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MOTIVIC COHOMOLOGY OF FAT POINTS IN MILNOR RANGE

JINHYUN PARK AND SINAN ÜNVER

Abstract. We introduce a new algebraic-cycle model for the motivic cohomology the-
ory of truncated polynomials k[t]/(tm) in one variable. This approach uses ideas from the
deformation theory and non-archimedean analysis, and is distinct from the approaches
via cycles with modulus. We compute the groups in the Milnor range when the base
field is of characteristic 0, and prove that they give the Milnor K-groups of k[t]/(tm),
whose relative part is the sum of the absolute Kähler differential forms.

1. Introduction

The objective of this paper is to present a new algebraic-cycle model for the motivic
cohomology theory of schemes with singularities over a field k and to compute concretely
the simplest case to justify the model.

Bloch’s higher Chow groups [3] for smooth k-schemes give the correct motivic coho-
mology groups as shown by Voevodsky [32], but they fail to do so when the schemes have
singularities; a good motivic cohomology group is expected to be part of a conjectural
Atiyah-Hirzebruch type spectral sequence that converges to higher algebraic K-groups
[24] of Quillen. While the K-groups do detect the difference of a scheme X and Xred

(see e.g. [31]), the higher Chow groups do not distinguish X from Xred. The additive
higher Chow groups, initiated by Bloch-Esnault [4], were in a sense born as a way to
complement this issue for non-reduced schemes.

The approach through additive higher Chow groups, developed further by e.g. [17],
[18], [19], [22], [23], [25], has had several successful aspects; they provide understanding of
Witt vectors, de Rham-Witt complexes and crystalline cohomology via algebraic cycles
based on the moving lemma of [14] that uses an ingenious method of “weighted trans-
lations,” and they also spawned a variation, “higher Chow groups with modulus,” e.g.
[2], that rapidly built connections to various subjects of mathematics such as abelian-
ized fundamental groups [16], Somekawa K-groups and reciprocity functors [11], [26],
and motives with modulus [13], to name a few. On the other hand, away from the Mil-
nor range, our attempts to understand the conjectural motivic cohomology for singular
schemes through the cycles with modulus bumping into increasingly complex technical
and philosophical issues. Some of these hindrances encouraged the authors to return to
the starting point, and look for and develop some fundamentally new approaches.

The new approach of this paper may, of course, resolve some of the old issues, while
it may create a different set of technical problems; for instance, the Milnor range is no
longer represented by 0-cycles, but by higher dimensional cycles, so that harder algebro-
geometric challenges await us. Nevertheless, we choose to work with this new model,
because as far as we see so far, this seems to be leading us further as well as opening new
avenues to handle algebraic cycles via some means and ideas such as deformation theory
or non-archimedean analysis, that were thought to be somewhat distant from the subject
until now.

The particular case studied in depth in this paper is the truncated polynomial ring
km := k[t]/(tm), and we show that the Milnor K-groups of km can be expressed in terms
of our new cycle groups in the Milnor range. The precursors of these theorems for higher
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2 JINHYUN PARK AND SINAN ÜNVER

Chow groups were the theorems of [21] and [27], and for additive higher Chow groups, the
theorems of [4] and [25]. Our theorem in this paper can be regarded as a unification of
all those precursors in ibids. We repeat however that, unlike those precursors our cycles
that represent the Milnor range are now 1-cycles, while the 0-cycles do not appear in our
groups (see Remark 2.3.6), so our 1-cycles in the Milnor range form yet the simplest part.

We retain the notations of the cubical version of higher Chow groups (see §2.1), but
for smooth k-schemes only. For km, we redefine CHq(km, n) in §2.3, different from the
higher Chow groups of [3]. In this new theory, we can easily define the relative group
CHq((km, (t)), n) (see Definition 2.3.7). The main theorem, following immediately from
Theorem 3.0.1, is:

Theorem 1.0.1. Let k be a field of characteristic 0 and let m,n ≥ 1 be integers. Let

km := k[t]/(tm). Then the graph homomorphism KM
n (km)→ CHn(km, n) to the redefined

higher Chow group of km is an isomorphism. The isomorphism of the relative parts

takes the form (Ωn−1
k/Z )

⊕(m−1) ≃ CHn((km, (t)), n), where the former is the relative Milnor

K-group KM
n (km, (t)) of km.

We mention a few further new aspects of our theory. One of them is about the ring
km that has several presentations k[t]/(tm), OA1

k,0
/(tm) and k[[t]]/(tm). Usually those

work on algebraic cycle theory may work with the “algebraic” situations, e.g. cycles
over either k[t] or its localization O := OA1

k ,0
. In our approach, we work with cycles over

k[[t]] = ÔA1
k ,0
, which is henselian. This gives more admissible cycles not of algebraic origin

from O, but generally they have better rationality properties. For instance, y =
√
1 + t is

of degree 2 over O, while it is rational over Ô because
√
1 + t = 1+ t

2
− t2

8
+ t3

16
−· · · . The

possibility of using Hensel’s lemma could also be a technical benefit. On a pair of integral
cycles over k[[t]], we put a “mod tm relation” when their pull-back to k[[t]]/(tm) are equal
(see Definition 2.3.3) and this allows us to use some intuition from the deformation theory
to study cycles. The other fundamental structure that we use in our new model is the
non-archimedean t-adic metric on k((t)) = Frac(k[[t]]). This non-archimedean analytic
view-point helps us in proving the following new type of mod tm moving result of Theorem
1.0.2, stated in Theorem 4.3.2. As said, we work with cycles over k[[t]], but nevertheless
Theorem 1.0.2 below allows us to transport some technical results already known for
cycles over k[t] or OA1

k ,0
, to our cycles over k[[t]], through which it plays an essential role

in proving Theorem 1.0.1:

Theorem 1.0.2. Let k be a field. Let O := OA1
k,0

and let Ô := ÔA1
k ,0
. For the com-

pletion homomorphism ξn : znm(O, n)c → zn
m̂
(Ô, n)c, the composition ξnm : znm(O, n)c →

zn
m̂
(Ô, n)c → zn(km, n) := zn

m̂
(Ô, n)c/ ∼tm is surjective.

Here, the superscripts “c” denote the subgroups of the corresponding higher Chow

groups consisting of the cycles proper over O and Ô, respectively. See Definition 2.2.5.
Although there could be more cycles over k[[t]], this theorem shows that modulo tm in
the Milnor range, we can still approximate them by those of algebraic origin. This leads
us to reduce the argument of the proof of Theorem 1.0.1 to the graph cycles, giving a
great technical simplification.

Since this mod tm moving lemma of Theorem 1.0.2 is a new type of result for the
studies algebraic cycles, to give some motivations to the reader, let us quickly sketch
the idea. The essential point behind the proof of Theorem 1.0.2 is, simply put, the
notion of “coefficient perturbation”: when W ∈ zn

m̂
(Ô, n)c is an integral cycle, we show

that it is possible to choose a “nice” system of equations, for which perturbations of the
coefficients may produce “nice” deformations of W . The base parameter space is the
space of all choices of the coefficients. Some properties such as non-emptiness of the
solutions or proper intersection with the faces are open conditions on this base. However,
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the integrality that is necessary for moving mod tm-equivalence is not a constructible
property, while even if this is considered with the stronger geometric integrality, we need
a flat family. For this we devise a trick that is in a sense an explicit version of the
flattening stratification theorem. Using so-obtained locally closed nonempty base, we
finally prove that we can deform W mod tm with all the desired properties preserved,
such that it comes from the “algebraic world” over O. In the process, we need to resort
to the non-archimedean t-adic metric topology.

Some follow-up on-going works will treat the cases of off-Milnor range of the relative
Chow group of (km, (t)), with a cycle-theoretic version of the regulator maps on the
additive polylogarithmic complex constructed and studied in [28] and [29]. cf. [30]. Its
comparison with the regulators in [22] and [23] will also be discussed. Other on-going
works deal with the case of Artin local k-algebras with embedding dimensions ≥ 1.

We remark that our cycle complex seems to have a natural generalization which gives
a construction of what might be a candidate for the motivic cohomology of any k-scheme
with singularities, which offers a way to define the relative version for any pair (X,Z)
of a scheme and its closed subscheme. The verification that this is well-defined and is
the “correct” definition will require nontrivial work, but we hope that the results of this
paper could be taken as an important evidence that our approach or its variation has a
potential to reach the goal of constructing the ultimate motivic cohomology theory for
all k-schemes.

