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Abstract. In this paper, we study the Bloch group B2(F[ε]2) over the ring of dual
numbers of the algebraic closure of the field with p elements, for a prime p ≥ 5.
We show that a slight modification of Kontsevich’s 1 1

2 -logarithm defines a function
on B2(F[ε]2). Using this function and the characteristic p version of the additive
dilogarithm function that we previously defined, we determine the structure of the
infinitesimal part of B2(F[ε]2) completely. This enables us to define invariants on
the group of deformations of Aomoto dilogarithms and determine its structure. This
final result might be viewed as the analog of Hilbert’s third problem in characteristic
p.

1. Introduction

1.1. For an abelian group M, let MQ := M⊗ZQ. The general conjectures on motives
produce certain complexes of sheaves Γ(n), for each n ≥ 1 [2, §5.10 D], on the Zariski
site of S, which are concentrated in the degrees [1, n]. For S regular, these complexes
would have the property that the cohomology groups H i(S,Γ(n))Q are isomorphic to

the n-th graded piece K2n−i(S)
(n)
Q of the K-theory of S, with respect to the γ-filtration

[2, 5.10 B].
A candidate for such a complex was constructed unconditionally by Bloch [4], [19],

when n = 2 and S = Spec k, where k is an infinite field. We start with describing
the analog of this complex over an artin local ring A, which we denote by γA(2). This
complex plays a central role below.

Definition 1.1.1. For A any artinian local ring with infinite residue field, the Bloch
group B2(A) is the free abelian group generated by the symbols [x] such that x(1−
x) ∈ A×, modulo the subgroup generated by elements of the form

[x]− [y] + [y/x]− [(1− x−1)/(1− y−1)] + [(1− x)/(1− y)],

for all x, y ∈ A× such that (1− x)(1− y)(1− x/y) ∈ A×.
Definition 1.1.2. The Bloch complex over A is the complex γA(2) :

B2(A)
δA→ Λ2A×(1.1.1)

concentrated in degrees 1 and 2, where δA is defined by δA([x]) = x ∧ (1− x).

Suslin [19, Theorem 5.2] proves that there is a natural surjection

K3(k)→ H1(γk(2)),(1.1.2)

which induces an isomorphism K3(k)
(2)
Q

∼→ H1(γk(2)Q). For the degree two part, one

has K2(k)
(2)
Q = KM

2 (k)Q
∼→ H2(γk(2)Q).
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Therefore, γk(2)Q can be thought of as a complex, with an explicit description,
that computes the weight two motivic cohomology over a field with Q-coefficients.

1.2. For a field k, we let k[ε]m := k[ε]/(εm). For a functor F : (alg/k)→ (Ab), from
k-algebras to abelian groups, we let

F (k[ε]2)
◦ := ker(F (k[ε]2)→ F (k)),

denote the infinitesimal part of F (k[ε]2). Note that F (k[ε]2)
◦ is naturally a direct

summand of F (k[ε]2).
Bloch and Esnault constructed a dilogarithm in the infinitesimal case and proved

that it gives a regulator-like map for an algebraically closed field k of characteristic
0. More precisely, for such a field k, they construct a complex TQ(2)(k) [5, (2.7)]:

TB2(k)Q
∂→ k ⊗ k×

concentrated in degrees 1 and 2, such that

H1(TQ(2)(k)) ' K3(k[t]2, (t))
(2)
Q and H2(TQ(2)(k)) ' K2(k[t]2, (t))

(2)
Q ,

exactly as in the isomorphism relating motivic cohomology to K-theory [5, Proposi-
tion 2.1]. To prove this, they construct an additive dilogarithm map

ρ : TB2(k)→ k,

and show that when composed with the injection H1(TQ(2)(k)) → TB2(k)Q, ρ in-

duces an isomorphism H1(TQ(2)(k))
∼→ k.

In [5], the construction of TQ(2)(k) is based on the localization sequence in K-
theory. In [21], it is shown that, if k is a field of characteristic 0, the infinitesimal part
γk[ε]2(2)◦Q of the Bloch complex γk[ε]2(2)Q also has the expected cohomology groups
[21, Theorem 1.3.1]: there is an exact sequence

0→ K3(k[ε]2, (ε))
(2)
Q → B2(k[ε]2)

◦
Q

δ→ (Λ2k[ε]×2 )◦ → K2(k[ε]2, (ε))
(2)
Q → 0.(1.2.1)

This was proved by first constructing an additive dilogarithm:

li2 : B2(k[ε]2)→ k,

defined as

li2([s+ αε]) := − α3

2s2(1− s)2
for s+αε ∈ F[ε]2, with s ∈ F\{0, 1}. This map induces an isomorphism [21, Theorem
1.3.2]:

K3(k[ε]2, (ε))
(2)
Q

∼→ k.

1.3. The main aim of the present note is to understand the structure of B2(F[ε]2) in
characteristic p. Namely, we fix a prime p ≥ 5 and let F be the algebraic closure of
Fp, the field with p elements.

Kontsevich defined and studied a function £1 [14], [8, Definition 4.1], (§2.1), which
he called the 11

2
-logarithm since it satisfies a functional equation with four terms.

