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Abstract

Let X be the projective line minus 0, 1, and co over Q,. The aim of the following is to give a
series representations of the p-adic multi-zeta values in the depth two quotient. The approach
is to use the lifting F(z) = 2 of the frobenius which is not a good choice near 1, but which
gives simple formulas away from 1, and to relate the action of frobenius on the de Rham path
from 0 to oo and on the one from 0 to 1. Also some relations between the p-adic multi-zeta
values of depth two are obtained.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The multi-zeta values, invented by Euler, are defined as

1
C(Sk, ...,S2,S]> = Z 82 .81

Sk oo
ng> - >np>n >0 1 nyn

for sy, ...,8k_1>1 and s; > 1. Recently, they appeared in the work of Drinfel’d [9] on
deformations of Hopf algebras, as the coefficients of the solution of the KZ
equation, which was used to prove the existence of an associator over Q; in the work
[17] of Zagier who studied the (@-algebra generated by the multi-zeta; and in the
works of Broadhurst and Kreimer on knot theory. They are studied extensively by
Goncharov (in [12,13]) as periods of the fundamental group of the projective line
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minus three points. And a connection between the geometry of modular varieties is
found in [14].

Let X/Q be a smooth variety with good reduction. The unipotent theory of the
fundamental group of X is of motivic nature [5], and when X /Q is unirational, the
unipotent fundamental group can be defined as an object in the category of mixed
Tate motives over @ [7].

Let X .= P"\{0,1, c0}. Let 1, be the unit tangent vector at zero pointing towards
1 and ¢ the unit tangent vector at 1 pointing towards 0. Let ,,G,, (-) denote the
m1..(X, to1) torsor of paths from 7 to 719, where the dot denotes the realization under
consideration. In the Betti realization the real path defines an element ,,e(B), in
1091, (B). Similarly the canonical trivialization of unipotent vector bundles with
connection by Deligne [5] defines an element ,,e(dR), in 4,5, (dR). By taking the

image of ,,e(B), under the de Rham-Betti comparison isomorphism

llogfol (B) ®a C:fluglm (dR) ®aC

and using ,,e(dR),
yemar(X, t01) ®C.

If 4 is a (commutative) Q-algebra, an element of 71 4r (X, #01) ® g4 corresponds to
a group-like element of 4 <ey,e; >, the Hopf algebra of associative formal power
series over A in the variables ey and e;. The coproduct

to trivialize the torsor ,,G,, (dR) ® C, we obtain an element

A:A<ey,e1> > A<ey,e1>QA<ey, e1>
is defined by putting
A(eo):=1®€()—|-€()®1 and A(€1)121®€1+€1®1

and group-like elements g are the ones with constant term 1 and that satisfy A(g) =
g ®g. Because of the last condition such formal power series are determined by the
coefficients of ey, ¢; and of the terms of the form eg"flel ey -
and s; > 1, in them.

The coefficients of ¢y and e in y are equal to zero. Therefore y is determined by the

er, with sy, ...,s_1>1

coefficients of the terms of the form eg"_lel -} 'e; as above. Let {wi(z)}, << bea

collection of meromorphic 1-forms on A(, and let o : [0, 1] A{ be a path that does
not meet the poles of the w;, then let

/ Wy 0020 W 0 @] = / O (o(tm)) A - A (a(tr)) Ao (a(ty)).
o 1>2t,> Hnh=t20

Let sy, ..., sk be as above with s, > 1, f the standard inclusion of [0, 1] in AGI:, m =
>-.si, and

d
@i(2) ;:TZZ if ie{l,s1+1,...50.1 + 1},
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d. :
@(z) = £ otherwise
z

for 1<i<m. Then using the Euler—Kontsevich formula

Z 1
a)mo---oa)zowlz T
~/ﬁ nn’;...nll

Ny >-->n >0

we see that the coefficient of the term ¢} 'e;---e§'e; in y is equal to

(=) (st ..., 51)

In the fundamental paper [5] of Deligne, which is the basis of this paper, the
crystalline realization of the unipotent fundamental groups are defined. Let p be a
prime number. Analogously to the Betti-de Rham comparison, the Crystalline—de
Rham comparison gives an element geQ, <ep,e;> as follows. The comparison
theorem gives an action of frobenius

F,.:G(dR)®0Q,—-G(dR)®Q,.
Let

g =1 €(dR) F*( e(dR)tm)v

o 1o

which represents the action of the frobenius on the canonical de Rham path between
the tangent vectors ¢y, and 7, and is the analog of y above. This definition is due to
Deligne (unpublished). The action of frobenius on 7 4r(X, 1) can be described as

F.(eo) =pey and F,(e)) = g 'perg.

Therefore describing the action of the crystalline frobenius on the de Rham
fundamental group reduces to describing g, and as above determining g reduces to

determining the coefficients of the terms e 'e;---ef' "'e; in g. We denote this

coefficient by pZS’Cp(sk, ...,s1) and call it a p-adic multi-zeta value.

Our aim in the following is to give a series representation of these values, similar to
the one obtained by the Euler—Kontsevich formula above, for depth two, i.e. k = 2.

The depth one case was done in [5] using the distribution formula. In the depth
two case the method using the distribution formula does not work; first because there
are too many unknown terms, and also because the limits of the functions involved
as the variable goes to 1 do not exist, even if we restrict to the set of the points whose
p-power parts of the ramification indices are bounded, and need to be regularized
using the lower depth p-adic multi-zeta values. A direct approach to obtain a
formula for these values would be to choose a lifting of frobenius that is a good
lifting except on the open disc of radius 1 around oo, in other words it should be a
lifting F of frobenius and it should satisfy F*(0) =p (0) and F*(1) =p (1).
However such a choice of a lifting of frobenius makes the computations very
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complicated even for the depth one p-adic multi-zeta values which are values of the
p-adic zeta function.

The approach taken in this chapter is to use the simple lifting F(z) =z’ of
frobenius that is a good choice outside the open unit disk around 1, since it satisfies
F*(0) =p(0) and F*(c0) =p(o0). In order to make computations we use the
canonical trivialization of the m; 4r(X, t1) torsor of paths on X starting at #,;, noted
above, and endow it with its canonical pro-unipotent connection V. Then the fact
that F, has to be a horizontal map from this torsor endowed with V to its pull-back
under F gives a differential equation that involves ¢(z) := F.(.e(dR), ) and g. In
order to obtain the value of g in small depths we apply frobenius to the relation that
the sum of the residues is equal to zero, this gives a relation between g(co) and g.
Together with the differential equation obtained above we solve this system with
respect to g(z) for the depth less than or equal to three using induction on the weight.
Since F was a good choice on the rigid analytic space U = Pén\D(l, 17) the
coefficients of g(z) are rigid analytic functions on U. These should be thought of as
technical, unnatural objects as they depend on the choice of a lifting of frobenius.
Then we prove a proposition that is used to compute the values at infinity of the rigid
analytic extensions to U of power series around zero, when these extensions are
known to exist, and also give a necessary and sufficient condition for the existence of
these extensions. Using this, the relation between g(cc) and g above and some
explicit computations we obtain a formula for g for depth less than or equal to 2.
Also some identities are obtained between the depth two p-adic multi-zeta values.

Furusho [11] defines p-adic multiple polylogarithms and also p-adic multiple zeta
values as their value at 1. His definition could be thought of as working with the
frobenius invariant path rather than working with the action of frobenius as we do.
If we let yeQ, <ep, e; > denote the frobenius invariant path between the tangential
basepoints at 0 and 1 then the relation between g and y is described by g =
- (F*“/)fl, where the action of F is as above. From this equation it follows that y and
g can be inductively computed in terms of each other. In a future paper, we will
compare our results to those of Furusho. Finally, we remark that our Proposition 3
is a very special case of the shuffle product formula of Besser and Furusho [3],
conjectured by Deligne and also proved by himself using Voevodsky’s theory.

Notation and convention: If we have an element «a of the ring of associative formal
power series over a ring A4, in the variables x;, ie I, we denote the coefficient of x” in
a, for a multi-index J, by a[x’]. By a variety X over a field K, we mean a
geometrically integral K-scheme X, that is separated and of finite type over K.

2. Crystalline and de Rham fundamental groups
2.1. Fundamental group of a tannakian category

Let M/K be an abelian, K-linear, rigid, ACU, ®-category with End(1)~K, a
tensor category in the terminology of Deligne [6, 1.2]). For a K-scheme S, a fiber
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Sfunctor @ of M over S is an exact K-linear functor from M to the tensor category of
locally free sheaves of finite rank on S endowed with functorial ACU isomorphisms
o(X)®o(Y)~o(X®Y). A tannakian category M/K is a tensor category over K
that has a fiber functor over some nonempty K-scheme S. If w is a fiber functor of M
over S/K and pi, po: S xg S—S are the two projections, then the functor
Isomg (piw, pfw) which associates to each n: T— S xg S the set of isomorphisms
between n*piw and n*piw is representable by an affine scheme Autg(w) over S xg S.
It is a groupoid acting on S, is called the fundamental groupoid of M at the fiber
functor w, and is denoted by G(M, w), cf. ([6, 1.11]) and ([5, 10.2-10.9, 10.26-10.33]).
Pulling back the morphism G(M, w)— S xk S via the diagonal map 4s : S— S xg S
gives a group scheme 71 (M, w)/S over S called the fundamental group of M at w. If
the fiber functor w is over K, then the natural map from M to the tannakian
category Rep 7 (M, o) of finite dimensional linear representations of 7 (M, ) is an
equivalence of categories.

2.2. de Rham fundamental group

Let X/K be a smooth variety over a field K of characteristic zero. We denote the
category of vector bundles with integrable connection by Mic(X/K). Note that
HY%(X/K)~K, and hence End(1)~K. The functor wy : Mic(X/K)—Coh(X/K)
from this tensor category to the category of coherent sheaves on X that maps (E, V)
to E is a fiber functor. Therefore Mic(X/K) is a tannakian category over K. Let
Mic,,i (X /K) denote the sub-tannakian category consisting of unipotent objects, that
is those objects that have a filtration by subbundles with connection whose graded
pieces are the trivial vector bundle with constant connection. Denote the
fundamental groupoid G(Micy,i(X/K),wyx) corresponding to Micy,(X/K) and
oy by Gur(X/K). This is a groupoid acting on X, and is called the de Rham
Sundamental groupoid of X. If xe X(K) then the functor w(x): (E,V)—E(x) is a
fiber functor over K. The fiber of G;r(X/K) over (x,x), which is Autg(w(x)), is
called the de Rham fundamental group of X at the basepoint x, and denoted by
T ar( X, x).