Acknowledgments. Part of this work was conceived while both of the authors were
visiting Professor Hélène Esnault’s workgroup at Freie Universität Berlin. The authors
wish to express their deep gratitudes to Professor Hélène Esnault and Dr. Kay Rülling
for their kind hospitality. The authors also feel very grateful to Professor Spencer Bloch
for his continued encouragements and interest in the project. During this research, JP
was partially supported by the National Research Foundation of Korea (NRF) grant No.
NRF-2018R1A2B6002287 funded by the Korean government (Ministry of Science and
ICT), and SÜ was supported by the Humboldt Fellowship for Experienced Researchers.

Conventions. For a scheme X → Spec (R) over a discrete valuation ring R, we always
denote the special fiber by Xs, and the generic fiber by Xη.

2. Recollections, new definitions and basic results

In this section, we recall some of the basic definitions and results on higher Chow
complexes needed in this paper. A new one over the truncated polynomial rings k[t]/(tm)
will be defined in §2.3, which is the main complex we work with.

2.1. Recollections of higher Chow cycles. Let k be a field. We recall the cubical
version of Bloch’s higher Chow complexes (cf. [3]). Let P1

k := Proj(k[u0, u1]), and let

�k := P1
k, with y := u1/u0 as the coordinate. Let �k := �k \ {1}. We let �0

k = �
0

k :=
Spec (k), and for n ≥ 1, we let �n

k (resp. �
n

k) be the n-fold product of �k (resp. �k) with
itself over k. A face F of �n

k (resp. �
n

k) is defined to be the closed subscheme given by
a finite set of equations of the form {yi1 = ǫ1, · · · , yiu = ǫu}, for an increasing sequence
of indices 1 ≤ i1 < · · · < iu ≤ n, and ǫj ∈ {0,∞}. We allow the case of the empty set of
equations, i.e. having F = �

n
k . A codimension 1 face is given by a single such equation,

and we often write F ǫ
i to be the one given by {yi = ǫ}.

For a smooth k-scheme X , we let �
n
X := X ×k �

n
k , �

n

X := X ×k �
n

k , and define the
face FX of �n

X to be the pull-back X×k F, of a face F of �n
k . We drop the subscript X in

F ǫ
i,X when no confusion should arise. Let zq(X, n) be the free abelian group on the set of

codimension q integral closed subschemes Z ⊆ �
n
X which intersect each face properly on

�
n
X . For each codimension 1 face F ǫ

i,X , with 1 ≤ i ≤ n and ǫ ∈ {0,∞}, and an irreducible
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Z ∈ zq(X, n), we let ∂ǫi (Z) be the cycle associated to the scheme-theoretic intersection
Z ∩ F ǫ

i,X . By definition, ∂ǫi (Z) ∈ zq(X, n− 1). This forms a cubical abelian group (n 7→
zq(X, n)), where n = {0, 1, · · · , n}, in the sense of [20, §1.1]. Let ∂ :=

∑n
i=1(−1)i(∂∞i −∂0i )

on zq(X, n). One checks immediately from the formalism of cubical abelian groups that
∂ ◦ ∂ = 0 and hence one obtains the associated nondegenerate complex zq(X, •) :=
zq(X, •)/zq(X, •)degn, where zq(X, n)degn is the subgroup of degenerate cycles, i.e. sums
of those obtained by pulling back via one of the standard projections �n

X → �
n−1
X , for 0 ≤

i ≤ n, which omits one of the coordinates on �
n
X . This complex (zq(X, •), ∂) is called the

(cubical) higher Chow complex of X and its homology groups CHq(X, n) := Hn(z
q(X, •))

are the higher Chow groups of X . It is a theorem of Voevodsky [32] that the higher
Chow groups form a universal bigraded ordinary cohomology theory H2q−n

M (X,Z(q)) :=
CHq(X, n) on the category of smooth k-varieties X .

2.2. Some subgroups. If we are given an integral closed subscheme W ⊆ X , we have a
subcomplex zqW (X, •) ⊆ zq(X, •) defined as follows: first, let zqW (X, n) ⊆ zq(X, n) be the
subgroup generated by integral closed subschemes Z ⊆ �

n
X which intersect each W × F

properly on �
n
X , as well as each FX = X × F, for every face F of �n

k . More precisely, we
require the codimension of Z ∩ (W ×F ) in W ×F to be ≥ q. Modding out by degenerate
cycles, we then have a subcomplex zqW (X, •) ⊆ zq(X, •). In this paper, we are interested

only in the cases when (X,W ) is (Spec (Ô), m̂) or possibly (Spec (O),m) where:

Definition 2.2.1. Let O := OA1
k ,0

with the maximal ideal m, and let Ô := ÔA1
k,0
, which

is the completion of O at m, with m̂ its unique maximal ideal. Here Ô ≃ k[[t]]. For

m ≥ 1, let km := Ô/(tm) = k[[t]]/(tm). We use these notations throughout this paper.

Remark 2.2.2. We have zn+1
m̂

(Ô, n) = 0. To see this, suppose that zn+1
m̂

(Ô, n) 6= 0 and let

p ∈ zn+1
m̂

(Ô, n) be a closed point on �
n
Ô
. Here, [k(p) : k] < ∞ so that the image of the

composition p →֒ �
n
Ô
→ Spec (Ô) must be the unique closed point m̂ of Spec (Ô), i.e. p

lies in the special fiber of the morphism �
n
Ô
→ Spec (Ô), contradicting the assumption

that p ∈ zn+1
m̂

(Ô, n). Hence zn+1
m̂

(Ô, n) = 0.

Remark 2.2.3. We have zn+1
m

(O, n) = 0 as well. The proof is identical to that of Remark

2.2.2 by simply replacing (Ô, m̂) by (O,m). We use Remarks 2.2.2 and 2.2.3 later in
Corollary 4.3.3.

Corollary 2.2.4. For n ≥ 1, let Z ∈ zn
m̂
(Ô, n) be an integral cycle. Then for any proper

face F ⊂ �
n
Ô
, we have Z ∩ F = ∅. In particular, we have ∂ǫi (Z) = 0 for any 1 ≤ i ≤ n

and i ∈ {0,∞}, thus ∂(Z) = 0. A similar result holds for Z ∈ zn
m
(O, n).

Proof. If Z ∩F 6= ∅ for a codimension 1 face F ⊂ �
n
Ô
, given by {yi = ǫ}, then ∂ǫi (W ) 6= 0

in zn
m̂
(Ô, n−1). But this contradicts Remark 2.2.2 that says zn

m̂
(Ô, n−1) = 0. So Z does

not intersect any codimension 1 face at all. However any proper face is contained in a
codimension 1 face, so the corollary follows. �

Definition 2.2.5. Let zq
m̂
(Ô, n)c ⊂ zq

m̂
(Ô, n) be the subgroup generated by the integral

cycles Z ∈ zq
m̂
(Ô, n) that are proper over Spec (Ô). Similarly, define zq

m
(O, n)c ⊂ zq

m
(O, n).

There are some technical advantages in working with cycles in zq
m̂
(Ô, n)c. Firstly we

have the following, inspired by [18, Lemma 5.1.4]:

Lemma 2.2.6. Let X be a k-scheme. Let W ⊂ �
n
X be a nonempty closed subscheme and

let W ⊂ �
n

X be its Zariski closure. Then W → X is proper if and only if W = W .
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Proof. (⇒) The structure morphism W → X factors into the composite W →֒ �
n

X → X .
Since the composite is assumed to be proper and the second morphism is separated by
[10, Theorem II-4.9, p.103], the inclusion W →֒ �

n

X is proper by [10, Corollary II-4.8(e),
p.102]. In particular W is closed in �

n

X and W = W .
(⇐) If W = W , then W →֒ �

n

X is closed, in particular it is a proper morphism by
[10, Corollary II-4.9(a), p.102]. Hence composed with the proper projective morphism
�

n

X → X , the composite W → X is proper by [10, Corollary II-4.8(b), p.102]. �

Lemma 2.2.7. Let W ∈ zq
m̂
(Ô, n)c be a nonempty integral cycle. Then we have:

(1) W is closed in �
n

Ô, so that its Zariski closure W is W itself.

(2) The structure morphism W → Spec (Ô) is surjective.
A similar assertion holds for W ∈ zq

m
(O, n)c.

Proof. (1) is a corollary to Lemma 2.2.6.