In [8], this finite logarithm was generalized to higher weights which were shown to
satisfy functional equations that are infinitesimal versions of the functional equations
satisfied by the ordinary polylogarithms.
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In this note, we make this more precise in the weight two case. Namely, we show
that a slight modification Li2 (Definition 2.1.1) of Kontsevich’s function defines a
function on the Bloch group over F[ε]2 (Theorem 2.2.2):

Li2 : B2(F[ε]2)
◦ → F.(1.3.1)

Using Li2 and li2, we show that γF[ε]2(2)◦ computes the infinitesimal part of the
motivic cohomology of F[ε]2 of weight two.

Theorem 1.3.1. The complex

0→ K3(F[ε]2, (ε))→ B2(F[ε]2)
◦ δ→ (Λ2F[ε]×2 )◦ → 0,

which extends the infinitesimal part of the Bloch complex, is exact.

Note that KM
2 (F[ε]2) = K2(F[ε]2) = 0 (Lemma 3.1.5) and hence the decomposable

part K2(F[ε]2) ·K1(F[ε]2) of K3(F[ε]2) is also 0. Therefore the above exact sequence
is the precise analog of (1.2.1) in characteristic p.

1.4. For k an infinite field, a graded Hopf algebra A·(k), called the Hopf algebra of
Aomoto polylogarithms, is constructed in [3]. The importance of this Hopf algebra
rests on the expectation that the graded pieces of A·(k)Q of degrees less than or equal
to two coincide with those of the conjectured graded Hopf algebra associated to the
category of mixed Tate motivesMTMk(Q) [7, §2] over Spec k with coefficients in Q.
Therefore, of particular relevance is the group A2(k), and part of the comultiplication
map ν1,1 : A2(k) → A1(k) ⊗ A1(k), defined in [3, §2.1]. The elements of A2(k) are
called the Aomoto dilogarithms.

We use Theorem 1.3.1 to describe A2(F[ε]2)
◦ (the definition is recalled in §4.1),

which can be thought of as the group of deformations of Aomoto dilogarithms:

Theorem 1.4.1. The maps Li2, li2 and ν1,1 induce an isomorphism

A2(F[ε]2)
◦ ∼→ F⊕ F⊕ (F⊗ F).

Here, Theorem 1.4.1 can be seen as a characteristic p analogue of Sydler’s Theorem
[20], [11, §6.3], [22, §2.2], on Hilbert’s 3rd problem, with one more invariant Li2 in
addition to the Dehn invariant and the volume invariant.

For the approach to infinitesimal motivic cohomology, based on additive Chow
groups, we refer the reader to the works of Park [17] and Rülling [18].

1.5. The paper is organized as follows.
In §2, we show that the modification Li2 of Kontsevich’s 11

2
-logarithm defines a

function from B2(F[ε]2) to F.
In §3, we use a result of Suslin [19] and our functions Li2 and li2 to compute the

cohomology of the Bloch complex over F[ε]2 (Theorem 3.2.4).
In §4, we prove Theorem 4.4.1, which describes the deformations of Aomoto poly-

logarithms in characteristic p.
Acknowledgements. The author thanks S. Bloch and H. Esnault for mathematical

discussions, H. Esnault for the invitation to University of Duisburg-Essen, and the
referee for many suggestions which improved the paper. The author was supported by
SFB/TR45 of the Deutsche Forschungsgemeinschaft and 109T674 of Tübitak while
this paper was written.
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Notation. The notations B2(A), δA, and γA(2) are defined in Definition 1.1.1
and Definition 1.1.2. We omit the subscript when it is clear from the context.

Unless otherwise stated, all tensor products are over Z. For an abelian group E,
we let EQ := E ⊗Q.

For n ∈ N, let F(n) denote the abelian group F, together with the F× action given
by λ ? α := λnα, for λ ∈ F× and α ∈ F.

For a set X, we let Z[X] denote the free abelian group with basis X. For x ∈ X,
we denote by [x], the corresponding element in Z[X].

For a ring A, we let A[ := {a ∈ A| a(1− a) ∈ A×}, and PnA := Proj(A[z0, · · · , zn]).

2. A Regulator on the Infinitesimal Bloch Group

2.1. Let Fp be the field with p elements, where p ≥ 5, and F be the algebraic closure
of Fp. In this section, we will prove that the modification Li2 of Kontsevich’s 11

2
-

logarithm £1 [14] defines a map from the infinitesimal Bloch group B2(F[ε]2)
◦ (§1.1)

to F.
First we define Li2.

Definition 2.1.1. For s+ αε ∈ F[ε][2, let

Li2([s+ αε]) :=
α

s(1− s)
∑

1≤k≤p−1

sk/p

k
.

Note that for s in F, s1/p is uniquely defined.

Definition 2.1.2. For s ∈ F[, let {s} := s+ s(1− s)ε and let 〈s〉 = [{s}] ∈ Z[F[ε][2].