Remark. Let X/C be as above. Then by the Riemann—Hilbert correspondence the
category of vector bundles with integrable connection that has regular singularities
at infinity is equivalent to the category of C-local systems on the underlying
topological space of X,,. Therefore, the fundamental group of this tannakian
category, at a basepoint, is isomorphic to the algebraic envelope of the topological
fundamental group. It would thus be natural to define the algebraic de Rham
fundamental group of X/K to be the fundamental group of the full tannakian
subcategory of Mic(X/K) consisting of the objects which have regular singularities
at infinity. However this definition is not compatible with the base change of the
underlying field K, see [5, 10.35] for an example. Since, we are interested in periods,
and hence comparison isomorphisms, this is a crucial deficiency. The unipotent
version defined above commutes with base change ([5, Section 10]).
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2.3. Logarithmic extensions

Let X/K be a smooth variety over a field K of characteristic zero, DS X a simple
normal crossings divisor, and X = X\D. The category Mic(X/K,log D) is the
category of vector bundles with integrable connection on X which have at most
logarithmic singularities along the divisor D. Here we review the theory of
logarithmic extensions (see [1, Section 1.4]).

Let (E,V)eMic(X/K,log D), xe X(L) a point over a finite extension L/K, and a
system of parameters f1, ..., t, at x such that D is defined by ¢, ---#4 = 0 near x. Then
the residue

res;,—o(E, V)(x) e End E(x)

of (E, V) along ; = 0, for 1 <i<k, is the fiber at x of the map E— E that sends v to
—(Vu, tia%)‘ This is independent of the choice of {#|1<i<n} satisfying the
conditions above. If the irreducible component D; of D is geometrically connected
then the similarity class of the residue resp,(E, V)(x) along D; is constant for xe D;.

Let K be an algebraic closure of K and let 7 : K/Z — K be a set theoretic section of
the canonical projection K— K/Z with 7(0) = 0. If (E,V)eMic(X/K) has regular
singularities along D then there is a unique object in (£, V), e Mic(X/K,log D) with
restriction (£, V) and whose residues along the irreducible components of the divisor
have eigenvalues that are in the image of 7. Let D; be an irreducible component of D,
1, be its generic point, @Y-,m’ the completion of the local ring at #; along its maximal
ideal, and s; a uniformizer at »;. Then the eigenvalues of resp,(E, V) (x) are the
elements o€ Im 7 such that 5;V 4,4, — o has a horizontal section in E| Ot where the

connection is considered relative to the field of functions k(D;) on D;.

If (E, V) e Micyi(X/K) then since 7(0) = 0€ K, by the uniqueness of the extension
of (E, V) and descent, the extension can be defined over K. It is called the canonical
extension of (E,V) and denoted by (E,V). It is, up to unique isomorphism, the
unique element in Mic(X/K,log D) with nilpotent residues along D and that restricts
to (E,V) on X.

We denote the full subcategory of Mic(X/K,log D) formed by the unipotent
objects by the notation Micy,(X/K,log D). By the theory of logarithmic extensions
the restriction map

Micyni (X/K, log D) = Micy, (X /K)
is an equivalence of tannakian categories.

2.4. Action of the crystalline frobenius

Let K be a complete discrete valuation ring of characteristic zero with ring of
integers R and finite residue field & of characteristic p. Let X /K be a smooth variety,

and assume that there is a proper, smooth model X¥/R and a simple relative normal



S. Unver | Journal of Number Theory 108 (2004) 111-156 117

crossings divisor D< X, whose irreducible components are defined over R, together
with a fixed isomorphism (¥\D),~X. Welet X = X\D, D = DRzK, X = X®K,
Y=X®zk, and Y = X®pgk. In this section, we recall the definition of
Isoc! .(Y/R) [2], and the equivalence of the categories Isoc’ .(Y/R) and
Micy,i (X /K) ([4, Proposition 2.4.1]).

uni

2.4.1. Unipotent overconvergent isocrystals

For a variety Y/k, let Isoc'(Y/R) denote the category of overconvergent
isocrystals on Y relative to R [2]. This category is defined as follows.

For a formal scheme Q/R, and a locally closed subscheme Z< Q® gk, let
1z [Q < Qg denote the tube of Z in Q. Let Y = ¥ be a compactification of Y. Assume
that there exists a formal scheme P/R, and a closed imbedding ¥< P, such that
P/R is smooth in a neighborhood of Y. Let j :] Y[, —]¥[, denote the imbedding of
the tube of Y in P in that of ¥ in P. Then an overconvergent isocrystal on Y is a
locally free jTO]Y[P module with integrable connection such that the connection
converges in a strict neighborhood of |Y[p,p in |¥[p,p, where Y is embedded
diagonally in P x g P. The category of overconvergent isocrystals is independent the
imbedding Y< P, into a formal scheme P/R.

If the global imbedding as above does not exist then the category is defined by first
choosing an open cover {U;},.; of Y such that an imbedding of U; in a formal
scheme P;/R, as above, exists. Then an overconvergent isocrystal on Y is a collection
of overconvergent isocrystals on ¥~ U; corresponding to the data U;<P;, and
isomorphisms between their restrictions on the intersections {U; N Uf}i,/‘ 7 satisfying
the cocycle condition. The category is independent of the cover and the imbeddings
into formal schemes. It is also independent of the compactification ¥ of Y and is
denoted by Isoc’(Y/R). For an object (E, V) elsoc’(Y/R) and data {U;—P;},.; as
above, we denote by (E, V), the vector bundle with overconvergent connection on
| Y[p,, and call it the realization of (E,V) on P;.

The full subcategory Isoc! .(Y/R) of Isoc( Y /R) that consist of unipotent objects
is called the category of unipotent overconvergent isocrystals. Using the notation at

the beginning of the section, let i denote the formal scheme over R obtained by
completing X along Y. Then ]Y[¥ S Xan, and Xy, is a strict neighborhood of | Y[%.
This gives a map

o Micy,i (X /K) —Isoc’ (Y/R).

uni

By [4, Proposition 2.4.1] this is an equivalence of categories.

2.4.2. Description of frobenius

We continue the notation above. Let ¢ be the cardinality of k. Then the q-power
frobenius F induces a map F:(Y,Y)—(Y,Y). This gives a map F*:
Isoc’(Y/R) —Isoc’(Y/R), which is independent of the compactification. If there is
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a lifting X as above, this is described as follows. Let {U;},_; be an open cover of ¥
and let P;, for ie I, be the completion of X along U;, chosen such that there exists a
lifting F; : P;—>P; of the g-power frobenius, for all iel. Since E/R is smooth,
choosing U; to be affine is sufficient to ensure that such a lifting exists. If
(E,V)elsoc’(Y/R) has the realization (E,V), elsoc’(U;/R) as above, then
F*(E, V) has the realization F;(E, V), €lsoc’(U;/R). The isomorphisms between
the restrictions of F7(E, V), and F}(E,V)y, to the intersection U;n U; are given by
pulling back the isomorphisms between p} (E, V) and p;(E,V) on the tube in P; X
Pj, where p; and p, are the projections from P; x P, to its factors, by the map
induced by

Fix fj : Py x Pj—>'P,~ X Pj.

Since Micyni(X/K) —Isoc! (Y /R) is an equivalence of categories we obtain a tensor
functor

F* : Micun (X /K) = Micun (X /K),

a priori depending on the model. Let (E, V)€ Micy,i(X/K). In order to determine
F*(E,V)eMicy,i(X/K), it is enough to find (G, V) e Mici(X/K) such that

0x(G, V)= Frox(E, V).
Deligne constructs in [5, Section 11] one such (G, V) as follows: Let
(E, V) eMicy,i(X/K,log D)

be the canonical extension of (E, V). Let {U;},_, be an affine covering of ¥ such that
if P; is the completion of X along Uj, then there exist F; : P; —P; which are liftings of
the g-power frobenius and induce maps P;\D — P;\D, where D is the completion of D
along Y. The last condition is equivalent to requiring that F “(Ds) = q - Dy for all
components Dy of D such that Dyn U; #0. Let (X x X)~ be the blow-up of X x ¥
along the image of the irreducible components of © under the diagonal map. Let A5
denote the strict transform of the diagonal. Since the connection (E,V) has
logarithmic singularities along D, and is unipotent the isomorphism pj E ~p3 E on the
first infinitesimal neighborhood of 4y in X x X defined by the connection extends to
the tube

J4%5 @ r k73~

[5, Section 11], where hat denotes the completion along the closed fiber.
Denote |Uj[p, by U; then (E, V)], € Micuy; (Ui, log D). Define

F*(E,V)|,, = Fix(E,V)|y, €Micui(U;,log D).
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For i,j in I,(F;,#;) induces a map from U;nU; to |43 ®Rk[(§i§)~. Therefore
pulling back the isomorphisms induced by the connection, via this map gives
patching data for the F*(E, V)|u,-a iel, that are horizontal with respect to the pulled
back connections and that satisfy the cocycle condition. Therefore one obtains a
global F*(E, V) € Micypi(Xan/K,log D). But since X/K is proper, by GAGA it comes
from F*(E,V)eMicy,i(X/K,log D). Restricting this to X gives the
F*(E,V)eMicyi(X/K) we were looking for.

3. Tangential Basepoints
3.1. Ordinary basepoints

(i) de Rham: Let X /K be a smooth variety over a field of characteristic zero, and
x€ X(K). Then the functor

o(x) : Mic(X/K)->K

that sends (E, V) to E(x) is a fiber functor of Mic(X/K) over K.
(ii) Crystalline: We return to the situation of a variety Y /k as in 2.4.1. A point
ye Y (k) defines a map Speck/R— Y /R, and hence a fiber functor

w(y) : Isoc’ (Y /R) —Isoc(k/R) ~ Vecg.