If W → Spec(Ô) is not dominant, then W = Ws, which violates the assumption that

W ∈ zq
m̂
(Ô, n). Hence W → Spec (Ô) is dominant. Now, being proper and dominant, it

must be surjective, proving (2). �

Lemma 2.2.8. The boundary operator ∂ of the complex zq
m̂
(Ô, •) induces a boundary

operator on each zq
m̂
(Ô, n)c, thus zq

m̂
(Ô, •)c is a complex of abelian groups.

Proof. For each integral Z ∈ zq
m̂
(Ô, n)c, the composite of proper morphisms Z ∩ F ǫ

i,Ô
→֒

Z → Spec (Ô) is proper, where Z ∩ F ǫ
i,Ô

is the scheme-theoretic intersection. Hence ∂ǫi

maps zq
m̂
(Ô, n)c into zq

m̂
(Ô, n− 1)c. That ∂ ◦ ∂ = 0 is obvious. �

Unfortunately, although it will not be so apparent in this manuscript, this subgroup

zq
m̂
(Ô, n)c of cycles proper over Spec (Ô) may be too restrictive, except for the Milnor

range. For instance, some significant cycles in off-Milnor range, which we need later in

a follow-up paper, are not proper over Spec (Ô). Due to this reason, we introduce the
following a bit bigger group defined inductively:

Definition 2.2.9. Let q ≤ n be integers. Define the subgroup zq
m̂
(Ô, n)pc ⊂ zq

m̂
(Ô, n)

inductively as follows:

(1) If n = q, we let zq
m̂
(Ô, n)pc := zq

m̂
(Ô, n)c.

(2) Suppose n > q. Inductively, suppose zq
m̂
(Ô, i)pc is defined for each q ≤ i ≤ n− 1.

Then let zq
m̂
(Ô, n)pc be the subgroup generated by the integral cycles Z ∈ zq

m̂
(Ô, n)

such that ∂ǫi (Z) ∈ zqm̂(Ô, n− 1)pc for each 1 ≤ i ≤ n and ǫ ∈ {0,∞}.
(N.B. Here “pc” stands for “partially compact”.) Apparently by construction, the face

operator ∂ǫi maps zq
m̂
(Ô, n)pc into zq

m̂
(Ô, n−1)pc, and we have ∂ ◦∂ = 0 so that zq

m̂
(Ô, •)pc

is a complex of abelian groups. By definition, we have

zq
m̂
(Ô, •)c ⊆ zq

m̂
(Ô, •)pc ⊆ zq

m̂
(Ô, •).

We can similarly define zq
m
(O, n)pc. Define CHq

m̂
(Ô, n)pc := Hn(z

q
m̂
(Ô, •)pc) and similarly

define CHq
m
(O, n)pc.

2.3. Cycles modulo tm.

Definition 2.3.1. Let m ≥ 1 be an integer. Let X be an integral Spec(Ô)-scheme and
let Z1, Z2 ⊂ X be two integral closed subschemes of X . We allow the case when Z1 or
Z2 is the empty scheme. We say that Z1 and Z2 are equivalent mod tm, if we have the

equality Z1 ×Spec (Ô) Spec (Ô/(tm)) = Z2 ×Spec (Ô) Spec (Ô/(tm)) as closed subschemes of

X ×Spec (Ô) Spec (Ô/(tm)).
We can extend this notion to algebraic cycles on X by extending Z-linearly.
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Remark 2.3.2. It might be tempting to define the mod tm equivalence on each pair of

closed subschemes Z1 and Z2 as long as we have Z1×Spec (Ô) Spec (Ô/(tm)) = Z2×Spec (Ô)

Spec (Ô/(tm)). But this finer relation may result in some technically very undesirable
effects in dealing with algebraic cycles. One of such problems is that this “tempting”
definition often identifies an irreducible closed subscheme with possibly reducible ones,
and this makes an analysis of the behaviors of algebraic cycles very intractable. We thus
insist to put this mod tm equivalence only on pairs of integral closed subschemes with
the above equality.

Definition 2.3.3. For two integral schemes Z1, Z2 ∈ zqm̂(Ô, n), we say that Z1 and Z2 are

naively mod tm-equivalent, if their Zariski closures Z1, Z2 in �
n

Ô are mod tm-equivalent
in the sense of Definition 2.3.1. Extend this notion Z-linearly to cycles. We say that Z1

and Z2 are mod tm-equivalent as higher Chow cycles and write Z1 ∼tm Z2, if the pair
(Z1, Z2) and all pairs of faces (Z1 ∩ F, Z2 ∩ F ) for each face F ⊂ �

n
Ô
are all naively mod

tm-equivalent.
For simplicity, when Z1, Z2 are mod tm-equivalent as higher Chow cycles, we will simply

say they are mod tm-equivalent.

This definition of mod tm-equivalence immediately satisfies:

Lemma 2.3.4. The boundary operator ∂ of the complex zq
m̂
(Ô, •) induces the boundary

operator, also denoted by ∂, on the mod tm groups zq
m̂
(Ô, n)/ ∼tm, turning them into a

complex. Similarly, we obtain the mod tm complexes zq
m̂
(Ô, •)pc/ ∼tm and zq

m̂
(Ô, •)c/ ∼tm.

To avoid a technical difficulty (see Remark 5.5.1), we will use zq
m̂
(Ô, •)pc/ ∼tm :

Definition 2.3.5. Let m ≥ 1, q, n ≥ 0 be integers. Define

(2.3.1) zq(km, n) := zq
m̂
(Ô, n)pc/ ∼tm ,

where ∼tm is the mod tm-equivalence in Definition 2.3.3. By Lemma 2.3.4, this zq(km, •)
is a complex of abelian groups. We denote its homology by CHq(km, n).

Remark 2.3.6. The group zn+1(km, n) is 0 because zn+1
m̂

(Ô, n) = 0 by Remark 2.2.2.
Hence the group zn(km, n) is the simplest nontrivial group in our cycle theory.

Note that we have k-algebra homomorphisms k → Ô → k, where the first is the
natural k-algebra map and the second is reduction modulo (t). The composition is the

identity of k. The first map induces the structure morphism p : Spec (Ô) → Spec (k),

which induces the pull-back map p∗ : zq(k, •) → zq
m̂
(Ô, •)pc and the second map induces

the closed immersion s : Spec (k) → Spec (Ô), which induces the intersection-restriction

to the special fiber s∗ : zq
m̂
(Ô, •)pc → zq(k, •). By definition, we have s∗ ◦ p∗ = Id, so that

we can regard zq(k, •) as a subcomplex of zq
m̂
(Ô, n)pc via p∗. Going modulo tm, which

does not do anything on zq(k, •), we obtain zq(k, •) p∗→ zq(km, •) s∗→ zq(k, •), where we
still have s∗ ◦ p∗ = Id. This gives a splitting

(2.3.2) zq(km, •) = zq(k, •)⊕ ker s∗,

of the complex zq(km, •).

Definition 2.3.7. We define the relative mod tm cycle complex to be zq((km, (t)), •) :=
ker s∗, and its homology is denoted by CHq((km, (t)), n) := Hn(z

q((km, (t)), •)).
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2.4. The non-archimedean norm. We recall some basic facts on the non-archimedean
t-adic metric topology associated to the local field k((t)), needed in §4. Recall that the
field k((t)) of Laurent series has a natural discrete valuation v : k((t)) → Z given by
the order of vanishing function v = ordt with v(0) := ∞. Its ring of integers Ok((t)) =

Ô = k[[t]] is simply {f ∈ k((t)) | v(f) ≥ 0}. We have a norm | − |v : k((t)) → R given
by |f |v := e−v(f). For any integer M > 0, we have the supremum norm on the vector
space k((t))M given by |(f1, · · · , fn)|v := sup1≤i≤n |fi|v. This gives the non-archimedean

t-adic metric topology, which is finer than the Zariski topology on k((t))M = AM(k((t))).
For any α0 ∈ k((t))M , we let BN (α0) be the open ball around α0 of radius e−N . Here
k[[t]]M ⊂ k((t))M is open, while k[t]M ⊂ k[[t]]M is dense.

2.5. Milnor K-groups. Let R be a commutative local ring with unity. Recall that the
Milnor K-ring KM

∗ (R) of R is the graded tensor algebra TZ(R
×) of R× over Z modulo

the two-sided ideal generated by the elements of the form {a⊗ (1− a) | a, 1− a ∈ R×}.
Its degree n part is the n-th Milnor K-group KM

n (R).