A finite version of the logarithm was defined in [8, Definition 4.1] and [14]:

£1(s) =
∑

1≤k≤p−1

sk

k
,

for s ∈ F.
The following functional equations are satisfied by £1 [8, Proposition 4.7, Propo-

sition 4.9]:

£1(x) = −xp£1(
1

x
)(2.1.1)

£1(x) = £1(1− x)(2.1.2)

and

£1(x)−£1(y) + xp£1(
y

x
) + (1− x)p£1(

1− y
1− x

) = 0.(2.1.3)

Let F× act on the F-algebra F[ε]2 by dilation, i.e. λ ∈ F× acts by sending ε to λε.
By the functoriality of B2(·) for ring homomorphisms, this gives an action of F× on
B2(F[ε]2). Namely,

λ ?
∑

1≤i≤n

ki[si + αiε] :=
∑

1≤i≤n

ki[si + αiλε],
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for λ ∈ F×, si + αiε ∈ F[ε][2 and ki ∈ Z, for 1 ≤ i ≤ n.
Note that

{t}
{s}

= s ? { t
s
}, 1− {s}

1− {t}
= (t− 1) ? {1− s

1− t
}, and 1− {s}−1 = (1− s−1)(1− ε).

Therefore
1− {s}−1

1− {t}−1
=

1− s−1

1− t−1
,

and hence

Li2([
1− {s}−1

1− {t}−1
]) = 0

and

[
1− {s}−1

1− {t}−1
] = 0 ∈ B2(F[ε]2)

◦.

By the notations above, we have

Li2(λ ? 〈s〉) = λ£1(s)
1/p.(2.1.4)

The functional equations (2.1.1), (2.1.2) and (2.1.3) then take the form:

Li2(〈s〉) = Li2(〈1− s〉),(2.1.5)

Li2(〈s〉) = −sLi2(〈
1

s
〉),(2.1.6)

and

Li2(〈s〉)− Li2(〈t〉) + sLi2(〈
t

s
〉) + (1− s)Li2(〈

1− t
1− s

〉) = 0.(2.1.7)

2.2. Next we show that Li2 defines a map on the infinitesimal Bloch group.

Lemma 2.2.1. Li2 maps the element

[{s}]− [{t}] + [
{t}
{s}

]− [
1− {s}−1

1− {t}−1
] + [

1− {s}
1− {t}

]

to 0.

Proof. The expression above is equal to

〈s〉 − 〈t〉+ s ? 〈 t
s
〉 − [

1− s−1

1− t−1
] + (t− 1) ? 〈1− s

1− t
〉.

The image of the second to last element under Li2 is 0. The last element is mapped
to

(t− 1)Li2(〈
1− s
1− t

〉) = (1− s)Li2(〈
1− t
1− s

〉)

by (2.1.6). Then (2.1.7) proves the claim. �

Theorem 2.2.2. Li2 descends to give a map

Li2 : B2(F[ε]2)
◦ → F.
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Proof. Let x := α ? {s} and y := β ? {t}. Let F (x, y) denote the image of [x]− [y] +
[y/x]− [(1− x−1)/(1− y−1)] + [(1− x)/(1− y)] under Li2.

For any x ∈ F[ε][2, there exists s ∈ F[ and α ∈ F such that x = α ? {s}. Then by
(2.1.6),

Li2([x]) = αLi2(〈s〉) = −αsLi2(〈
1

s
〉) = −αLi2(s ? 〈

1

s
〉) = −αLi2([

1

{s}
]) = −Li2([

1

x
]).

Hence F (x, y) = −F (y, x). Clearly, if α = β = 0 then F (x, y) = 0. Also if α = β then
F (x, y) = αF ({s}, {t}) = 0, by Lemma 2.2.1.

Without loss of generality, we assume that β = 1. Then F (x, y) = F (x, {t}) =
F ({s}, {t}) + (α− 1)G(s, t), where G(s, t) =

Li2(〈s〉) +
s(s− 1)

s− t
Li2(〈

t

s
〉) +

1− t−1

s−1 − t−1
Li2(〈

1− s−1

1− t−1
〉)− s(1− t)

s− t
Li2(〈

1− s
1− t

〉).

Therefore, it suffices to show that

G(s, t) = 0.

Using the inversion formula, Li2(〈a〉) = −aLi2(〈 1a〉), for a = 1−s−1

1−t−1 and a = 1−s
1−t ,

G(s, t) can be rewritten as

s(s− 1)

s− t
(Li2(〈

t

s
〉)− Li2(〈

1− t
1− s

〉) +
t

s
Li2(〈

1− t−1

1− s−1
〉) + (1− t

s
)

1

s− 1
Li2(〈s〉)).

If in the last expression we use the identity

1

s− 1
Li2(〈s〉) =

1

s− 1
Li2(〈1− s〉) = Li2(〈

1

1− s
〉) = Li2(〈

s

s− 1
〉),

all we need to show reduces to:

Li2(〈
t

s
〉)− Li2(〈

1− t
1− s

〉) +
t

s
Li2(〈

1− t−1

1− s−1
〉) + (1− t

s
)Li2(〈

s

s− 1
〉) = 0.

