. In view of Corollary [[L45] the statement follows from the fact that G,, x U
is the Tannaka group of the fibre functor:

forg : (graded finite dimensional £-modules) — (Q,-vector spaces).
The action of G,, on U is induced by the action of G, on £ given by the grading:
Gm x Ly — Li;  (t,x) >t
O

2. MIXED TATE MOTIVES OVER A NUMBER FIELD AND LOGARITHMIC POINTS

2.1. Mixed Tate motives.

2.1.1. Let E be a number field and S a set of finite places. Let O be the ring of
integers of F, and |Spec(OQ)| the maximal spectrum of O. We denote by

Os:= [] O
x€Spec(O)\S

the ring of S-integers of F; the elements of Og are integral outside of S. We will be
mainly interested in two cases for S. In the first case, we have S = |Spec(O)| and
Og = E. In the second case, we have S = |Spec(O)[\{z}, for a point x € |Spec(O)|,
and Og = O, is the local ring at x.
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2.1.2. Deligne and Goncharov defined in [DGO5, 1.6] an abelian category of mixed
Tate motives MT(Og). By definition it is the full subcategory of MT(E) consisting
of objects which are unramified outside S in the following sense. Let z € |Spec(O)|
be a point lying over a prime p; then we say that M € MT(F) is unramified at x
if for all primes ¢ # p the corresponding Galois representation My is unramified at
x, i.e. the inertia subgroup I, (which is only well-defined up to conjugation) acts
trivially at M, [DGO5|, Proposition 1.8].

2.1.3. For extensions of Tate objects we know that:
EXt}WT(oS)(Q(O)u Q1)) = O; ® Q,
0 ifn<0
Ext) (Q(0),Q(n)) = o
M) Extirr(s)(Q(0),Q(n) if n# 1,
Ext?WT(OS)(Q(O),Q(n)) =0 forallneZ,
(see [DGO5L Proposition 1.9]).

2.1.4. Every object of MT(Og) comes equipped with a finite increasing functorial
weight filtration, indexed by even integers. For all n € Z the graded pieces gry, (M)
are sums of copies of Q(—n).

In view of [DGO05 1.1] the ®-functor

(2.1.1) w: MT(Og) — (Q-vector spaces),
w(M) := @ Hom(Q(n), g™, (M)),
ne

is a fibre functor, therefore MT(Og) is a Tannaka category. We denote by Gg,,
the group scheme of ®-automorphisms of w. By [DGO05, 2.1] we can write Gg,, as
a semi-direct product:

GS,w = Gm X US,UJ7
where Ug,, is a unipotent group and Gs,, = G, is induced by the obvious grading
of w. If S = |Spec(O)| then we simply write G, = Gg,..

2.1.5. Functor to p-adic representations. Let x € |Spec(O)| be a point lying over
a prime p. Let K = E, be the completion of £ at the place x. Choose algebraic
closures E, K, and an embedding ¢ : £ — K. -

To M € MT(E) we can attach a Galois representation M, of Gal(E/E) with
coefficients in Qp,, which is called the p-adic realization of M. By using ¢, we get a
continuous homomorphism

Gal(K/K) — Gal(E/E),
and we can restrict M, in order to obtain a p-adic representation M, , of Gal(K /K).

Proposition 2.1.6. The assignment M — M, ,, defines a functor
(Jop : MT(E) - MTg,.
See Definition [1.3.7 for MTg, .

Proof. The p-adic realization is functorial. Thus we only need to show that M, , €
MTg, , which follows immediately from the existence of the weight filtration of M
and Definition [[3.7 O
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The set {¢: E — E,} of embeddings over E is a torsor under the Galois group
Gal(E/E), and for every g € Gal(E/E) there is a natural transformation:

1R

(2.1.2) ag: (Jup = (Jiog.p-

Lemma 2.1.7. For the fibre functor T (defined in (IL.38)) and the fibre functor w
defined in (Z17)) we have a canonical isomorphism

To(p = w®gQp.

For every g € Gal(E/E), the diagram

12
(2.1.3) T0(Jup T 0 ()rog,p
w ®q Qp
s commutative.
Proof. Straightforward. O

2.1.8. Recall that we have constructed a K-valued 7, of Aut®7 (Lemma [[3.12).

Proposition 2.1.9. For every embedding ¢, 15 := nst © (.),p defines a Kg-valued
point of Aut‘]za[T(E)w which is independent of the choice of ¢.