3. Milnor range I: reciprocity

The goal of the paper is to prove Theorem 3.0.1 which computes CHn((km, (t)), n) in
the Milnor range. In the case of additive higher Chow groups over fields of characteristic
not equal to 2, similar results were obtained by Bloch-Esnault [4] and Rülling [25] in the
Milnor range.

Theorem 3.0.1. Let k be a field of characteristic 0 and let m,n ≥ 1 be integers. Then

we have CHn((km, (t)), n) ≃ (Ωn−1
k/Z )

⊕(m−1).

The proof of Theorem 3.0.1 is broken largely into two parts: the first of the arguments
is to define regulator maps on cycles and to prove that they vanish on the boundaries, as
done in Proposition 3.0.2 below. The second part, done later in §4 and §5, is to show that
the regulator maps respect the mod tm-equivalence. Here, we would like to emphasize
that although we are in the Milnor range, our representatives are 1-cycles, unlike the
additive Chow group versions of [4] or [25] where the representatives were 0-cycles. In
our discussion, the argument of the first part follows a path similar to one paved in [23]:

Proposition 3.0.2. Let k be a field of characteristic 0. For each 1 ≤ i ≤ m − 1, de-

fine Υi : zn
m̂
(Ô, n) → Ωn−1

k/Z as follows. Consider the rational form γi,n := 1
ti
dlogy1 ∧

· · · ∧ dlogyn ∈ Ωn
�

n
Ô
/Z
(∗{t = 0})(logF ). For each integral 1-cycle Z ∈ zn

m̂
(Ô, n), let

ν : Z̃ → Z →֒ �
n

Ô be a normalization of the closure Z of Z in �
n

Ô. Define Υi(Z) :=∑
p∈Z̃s

Trk(p)/krespν
∗γi,n ∈ Ωn−1

k/Z , and Z-linearly extend Υi to all of zn
m̂
(Ô, n). Then

Υi(∂W ) = 0 for W ∈ zn
m̂
(Ô, n+ 1).

Proof. It is enough to prove the statement for any integral W ∈ zn
m̂
(Ô, n + 1). Let

W ⊂ �
n+1

Ô be the Zariski closure ofW , which is also integral. For each 1 ≤ ℓ ≤ n+1 and

ǫ ∈ {0,∞}, via the codimension 1 face map ιℓ,ǫ : �
n

Ô →֒ �
n+1

Ô , identify the Zariski closure

of ∂ǫℓ(W ) in �
n

Ô with its image ∂ǫℓ(W ) in �
n+1

Ô . Consider the divisor D :=
∑

ℓ,ǫ{yℓ = ǫ}
on �

n+1

Ô . We omit the proof of the following claim, which is easily deduced by a standard
argument using a finite sequence of point blow-ups and [10, Exercise II-7.12, p.171]:

Claim: There exists a sequence of blow-ups φ̃ : �̃
n

Ô → �
n

Ô centered at points, such that

for the strict transform W̃ ⊂ �̃
n

Ô of W and the restriction φ := φ̃|W̃ : W̃ → W →֒ �
n

Ô,

we have the following properties: (1) each irreducible component of the strict transform

φ!(∂ǫℓ(W )) of the 1-cycle ∂ǫℓ(W ) is regular. We let φ!(D) :=
∑

ℓ,ǫ φ
!(∂ǫℓ(W )), the strict
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transform of D ∩W ; (2) each closed point p ∈ W̃s = φ∗{t = 0} satisfies exactly one of

the following three possibilities:

(2-i) p belongs to a unique irreducible component of W̃s, but does not meet φ!(D).

(2-ii) p belongs to a unique irreducible component of W̃s, and belongs to precisely one

irreducible component of φ!(D).

(2-iii) p belongs to exactly two irreducible components of W̃s, but does not meet φ!(D).

Going back to the proof of the proposition, notice that the irreducible components
of φ!(∂ǫℓ(W )) are all regular, and are in one-to-one correspondence with the irreducible

components of ∂ǫℓ(W ) via φ. Hence each component of φ!(∂ǫℓ(W )) gives a normalization

of the Zariski closure in �
n

Ô of the corresponding component of ∂ǫℓ(W ). Express the

special fiber W̃s as the union of (not necessarily regular) irreducible projective curves
C1, · · · , CM .

We use the theory of Parshin-Lomadze residues associated to pseudo-coefficient fields
(see [34, Definitions 4.1.1, 4.1.3]). For each generic point of Cj seen as a point of the

scheme W̃ , choose a pseudo-coefficient field σj . Consider the Parshin-Lomadze residue

Ξσj
:= res(W̃ ,Cj),σj

φ∗(γi,n+1) along the chain (W̃ , Cj) for the choice of σj . For each 1 ≤
j ≤M , this Ξσj

is a rational absolute Kähler n-form on Cj .

Let p ∈ W̃s. By our construction of W̃ in the above claim, for the point p, exactly one
of (2-i), (2-ii), and (2-iii) holds.

If (2-i) holds for p, then let Cj be the unique component of W̃s with p ∈ Cj . Since p

does not lie over any face ∂ǫℓ(W ) for 1 ≤ ℓ ≤ n+ 1, ǫ ∈ {0,∞}, from the shape of γi,n+1,
the form Ξσj

= res(W̃ ,Cj),σj
(φ∗γi,n+1) is regular at p so that we have resp∈Cj

(Ξσj
) = 0.

If (2-iii) holds for p, then let Cj, Cj′ with j 6= j′ be the two distinct components of W̃s

such that p ∈ Cj ∩Cj′. Here, again p does not lie over any face ∂ǫℓ(W ) for 1 ≤ ℓ ≤ n+1,
ǫ ∈ {0,∞}, therefore by [34, Theorem 4.2.15-(a)], we have resp∈Cj

(Ξσj
)+ resp∈Cj′

(Ξσj′
) =

0.
Now suppose (2-ii) holds for p. Thus there exist (i) a unique index 1 ≤ j(p) ≤ M

with p ∈ Cj(p), (ii) a unique pair (ℓ0, ǫ0) with 1 ≤ ℓ0 ≤ n + 1, ǫ0 ∈ {0,∞}, and a unique

irreducible component G ⊂ φ!(∂ǫ0ℓ0 (W )) such that p ∈ G.
From the shape of γi,n+1, the form φ∗γi,n+1 on W̃ has a simple (or logarithmic) pole (see

[34, Definition 4.2.10]) along G, so that the residue of φ∗γi,n+1 along the chain (W̃ ,G) is
independent of the choice of a pseudo-coefficient field for G by [34, Corollary 4.2.13]. On
the other hand, by [34, Theorem 4.2.15-(a)], we have

(3.0.1) resp∈Cj(p)
(res(W̃ ,Cj(p)),σj(p)

(φ∗γi,n+1)) = −resp∈G(res(W̃ ,G)(φ
∗γi,n+1)).

From the shape of γi,n+1 =
1
ti

dy1
y1
∧ · · · ∧ dyn+1

yn+1
again, since G ⊂ φ!(∂ǫ0ℓ0 (W )), we have

(3.0.2) res(W̃ ,G)(φ
∗γi,n+1) = (−1)ℓ0 · ι(G; ℓ0, ǫ0) · sgn(ǫ0)φ∗(γℓ0i,n+1)|G,

where ι(G; ℓ0, ǫ0) is the intersection multiplicity of G in ∂ǫ0ℓ0 (W ), sgn(0) := 1, sgn(∞) :=

−1, and γℓ0i,n+1 :=
1
ti

dy1
y1
∧ · · · d̂yℓ0

yℓ0
∧ · · · ∧ dyn+1

yn+1
.

Now, by the definition of Υi, we have

(−1)ℓ0sgn(ǫ0)Υi(∂
ǫ0
ℓ0
(W )) = (−1)ℓ0sgn(ǫ0)

∑

G

ι(G; ℓ0, ǫ0)
∑

p∈Gs

Trk(p)/kresp∈Gφ
∗(γℓ0i,n+1)|G

=†
∑

G

∑

p∈Gs

Trk(p)/kresp∈G(res(W̃ ,G)(φ
∗γi,n+1))
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=‡ −
∑

G

∑

p∈Gs

Trk(p)/kresp∈Cj(p)
(res(W̃ ,Cj(p)),σj(p)

(φ∗γi,n+1))

(3.0.3) =1 −
∑

G

∑

p∈Gs

Trk(p)/kresp∈Cj(p)
(Ξσj(p)

),

where
∑

G is the sum over all irreducible components of φ!(∂ǫ0ℓ0 (W )), † holds by (3.0.2), ‡
holds by (3.0.1), and =1 holds by definition. Note that the set of all points p ∈ Gs over

all irreducible components G of φ!(D) is precisely equal to the set W̃
(2−ii)
s of all points of

W̃s of type (2-ii) in the claim. Hence, taking the sum of (3.0.3) over all 1 ≤ ℓ0 ≤ n + 1
and ǫ0 ∈ {0,∞}, we obtain

(3.0.4) Υi(∂W ) = −
n+1∑

ℓ=1

∑

ǫ∈{0,∞}

(−1)ℓsgn(ǫ)Υi(∂
ǫ
ℓ(W )) =

∑

p∈W̃
(2−ii)
s

Trk(p)/kresp∈Cj(p)
(Ξσj(p)

).