But this is nothing but the main functional equation (2.1.7):

Li2(〈a〉)− Li2(〈b〉) + aLi2(〈
b

a
〉) + (1− a)Li2(〈

1− b
1− a

〉) = 0,

with a = t
s

and b = 1−t
1−s . �

3. Cohomology of the Bloch Complex of Weight Two

In this section, we compute the infinitesimal part of the cohomology of γF[ε]2(2),
the Bloch complex of weight two over F[ε]2. Recall that γF[ε]2(2) is defined in (1.1.1)
as the complex

B2(F[ε]2)
δ→ Λ2F[ε]×2 ,(3.0.1)

with δ defined by δ([x]) = x ∧ (1 − x). In the following, for a group G, H·(G,Z)
denotes the discrete group homology of G with coefficients in Z.

3.1. Our aim in this section is to show that there is a surjection

H3(SL(F[ε]2),Z)→ ker(δ).
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3.1.1. We begin by relating H3(GL(F[ε]2),Z) to ker(δ). Let us first recall the con-
struction of the natural map

H3(GL2(F[ε]2),Z)→ ker(δ)

in [19, §2].
Let us call an n-tuple of points (x0, · · · , xn−1) with xi in P1(F[ε]2), for 0 ≤ i ≤ n−1,

in generic position, if its reduction to an n-tuple of points (x0, · · · , xn−1) with xi
in P1(F), has the property that xi 6= xj for i 6= j. Let C̃n(P1(F[ε]2)) denote the
free abelian group generated by the (n + 1)-tuple of points (x0, · · · , xn), with xi in
P1(F[ε]2), in generic position. The differentials d : C̃n+1(P1(F[ε]2)) → C̃n(P1(F[ε]2))
defined by

d(x0, · · · , xn+1) :=
∑

0≤i≤n+1

(−1)i(x0, · · · , x̂i, · · · , xn+1)

and the augmentation map e : C̃0(P1(F[ε]2)) → Z defined by e((x0)) = 1, give an
acyclic complex [19, Lemma 2.1]:

C̃∗(P1(F[ε]2))→ Z→ 0.

The last complex is naturally a complex of GL2(F[ε]2)-modules, where, for n ≥ 0,
the group C̃n(P1(F[ε]2)) is endowed with the natural GL2(F[ε]2) action and Z with
the trivial GL2(F[ε]2) action. Therefore, if Cn(P1(F[ε]2)) denotes the GL2(F[ε]2)-
coinvariants of C̃n(P1(F[ε]2)), we have natural maps

Hi(GL2(F[ε]2),Z)→ Hi(C∗(P1(F[ε]2))),

for every i ≥ 0. In particular, we have a natural map:

H3(GL2(F[ε]2),Z)→ H3(C∗(P1(F[ε]2))).(3.1.1)

There is an isomorphism

α : C3(P1(F[ε]2))/d(C4(P1(F[ε]2)))
∼→ B2(F[ε]2)(3.1.2)

such that α−1([x]) = (0, x, 1,∞) [21, Remark 3.8.2]. Moreover, this isomorphism fits
into a commutative diagram [21, (3.8.3)]:

C3(P1(F[ε]2))/d(C4(P1(F[ε]2)))
d−−−→ C2(P1(F[ε]2))y y

B2(F[ε]2)
δ−−−→ Λ2F[ε]×2 .

This immediately implies that the map in (3.1.1) composed with α has image in
ker(δ) and hence gives the map

H3(GL2(F[ε]2),Z)→ ker(δ)

we were looking for.
The following statement is exactly the same as in [21, Proposition 5.1.1], but with

Z-coefficients instead of Q-coefficients. However, exactly the same proof works in this
case.
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Proposition 3.1.1. The natural map

H3(GL2(F[ε]2),Z)→ ker(δ)

above, is a surjection. Moreover, H3(T2(F[ε]2)) lies in the kernel of this map, where

T2(F[ε]2) ⊆ GL2(F[ε]2)

denotes the subgroup of diagonal matrices.

Next we extend this map using Suslin’s stabilization theorem.

Proposition 3.1.2. There is a natural map

H3(GL(F[ε]2),Z)→ ker(δ)

whose restriction to H3(GL2(F[ε]2),Z) is the map in Proposition 3.1.1.

Proof. First we would like to extend this map to a map:

H3(GL3(F[ε]2),Z)→ ker(δ).(3.1.3)

Such a map is constructed in [21, §3.8], but with Q-coefficients instead of Z-coefficients.
The only place where Q-coefficients is used in loc. cit. is in the proof of [21, Claim
3.8.7]. Therefore, replacing that statement with Claim 3.1.3 below, [21, §3.8] gives
the map (3.1.3), extending the map in Proposition 3.1.1.

Claim 3.1.3. With the identification (3.1.2), we have

(x1, x2, x3, x4) = sign(σ)(xσ(1), xσ(2), xσ(3), xσ(4))

in B2(F[ε]2), for any σ ∈ S4, and any 4-tuple of points (x1, x2, x3, x4), with xi in
P1(F[ε]2), for 1 ≤ i ≤ 4, in general position.