Proof. Since 7o (.),, = w ®q Qp by Lemma 217, ne o (.), p is a Kg-valued point
of Aut®w.
The independence of the choice of ¢ follows from the commutative diagram

Nst

(T © (')L,P) ®Qp Kt (T © (')L,p) ®Qp K

\ /

TEIDRK w ®Q Kst w ®Q Kst TEIDRQK:

/ | .

(ro (')wg,p) Xq, Kt (T © (')wg,p) ®q, K,

where the triangles are commutative by Lemma 217 and the square is commuta-
tive because 7 is functorial. O

2.2. Crystalline characterization of unramified motives.

2.2.1. Let E be a number field, and let M be a mixed Tate motive over F, i.e. an
object in MT(E). Let v be a finite place of F, M is unramified at v [DGO5,
Definition 1.4, §1.7] if the coaction [DGO5| (1.2.2)]

enr :w(M) = Ext'(Q(0),Q(1)) @ w(M)
of Ext'(Q(0),Q(1)) = E* ®z Q on w(M) factors through a coaction of O ®z Q.
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2.2.2. Recall from Proposition 21,0 that M, , is a mixed Tate Galois representa-
tion of Gk = Gal(K/K) for the completion K = E, at v. In particular, M, , is
semistable (Proposition [[.3.8). In the following we will simply write M, = M,,,.
We call M, crystalline if the monodromy operator N of Dy (Mp) is trivial, or
equivalently if

(Beris ®q, M,)9% = (B Qq, M)

is an isomorphism.

Theorem 2.2.3. Let M be a mixed Tate motive over E and v a finite place of E.
Then M is unramified at v if and only if M, is crystalline.

Proof. First note that the statement that M is unramified at v is equivalent to the
statement that for every subquotient N of M which is of the form

0—-Qn+1)—= N —Q(n)—0,

for some n, the extension class Ext'(Q(n), Q(n+1)) = Ext'(Q(0),Q(1)) = EX®@Q
lies in O} ®z Q [DGO5, §1.4].

Also in the category of p-adic representations of a p-adic field K, a repre-
sentation in Extg, (Q,(0),Q,(1)) that is associated to some ¢ € KX ® Q C
lim (K*/(K*)P") ® Q = Extg, (Qy(0),Qpy(1)) is crystalline if and only if ¢ €
Ok ® Q [Tsu02, Example 2.3.2].

First, suppose that M, is crystalline, then every subquotient of M), is crystalline.
So in order to prove that M is unramified at v we may assume that M = N, where
N is as above with n = 0 (after Tate twist). Therefore we have an extension
in Ext'(Q(0),Q(1)), defined by some ¢ € E* ®7 Q, whose p-adic realization is
crystalline at v. Then the above remark implies that the image of ¢ in Ef ® Q lies
in (’55 ® Q, hence ¢ € O ® Q and M is unramified at v.

Suppose conversely that M is unramified at v. We have to show that the mon-
odromy operator N on Dy (M,) =: D(M) vanishes. Note that N maps the
slope A piece of D(M) to the slope A — 1 piece. Therefore, if N is nonzero on
D(M) then there exists an n such that N is nonzero on D(Wa,, M, /Way,_4M,) =
D((Way, M /Wap_aM),). Replacing M by (Wa, M /Way,_4 M)®Q(n) we may assume
that M is defined by a class in Ext!(Q(0)®",Q(1)®*) = Ext*(Q(0),Q(1))®"s, M
is unramified, and N is nonzero on D(M). By passing to a subquotient we may
further assume that r = s = 1. This gives an extension in Ext*(Q(0),Q(1)) which
is unramified at v (and hence defined by some ¢ € O ® Q) and whose p-adic
realization is not crystalline at v. This is a contradiction. O

2.2.4. Recall the notation of Section BI.1l Let = € |Spec(O)| be a point; in the
following we will work with S = |Spec(O)|\{z}, thus Og = O,.

Let p be the prime lying under x. In view of Theorem 2.2.3] we know that
MT(O,) is the full subcategory of MT(E) consisting of motives M such that the
p-adic realization M, is crystalline at x.

We denote by G, the group scheme of ®-automorphisms of the fibre functor (see

R.1I)

(2.2.1) w: MT(Oy) — (Q-vector spaces).

The group scheme G, is a quotient of G, = Aut%T(E)w.
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Lemma 2.2.5. The morphism Spec(Ey st) Iy Gy — Gy factors through the struc-
ture morphism Spec(Ey, st) — Spec(Ey) and thus defines a point nt" € Gy (Ey).