On the other hand, for the points of W̃s of type (2-i) and (2-iii), we saw previously that
there is no contribution of residues from them. Hence continuing (3.0.4), we have

Υi(∂W ) =
∑

p∈W̃
(2−ii)
s

Trk(p)/kresp∈Cj(p)
(Ξσj(p)

) =
M∑

j=1

∑

p∈Cj

Trk(p)/kresp∈Cj
(Ξσj

) =† 0,

where † holds by the residue theorem (see [34, Theorem 4.2.15-(b)]), i.e. the sum of all

residues of a form over a projective curve W̃s is 0. This shows Υi(∂W ) = 0 as desired. �

The remaining part of the proof of Theorem 3.0.1 is to check that the regulator maps

in Proposition 3.0.2 restricted to zn
m̂
(Ô, n)c respect the mod tm-equivalence. This requires

further discussions, and the rest of the paper deals with it.

4. Some perturbation lemmas and the mod tm moving lemma

In working with cycles over the complete local ring Ô, it is often convenient if one can

transfer some of the known results for cycles over O to cycles over Ô. The completion ring

homomorphism O → Ô induces a natural flat pull-back homomorphism ξn : zqm(O, n)? →
zq
m̂
(Ô, n)?, for ? = c, pc, ∅, given by [Z] 7→ [Ẑ := Spec (Ô)×Spec (O) Z], but in general, ξn

is not surjective. The goal of §4 is to prove the “mod tm moving lemma” in Theorem
4.3.2, which states that this natural homomorphism induces a surjection modulo tm in
the Milnor range with ? = c, pc. In this case zn

m̂
(Ô, n)c = zn

m̂
(Ô, n)pc.

In this section we suppose k is any field unless specified otherwise. In §4.1, we discuss
some preparatory results needed in what follows. In §4.2, we discuss some sort of general
position results as in Lemmas 4.2.2, 4.2.4, 4.2.7, and 4.2.9, which are needed in the proof
of the mod tm moving lemma in §4.3. These results might appear to be related to the
Artin approximation theorem [1], but they do not follow from it. The results are stated

in terms of schemes over Ô = ÔA1
k ,0
, but some of them might work for more general

integral k-schemes with the method presented here. We leave such generalizations to the
reader.

In what follows in §4, to ease the proof, via the automorphism y 7→ 1/(1− y) of P1, we
identify (�, {∞, 0}) with (A1, {0, 1}) so that �

n ≃ An, and the faces of �n under this
identification are given by a finite set of equations of the form yj = ǫj with ǫj ∈ {0, 1}.

4.1. Some preparatory lemmas. We are interested in understanding “small changes”
of a given integral closed subscheme W ⊆ �

n
Ô

when we “perturb” the coefficients of a
generating set of the ideal of W . So, we introduce:
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Definition 4.1.1. For a closed subscheme W ⊆ �
n
Ô
, let {f1, · · · , fr} ⊂ Ô[y1, · · · , yn] be

a set of generators of the ideal ofW . The coefficient perturbation of the set {f1, · · · , fr} is
the set {F1, · · · , Fr} of polynomials obtained as follows: for each nonzero monomial term
of each of fj for 1 ≤ j ≤ r, we consider an indeterminate and a copy of A1

Ô
, and replace

each nonzero coefficient by the corresponding indeterminate. Let M be the total number

of them and let F1, · · · , Fr ∈ Ô[x1, · · · , xM ][y1, · · · , yn] be the so-obtained polynomials
from f1, · · · , fr, respectively. Let V ⊂ AM

Ô
×Ô�

n
Ô
be the closed subscheme defined by the

ideal (F1, · · · , Fr). We may also say V is the coefficient perturbation of W with respect to

the generators {f1, · · · , fr}. For each α ∈ AM
Ô
, we let Vα be the fiber over α. If α0 ∈ ÔM

is the original sequence of coefficients of {f1, · · · , fr}, we have Vα0 =W .

Example 4.1.2. For n = 2, consider {f1, f2} = {3y1y22 + y1 + 2y2 + 1,−y21y2 − 5y1 + 3}.
Then the corresponding coefficient perturbation is given by {F1, F2} = {x1y1y22 + x2y1 +
x3y2 + x4, x5y

2
1y2 + x6y1 + x7}.

The coefficient perturbation depends on the choice of a generating set {f1, · · · , fr}. If
we make a “bad” choice, then we might end up having undesirable phenomena:

Example 4.1.3. For n = 2, consider W ⊆ �
2
Ô
defined by f1 := y1 + 1, f2 := y2 + 1. The

ideal of W also contains f1f2 = y1y2 + y1+ y2 +1. If we take the coefficient perturbation
with respect to just {f1, f2}, then we have F1 = x1y1 + x2, F2 = x3y3 + x4. In particular,
if α = (x1, x2, x3, x4) is in the open subset of A4

Ô
given by x1 6= 0 and x3 6= 0, we have Vα

given by (y1, y2) = (−x2/x1,−x4/x3), so that Vα 6= ∅.
However, this time take a redundant third generator f3 := f1f2. Then with respect to

{f1, f2, f3}, the corresponding coefficient perturbation is given by F1 = x1y1 + x2, F2 =
x3y2+x4, F3 = x5y1y2+x6y1+x7y2+x8. While one might hope that the indeterminates
x1, · · · , x8 are algebraically independent, unfortunately for Vα to be nonempty, we need
a necessary condition. Suppose for a choice α = (x1, · · · , x8), we have Vα 6= ∅. Then
F1 = 0 and F2 = 0 give y1 = −x2/x1, y2 = −x4/x3 so that by plugging them into F3, we
obtain x2x4x5/(x1x3)−x2x6/x1−x4x7/x3+x8 = 0, i.e. we have an algebraic dependence
x2x4x5 − x2x3x6 − x1x4x7 + x1x3x8 = 0 for x1, · · · , x8. Hence we can expect to have a
nonempty fiber Vα only over this proper closed subset of A8

Ô
, which is not desirable for

our purposes.

A central result of our discussion in §4.1 is to show that whenW ∈ zn
m̂
(Ô, n)c is integral

of relative dimension 0 in the Milnor range, it is possible to choose a “nice” generating set
from which we can prove that a set of properties of W that we began with are preserved
for each fiber Vα when α is “close” to α0. We will make this precise in what follows.

Lemma 4.1.4. Let W ∈ zn
m̂
(Ô, n)c be a nonempty integral cycle. Then (1) the structure

morphism f : W → Spec (Ô) is surjective, flat, and quasi-finite, and (2) the generic fiber

Wη is the singleton given by the generic point ηW of W .

Proof. The surjectivity of f was proven in Lemma 2.2.7. The morphism f is flat by

[9, Proposition 14.5.6] (or [10, Proposition III-9.7, p.257]) because Spec (Ô) is a regular
scheme of dimension 1. Since W is of dimension 1, the morphism f is consequently
quasi-finite. This proves (1).

Since dim W = 1, the integral scheme W is the union of the generic point ηW of
W and its closed points. Here, all the closed points map to the unique closed point of

Spec (Ô), while ηW cannot map to the closed point of Spec (Ô) for otherwise f would not
be surjective, contradicting Lemma 2.2.7. Hence ηW is the unique point of the generic
fiber Wη. This proves (2). �
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Proposition 4.1.5. Let W ∈ zn
m̂
(Ô, n)c be a nonempty integral cycle. Then W is a

complete intersection in �
n
Ô
defined by a subset {f1, · · · , fn} ⊆ Ô[y1, · · · , yn] of precisely

n polynomials of the triangular form

(4.1.1)





f1(y1),
f2(y1, y2),

...

fn(y1, · · · , yn),
such that (1) fi(y1, · · · , yi) has yi-degree ≥ 1 for each 1 ≤ i ≤ n, (2) the highest yi-degree
term of fi does not involve any variable other than yi, and (3) the constant term of each

fi is 1.