Proof. The proof is exactly the same as that of [21, Claim 3.8.7]; except we need to
check that, for every x ∈ F[ε][2, we have

[x] = −[x−1], and [1− x] = −[x]

in B2(F[ε]2).
If we let 〈x〉 := [x] + [x−1], then exactly as in [19, Lemma 1.2], 2〈y〉 = 0, and
〈y〉+ 〈x/y〉 = 〈x〉, for x, y, and x/y ∈ F[ε][2. Given x ∈ F[ε][2, since F is algebraically
closed and p > 2, there exists y ∈ F[ε][2 such that y2 = x. Then the last equation
gives 〈x〉 = 2〈y〉 = 0. Therefore [x] = −[x−1].

The proofs of [19, Lemma 1.3, Lemma 1.5] carry over to the F[ε]2 case and they
imply that [x] = −[1− x], since F is algebraically closed. �

To finish the proof of the proposition, we only note that Guin’s stability theorem
[12, §3] gives that the natural map

H3(GL3(F[ε]2),Z)→ H3(GL(F[ε]2),Z)

is an isomorphism. �
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3.1.2. Let R be any ring. Then by Whitehead’s lemma [15, Proposition 11.1.5], the
commutator subgroup [GL(R),GL(R)] of GL(R) is equal to the perfect subgroup
E(R) generated by elementary matrices. Recall that Quillen’s plus construction ap-
plied to BGL(R) with respect to E(R) gives a space BGL+(R) such that

Ki(R) := πi(BGL+(R)),(3.1.4)

for i ≥ 1 [15, §11.2.4].
In this section, let E ∈ {F} ∪ {Fpr |r ∈ N}.

Lemma 3.1.4. With the notation above, E(E[ε]2) = SL(E[ε]2), and H1(SL(E[ε]2),Z) =
0.

Proof. By the previous paragraph, showing that E(R) = SL(R) is equivalent to show-
ing that

H1(SL(R),Z) = SL(R)/[SL(R), SL(R)] = 0.

By a theorem of Wang [9, Theorem 2.8.12], E(E) = SL(E). Consider the exact se-
quence

1→ V(E)→ SL(E[ε]2)→ SL(E)→ 1,

such that V(E) = ∪nVn(E), where Vn(E) is the subgroup of Mn(E) consisting of
matrices of trace 0. This gives a Hochschild-Serre spectral sequence [6, Theorem
6.3]:

E2
pq = Hp(SL(E), Hq(V(E),Z))⇒ Hp+q(SL(E[ε]2),Z).(3.1.5)

Since H1(V(E),Z) = V(E), with the action of SL(E) on V(E) given by conjugation,
we only need to show that V(E)SL(E) = 0, where the subscript denotes taking co-
invariants.

Note that

V(E)SL(E) = V(E)GL(E),

since det(T )−1T ∈ SLn(Fpm), for T ∈ GLn(Fpm), and n ≡ 1 (mod (pm−1)). Therefore,
it suffices to show that V(E)GL(E) = 0.

Let n ≥ 2 and let Eij ∈ Mn(E) denote the matrix that has 1 in the i-th row and
j-th column, and zero elsewhere. Then Eij is similar to E12, if i 6= j, and to E11,
if i = j. This and the Jordan decomposition theorem imply that, if N ∈ Vn(E) is
a nilpotent matrix, then N = λE12 in Vn(E)GLn(E), for some λ ∈ Fp ⊆ E. Since in
Vn(E)GLn(E), we have 2E12 = E12 + E21 = E11 − E22 = 0, and p 6= 2, E12 = 0 and
N = 0 in Vn(E)GLn(E).

Now note that any A ∈ Vn(E) can be written as a sum of two nilpotent matrices and
a diagonal matrixD such that tr(D) = 0. Then, by the above, A = D = tr(D)E11 = 0
in Vn(E)GLn(E).

�

3.1.3. By Lemma 3.1.4, the commutator subgroup of GL(E[ε]2) is the perfect sub-
group SL(E[ε]2). Let BSL(E[ε]2)

+ denote the result of applying Quillen’s plus con-
struction [15, §11.2.4] to BSL(E[ε]2) with respect to SL(E[ε]2). The natural map

BSL(E[ε]2)
+ → BGL(E[ε]2)

+
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is the universal covering space projection [15, Corollary 11.2.3]. Therefore,

Ki(E[ε]2) ' πi(BSL(E[ε]2)
+),

for i ≥ 2.
Note that

Lemma 3.1.5. K2(E[ε]2) = 0.

Proof. We have,

K2(E[ε]2) ' K2(E)⊕K2(E[ε]2, (ε)).

Since K2(E[ε]2, (ε)) ' Ω1
E/Z = 0 [13] and

K2(E) = KM
2 (E) = lim−→

Fpn⊆E
KM

2 (Fpn) = 0,

[16, Theorem 11.1, Corollary 9.13] the assertion follows. �

Therefore BSL(E[ε]2)
+ is 2-connected. Since

H3(SL(E[ε]2),Z)
∼→ H3(BSL(E[ε]2)

+,Z),

[15, Theorem 11.2.2] Hurewicz theorem applied to BSL(E[ε]2)
+ gives an isomorphism

K3(E[ε]2)
∼→ H3(SL(E[ε]2),Z).(3.1.6)

The same argument also gives,

H2(SL(E[ε]2),Z) = K2(E[ε]2) = 0.(3.1.7)

Proposition 3.1.6. The natural map

H3(SL(F[ε]2),Z)→ ker(δ)

is a surjection.