Proof. The point 7, was defined in Proposition 2.9 If M € MT(O,) then
D(M, ) has vanishing monodromy operator N and 1 (M, ) = Nst 10g Dst (M, p)
takes values in F, by Definition O

2.3. Main theorem.

2.3.1. Let z € [Spec(O)| and let E, be the completion of E at z. Bloch and Kato
[BK90), Definition 3.10] define an exponential map

(2.3.1) exp : B, — Ext’(Q,(0),Q,(n)), for all n > 1,

where Ext! is computed in the category of p-adic representation of Gal(E,/E,).
Note that, in fact, the image of the exponential map lies among the crystalline rep-
resentations Extirys (Qp(0),Qp(n)) BK90, Example 3.9]. Via p-adic Hodge theory,
we obtain a map

(232) EE — EXt}:rys(QP(O)v Qp(n)) = EXt}\/[Tg (Ex (0)5 Em (n))v
which, by abuse of notation, will also be called the Bloch-Kato exponential map.

2.3.2. For an extension M € Ext}WT(Om)(Q(O), Q(n)) with n > 1, there are natural
maps vg : Q — w(M) and f,, : w(M) — Q defined as follows. By definition, there
are isomorphisms « : Q(n) — gr'%%, M and 8 : grl¥ M — Q(0); we define

vo : @ = Hom(Q(0), Q(0)) Z— wo(M) — w(M),
frn i w(M) = wp(M) LN Hom(Q(n),Q(n)) = Q.
Therefore, we can attach to M a function in A'(G,), defined by
M(t) i= falt o).
for every point t : T — G,.

Theorem 2.3.3. Let E be a number field and O be the ring of integers. Let x €
[Spec(O)| be a closed point over a prime p. For the Tannaka category (MT(Oy),w)
of mized Tate motives we denote by G, the group scheme of ®-automorphisms of
w. For alln > 1, the map

Extyr(o,)(Q(0), Q(n)) = Euy M = M(1;"),

induced by n¥" € Gu(Ey) (see Lemma [Z23), is the composition of the p-adic
realization

Extyrr(o,)(Q(0), Q(n)) = Exty,y (Qp(0), Qp(n))
and the inverse of the Bloch-Kato exponential map (2:31]).

Proof. Let us prove that evaluation at the point 7" has the desired compatibility
with the Bloch-Kato exponential map (see (2.3.2)))

exp : By = Extl,, (@,(0),Qp(n)) = Extirr, (E.(0), Ex(n)).

For this we need to recall the construction of the exponential map. For the rest of
the proof let K := E,. First there is an exact sequence [BK90, Proposition 1.17]:

(2.3.3) 0— Qp — BE,: ® Bip — Bar — 0,

crys
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where the first map sends z to (z,z) and the second one sends (z,y) to z — y.
For n > 1, the Bloch-Kato construction gives a map

K = (Qp(n) ® Bar)“" — Extg,,,(Qy(0), Qp(n)).

This map is obtained as follows. First tensor the above exact sequence with Q,(n):
0— @p(n) — (@p(n) ® Bfrzi) & (@p(n) ® B;—R) - Qp(”) ® Bir — 0.

Then an element a in K (n) = (Q,(n) ® Bar)®* gives a map Q, — Q,(n) ® Byg,
pulling back the above exact sequence via this map gives the extension we were
looking for.

More explicitly, for a € K the extension constructed above is:

0=V, =V =V, =0,

where Vo = Q, - t" ®at™, V,, = Q, - t", and V is a 2-dimensional representation
of Gk with basis which can be described as follows. By the exact sequence (2.33)),
there exists x € Bg’@; and y € B;R such that at™™ = x — y. Then V has basis
{t"@z,t"®y),t"®1,t" ®1)}. For ¢ € G,
ct"Rr,t"Qy)={1"x,t"Ry)+v(0)t" @ 1,t" ® 1),

for some (o) € Q. Therefore

Xeye(0)"o(z) = 2+ 7(0)
and

Xeye(0)"0(y) =y +7(0)

Let us now try to find what this extension corresponds to after we apply the
functor (- ® Berys)9X. First note that (V' & Bepys)“% has basis
en={"Lt"®)@t™"
and
e =t"R4,t"RYR1-t"L,t"®1) .

That e, is invariant under the Galois action is clear. In order to see that eg is G
invariant let o € Gg. Then

aleg) =" (x+7(0), "y +v(0) 1 - (t"@1,t"® 1) ® (z + v(5)) = eo.