Proof. Let K = Frac(Ô) = k((t)) and take the base change via Spec (K) → Spec (Ô).
Here the generic fiber Wη is the generic point ηW of W by Lemma 4.1.4. Since ηW ∈ �

n
K

is a closed point on the affine space �
n
K ≃ An

K over the field K, in particular it is a
complete intersection so that we can find n polynomials in K[y1, · · · , yn] that defines ηK .

In fact, we can choose such n polynomials with much better properties (this is inspired

by [27, Lemma 2]): for each 1 ≤ i ≤ n, let η
(i)
W ∈ �

i
K be the image of ηW under the

projection �
n
K → �

i
K , (y1, · · · , yn) 7→ (y1, · · · , yi). Let η

(0)
W := η, the generic point of

Spec (Ô). The map ηW = η
(n)
W → η

(0)
W is finite, and in particular each η

(i)
W → η

(j)
W is

finite for each pair 1 ≤ j < i ≤ n of indices. We claim that there exists a sequence of
polynomials

(4.1.2)





f1,K(y1) ∈ K[y1],
f2,K(y1, y2) ∈ K[y1, y2],

...
fn,K(y1, · · · , yn) ∈ K[y1, · · · , yn],

such that f1,K(y1) is an irreducible polynomial monic in y1 of degree ≥ 1, for 2 ≤ i ≤ n,
the image of fi,K(y1, · · · , yi) in (K[y1, · · · , yi−1]/(f1,K , · · · , fi−1,K)) [yi] is an irreducible
polynomial monic in yi of degree ≥ 1, and the highest yi-degree term of fi,K does not
involve any variable other than yi; and the ideal generated by f1,K , · · · , fn,K is the ideal
of the point ηW .

We prove the claim by induction. Since η
(1)
W → η

(0)
W is finite, there exists an irreducible

monic polynomial f1,K(y1) ∈ K[y1] that defines η
(1)
W ∈ �

1
Ô
. When n = 1, this answers

the claim. If n ≥ 2, suppose we have constructed f1,K , · · · , fi,K for some 1 ≤ i < n
that satisfy the above properties. Since K[y1, · · · , yi]/(f1,K , · · · , fi,K) is a finite exten-

sion of K, and since η
(i+1)
W → η

(i)
W is finite, there exists an irreducible polynomial in

(K[y1, · · · , yi]/(f1,K , · · · , fi,K)) [yi+1] monic in yi+1, that defines η
(i+1)
W . Choose any lift-

ing of this polynomial in K[y1, · · · , yi+1] such that the coefficient of the highest yi+1

degree term does not involve any variable other than yi+1, and call it fi+1,K(y1, · · · , yi+1).
Hence the claim follows by induction.

For the generators in (4.1.2) for ηW , the nonzero coefficients of the terms of fi,K are

all of the form a
b
for some nonzero a, b ∈ Ô. Since the only irreducible element in the

ring Ô up to multiplications of units is t, for each 1 ≤ i ≤ n there exists a unique integer

ni ≥ 0 such that fi := tnifi,K is in Ô[y1, · · · , yn] and t does not divide fi in Ô[y1, · · · , yn].
This new collection {f1, · · · , fn} ⊂ Ô[y1, · · · , yn], seen as a subset of K[y1, · · · , yn] also
generates the ideal of the closed point ηW in �

n
K . In other words, ηW has a generating set

consists of n polynomials in Ô[y1, · · · , yn]. On the other hand, the Zariski closure of ηW
in �

n
Ô
is W , and since W is integral in zn

m̂
(Ô, n)c, the closed subscheme of �n

Ô
defined by

the ideal generated by f1, · · · , fn is precisely W . Since f1,K , · · · , fn,K take the triangular
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form as in (4.1.2), the new polynomials f1, · · · , fn take the triangular form as in (4.1.1).
This satisfies (1) and (2) by construction.

On the other hand, the given condition W ∈ zn
m̂
(Ô, n)c implies that (see Corollary

2.2.4) its intersection with any proper face is empty. In particular, the constant term of

f1(y1) is a unit in Ô. If the constant term of fi is not a unit in Ô for some 2 ≤ i ≤ n, then
replace fi by fi + f1. This procedure does not disturb the triangular shape of (4.1.1),
nor the properties (1) and (2), and does not change the ideal of W , so that after this

procedure we may assume the constant term of each fi is a unit in Ô. Now replacing
each fi by fi divided by its unit constant term, we achieve that the constant term of each
fi is 1, without disturbing the triangular shape in (4.1.1), the properties (1) and (2) and
without changing the ideal of W . This proves (3), hence proves the proposition. �

Corollary 4.1.6. Let W ∈ zn
m̂
(Ô, n)c be a nonempty integral cycle. For a defining

set {f1, · · · , fn} ⊆ Ô[y1, · · · , yn] of W in Proposition 4.1.5, consider the corresponding

coefficient perturbation V ⊂ AM
Ô
×Ô �

n
Ô

given by {F1, · · · , Fn} of {f1, · · · , fn} as in

Definition 4.1.1. Then (1) the codimension of V in AM
Ô
×Ô �

n
Ô
is n and (2) V intersects

each codimension 1 face of AM
Ô
×Ô �

n
Ô
properly.

Proof. For 1 ≤ i ≤ n, let Vi be the closed subscheme of AM
Ô
×Ô �

i
Ô
given by (F1, · · · , Fi).

We prove that the codimension of Vi in Bi := AM
Ô
×Ô �

i
Ô
is i by induction on i.

When i = 1, this is obvious because V1 is given by a single polynomial F1(y1) and
degy1 F1(y1) ≥ 1, in particular F1(y1) 6= 0. Suppose the statement holds for i ≥ 1. Then
Vi ⊂ Bi has codimension i so that Vi ×Ô �

1
Ô
⊂ Bi ×Ô �

1
Ô
= Bi+1 has codimension i. On

the other hand, Vi+1 is given in Vi ×Ô �
1
Ô
by Fi+1(y1, · · · , yi+1), and degyi+1

Fi+1 ≥ 1, so

that the codimension of Vi+1 in Vi ×Ô �
1
Ô
is 1. Hence the codimension of Vi+1 in Bi+1 is

i+ 1, thus by induction the statement holds for all 1 ≤ i ≤ n, proving (1).
For (2), let F be the codimension 1 face given by {yi = ǫ} for some 1 ≤ i ≤ n and

ǫ ∈ {0, 1}. Since this is a divisor, we just need to show that V 6⊆ An
Ô
×Ô F . Suppose

not, i.e. V ⊆ AM
Ô
×Ô F . Then specializing at x = α0 ∈ AM

Ô
, which corresponds to W , we

have W ⊆ F . But this is impossible because W intersects F properly. (N.B. Actually,
W ∩ F = ∅ by Corollary 2.2.4.) �

4.2. Perturbation lemmas. We now discuss several perturbation lemmas that play
essential roles in the proof of the mod tm-moving lemma in §4.3.
4.2.1. Nonemptiness of fibers. Here is the basic situation we consider:

Situation (⋆): Let W ∈ zn
m̂
(Ô, n)c be a nonempty integral cycle and

choose a triangular generating set {f1, · · · , fn} ⊂ Ô[y1, · · · , yn] of the
form (4.1.1) using Proposition 4.1.5. Consider the coefficient perturbation
V of W with respect to {f1, · · · , fn} given by

(F1, · · · , Fn) ⊂ Ô[x1, · · · , xM ][y1, · · · , yn]
as in Definition 4.1.1. Let α0 ∈ ÔM be the coefficient vector corresponding
to the generating set {f1, · · · , fn} of W . By Lemma 2.2.7, W is closed in
�

n

Ô. We regard yi = Yi1/Yi0 and use ((Y10; Y11), · · · , (Yn0; Yn1)) ∈ �
n

Ô

as the projective coordinates. By homogenizing each fj , we obtain f̄j ∈
Ô[{Y10, Y11}, · · · , {Yn0, Yn1}]. Here W = W in �

n

Ô is given by the ideal
(f̄1, · · · , f̄n). Similarly, the homogenization (F̄1, · · · , F̄n) of (F1, · · · , Fn)
defines the Zariski closure V ⊆ AM

Ô
×Ô �

n

Ô of V .