Proof. Since SL(F[ε]2) is the commutator subgroup of GL(F[ε]2), [19, Lemma 5.3]
shows that there is a homotopy equivalence

BSL(F[ε]2)
+ × BF[ε]×2 → BGL(F[ε]2)

+.(3.1.8)

Noting that Hi(BGL(F[ε]2)
+,Z)

∼→ Hi(GL(F[ε]2),Z) and

Hi(BSL(F[ε]2)
+,Z)

∼→ Hi(SL(F[ε]2),Z),

for i ≥ 0, the above computations and the Künneth theorem give an isomorphism

H3(SL(F[ε]2),Z)⊕H3(F[ε]×2 ,Z)
∼→ H3(GL(F[ε]2),Z).

Since the map (3.1.8) is induced by a map which sends F[ε]×2 into GL1(F[ε]2) ⊆
T2(F[ε]2) ⊆ GL(F[ε]2), we see by Proposition 3.1.1 and Proposition 3.1.2 that the
natural map

H3(SL(F[ε]2),Z)→ ker(δ)

is a surjection. �

3.2. In this section, using Li2 and li2 below, we will compute the cohomology of the
Bloch complex of weight two.
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3.2.1. We constructed a map Li2,2 : B2(k[ε]2)→ k, where k is a field of characteristic
0, in [21, Definition 2.2.4]. Since p ≥ 5, the same construction, with the same proof,
gives a map

li2 : B2(F[ε]2)→ F.
Namely,

li2(s+ αε) := − α3

2s2(1− s)2
,

for s+ αε ∈ F[ε][2 (cf. [21, §2.1]).

3.2.2. Combining Li2 and li2, we have a map

Li2 ⊕ li2 : B2(F[ε]2)→ F(1)⊕ F(3).

Lemma 3.2.1. The maps Li2 : ker(δ)◦ → F(1) and li2 : ker(δ)◦ → F(3) are surjec-
tive.

Proof. Note that since £1(x) is of degree p − 1 in x, there is an s0 ∈ Fp such that
£1(s0) 6= 0. Since £1(0) = £1(1) = 0, s0 ∈ F[ and this gives that Li2(〈s0〉) 6= 0 and
li2(〈s0〉) 6= 0.

For α ∈ F× and β ∈ F, we have α⊗ β = α1/p ⊗ (pβ) = 0 in F× ⊗ F. Hence

Λ2F[ε]×2 = Λ2F× ⊕ Λ2(F[ε]×2 )◦
∼→ Λ2F× ⊕ Λ2(εF)

and

(Λ2F[ε]×2 )◦
∼→ Λ2(εF).(3.2.1)

For α ∈ B2(F[ε]2), let α ∈ B2(F) ⊆ B2(F[ε]2) be the reduction of α modulo (ε),
and α◦ := α− α. Let λ0 ∈ N≥2. Then β(λ0, s0) := λ0 ? 〈s0〉◦ − λ20〈s0〉◦ ∈ ker(δ)◦ and

Li2(β(λ0, s0)) = (λ0 − λ20)Li2(〈s0〉) 6= 0

and
li2(β(λ0, s0)) = (λ30 − λ20)li2(〈s0〉) 6= 0.

Therefore Li2 and li2 are nonzero on ker(δ)0. Surjectivity follows, since F is alge-
braically closed. �

Note that Kn(F[ε]2)
◦ = Kn(F[ε]2, (ε)).

Lemma 3.2.2. We have an isomorphism

K3(F[ε]2)
◦ ∼→ F(1)⊕ F(3),(3.2.2)

as Z[F×]-modules.

Proof. First note that for E ∈ {F} ∪ {Fpr |r ∈ N}, we have by (3.1.6),

K3(E[ε]2)
∼→ H3(SL(E[ε]2),Z).

Similarly, K3(E)
∼→ H3(SL(E),Z). Therefore,

K3(F[ε]2)
◦ = ker(H3(SL(F[ε]2),Z)→ H3(SL(F),Z))

= lim−→
n

ker(H3(SL(Fpn [ε]2),Z)→ H3(SL(Fpn),Z))

= lim−→
n

K3(Fpn [ε]2)
◦.
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By [1, Theorem 1.1], there are canonical isomorphisms

K3(Fpn [ε]2)
◦ ∼→ K1(Fpn [ε]4, (ε))/(1 + αε2|α ∈ Fpn).

Since the right hand side is isomorphic, as a Z[F×pn ]-module, to εFpn ⊕ ε3Fpn , this
gives

K3(F[ε]2)
◦ ' lim−→

n

(εFpn ⊕ ε3Fpn) ' F(1)⊕ F(3).

�

We denote V (F) by V to ease the notation.

Corollary 3.2.3. There is a natural isomorphism

K3(F[ε]2)
◦ ∼→ H2(SL(F), V )⊕H0(SL(F),Λ3V ).