Let Y be a compactification of Y, US Y an open subvariety, with ye U, P/R a
formal scheme with a closed immersion U< P such that P/R is smooth in a
neighborhood of U Y, and let y e P(R) be a point with specialization y, and generic
fiber xePg. Corresponding to these data the realization of the fiber functor w(y) is
the functor that sends (E,V)elsoc’(Y/R) to (E,V)p(x). Note that there are
canonical isomorphisms between different realizations of w(y).

(iii) Comparison: With the notation as in the beginning of Section 2.4, let x€ X(R)
with reduction y, generic point x, and completion along the closed point %. Then the
realization of w(y) corresponding to (Y, %) and & maps ox(E, V) to (E,V)(x), for
(E,V)eMicyi(X/K), and the diagram

Micuni(X/K) —= Isoc! .(Y/R)

‘uni

id
Veck —— Veck

commutes.



120 S. Unver | Journal of Number Theory 108 (2004) 111-156
3.2. Tangential basepoints

From now on we will assume, for simplicity, that X/K, Y /k, and X/R are of
relative dimension one. Let 7 be the category whose objects are pairs (7, N), where
V is a finite dimensional vector space over K and N is a nilpotent linear operator on
V. Morphisms between the objects (V7, Ny) and (V>, N;) are linear maps 7 : V- V>
such that TN, = N,T. We define a tensor product on 7 as (V1,N))® (V2, Ta) =
(V1®V,,id® N, + Ny ®id). Then T is naturally a tannakian category over K with
this tensor product.

(i) de Rham: Let X/K be a smooth curve over a field K of characteristic zero and
X =X an open subvariety with D = X\X = X(K).

Using the equivalence Micy,i(X/K,log D) ~Micy,i(X/K), induced by restriction,
in order to give a fiber functor of Micy,(X/K) it is enough to give one of
Mic,i (X/K,log D).

Let xe D. Then there is a natural tensor functor

Y (X) : Micy,i (X, log D) - T

defined by sending (E, V) to (E(x),resy(E,V)).
Let

w:Ty—Vecg

be the fiber functor that forgets the linear operator. Letting w(x) := w o (X) gives
a fiber functor

o(x) : Micy,(X/K,log D) — Veck
that maps (E, V) to E(x).

Lemma 1. Applying the above consideration to P', Dy, == {0, 0}, and x =0, the
map

Yo(Gm) : Micuni(P'/K,log Do) =T
is an equivalence of categories.

Proof. Let (V,N)eT,. Then
dz
Yol V®kOpi, d—N? = (V,N).

This proves the essential surjectivity.
In order to see full-faithfulness it is enough to show, since i, is a tensor functor,
that for (E, V) in Micy,i(P'/K,log Dy.. ), taking fibers at 0 induces an isomorphism
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from HgR(IPllog, (E,V)) to kerg)(reso(E, V)), where Pllog is P! endowed with the log
structure induced by Dy .

First, note that for (E,V)e Micuni(ﬂj’1 /K, log Dy, ) the underlying vector bundle E
is trivial. This follows from Ext[lp,l (0,0) =H'(P',0) =0 by induction on the
nilpotence level [S]. Therefore without loss of generality we will assume that
(E, V)~ (OrkE ,d—N %), where N is a nilpotent matrix. If v is a global (horizontal)
section of (O d — N %) then it is a constant section of O™ Therefore, the map

Hi)p(Plog, (E, V)) > kergg N

is injective. In order to see its surjectivity we note that for any aeker V, the constant

section of O"*E with fiber o at 0 is a horizontal section with respect to the connection
d-N<E O

Let T, X denote the smooth compactification of T, X. By the lemma above the map
Wo(TX\{0}) is an equivalence of categories. Letting

¢ = bo(TX\{0}) ™ o (X),

where (T, X\{0})"" is an inverse of (T X\{0}), defined up to canonical
isomorphism, we obtain a functor

@’ : Micyni(X/K,log D) - Micyni (T X/ K, log Dy ).

Remark. The notation ¢ is a bit misleading since, in general, there is not a genuine
map from T, X to X that induces this map.

Note that the definition of ¢} does not depend on any choice of a local parameter.
Choosing a (nonzero) tangent vector ve T, X(K) we obtain a fiber functor w(v) of
Micy,i (T X)/K,1log Dy, ) over K.

Definition 1. Let ve (7T, X\{0})(K). Then we continue to denote the fiber functor
w(v) ° ¢k by w(v) and call it the fiber functor of Micy,i (X /K) at the tangent vector v.

Note that w(v) is canonically isomorphic to w(0)(= w(x)) by 4.1 below. In this
sense the choice of a tangent vector is not needed. However, it will be needed in order
to define the action of frobenius.

(i) Crystalline: Let Z /k be a variety, and M an fs log structure on Z (in the Zariski

topology) such that the map (Z, M) — Spec k, where the base is endowed with the

trivial log structure, is log smooth. Shiho defines the log convergent site (Z/R)%%, |

and for a locally free isocrystal on the log convergent site he defines the log
convergent cohomology H, ((Z/R)¢ . E) [16, Sections 2.1 and 2.2].

an conv?
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Let Y/k be a proper, smooth curve, D< ¥(k), and Y = Y\D, with the inclusion
j: Y- Y. Denote the fs log scheme associated to Y with logarithmic structure

defined by D, by Tioe. Then we can define the category Isoc((¥/R)' % ) of log

conv
convergent isocrystals on ¥j,, and the cohomology groups H;, ((¥/R)'°% . E) for an

conv?

object Eelsoc((¥/R)E ). There is a restriction functor

conv

it Isoc((¥/R)E ) —»1Isoc’(Y/R)

conv

to the category of overconvergent isocrystals on Y. And if E €Isocyn((¥/R)"2

unipotent isocrystal then there is an isomorphism of the cohomology groups

)isa

H,o(Y/ R, B) =

conv’

H,;,(Y/R,J'E)

by (2.4.1) [16, Sections 2.1, 2.2] (in fact there it is proven in the case where £ = O.
The unipotent version follows from E = O by induction on the nilpotence level, the
cohomology exact sequence, and the five lemma).

Lemma 2. The canonical functor

it Isocuni((7/R)E ) > Isoc!

conv

Y/R)

unl(

is an equivalence of categories.

Proof. Since ;© is a tensor functor the full-faithfulness follows from
H(.,E*®F)~Hom. (E, F), where dot denotes the log convergent or overconver-
gent category.

The essential surjectivity is proved by induction on the rank. Let E€Isoc’ .(Y/R).

unl(

Then there is an Felsoc' .(Y/R), and an exact sequence

uﬂ](

0—F—E—O})—0.

By the induction hypothesis there exists an Felsocuy((¥/R)E ), with j7F = F.
The exact sequence above gives an element in

. sy _ — .
EXtT](OYa ) rlg(Y/RUTF) e{n((Y/R)c?)iv’F):Ethlog/conv(OY’F)'
The corresponding element in the last group gives an exact sequence
0->F>E->0y—>0

in Isocuni((¥/R)'8, ) with jTE~ E. This proves the essential surjectivity. [J

conv

Therefore in order to construct a fiber functor on Isocum(Y /R) it is enough to
construct one on Isocuyi((¥/R)% ). Let ve T,Y(k). Then we will define a fiber

conv
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functor

o(v) : Isocu((T/R)2E,) - Veck

analogous to the one in the de Rham case.

Construction of w(v): Let (U, P,1,v) be a data such that U< Y is an open affine
subvariety with Un (Y\Y) = {y}, P/R a smooth formal scheme with closed fiber U
(this exists by Theorem 6 of [10], y a point in P(R) with reduction y, and v a tangent
vector in T,P with reduction v. Note that 7P is a lifting of 7, Y.

Then, we define the realization w(v), of w(v) corresponding to these data to be the
functor that sends (E,V)elsocy((¥/R)E.) to Ep(vg), where Ep denotes the
underlying bundle of (E, V).

Let (U, Q,3,m) be a choice of a different data as above. Let (P x Q)~ denote the
blow-up of P x Q at (v,3). Then since (E, V) is a logarithmic isocrystal, there is a
canonical horizontal isomorphism between pi(E, V), and p3(E,V), in the tube
J47 [(pxg)~+ Where A4 is the strict transform of the diagonal 4y in the blow-up, and
where p;, for i=1,2, are the projections from (P x Q)~ to P and Q. The
exceptional divisor of the Dblow-up is canonically isomorphic to
P(TyP(R)®T,Q(R)), with special fiber P(T,Y(k)®T,Y(k)), and [v,0]=
P(T,Y(k)®T,Y(k))n4. Therefore, since the tangent vectors b and w have
reduction v, [v, w] is in the tube of [v, v]. In order to give an isomorphism between the
realizations w(v), and w(v),, of w(v) corresponding to the two data above, we need
to give isomorphisms between Ep (1) and Eg(3x). We define this isomorphism to be
the evaluation of the isomorphism between pi(E, V), and p5(E, V), at the point
Dk, 3] By the integrability of the connection these isomorphisms satisfy the cocycle
condition.

Definition 2. With the notation as above, for ve T, ¥(k) the fiber functor

o(v) : Tsoc! .(Y/R)— Veck

uni

is called the fiber functor at the tangent vector v.

Lemma 3. Let (U,P,y,v) and (U,P,y,w) be two data as above. And let

(E,V)elsocui((V/R) ). Then the automorphism of (E,V)p(vg) induced by the
identifications o(v), — w(v) > w(v),, is given by exp(log(w/v) res,, (E,V)p).