Let pr : V → AM
Ô

and pr : V → AM
Ô

be the restrictions of the projections

AM
Ô
× �

n

Ô → AM
Ô

and AM
Ô
× �

n
Ô
→ AM

Ô
, respectively. For each α ∈ AM

Ô
,
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let V α := pr−1(α). We have Vα = V α ∩�
n
Ô
= pr−1(α), while V α0 = W =

W = Vα0 .

Proposition 4.2.1. Under the Situation (⋆), there exists a nonempty open neighborhood

Une ⊂ AM
Ô

of α0 such that for each α ∈ Une, the fiber Vα is nonempty. Furthermore, this

open set contains GM
m,Ô

.

Proof. By Proposition 4.1.5, the coefficient perturbation V is given by polynomials




F1(y1) ∈ Ô[x1, · · · , xM ][y1],

F2(y1, y2) ∈ Ô[x1, · · · , xM ][y1, y2],
...

Fn(y1, · · · , yn) ∈ Ô[x1, · · · , xM ][y1, · · · , yn].

Here degy1 F1 ≥ 1 and the coefficient in Ô[x1, · · · , xM ] of the highest y1-degree term is

a variable xℓ1 for some 1 ≤ ℓ1 ≤ M . For the open subset U1 ⊆ AM
Ô

given by xℓ1 6= 0,

y1 is algebraic over K(x1, · · · , xM), and there is a solution y1 in an algebraic extension
of K(x1, · · · , xM). Plug this solution y1 into the second equation. Since degy2 F2 ≥ 1,
and the coefficient of the highest y2-degree term is xℓ2 for some 1 ≤ ℓ2 ≤ M with
ℓ2 6= ℓ1. Thus, for the open set U2 ⊆ AM

Ô
given by xℓ1 6= 0 and xℓ2 6= 0, y2 is algebraic

over K(x1, · · · , xM), and in particular there is a solution y2 in an algebraic extension of
K(x1, · · · , xM ). Continuing this way, the coefficient of the highest yn-degree term of Fn is
xℓn for some 1 ≤ ℓn ≤M with ℓn 6= ℓ1, · · · , ℓn−1, and for the open set Un ⊆ AM

Ô
given by

{xℓ1 6= 0, · · · , xℓn 6= 0} we have a system of solutions y1, · · · , yn in an algebraic extension
of K(x1, · · · , xM ). In other words, for each α ∈ Une := Un, the fiber Vα is nonempty. By
construction Une is given by the product of A1

Ô
for each xi with i 6∈ {ℓ1, · · · , ℓn} and Gm,Ô

for each xi with i ∈ {ℓ1, · · · , ℓn}, so that the second statement follows. That α0 ∈ Une

follows immediately. �

4.2.2. Empty intersection with faces. Recall from Corollary 2.2.4 that for any proper face
F ( �

n
Ô
, we have W ∩F = ∅, which is stronger than having proper intersection with the

face. We assert that this is an open condition in the following sense:

Lemma 4.2.2. We are under the Situation (⋆). Then for each proper face F ( �
n
Ô
,

there exists an open neighborhood UF ⊆ AM
Ô

of α0 such that for each α ∈ UF , we have

Vα ∩ F = ∅. In particular, for each α ∈ Upi :=
⋂

F UF ⊆ AM
Ô
, where the intersection is

taken over all proper faces F , the closed subscheme Vα intersects with no proper face at

all.

Proof. By Lemma 2.2.6, we know that W ∩F = ∅ if and only if W ∩F = ∅. So, we want
to achieve the stronger assertion that V α ∩F = ∅ for each α in an open neighborhood of
α0. We use the projectivized system {F̄1, · · · , F̄n} of equations for V .

When F is a codimension 1 face of �
n

Ô, it is given by {yi1 = ǫ1} for some 1 ≤ i1 ≤ n
and ǫ1 ∈ {0, 1}. Here, the scheme V α does intersect with the face F if and only if
the scheme given by {F̄1, · · · , F̄n, yi1 − ǫ1} has a point lying over α. Here, the system
{F̄1, · · · , F̄n, yi1−ǫ1} defines a closed subscheme of AM

Ô
×Ô�

n

Ô of dimension ≤ dim (AM
Ô
×Ô

�
n

Ô)− (n+ 1) =M + n+ 1− (n+ 1) =M by Corollary 4.1.6. Thus its image CF under
the projective morphism AM

Ô
×Ô �

n

Ô → AM
Ô

is a closed subscheme of dimension ≤M . In

particular, CF ( AM
Ô

is a proper closed subscheme since dim (AM
Ô
) = M + 1. Hence V α

does not intersect with F if and only if α ∈ UF := AM
Ô
\ CF . By construction we have

α0 ∈ UF . Here, V α∩F = ∅ implies that Vα∩F = ∅. Since every proper face is contained
in some codimension 1 face, this answers the lemma. �
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Corollary 4.2.3. Under the Situation (⋆), for every sufficiently large integer N > 0,
there exists an open ball BN(α0) ⊆ k[[t]]M in the non-archimedean t-adic sup-norm, such

that (1) BN(α0) ∩ (k[t]M) is nonempty, (2) for every α ∈ BN (α0) ∩ (k[t]M), the closed

subscheme Vα does not intersect any face F ( �
n

Ô at all, and (3) these so obtained poly-

nomials f1,α, · · · , fn,α ∈ k[t][y1, · · · , yn] ⊆ O[y1, · · · , yn] of Vα satisfy fj,α ≡ fj mod tm,
for each 1 ≤ j ≤ n.

Proof. Since the induced non-archimedean t-adic topology is finer than the Zariski topol-

ogy on AM
Ô

and α0 ∈ ÔM = k[[t]]M , for every sufficiently large integer N > 0, the

open ball BN (α0) ⊆ k[[t]]M of radius e−N centered at α0 is contained in the open subset
Upi ⊂ AM−r

Ô
of Lemma 4.2.2. We may assume N > m. But k[t]M ⊆ k[[t]]M is dense in the

non-archimedean topology, so BN(α0)∩ (k[t]M) 6= ∅, proving (1). Since BN(α0) ⊆ Upi, we
have (2). On the other hand, α ∈ BN (α0) ⇔ |α − α0| < e−N ⇔ for each 1 ≤ j ≤ n, we
have fj,α ≡ fj mod tN . In particular, since N > m, fj,α ≡ fj mod tm, proving (3). �

4.2.3. Properness over Ô.
Lemma 4.2.4. We are under the Situation (⋆). Then there exists an open neighborhood

Upr ⊆ AM
Ô

of α0 such that Vα is a proper scheme over Spec (Ô) for each α ∈ Upr.

Proof. Let F∞ be the divisor associated to �
n

Ô \�n
Ô
. By Lemma 2.2.6, to make Vα proper

over Spec (Ô), it is enough to require that V α ∩ F∞ = ∅. Here F∞ =
∑n

i=1{yi = ∞} =∑n
i=1{Yi0 = 0} so that V α ∩ F∞ = ∅ if and only if V α ∩ {Yi0 = 0} = ∅, for all 1 ≤ i ≤ n.

Recall we have yi = Yi1/Yi0 for the projective coordinate (Yi0; Yi1) ∈ �Ô = P1
Ô
.

To see which open subset of AM
Ô

would do this job, we use an argument similar to the

one in the proof of Lemma 4.2.2. The scheme V α does intersect {Yi0 = 0} if and only if
the scheme given by {F̄1, · · · , F̄n, Yi0} has a point over α. The system {F̄1, · · · , F̄n, Yi0}
defines a closed subscheme of AM

Ô
×Ô �

n

Ô of dimension ≤ M +n+1− (n+1) =M . Thus

its image Ci under the projective morphism AM
Ô
×Ô �

n

Ô → AM
Ô

is a closed subscheme

of dimension ≤ M , thus Ci ( AM
Ô

is a proper closed subscheme. Hence V α does not

intersect with F∞ if and only if α ∈ Upr :=
⋂n

i=1(A
M
Ô
\ Ci). By construction, we have

α0 ∈ Upr. This proves the lemma. �

Corollary 4.2.5. Under the Situation (⋆), for every sufficiently large integer N > 0,
there exists an open ball BN (α0) ⊆ k[[t]]M in the non-archimedean t-adic sup-norm,

such that (1) BN(α0) ∩ (k[t]M) is nonempty, (2) for every α ∈ BN (α0) ∩ (k[t]M), the

closed subscheme Vα is proper over Spec(Ô), and (3) these so obtained polynomials

f1,α, · · · , fn,α ∈ k[t][y1, · · · , yn] ⊆ O[y1, · · · , yn] of Vα satisfy fj,α ≡ fj mod tm, for each

1 ≤ j ≤ n.