Now note that ¢(e,) = p~"e, and p(eg) = eg. Furthermore e, is the image of
1 € K(n) and ep maps to 1 € K(0) in the exact sequence (note that Q,(0) is
identified with Vp via the map that sends 1 to t" ® at™"):

0 — K(n) = (V& Bepys)“% — K(0) = 0.

Therefore in order to compare Bloch-Kato’s construction we need only compute the
filtration on (V ® Bepys)“% ®k, K. So we need to compute the 0-th piece of the
filtration on (V ® Bar)®X.
We claim that ae,, + eg € Fil°(V ® Byr)“%. This follows immediately from
aep, +eo={t"Rz,t"RyY)R1-t"L,1"R1)®y,
and the fact that y € B}j,. Now Proposition [2.7 implies the claim. O

2.4. Archimedian places. In this section we recall the story for archimedian
places; our reference is [Del94] and [BD94].
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2.4.1. Let E be a number field and ¢ : E — C an embedding. To M € MT(E) we
can attach a real mixed Tate Hodge structure M,. Recall that a real mixed Tate
Hodge structure (H, W, F') consists of an R-vector space H, an increasing filtration
W of H, and a decreasing filtration F' of H ®g C such that
G, GriGrlY (H ® C) = {0 if'n is odd,
0 if nis even and (p,q) # (5, 5)-

Induced by F, F', we obtain maps
ap: HoC=PF ' nW_o - Py, HeC,

€L iEZ
ap : H®C= @Fﬁiﬂwfgi — @GI‘KVmH(@C,
i€EZ i€Z

where F N Wy — Gry, H ® C is the natural map (and similarly for F). For the
automorphism d = apaz' of @, Gr",, H ® C we know that

(d-1) (G, HeC) c Pay,HeC,

Jj>i

by [Del94] p.510], and d = d~! [Del94, p.513].
2.4.2. Let C be the category of pairs (®;H;,d) where &;H; is a graded R-vector
space and d : ©;H; ® C — @;H; ® C is an automorphism satisfying the conditions
d=d ! and (d —1)(H;) C ®;~;Hj, for all i.

Proposition 2.4.3. [Del94l p.514] The functor
(Real mized Tate Hodge structures) — C
(H, W, F) = (©ic2Gr", H, d)
is an equivalence of categories.
The maps d define a C-valued ®-automorphism for the fibre functor

@ : (Real mixed Tate Hodge structures) — (R-vector spaces),

G(HW,F) =P ", H
1€EZ

2.4.4. Recall the definition of w in (ZI.1]). For the functor

Rs : MT(E) — (Real mixed Tate Hodge structures), M — M,,
we have an isomorphism
(2.4.1) wRgR=DoR,

depending on the choice (27i)™ as a generator for the real vector space underlying
R(n), in other words we have to choose a square root of —1 in C. In order to avoid
this choice one can define

G(H,W,F)=@pi" G, H
nez
as in [BD94| p.111], but we won’t do that.
Via Equation (2.4.70]), d defines a C-valued point of G, the ®-automorphisms of
the fibre functor w. We define € = log(d), € defines a C-valued point of Lie(G.,).
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The dictionary for the notation of [BD94, p.111] is
d:b717 62—2']\7,

and N is purely imaginary.

2.4.5. For z € E\{0, 1} there is a polylogarithm motive {z} € MT(E) (strictly
speaking it is a pro-object). The motive {z} is defined as a subquotient of the
motivic paths from the tangent vector ¢y = z, in the tangent space at 0, to z (see
[DGO5L Theorem 4.4]). The Q-Hodge realization of {z} is described in [BD94] p.98]
and uniquely determines {z}.

For every k € Z>(¢ we have natural isomorphisms

ay, : grl'{z} = Q(k);
we define vy € w({z}) and fr € w({z})¥ by

o £ @ = Hom(Q(0), Q(0)) - wo({=})
frrw({2}) = wi({2}) = Hom(Q(k), Q(k)) = Q.
We denote by (vo,{z}, fx) € Al(Lie G,,) the function
X = fe(X - vo).
By [BD94| Proposition 2.7] we have

2y, bg%lm(hk_g(z)) if k is even,

(vo, {=}, fi)(e) = 3, S, 028G Re(Liy_y(2)) if K is odd.

Here, {b;} are the Bernoulli numbers and Li is the polylogarithm. For k even,
the result does not depend on the choice of the square root of —1; for k odd it is
independent up to a sign.
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