First, note that since » and w have the same reduction, |w/o — 1|<1. We would
like to compute the action of parallel transport along the connection explicitly
between two tangent vectors. This is a local question. Let D(0,¢~) denote the open
disc of radius ¢ in Aj. Let ¢ : D(0,¢”)—]U[, be a map with ¢(0) = y, that is an
isomorphism onto its image. By pulling back (E, V) via ¢, it suffices to answer the
analogous question on D(0,¢7).
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In order to do this, let (E,V)eMicy,i(D(0,¢7),log0) and v, and we ToD(0,¢7)
with |w/v — 1] (note that this property, satisfied for the vectors above, remains valid
after pulling back via ¢). By the argument in the proof of Lemma 1 we may assume
without loss of generality, since H'(D(0,67),0) =0 for 1<i, that (E,V)=
(OE d — N %), where the nilpotent N is the residue of (E, V) at 0.

Let (z1,22) be the coordinates for D(0,&7) x D(0,¢7). Letting & = z5/z; — 1, the
strict transform A~ of the diagonal in (D(0,¢7) x D(0,¢7))" is defined by 4 = 0.
Then the isomorphism between E. and E...;, in the formal neighborhood of 4™,
defined by the connection is given by exp(log(1 + /#)N), which makes sense since N is
nilpotent. This formula extends uniquely to give an isomorphism between E, and
E. .., for |h| <1, since in this disc log(1 + /) is an analytic function. Therefore, the
isomorphism between E, and E,, is given by exp(log(w/v)N). O

Frobenius: This section will be needed in order to define the action of frobenius on
the de Rham fundamental group at a tangential basepoint.

Let X;/R and X,/R be smooth (formal) schemes, and let D;, for i = 1,2, be
effective relative divisors in X;. For a map f : X; — X, such that D, =f*(D;), we
obtain a map

Gr(f)
Sym- IDZ/Ié2 ~ Gr',D2 Ox, — Gr',D] Oy, ~Sym' Ip, /11231 ,

corresponding to the graded algebras associated to the filtrations {I} }, i=1,2.
This gives a map

Spec (Grf) : C(Np,/x,) = C(Np,/x,)

between the normal cones of D; in X; which is called the principal part of /" along D,
and D,, and denoted by P(f') when the divisors under consideration are fixed. When
the D; are smooth we denote C(Np,/y,) by Np,/x,, which is the notation for the
normal bundle of D; in X;. If the D; are smooth and f*(D,) = n - D for some neZ*,
this gives a map Np,/x, > Np,/x, between the normal bundles homogeneous of
degree n.

Lemma 4. With the notation and assumptions as above, the diagram

150Cuni((Y/R)'%,,) —— Tsocun((Y/R)%,)

conv conv

w(v) l w(v)l

Vecy Vecy

Is commutative.

Proof. In order to see the commutativity of the diagram above let (U, P,y, 0, F) be
a data such that (U, P,y,p) is as in the last section and F : P—P is a lifting of
frobenius with F*(y) = ¢ - (1). We let P(F) denote the principal part of F along v.
If z is a local coordinate on P at y relative to R then the assumption that F*(y) =
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q-(v) and that F lifts the g-power frobenius on ¥ implies that F*(z) = a,z7 +
qu a,z" as functions on the completion of P along 1), where a, — 1, and a,, for
g<n, are in mg. In particular P(F)*(dz) = a,(dz)?. Therefore, since by assumption
the residue field £ has cardinality ¢ and v is a lifting of v, P(F)(v) has reduction v.
The identity F(E,V)p(ng) = (E, V)p(ng) gives an isomorphism between w(v),oF”
and o(v) p(r) ()

We need to give isomorphisms for the different choices. Let (U, Q, 3, w,F’) be
another choice as above. Then we obtain a map

(FxF)Y :(PxQ) ™ =(PxQ)~.
On the exceptional divisor the map is given by
[P(F), P(F')] : P(TyP(R) ® T,Q(R)) > P(T,P(R) ® T;Q(R)).

Pulling back the isomorphism between w(v) p(r)(,) and w(v) pzr () via this map we
obtain the isomorphism between w(v),  F* and w(v),, o F™*. This shows that we have
a commutative diagram

w(v)yo F* —— w(v)po F™*

J l

W(U)P(f)(b) —_— W(U)P(f’)(m)'

Since, the connection is integrable the cocycle condition is satisfied for three different
data. This shows the commutativity of the diagram. [

Comparison: Let X/R be a smooth proper curve, DS X(R), X =X\D, ¥ =
X®rk, Y =XQrk, X=X ®rK, X =X ®rK, ne®, ve(T,X\{0})(R), with
x=9)®K,vg =0®K, y =yp®k,and v =0v®*k.

Lemma 5. With the notation as above, the diagram

Micyni(X/K) —— Isoc! (Y/R)

uni

lw(nk) lw(v)

id
Veck —— Vecg

commutes.

Proof. We obtain the commutativity by identifying w(vg) with the realization of
o(v) corresponding to the data obtained by completing X along ¥. [
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Combining this with Lemma 4 gives a frobenius action
F, :mqr(X,0k) =1 ar(X, k)
on the de Rham fundamental group with a tangential basepoint. Note that
4R (X, 0x) 271 4r (X, X)

canonically. However, the frobenius obtained on 7 4r(X,x) depends on the choice
of a tangent vector.

Remark. Let X = P'/R and ¥ == P"\{0, o0 }. We claim that the fiber functor
®(0) : Micyni(X/K)— Veck

does not commute with the action of the frobenius on Micy,;(X/K). This can be seen
as follows. Let U be an affine open set in ¥ containing 0, and let F; and F, be two
liftings of frobenius to the completion ¢/ of ¥ along U, with F5(0) = F5(0) = ¢ - (0).
Then for (E, V)€ Micyi(X) the isomorphism

E(0) = F{E(0)~F5E(0) = E(0)

is in general nontrivial, in fact it is exp(reso(E, V)lim,_,o flgg)

4. p-adic multi-zeta values
4.1. de Rham section of the fundamental groupoid

Using the notation of Section 3, assume that X = P! Then for any
(E,V)eMicyi(X/K), the underlying vector bundle E of the canonical extension
(E, V) eMicy, (X, log D) is trivial [5]. This gives that the canonical map

INX,E)® Oy~E
is an isomorphism and the functor
o(dR) : Micyyi (X /K)— Veck

that maps (E, V) to I'(X, E) is compatible with tensor products and hence is a fiber
functor. For any K-rational (tangential) basepoint x the natural transformation
from w(dR) to w(x) which associates to each (E,V)eMicyi(X/K) the linear
transformation I'(X, E) — E(x) induced by restriction is an isomorphism. Therefore,
the fiber functors w(dR) and w(x) are canonically isomorphic. And hence the fiber
functors w(x) and w(y) are canonically isomorphic for any two (tangential)
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basepoints x and y. We denote this path from x to y by ,e(dR), and call it the
canonical de Rham path from x to y.

4.2. Pro-unipotent algebraic groups

In this section, we collect what we will need from the theory of algebraic groups.
More details and proofs can be found in [15].

If K is a field of characteristic zero the map that sends G/K to Lie G/K is an
equivalence of categories

Li < ( unipotent algebraic groups > ) ( ( nilpotent Lie algebras ) >
1€ : i .
over K over K

Furthermore for a unipotent G/K the natural functor that associates to a finite
dimensional linear representation of G/K the corresponding nilpotent representation
of Lie G is an equivalence of categories

Lie : ((reprs. of G/K))— ((nilpotent reprs. of Lie G/K)).

Let G/K be unipotent and let U/(Lie G) be the universal enveloping algebra of Lie G.
Then it can be realized as the ring of differential operators on G at 1. The central
descending series on Lie G induces a filtration on ¢(Lie G), which coincides with the
filtration with respect to the powers of the augmentation ideal of ¢/(Lie G). Let

U(Lie G) be its completion with respect to this filtration. There is a natural
pairing

U(Lie G)@TI'(G,0)—>K
that maps D®f to D(f)(1). This pairing induces a duality between {(Lie G) and

r(G,o0).
The ring multiplication on I'(G, O) dualizes to give a coproduct

A :U(Lie G) »U(Lie G) ®U(Lie G)

that makes Z:{(Lie G) a Hopf algebra over K. If 6 : G— G x G denotes the diagonal
imbedding then the product on I'(G, O) is given by

5 : T'(G,0)®I'(G,0)~T(G,0).

The dual of this map is the coproduct 4 on I (Lie G). Since dd maps ee T'G~Lie G
toe@ecTIGOT1G~Lie(G x G), we see that

Ale) = 1®e+e®1 for ecLie GEU(Lie G).
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Giving a rational point G(K) is the same as giving a linear map 4 : I'(G,0)—> K,
with /(1) = 1, such that the following diagram:

NG, 0) TG 0) - I'(G,0)

h@hl hJ{

K id K

commutes. This shows, by the duality above, that the rational points G(K)
correspond to elements a of (Lie G), with ¢(a) =1 and A(a) = a®a, where ¢ :

U(Lie G) — K is the augmentation map. The statements above naturally generalize to
the pro-unipotent case.

4.3. p-Adic multi-zeta values

In the following, when we write P'/Q we will always assume that it is endowed
with a specific choice of a coordinate function, i.e. a rational function zek(P'/Q)
such that Q(z) = k(P'/Q), where k(P'/Q) denotes the field of rational functions on
P' defined over @. For i,je{0,1, 00} let #; denote the unit tangent vector at the
point i that points in the direction from i to j. For example, ), = % at0,t9 = —% at
1, 10 =24 at oo, etc.

Let Xy = (P'\D)/Q, where D<{0,1, c0}. If p is a prime number, we will always
be working with the standard models Xy = (IPIZ”\D) /Z, of these varieties over Z,,
where D is the closure of D in Plzp. For each ie D, there is an endomorphism res; of
the fiber functor w(dR) that associates to each (E,V)eMicy,i(Xo/Q,log D) the
endomorphism res;(E, V) of E(i)~I'(Xy, E). If D; is an irreducible component of a
simple normal crossings divisor D on a smooth variety Z over a field K, and (E, V),
and (F,V) two vector bundles with connection that have logarithmic singularities
along D; then one sees that resp ((E,V)® (F,V))=id®resp,(F,V)+
resp, (E,V)®id. Therefore, the maps res; defined above are in fact derivations of
the fiber functor w(dR) hence give elements of the Lie algebra Lie 71 4z (Xo, @(dR)) of
the pro-unipotent algebraic group m; 4r(Xo, @(dR)).