Proof. Let us look at the F×-action on the terms of the Hochschild-Serre spectral
sequence (3.1.5) that contribute to K3(F[ε]2)

◦. Only those parts of the terms on
which the F×-action has weight 1 or 3 will have a contribution to K3(F[ε]2)

◦, by
Proposition 3.2.2. Since the action of F× on F[ε]2 is by dilatation, the induced action
of F× on V is simply by multiplication. We will only consider the restriction of this
action to F×p ⊆ F×. This will suffice to distinguish between the distinct weight pieces
since p ≥ 5. One reason for only looking at the F×p -action is that the various tensor
power constructions below are over Z, instead of F.

Since H1(V,Z) = V, the F×p -action on E2
21 has weight 1.

Since H2(V,Z) = Λ2V [6, Theorem 6.4, §V], the action of F×p on H2(V,Z) has

weight 2, hence the same is true for the action on E2
12. Hence the E2

12 term in the
spectral sequence does not contribute to K3(F[ε]2)

◦.
The long exact sequence for homology associated to the exact sequence 0→ Z→

Z→ Z/p→ 0, gives an exact sequence 0→ H3(V,Z)→ H3(V,Z/p)→ H2(V,Z)→ 0.
Since H3(V,Z/p) = Λ3V ⊕ (V ⊗ V ) [6, Theorem 6.6, §V] and H2(V,Z) = Λ2V, the
only part of H3(V,Z) that has weight 1 or 3 under the F×p -action is Λ3V, and this
weight is 3.

Combining all of these, we see that the only terms that have a contribution are
H2(SL(F), V ) = E2

21 and H0(SL(F),Λ3V ) ⊆ E2
03. Note that the latter is a direct

summand. By using the same arguments, we see that all the differentials d2·· restricted
to the groups above are 0. This shows that there is a filtration on K3(F[ε]2)

◦, whose
graded pieces are the homology groups above. Since the F×p action on these homology
groups have weights 1 and 3, K3(F[ε]2)

◦ is a direct sum of these homology groups. �

Theorem 3.2.4. The composition of the maps in (3.1.6) and Proposition 3.1.6 in-
duce an isomorphism

K3(F[ε]2)
◦ ∼→ ker(δ)◦ = H1(γ2(2)◦).(3.2.3)

The following two maps, which are induced by (3.2.3) and Corollary 3.2.3:

H2(SL(F), V )→ K3(F[ε]2)
◦ ∼→ ker(δ)◦

Li2→ F(1)(3.2.4)

and

H0(SL(F),Λ3V )→ K3(F[ε]2)
◦ ∼→ ker(δ)◦

li2→ F(3)(3.2.5)
12



are also isomorphisms.

Proof. Combining (3.2.3) above with the isomorphism (3.2.2) and the surjective maps
in Lemma 3.2.1 gives a surjective map from F(1)⊕F(3) onto itself, which therefore is
an isomorphism and hence so is (3.2.3). The other two statements follow immediately
from this and Corollary 3.2.3. �

Lemma 3.2.5. We have H2(γ2(2)◦) = 0.

Proof. By the definition of Milnor K-theory, H2(γ2(2)) = KM
2 (F[ε]2) [15, 11.1.16]. By

[12, §4.2], KM
2 (F[ε]2) = K2(F[ε]2). The assertion follows from Lemma 3.1.5. �

Proposition 3.2.6. The maps Li2, li2 and δ induce an isomorphism:

B2(F[ε]2)
◦ ∼→ F(1)⊕ F(3)⊕ Λ2F(1).

Proof. This follows from Theorem 3.2.4 and Lemma 3.2.5 and the fact that F⊗F× =
0. �

4. Application to Deformations of Aomoto Dilogarithms

4.1. Our main references for Aomoto polylogarithms are [3], [10, §1.16], and [23].
First we define an infinitesimal version of Aomoto dilogarithms, as in [22, §3.2].

We call a closed subscheme L ⊆ P2
F[ε]2 = Proj(F[ε]2[z0, z1, z2]), a line, if

L = Proj(F[ε]2[z0, z1, z2]/(a0z0 + a1z1 + a2z2)),

for some a0, a1, a2 ∈ F[ε]2, at least one of which is invertible in F[ε]2. We denote by

L := Proj(F[z0, z1, z2]/(a0z0 + a1z1 + a2z2)) ⊆ P2
F,

the reduction of L.
A simplex in P2

F[ε]2 is an ordered triple H := (H0, H1, H2) of lines Hi ⊆ P2
F[ε]2 , for

0 ≤ i ≤ 2. We denote the reduction of H to a simplex in P2
F by H := (H0, H1, H2). H

is said to be non-degenerate, if ∩0≤i≤2H i = ∅. A face of H is an intersection ∩i∈IHi,
for some I ⊂ {0, 1, 2}. A pair of simplices (L,M) is said to be admissible if L and M
do not have a common face.

Let A2(F[ε]2) be the abelian group generated by pairs of admissible simplices (L,M)
modulo the following relations:

(i) (L,M) = 0, if L or M is degenerate
(ii) For σ ∈ Sym(2), the group of permutations of {0, 1, 2}, let

σ(L0, L1, L2) := (Lσ(0), Lσ(1), Lσ(2)).