Let 7 p denote the tannakian category of finite-dimensional vector spaces over K
endowed with nilpotent linear operators N;, for each ie D, such that ), ,N; = 0.

The functor that sends (E,V)eMicui(Xo,log D) to the vector space I'(Xy, E)
endowed with the linear operators res;(E, V) is an equivalence of categories.

That this functor is well-defined and defines an equivalence is seen as follows.

By Section 4.1, we know that (E,V) is canonically isomorphic to
(I'(Xo, E)® O, V') for some connection V' with logarithmic singularities along D,
and nilpotent residues res;, at ieD. Then V' is determined by
V’(l)eEnd(F()_(o,E))@F(X’O,Q}O(logD)) or equivalently by the <V'(1),r;> =
res;e End(I'(Xo, E)), for ieD, where r; denotes the residue map from
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F(X’O,Q;—,O(log D)) to Q at i. Since ) ;i =0, we have },_, res; = 0. This shows
that the functor is well-defined and using the argument in the proof of Lemma 1 one
sees that it is fully faithful.

In order to show the essential surjectivity, assume without loss of generality that

oweD. Let N;, for ieD be a set of nilpotent operators on a vector space V' with
> iep Ni =0. Then

V@Oy,d— > | Nidlog(z—i)

ieD\{w}

is an object of Micyyi(Xy,log D) whose image under the functor defined above is V'
endowed with the N;.

Let Liey <res;>;cp denote the free pro-nilpotent Lie algebra generated by the
symbols res;, for ie D. Then by tannaka duality the above equivalence of categories
implies that the natural map

Lienj <res;>;cp Z res; — Lie m; 4z (Xy, @(dR))
ieD

is an isomorphism.
(1) The case when Xy = G,,: Let Xy = G,,, then

71.4r (X0, 0(dR)) ~ 71 4r(Xo, 1)

by the canonical de Rham path between w(dR) and w(1). Denote by e the element of
Lien; 4r(Xo, 1) that corresponds to resg € Lie 7y 4z (Xy, @(dR)) under this isomorph-
ism. Note that Lieyj <e> ~Lie m; 4r(Xo,1). Let p be a prime number. In order to
compute the action of frobenius on m; 4r(Xo ®q Q,, 1), let Xy = G,,/Z, and let
F : Xp— X, be the lifting of frobenius F(z) = 2. This has the property that 7*(D) =
p D, and maps the basepoint 1 to 1. Therefore, F.(e) = p e, since pulling back by F
multiplies the residue at 0 of a logarithmic connection by p.

(i) The case when Xy =P"\{0,1, 0}: Let ¢y, e;, and e, be the elements of
Lie my 4r(Xo,%01) that are the images of the elements resyp, res;, res, in
Lie 1 4r(Xo, w(dR)) under the isomorphism

Lie nlﬁdR(Xm (D(dR)) ~Lie 7t1’dR(X0, l()])

given by the canonical de Rham path between w(dR) and w(f). Let Uyr be the
universal enveloping algebra of Lien; 4r(X, %) and Uar be its completion with
respect to its augmentation ideal. By the above, it is a cocommutative Hopf algebra,
and its topological dual is the Hopf algebra of functions on m; 4r(X,#1). Since
Lie 7y 4r (X, t91) =~ Lien <ep, e; >, Uar is isomorphic to the ring of associative formal
power series on ¢y and e; with the coproduct 4 given by 4(ep) = 1 ®ep + ¢9® 1, and
A(e)) = 1®e; + e ® 1. By the duality above the K-rational points, 7 4r(X, f01)(K)
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correspond to associative formal power series a in ¢y and e; with coefficients in K,
that start with 1 and satisfy 4(a) = a®a. Such formal power series are called group-
like.

Lemma 6. If acliyg is group-like, then it is determined by the coefficients of ey and of

the terms of the form ef)rlel ~~ef)‘_1e1, where sy, ...,sp=1, in a.
Proof. Letm = e¢; ---¢;,, where ¢; € {eo, e1 }, be a general monomial. Then comparing
the coefficients of m® ey on both sides of the equality 4(¢) = a®a, we obtain

amlalec) = Y alnt],

' € Sh(m, eg)

where Sh(m, ey) denotes the set of monomials obtained by putting ¢ either between
two of the terms in m, to the leftmost place, or to the rightmost place (Sh is for
shuffle). Therefore a[mey)] is determined by terms aleg] and a[m”] such that m" has
fewer ey terms on its right than m. Therefore by induction, if d is any monomial a[d]
is determined by aleg] and by terms of the form afe], where e has an e; on its

rightmost place, and hence is of the form e‘(“)"flel ~~~ef]‘_]el. O

Let p be a prime number. From now on we put X = Xy, ® g Q,, and use the
notation of Section 2.4, i.e. X = P'/Z,, D is the divisor (0) + (1) + (o) etc. By the
last paragraph of Section 3.2, there is an action of frobenius

F,:mar(X, t01) > 1 ar(X, to1)-

Lemma 7. With the notations as above F,(ey) = pey.

Proof. By the definitions above
a)(tm) : MiCuni(X/K)%VCCK

is the functor that sends (E,V)eMicy,(X/K) to the fiber E(0) at zero of its
canonical extension (£, V) and e is the element of Lie 7y 4z(X, 701) that associates to
each object (E, V) € Micy,i (X /K) the residue resy(E, V) e End(£(0)). Since F*(E, V)
was defined by choosing local liftings of frobenius, with the lifting F of frobenius
around 0 such that 7*(0) = p (0), we have reso(F*(E, V)) = p - reso(E, V). Therefore
F.eo=p-ey. 0O

Let 0 : X > X be the automorphism that maps z to ¢(z) = 1 — z, then we see that
the induced map

0. ar(X, tor) > 1 ar (X, tho)
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maps e to ;,e(dR), e1y,e(dR), . Since the action of ¢ commmutes with the action of

frobenius, we obtain

to”

F, (lloe(dR)tmellme(dR) ) :plme(dR)lmellme(dR)

ho fo*

Therefore if we let

g = l‘me(dR) F*(l‘loe(dR) l)enlydR(X’ ZOI)7

ho fo

the action of frobenius is described by
F.(e)) =pey and F.(e;) =g 'perg.

Therefore describing the action of frobenius on the de Rham fundamental group of
X reduces to describing g. The following definition is due to Deligne (unpublished).

Definition 3. The coefficient of the term 6‘3‘_161“'88'7181 in g is denoted by

pZ S"Cp(sk, ...,81) and called a p-adic multi-zeta value.
Note that this coefficient is also denoted by glef* 'e;---¢) "'e;] below. We will see

below that g[eg] = 0. Therefore, by Lemma 6, ¢ is determined by the p-adic multi-
zeta values.

5. Computations
5.1. Lifting of frobenius

In the following let R := Z,,, in order to avoid multiple indices. Let U = Y\{1},
and let U/R be the formal scheme over R that is the completion of X along U. Let

F:U-U

be F(z) =z'. Since F*(0) = p(0), and F*(o0) = p(0), this is a good lifting of
frobenius to 2. Note that «x = P'\D(1,1~). Moreover, note that P(F)(to1) = to1.

The functor oy : Micy,(X/K)— Coh(X) that associates to each (E,V) the
underlying vector bundle E of the canonical extension is a fiber functor. Therefore,
we obtain a groupoid G := G(Micy,(X/K),ay) acting on X. It is endowed with a
connection logarithmic along D. By this we mean that the identity section of the map
G— X x X over the diagonal A4y, extends to a section on the first infinitesimal
neighborhood of the strict transform 43 of the blow-up (X x X)~ of X x X along
A(D). As usual this connection satisfies the cocycle condition and converges in the
tube of A7 (we are always using the standard model). The following will be essential
for the computations.
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Claim. F induces a horizontal map
F g‘u,c XUK_’f*(g‘quuK)
between the groupoid restricted to the affinoid Ux x Uk and its pull-back via F~.

Proof. This is a direct consequence of the construction of the frobenius. Let s denote
the restriction of the connection of G to Ug. This is a section of G on the first
infinitesimal neighborhood Agz of the diagonal. In order to show the horizontality of
F. we need to show that F, maps the section s of G to the section F*s of F*G. The
section s of G is the one that associates to each (E,V)eMicyi(X,log D) and each
scheme valued point (x,y)elg x Uk lying in AS};, the isomorphism between E(x)
and E(y) defined by the connection V of E, where E(z) is an abuse of notation for
z*(E). By definition F.(s) is the section Fi(s)[,, of F*(G)|y s =F Glus xus- Then
F.(s) is the section of F*Gl, ., that associates to each (E,V) as above the
isomorphism between F*(E)(x)|,, and F*E(y)|,, defined by the connection F*V|,, .
But by the construction, with F as the lifting of frobenius on U, we have
F*El, ~F'E|,, and F*'V|, ~F*V|, . Therefore F.(s) is the section that
associates to each (E,V) as above the isomorphism between F*(E)(x) and
F*E(y) defined by F*V. But this is nothing other than the section F*s of
F*g|1/{;<><l/{1(' O

Taking the fiber product

e N

where the lower horizontal map is x—(0,x), we obtain the fundamental
714r(X, w(0))-torsor of paths that start at the point 0 (note that even though
0¢ X, this is well-defined in the de Rham realization).

With this notation, the horizontality of the frobenius means that the diagram

T Juty L F*(Tlug)

v -~

. LieFeid .
Lleﬂ'l,dR(X, t()l) ® Ql{(K/K le—®l-> L1e7r1,dR(X, t()l) ® QZI/{K/K

is commutative. The canonical de Rham path .e(dR), gives a section of 7. We let

9(2) = i, e(dR) g, F(e(dR), ) €m1ar(X, t01)
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for zelk, and view it as a group-like element of U z. As z varies this defines a rigid
analytic section g(z) of Usr® Oun(Ux), i.e. the coordinates of the e’ are rigid
analytic functions on U, for each monomial ¢’ in ey and e.

Proposition 1. Taking the image of .e(dR), in the two different ways in the
commutative diagram above gives the differential equation

pVdz dz

_ -1 P
o1 999 eag — (1)

dg(2) = (g (2) — g2)en) " LE + erg ()

Proof. First, we will give a more explicit description of (7, V).

Claim. The n) 4r(X, to1)-torsor with connection (T ,N) is naturally isomorphic to the

trivial torsor i ar(X,t01) x X endowed with the connection V' :=d — e ‘/7‘ — e :‘fl.

The isomorphism is the one that sends the unit section 1 of 7| 4r(X,t01) X X to the
section -e(dR), of T.

Proof. We only need to check that the isomorphism of torsors described in the
statement is horizontal with respect to the connections. This can be seen as follows.
Let (E, V) eMicyi(X/K,logD). Let

p : 1 ar(X, t01) > GL(E(0))

be the corresponding representation, and denote the representation if sz — End(E(0))
by the same symbol. Viewing (E,V) as a GL(E(0))-torsor with connection it is
isomorphic to (7,V) x, GL(E(0)), where the last notation denotes the GL(E(0))-
torsor with connection obtained by changing the structure group of (7, V) via the
map p. On the other hand (£, V) is isomorphic to

(1% B@x0s.d - plen) £~ plen £

z—1

by the unique map that induces the identity map on the global sections. That the
residues are of the last connection at 0 and 1 are equal to p(ep) and p(e) is
immediate from the definitions of ey and e;. This gives a horizontal isomorphism
from

_ - dz dz
(L) x X, = ple) E - plen) )
to (7,V) x, GL(E(0)) that is induced by the natural map described in the statement
of the claim. In other words the isomorphism between 7 4r(X, %1) x X and 7T is
horizontal if it is pushed-forward by an algebraic representation p:
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m14r(X, t01) > GL(V), where V is a finite dimensional K vector space. Since
m14r(X, t01) 1is pro-unipotent this implies that the original isomorphism is
horizontal. [

In the remaining part of the proof of the proposition we will use this trivialization
of (7,V). Note that with this notation if y(z) is a section of the torsor 7; 4z (X, t91) X
X then

V) = 7)) () e E — 5 enn(a)

1
Xlog D/K*

and Lie m; 4r(X, t01) as subsets of Ugar as in Section 4.3.
Then

as elements in Lie ) 4r(X, t01) ® Q Where as usual we view m; 4z (X, 201)(K)

dz dz
V(.e(dR), ) =V'(l)= —e_—— e

Hence by the formula at the end of 4.3.(ii), where Lie F, is denoted by F,,

: , dz dz
Lie F. ®id(_e(dR),, ) = —reo_—9 lpelgz 1

On the other hand the pull-back connection F*V on F*(7,, ) is given by

p—1
f*(vl):f*(d—EO%—elde ) —d de epZ dz

in the trivialization above. Finally F.(.e(dR), ) is mapped to g¢(z) in this

z 101
trivialization, and we get

o1 2 — 1

Iz s
FIUF (eldR),) = FT(o(e) = ole) do(2) - ) (P 4+ 01 22 )l

Since F*V(F.(,e(dR), ) = (Lie F.®id)(V(.e(dR), ), we obtain

z to1 to1

dz
z—1

_ _ dz 2P~z
oo o) oo (e’ + e

)g(Z) =-p 60% —g 'pey
Since
P(F)(tor) = tor,  P(F)(two) = (=1)" 100,
and log(—l)lfp =0, we obtain the relations

g(O) =1 and g(OO) = t()le(dR) F*(tmoe(dR)tm)a

L0

by Lemma 3.
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5.2. Relation between g and g( o)

The following relation will be fundamental for the computations. Let 7 : X — X be

1(z) = Z; 1. Then

T (30) = ta,oe(dR)tm €1y e(dR)

[

Since 1, commutes with the action of frobenius we obtain, from Section 9, that

F*(eoc) :pg(oo)flewg(oo)’

using the notation of Section 5.1.
Applying F, to

€0+€1+€m :07

we obtain

€0Jrg*lelg:g(®)71(€0+€1)g(00)- (2)

5.3. Uniqueness

If we know ¢g(o0), the equation above together with the facts that g is group-like,
and gle;] = 0 (see 5.6 below) determines g uniquely. If /z is another such element of
Uz then Ad(gh")(e;) = e;. Writing exp(a) = gh~" this gives exp(ad(a))(e;) = e;.
An induction on the weight of the leading term of a, starting with afe] = 0 and
aley] =0, gives a = 0.

5.4. Analytic functions on U
We will need the following proposition.

Proposition 2. Let f(z) =3 _, anz" be a power series with a,e K. Then f(z) is the
power series expansion at 0 of a rigid analytic function on U if and only if the map
o: N\{0} > K, defined by o(n) = a, is continuous, where N\{0} =Z is endowed with
the p-adic metric. And in this case the sequence of rational functions
ﬁZo <n<py anZ" converges uniformly to this unique extension to U, and the value
at infinity of this extension is given by — Nlim a,n.

—>aj)p

Proof. First note that functions of the form

1 n+k—-1\,,
(l—az)k_lzz< k-1 )“

0O<n



136 S. Unver | Journal of Number Theory 108 (2004) 111-156

for k>0, satisfy both the analyticity property and the congruence condition in the
statement of the lemma if and only if |a — 1|, <1 or a = 0.

Assume that f(z) extends to a rigid analytic function on . Then it is a uniform
limit with respect to the supremum norm on U of rational functions which do not
have poles on Y. Without loss of generality we may assume that these rational
functions are 0 at the point 0 and hence, by the method of partial fractions, are linear
combinations of the functions considered above with |@ — 1| < 1. Since we have seen
above that each of these rational functions satisfy the congruence property, to
deduce it for the coefficients of f(z) we only need to note the following inequality

sup [by|< sup |g(z),
O<n |z|<1

for a power series g(z) = )y, bxz", which converges on D(0,17).
Conversely, assume that we have the congruence condition for the coefficients of
f(z). Note that if

A= 3w,

—zP
I -z 0<n<pV

we have

1
fN+1(Z) —fN(Z) = W Z (an - an(mode))Zna

1 0<n<ph+!

where by n(mod p") we denote the unique integer m satisfying 0<m<p" and n =
m(mod p"). From this we see that

lfN+1(Z) _fN(Z)l< sup |an - an(modp“r)|7
0<npN+!

if 1<|z—1]. This shows that {fy(z)} is a uniform Cauchy sequence of rational
functions without poles on U/, and hence converges to an analytic function on U.
Note that the congruence condition implies that f(z) converges on D(0,17), and as
above we see that

lf(Z) _fN(Z)| < sup |an — an(mode)|7
0<n

if |z| < 1. This shows that f(z) is the power series expansion at 0 of the uniform limit
of the sequence {fy(z)}, and finishes the proof of the proposition if we note that
fN(OO)Z—apN. O]
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5.5. Parallel transport

Let V be the completion of X along Y. If x, y€) have the same specialization then
there is a canonical isomorphism,

Wx i o(x)=o(y)

from w(x) to w(y). We let
ypar, = l01e(dR));}fyxxe(dR)zm €T dR (X7 l01)7

and call it the parallel transport along the connection from x to y.

Lemma 8. We have

yparx[eo]:logﬁ and ypar fe|] = log -

Proof. The second formula follows from the first one by using the functoriality of
the canonical connection with respect to the map o : X —» X that maps z to o(z) =
1 Fz.order to prove the first formula, let f(z) = par.[e], where z ranges over an
open disc of radius one around x. Then we have

and f'(x) = 0, which gives f(z) =logz. O

5.6. Computation of gley] and glei]

Eq. (1) together with the initial condition g(0) = 1, gives

g(z)leo) =0 and g(z pZ—

0<n
pitn

on D(0,17), which has the rigid analytic extension ~log4 = ,2, 1 ply (?) (z) toU. To
obtain the value of g[eg] and gle;] we need a lift 7’ of frobenius to the completion U/
of X along Y\{0}, that satisfies Z*((1)) = p(1) and P(F')(t10) = t10. We choose

F'(z) =1—(1-2z)". And we obtain
gleo] = i (zopars s o] + F.(:e(dR), ea)

1—(1-2)Y
— lim logM
z—1 zP

=0
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and
glel] = }i_l}}(f'(z)paff(:) le1] + F.(ze(dR),, )[er])

im (log(1 —2)f —log (1= Z)p> =0.

=1
zo1 P — 1 1—2zr

5.7. Computation of g(z)[e} 'ei]

By a direct inductive computation using (1) and 5.6 we see that

l’l

g(2)ley 'el] sz

O<n
pin

on D(0,17) which has the rigid extension

n

1 Z
P) () — il
P e =p Jim s > o
O<n<p'
pin

to U (cf. Proposition 2).
5.8. Computation of g( o0 )[ed e1eb]
By 5.4 and 5.7 we see that g(o0)[ej'e;] = p*/% (o) = 0. Using this and noting

that g(co) is a group-like element with g(o0)[eg) =0 (by 5.6) we see that
g(0)[edereh] = 0 as in the proof of Lemma 6.

5.9. Computation of glefeel)]

Using the facts that g is group-like and g[ey] = 0 we see that

i) = (-1 ( 777 )aleil

5.10. p-adic analogue of Euler’s formula

Comparing the coefficients of eje)~ e, on both sides of the equation

(e +e1)g(0) = g(0)(eg + g 'erg)
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and noting that g(o0)[e}'e;] = g(c0)[ere) '] = 0 (by 5.8), we obtain that

gil[elef)*l] + g[ef;*lel] =0

or
gley'er] = glerey '] = (~1) ' gley " en].
Therefore
P’Lp(s) = gley'er] =0,
if s is even.

5.11. A formula for gley 'e]
Comparing the coefficients of epejel'e; on both sides of
(eo+e1)g(o0) = g(0)(eo + g 'e1g)
we obtain

1

g(o)lerey 'er] = g~ feoerey™'] = (=1)"sglepen].