Then for every σ ∈ Sym(2),

(σ(L),M) = (L, σ(M)) = sgn(σ)(L,M).

(iii) If L0, L1, L2, L3 are lines in P2
F[ε]2 such that for all 0 ≤ i ≤ 3,

((L0, · · · , L̂i, · · · , L3),M)

is admissible then we have the additivity relation for the first component:∑
0≤i≤3

(−1)i((L0, · · · , L̂i, · · · , L3),M) = 0.
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We have the analogous additivity relation for the second component.
(iv) For every α ∈ PGL3(F[ε]2),

(αL, αM) = (L,M).

4.2. There is a natural map [3, §2.2]:

m : S2F[ε]×2 → A2(F[ε]2).

If α, β ∈ F[ε][2, and α � β denotes the image of α ⊗ β in S2F[ε]×2 then m(α � β) :=
P (α, β), where P (α, β) ∈ A2(F[ε]2) is the prism defined as follows. Let z0, z1, z2
denote the coordinates in P2

F[ε]2 , L := (z0 = 0, z1 = 0, z2 = 0), and

∆1 := (z2 − z0 = 0, z1 − αz0 = 0, z2 − z0 −
β − 1

α− 1
(z1 − z0) = 0)

∆2 := (z2 − z0 −
β − 1

α− 1
(z1 − z0) = 0, z2 − βz0 = 0, z1 − z0 = 0).

Then let P (α, β) = (L,∆1) + (L,∆2), P2(F[ε]2) = m(S2F[ε]×2 ) and

B′2(F[ε]2) := A2(F[ε]2)/P2(F[ε]2).

4.3. For x ∈ F[ε][2, let (L,Mx) be the configuration in P2
F[ε]2 , where L is the simplex

above and Mx is (z1 − z0 = 0, z1 + z2 = z0, z2 − xz0 = 0), cf. [3, Fig. 1.4]. This then
defines a map l2 : Z[F[ε][2]→ A2(F[ε]2), by letting l2(x) := (L,Mx).

Proposition 4.3.1. The map l2 above induces an isomorphism

B2(F[ε]2)
◦ ∼→ B′2(F[ε]2)

◦.

Proof. For a ∈ F[ε][2 let H(a) ∈ A2(F[ε]2) be the half-square with side a, cf. [3, Fig.
3.1]. Namely, H(a) is (L, S(a)), where L is as above and M(a) is defined as:

(z1 − az0 = 0, z2 − z1 = 0, z2 − z0 = 0).

Since F[ε]×2 is 2-divisible, by bisecting the sides of M(a), we see that

H(a) = 2P (a1/2, a1/2) ∈ P2(F[ε]2).

Therefore half-squares lie in the group generated by the prisms. Also in the notation
of [3, §3.6], δ(1) ∈ A2(F). Using these two facts, the proof of Main Theorem 2 [3,
§3.8] carries over in our case to prove the statement. �

Remark 4.3.2. The inverse to the map in Proposition 4.3.1 is the map which is induced
by η : A2(F[ε]2)→ B2(F[ε]2), defined in [3, §3.3]:

η(L,M) =
∑
σ∈S3

sgn(σ)(L0 ∩Mσ(1), L1 ∩Mσ(1), L2 ∩Mσ(1),Mσ(0) ∩Mσ(1)).
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4.4. There is a homomorphism ν1,1 : A2(F[ε]2) → F[ε]×2 ⊗ F[ε]×2 induced by a co-
multiplication map which makes the following diagram commutative up to sign [3,
Proposition, §2.14], [23, Example 5.1]:

A2(F[ε]2)
ν1,1−−−→ F[ε]×2 ⊗ F[ε]×2

η

y y
B2(F[ε]2)

δ−−−→ Λ2F[ε]×2 .

Moreover,

ν1,1(m(α� β)) = α⊗ β + β ⊗ α(4.4.1)

[3, Proposition, §2.12].

Theorem 4.4.1. The maps Li2 ◦ η, li2 ◦ η and ν1,1 induce an isomorphism

A2(F[ε]2)
◦ ∼→ F(1)⊕ F(3)⊕ (F(1)⊗ F(1)).

Proof. Since F is algebraically closed and p > 2, F[ε]×2 is 2-divisible. This, together
with (4.4.1), implies that in the sequence of homomorphisms

S2F[ε]×2
m→ P2(F[ε]2)

ν1,1→ ker((F[ε]×2 ⊗ F[ε]×2 )→ Λ2F[ε]×2 ),

both m and ν1,1 are isomorphisms. Since (F[ε]×2 ⊗F[ε]×2 )◦ = F(1)⊗F(1), this implies
that ν1,1 induces an isomorphism

P2(F[ε]2)
◦ → ker(F(1)⊗ F(1)→ Λ2F(1)).(4.4.2)

Since Proposition 4.3.1 states that A2(F[ε]2)
◦/P2(F[ε]2)

◦ ' B2(F[ε]2)
◦, (4.4.2), the

above commutative diagram and Proposition 3.2.6 give the statement. �
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