Using Eq. (2) we obtain

do(2)lerdy o) = g2y el 4 (g@eres ) + g eney )+ gl el

Using 5.7, 5.10, and the fact that g(z) is group-like this reduces to

_ o dz 21 dz
dg(z)[erey ' er] = p*! (=) P (2) —— = p Do) :

11—z 1 —2zr

Hence, we obtain
— s—1 Z" A
g(2)lerey 'er] = p™ | (—1) - :
0O<n;<m “il’lz 0<n;<ny I’l“il’lz
ptm ptm
n1=nz(mod p)

on D(0,17). Since we know that g(z)[eje} 'e] is rigid analytic on U (see 5.1),
Proposition 2 gives
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And this gives the expression

_ P 1 1
gle ]el] = lim — —
ptn
for gledtey).
Note that if 0<r<p and P(x)eZ[x] then
1 P
llm _N %EZP.
Nz p 0<n<pN-1 (r+pn)
Therefore
o G=brt ] 1 o
lim  lim — %: lim lim — %
k—-ow N->wx p 0<n<])N’l (r _|_pn) k—-ow N->w p 0<l1<pN’1 (r +pn)
. 1 1
Noxp 0<n<pN-1 (r+pn)

then

s—1

1 1 1
— 1 - _
g[eo 61] =P khm s—1— (p — l)pk Nharnx pN Z nf—l—(l’—l)ﬁk

— 0

0<n<pV
ptin
. | —pw=br=s 1
=p’ lim lim — _

o 1 _p(p—l)p/‘—s
=P kll»ngo s—1—(p—1)pk Bip-pistr

1
= Jim (1= ) - 0= 1) =250
where {, is as in [5], a meromorphic function on the space of characters that
interpolates the values at the negative integers of the ordinary zeta function without
its Euler factors at p. This also shows that the notation we are using for the p-adic
multi-zeta is compatible with the notation used for the p-adic zeta function. Note
that this formula was proven in [5] using the distribution formula.
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5.12. Computation of g(o)[eleieheref]
Comparing the coefficients of e"“elegel on both sides of the equation

g(0) eo+er)g(o0) = ey + g 'erg

we obtain

ir g a+b+1 B
o)l = g7 e = (-1 (70T ot

Using the above and the facts that g(oo) is group-like, and g(oo)[eg] =0
we have

, . a+c— b+k
g(0)leercheres) = (~1)¢ 3 ( )( ) (e, dhFe]

0<k<c

o brett (@+b+c+1)! (_l)k ¢ a+b+c+1
=(=1) alblcl ar et kg )dle el

0<k<c

In particular,

g(oo)[elegelefﬂ:(—1)b+c+1<b+c+l> Z (—1)k(c+1)g[eg+c+lel]

C#—l 0<k<c k

b+c+1 )
= (U gl =g e

5.13. A relation between p-adic multi-zeta values of depth 2

Comparing the coefficients of e;ef” elef) e, in

g(0)(eo + 9 'erg) = (eo + e1)g(0)

we obtain

gleh ere) " er] + g ereh Tere) ' =g(0)[ef T ere) er] — g(o0)[erel tere) ]

— g7 '[eref gley"en]
=g '[egeres '] — g7 ey ' erep)]

+ gleg lel}g[ef) 161]
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Corollary 1. If we assume (for simplicity) that the weight s+ t is odd, the formula
above gives

G+ 0 3 (1 Jat -k = (T g

0<k<s

5.14. A formula for gleeieiter] in odd weights

(i) Comparing the coefficients of el 'eje~'e?, for 1>2, in

(0 +e1)g(o0) = g()(eo + g 'erg)
we obtain

g(o0)el zelef) led] = g(o)[es teres er] + g7 [eh ere en].

(ii) Similarly, comparing the coefficients of efeje}'ejef'ejey we obtain, for g>1,

g(o0)ef ere) erel leren] = g(0)[efere) 'erel  er] + g [ederel glel erenl.

Assuming for simplicity that the weight is odd, since then there are no non-zero
products of zeta values of this weight, this gives, for ¢g>1
-1

1 r—1
9(00)[3061‘30 ele el] = 7+1

(sg(oo)[egflelegelegflel] + rg(oo)[egflelef)*lelegel]).

Therefore, for g=1,

Q(OO)[egele?) 16%] (=1)? Z (q>(q—l)!wg(00)[e1ea 1+le1 ¢l lel]

(q+1)! 5z, \1 (s—1)!
—1)1 s—1+1
Sy () el e e

0</<q

Combining (i) and (i1) we obtain that, if the weight is odd,

—1)! s—1+1 _ L
gleg ' ereyer] = ) > ( )g(oo)[ele‘é Heyef > ey

r—1 0</<t-2 l

+g(0)[ey erey el]

for t=2. In 5.17 below we will try to describe the right-hand side of the last equation.

5.15. Regularized iterated sums

The following type of sums will appear naturally in the following. In order to find
formulas for the coefficients of g(z) we will generally begin with a rigid analytic
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function of the form

f(z) = lim # Z a,z"

Noow | — zpV
»w | — z 0Ly

on U, (as in Proposition 2). In fact, in the following we will know that the functions

extend to analytic functions on P'\D(I,|p|"?"" =). Then we will find the
antiderivative of these functions after multiplying them with

dz 7 ldz dz
, or
z 1 —zr 1—z

under the initial condition that they be zero at 0. Since the residue of this product at
infinity is in general non-zero the anti-derivative is only a locally analytic function,
which depends on the choice of a branch of the p-adic logarithm. However, if we add

dz

1—z

to this product, where C is minus the residue of the product, the sum will be an
analytic function on /. And if we know that our original function f extends to an
open disc around U, this will be true in the applications, then the anti-derivative of
the sum will be an analytic function on ¥. The addition of the term above will come
naturally from the fundamental differential equation (1). The residues are given by

dz .
resocf(z)7 =—f(0) = ]\IILIHx an,
2 dz .
reso f(z) - =f(0) = —Nhjngo ay,
dz .
ress f(z) ] _Z:f(oo) = —NIme an.

The first non-trivial example of this situation arises when we need to regularize the
series

1 zZm
lim —— ;
Noow 1 — 2z . ning
0<nm <my<pV
pim

which is obtained from

0<n<pN
pin
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by multiplication with

d and %
1—z z

and integration. We denote the series obtained by successive regularization with the
above method by

 min
0<n <m<pN 1772
ptm
and its value at infinity by
. 11
— lim ' ——
N—> oo ) nSp[N
0<n<p¥
ptn

By the description above we see that we can write

1
Z ; = /1(s)pN +V2(S)p2N + .. +)),(S)p’N + 0(p(t+l)N)
0<n<pV
ptn

for some 7,(s) and the regularized sum above is nothing other than —y,(s). Then 5.16
below combined with 5.11 gives that

ps+tyt(s) _ (_1)s+t+lg(OO)[ele(s)—lele(t;l] _ (_I)A\'+t+lg71 [esfleleé]

(T D ten = o (U7 o,

In general, if an iterated series

an
§ : S1
m

Sk
...nk

is obtained from a series, successively after multiplication by one of the functions
above and integration from a rigid analytic function on U/, we denote by

1 ZM
lim N ! S S
the function regularized by the method above, and by

i
, Z
%

51 K
nl ...nk

the restriction of the regularized function to D(0,17).



S. Unver | Journal of Number Theory 108 (2004) 111-156 145

In particular,

n
> o= Y
Sl
0<n1<n2n]n2 0<n|<na 1<i<t 0<n
ptm ptm

5.16. Computation of g(z)[el 'erelei]

Claim. For s,7>1 we have

5]

S s s—14+k z
sl e —prcy S| () 2 S
< 1 2

0<}’l1 <np

ptm
n1=nz(mod p)
+1 z"
S 1)S /
DT YT
O<n<n, 1772
pim
Proof. The formula for t =1 is
12 1y
s—1, 1 _ s+l s—1 Z z
g(2)lerey er] =p | (=1) e o
O<n<ny 1772 0<n <m 122
pim ptm
n1=nz(mod p)

which was proven in 5.11. By Eq. (1), g(z)[eie 'ejef '] is a linear combination of

two terms: the term obtained by multiplying g(z)[e1¢} 'e1e5 2] with £ integrating and

regularizing as in 5.11, and the term obtained by multiplying g(z )[ef) leref!] with

p—

Z,,, "z and integrating. The contribution from the first term is computed using the
formula in the claim with ¢ replaced with ¢t — 1. The contribution coming from the
second term is computed using

sl e 1= 0 (U7, T Yol

r—1

since ¢g(z) is group-like, and
n

1D i1 zZ
9(2)ley" Ce] = p ZW;

0<n
pin

proved in 5.7. Induction on ¢ gives the formula in the claim. [
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By the analogous induction on ¢ starting with the same formula we obtain

_ o s s s—14+k , zm
g(2)eb eres ey =pt(—1)"! > ( k ) > ok

0<k<t 0<ni<nm ”‘1
pim

Z"m

Sl "
0<n <ny n1n2

ptm
ni=ny(mod p)

By Proposition 2 the first expression gives

11
S— - 1o
gloo)lerey erey ! =p™ ()" lim - 3 S
0<n<pV
pin

—1, =11 _ sfs+t—=2 . 1
g(o0)[ey 'erey ed—p”’(—l)( - > lim Z’ — =

b—1 a—1

5.17. Computation of g(z)[eie; 'eref ei]

Using 5.16, the differential equation (1), and relation (2) we obtain

B B a—1+k z™
g(@)lereh Tereg e ] =p= | (<1 Y ( . ) >

0<ny<my<n; npn 3
ptm
ny=n3(mod p)

b—1+k ZM
o[04, 5
D D L D S

ptm
ni=ny(mod p)

z" a+b / z"
+ Z n“nbn + (_1) Z n[’n"n
0<ny <np<nj 172113 0<n <m<ny 17273

ptm ptm
ny=ny=n3(mod p)
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+ <—1>”+“"("+")g[e3+keu PP

0<k<b—1 a—1 0<n <m n )
pim
Therefore
b—1 a—1 _ a+b+1 li 1 1 a+b / 1
g(oo)lerey ereg el = —p im —|(=1) 2

; nin
0<n1<ng<pN 1772

ptm

s |1y b

0<n1<n2<pN 1 n2
ptm
ni=ny(mod p)

o ST S e

nb—k
0<n <m<pV¥ "1 2

ptm
plna
a-+k
+ ((_1)a+b2k<b_k_l)< )
0<;7—1 a—1
x (pla+k+ 1), (b —k))).
For odd weights, using 5.18 below, this reduces to
g(OO)[elegfle]eg*lel] = _pu+h+l lim L (_1)a+b Z, |
N> pN ban e < ntnd
ptm

u a—1+k 1
+(=1) Z ( k ) Z/ na+kn/27—k

0<m <m<pV 'l
ptm
plna

+(_1)a+1# Z (b_l—i_k)Cp((l—i—b—kl)

0<k<a k
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; 1 1Y 1 7
5.18. Computation of limy _, o, il > . m]‘or even a+b
ni=ny(mod p)
We have
1 1 1 1 1
Do X w2 ot 2 ot D
0<n<pV 0<n<pV 0<m <m<pV 172 0<m <my<pV 1772 0<n<pV

rin—q pln—q plm—q plm—q pln—q

pln—q pln—q pln—q

for 0<g<p. Multiplying this with 1/p" taking the limit as N — co, and summing
over 0 <g<p we obtain

i 1 1 n 1 I 1 1
m — E E = — Iim —
N> o N pn4 b ! ba N> o N nu+b
p 0<n|<ng<p'V 1]12 0<n|<ng<p"\ I’lll’l2 p 0<n<pN
ptm ptm pin

m=ny(mod p) m=m(mod p)
since the limits
1 $ 1
pN 0<n<pV ‘
pln—q

exist.
On the other hand, since

Y owam O 1

b
0<ny<my<pV ntzl 0<n <nmy<pV (pN - nl)a(pN - l’lz)

pim pim
ni=ny(mod p) n1=nz(mod p)
and
1 pkN
_ N k1
n P O<k n
we obtain
i 1 1 i 1 1
m — = im — —
Noow pN Z ba N—o oo pN z : a,b°
cep 0<ny<my<pV i cep 0<n <ny<pV i
pim pim
n1=ny(mod p) n1=ny(mod p)

for even a + b.
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Combining this with the above we obtain

. 1 a+b

llm — Z WZ—TCP(a-l-b—i—l).
0<n <ny<pV

ptm
ni=nz(mod p)

By the same argument we also obtain

1 1 —s(s—1)
i _ e
im P Z Z I ) Gls+1),
0<k<s—2 0<nm<nm<pV¥ "1 2
ptm
ptm
for s=2.
s—1,2

Example. An expression for glej 'ej], for even s. From 5.14 we obtain, for
even s,

. —1)" o -
gl ="V S gloo)leidberdy el + (o0l
0<k<s-2

After using 5.17 and simplifying we obtain

s+1 j : 1
12 _p . L . ! -
gley el =1— A pN g
0<k<s—2 0<m<m<pV "'1 "2
ptm

1 1
+ E ! + E — | —gleder].
nlni‘l nm%‘l gl 0 J

0<n <ny<pV 0<ny <m<pV

pim pim
plna ny=ny(mod p)

Using 5.19 and 5.20 this gives

ol 0 5 )

<k<s—

= _ %p“'“ L(s+1).
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Proposition 3. We have
Gl )= =35+ D, G(Ls) = (3+1) -Gl +1),
for even s, and the shuffle formula
(p(1,2) +C,(2,1) = ((t + 2),
for odd t.

Proof. The first equality was shown in the argument before the proposition. The
second one follows from the first one by using Corollary 1 to obtain

G, 1) = Cp(1,s) = =(s+ 1), (s + 1).

The shuffle formula follows from the second formula by using Corollary 1 to
obtain

(t+2)(t+1)

Cp(172)+Cp(2at)+['£p(1al+1): p)

Gt +2). O

5.19. Partial sums

The following will be used to explicitly compute the effect of regularization in the
regularized iterated sums. Let I',(z) denote Morita’s Gamma function, which is the
unique continuous extension to Z, of the function from N\{0, 1} to Z; that sends n

o (—=1)" [Ti<j<n j- Let log denote the Iwasawa extension of the logarithm then
pti
log I',(z) extends to an analytic function on D(0,17) and

holds [8], where

is the p-adic Euler constant.

I
—
I
—
=
A
+
-
)
>
[}
+
—_
S~—

Comment. Note that in the p-adic case —{,(s + 1)
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(i) Harmonic: We would like to see that the following equality holds:

Z —==3 "G (s+ e’ =log I,/ (n) — 7,

0<j<n 1<s
rtj
for nepZ.
Note that
1 1 1
G(s+ )n' = —| lim — —|n
Z; lsss N_)CLpN0<jz<:p‘]S

= lim — Z —log (1—(—))
N->ow p 0=
mj
= — lim Z log(j —n) —logj
o N
N=ewp 0<j<pV
129
. 1 .
== lim — > log(~)) — log(p" )
sep 0<j<n
127
Y -
= lim — 10g<1——)
N pN 0<j<n
i

:_Z_

0<]<n
rtj

for nep Z. The change of the order of limits is valid since if we let

11 1

ay (S ) .—,
spV A

0<j<p
ptj

then |ay(s)|(1 — &)’ =0, for 0<e<1, uniformly in N.
(i1) Generalization: Similar computations as above give, for nep Z,

(-1 Z =3 s+ Dy Gls + k) n' = —log ¥ (m) +log IP(0),

0<j<n I<s
rti
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c.f. the regularization in Section 5.15. Here for k=1, (x), =x-(x+1)---(x+ (k —
1)). To see the above expression note that

.1 1 )
ST+ DGR =3 (s+ 1), | lim — ZV e |

N —
1<s I<s 0<j<p’
129
— lim ! > (s+1) (")Y
N =1 k=2\ 7
N i 0<j<pwjk : I<s
1229
1 +k—2 s
=(k—=2)! lim — - (S ><E>
Noep 0<j<pV J 1<s k=2 J
rtj
1 1 n\\ ¢
Now p 0<j<p‘J J
rtj
1 1
=k -2)! lim — -
T Y e G
rtj

5.20. Computation of limy _, 1% S

1
O<n <m <]JN n‘]‘ng
pim
pln

Let f(n) = > 0<j<n /l Then
pti -
1 .1 , f(n)
p = Jim o > b

) 1

im >

N— . .
p 0<n <my<p" i 0<n<pV

ptm pln
plna
Recall that
1 1
— lim !
N ph i

O<ny<m <pN
ptm
plny
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is defined to be the value at infinity of the function obtained by successively
multiplying

. 1 l‘h f
NIEHOC 1 —z" Z niny Nlaoo ]—ZP Z

0<ny<m<pV 0<n<pV
ptm

with %, integrating and regularizing (b — 1)-times and finally multiplying with "’f_lzjf:,
integrating and regularizing.

The formula in 5.19 gives

a—1

—1
—1)° <S+a >Cp(s+a)n“
1<s

When we successively regularize as in 5.15 the residues that are used in the
regularizations are the Taylor coefficients of f(n) in the expansion above. That is, if

we let a, = (—=1)*("t*] 1)Cp(era) be the Taylor coefficients above then the first
residue is limy _, o, f(p")/p" = a;. In the second step a; needs to be subtracted, and

the residue in the second regularization is limy_, o (fl(fz’;:) —1%) =a,. We do this

(b — 1)-times until we reach the second to last step where the residue is

i, ot (70 = 5 )=

1<i<bh-2

In the final step, where we need to regularize after multiplication with " d‘ the
residue will be —limy_, o, p,,N(f(pN) Y i<icpr @p™) = —ap. Note that the remdue

of g(z) 2= at infinity is g( o). Therefore

Jim e Y o S ae XS e

0<n<pV 0<n<pV 0<n<pV b+1<s
pin pln pln
1 /a+b—-1
=(—1)"= b
(80 atarn
1/a+
+ (=1 < )C,,(a+b+ )
2\a—
s+a+b—1 ]
+(1)“Z< u >§p(s+a+b)BSp“l
2<s

which is equal to (—1)*""! 1(Z”l’) {y(a+b+1)ifa+bis even, since the zeta values of

even weight and the Bernoulli numbers By, with 3<s and odd, are equal to zero.
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5.21. Value of {)(t,s)

Assuming, for simplicity, that s + ¢ is odd and 2<¢, and combining Section 5.13,

— —1! s—1+1 " -
gleberel e] :( ) Z ( )g(oo)[eleg eyef 2 ey
0</<t-2

t—1 )
oo )le ey e,
Section 5.12,
B B s+1—-2 _ _
oo e e =17 (T Jateo g el !

. s+t—2 s+t—1
ps+r(_1)A+t+1< o >< - >Cp(s+l‘)

Sections 5.17 and 5.20,

1 | s+t
g0 )lerey ey el =p | m Loy DU

N= e pN 0<n1<n2<p"V n‘i""lnlz_l_l
ptm
pim
(_1)l+l+l <S+tl>
1‘7
+CP(S+)< 2 \s+i-1
(D)%) s+1—1 <tl2+k>
+ > (—2—1+k k

0<k<s+l
i S+t —1 s+1—-1+k
S T
0<k<t—I-1

and putting

~1)"! -1+ t—1
cr,s) = (S " )((-1)”’“(3+ )/z
=1 A=, ! s+1-1

(=D (s+1—1)!
2(s+1—k+D(—1-2)k!

0<k<s+l
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i S+t —1 s+l—-1+4+k
wrel 2 (0
0<k<t—I-1

N (_I)S+I+lt(s+t_ 1)2

s+1t—1 s—1
we obtain the following.

Theorem 1. The depth two p-adic multi-zeta values are given by

(—1)* s—1+4k\ . 1 |
Glos)=4— X Jim oy P

N S
0<k<t=2 p 0<ny<ny<pV m

ptminy
+ C(t,5){,(s + 1),

for odd weights.

Remark. In fact the proof gives a formula in the even weight case too. However it
becomes too messy to write down. The only reason for restricting to odd weights was
to simplify the formula (using {,(2k) = 0 and (5.18)).
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