Proof. The proof is almost identical to that of Corollary 4.2.3, where we use Lemma 4.2.4
instead of Lemma 4.2.2, so we omit it. �

4.2.4. Flat stratum. Let pr : V → AM
Ô

be the restriction of the projection AM
Ô
×Ô �

n
Ô
.

By Proposition 4.2.1, we know that the restriction prUne : pr
−1(Une)→ Une is surjective,

but we do not know whether this is flat. By the generic flatness theorem of [8, Théorème
6.9.1], there is a nonempty open subset of Une over which prUne is flat, but this theorem
does not tell us whether this open set contains α0. This causes a small inconvenience.
On the other hand, by the flattening stratification theorem of [8, Corollaire 6.9.3], we
do know that there is a stratification partition {Si} of Une by locally closed subsets such
the restriction of pr over the inverse image of each Si is flat, and some stratum Si0 must
contain α0. We will construct explicitly in Lemma 4.2.6 a locally closed subset of Une
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containing α0 over which a more general collection of coherent sheaves are flat. This
result will be used in §4.2.5 and §4.2.6.

Here is the situation updated from Situation (⋆):

Situation (⋆′): Let W ∈ zn
m̂
(Ô, n)c be a nonempty integral cycle, and

choose a triangular generating set {f1, · · · , fn} ⊂ Ô[y1, · · · , yn] of the
form (4.1.1) using Proposition 4.1.5. Let V be the coefficient perturbation

of W given by {F1, · · · , Fn} ⊂ Ô[x1, · · · , xM ][y1, · · · , yn] as in Situation
(⋆). By renaming the variables xi, we may assume that xM−n+1, · · · , xM
corresponds to the constant terms (= 1) of f1, · · · , fn. By Lemma 2.2.7,
W is closed in �

n

Ô and it is given by (f̄1, · · · , f̄n) as in Situation (⋆), with
its coefficient perturbation V ⊆ AM

Ô
×Ô �

n

Ô given by (F̄1, · · · , F̄n).

LetB := AM−n

Ô
×1 ⊂ AM , and prB : pr−1(B)→ B and prB : pr−1(B)→

B be the restrictions of pr and pr, respectively. Here, α0 = β0 × 1 ∈ B.

Lemma 4.2.6. Under the Situation (⋆′), denote AM
Ô
×Ô�

n

Ô by X. For each face F ⊆ �
n

Ô,

including the case F = �
n

Ô, consider the coherent sheaf FF := OX/(IV + IF ), where IV
is the ideal sheaf of V ⊆ X and IF is the pull-back to X of the ideal sheaf of F . Then

FF restricted to pr−1(B) is prB-flat. In particular, its restriction to pr−1(B) is prB-flat
as well.

Proof. Fix a face F , and denote FF by F . Let X ′ := B×Ô�
n

Ô = pr−1(B), which is closed
in X . Let F ′ be the restriction of F to X ′. For each open chart U ′ ⊆ X ′ from an affine
cover of X ′ and each x ∈ U ′, we need to show that the stalk F ′

x is a flat OB,prB(x)-module.
We prove it for the chart U ′ := B ×Ô �

n
Ô
of X ′, which is obtained from the open chart

U := AM
Ô
×Ô �

n
Ô
of X via U ′ = U ∩X ′.

Now, F|U = OU/(IV + IF ) is given by the quotient of Ô[x1, · · · , xM ][y1, · · · , yn] by
(F1, · · · , Fn) + ({yi1 = ǫ1, · · · , yis = ǫs}), where {yi1 = ǫ1, · · · , yis = ǫs} for some ǫj ∈
{0, 1}, is the set of equations of the face F = F ∩�

n
Ô
.

Recall the constant term of each of f1, · · · , fn is 1. By the labeling convention of the
Situation (⋆′), xM−n+j is the variable corresponding to the nonzero constant term of fj
for 1 ≤ j ≤ n. So, we have Fj = xM−n+j+Gj for some Gj ∈ Ô[x1, · · · , xM−n][y1, · · · , yn].
Hence, the sections (OU/IV )(U) = Ô[x1, · · · , xM ][y1, · · · , yn]/(F1, · · · , Fn) can be ob-

tained from Ô[x1, · · · , xM ][y1, · · · , yn] by replacing each xM−n+j by −Gj for 1 ≤ j ≤ n.
Here each Gj does not involve any of the variables xM−n+1, · · · , xM . Thus, (OU/IV )(U) ≃

Ô[x1, · · · , xM−n,−G1, · · · ,−Gn][y1, · · · , yn] = Ô[x1, · · · , xM−n][y1, · · · , yn],
which is a polynomial ring over Ô with the variables {x1, · · · , xM−n}∪{y1, · · · , yn}. Now
the further quotient

RF := Ô[x1, · · · , xM ][y1, · · · , yn]/((F1, · · · , Fn) + ({yi1 = ǫ1, · · · , yis = ǫs}))
can be obtained from (OU/IV )(U) ≃ Ô[x1, · · · , xM−n][y1, · · · , yn] by replacing each vari-
able yiu by ǫu for 1 ≤ u ≤ s, i.e.

RF ≃ Ô[x1, · · · , xM−n][y1, · · · , yn]/({yi1 = ǫ1, · · · , yis = ǫs})
≃ Ô[x1, · · · , xM−n][{yℓ | 1 ≤ ℓ ≤ n, ℓ 6= i1, · · · , is}],

which is again a polynomial ring over Ô with the variables {x1 · · · , xM−n}∪{yℓ | 1 ≤ ℓ ≤
n, ℓ 6= i1, · · · , is}. In particular, the natural map Ô[x1, · · · , xM−n]→ RF induced by the

projection pr is injective and it is flat. Here, we have Spec (Ô[x1, · · · , xM−n]) = AM−n

Ô
≃

AM−n

Ô
× 1 = B. Hence in particular, F ′ = F|U ′ is flat. The proof for other charts of X ′

is similar, so we omit it. �
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4.2.5. Dominance.

Lemma 4.2.7. Under the Situation (⋆′), recall that W → Spec (Ô) is dominant. Then

there is an open neighborhood Udom ⊆ AM−r

Ô
of β0 such that for every β ∈ Udom, the

associated closed subscheme Vα ⊆ �
n
Ô

with α := β × 1, is dominant over Spec (Ô) as

well.

Proof. Let K := Frac(Ô) = k((t)). Note that a morphism Z → Spec (Ô) is dominant if
and only if the base change ZK → Spec (K) is a nonempty K-scheme. So, we consider

the situation after the base change via Spec (K)→ Spec (Ô).
By Lemma 4.2.6, the morphism prB : pr−1(B) → B is flat. For the open set Une of

Proposition 4.2.1, we have α0 ∈ B ∩Une so that B ∩Une 6= ∅, and this proposition shows
that the restriction prB∩Une : pr−1(B ∩ Une) → B ∩ Une is flat and surjective. Since Une

contains GM
m , there exists a nonempty open neighborhood U ′ ⊂ AM−n

Ô
of β0 such that

U ′×1 ⊆ B∩Une. Hence prU ′ : pr−1(U ′×1)→ U ′×1 is flat and surjective. So, after base

change via Spec (K)→ Spec (Ô), the new morphism prU ′

K
: pr−1(U ′ × 1)K → (U ′ × 1)K

is flat and surjective. We implicitly used [8, Proposition 2.1.4] several times. For this flat
family, the dimensions of the fibers are all equal (see [8, Corollaire 6.1.2], or [10, Corollary
III-9.6, p.257]). In particular, for every β ∈ AM−n

K ∩U ′, we have 0 ≤ dim(Vα0) = dim(Vα)
with α = β × 1. In particular Vα 6= ∅. But, AM−n

K is a nonempty open subset of AM−n

Ô
,

so that we can take Udom := AM−n
K ∩ U ′ to finish the proof of the lemma. �

Corollary 4.2.8. Under the assumptions of Lemma 4.2.7, for every sufficiently large

integer N > 0, there exists an open ball BN (β0) ⊆ k[[t]]M−n in the non-archimedean t-
adic sup-norm, such that (1) BN (β0)∩ (k[t]M−n) is nonempty, (2) for every β ∈ BN (β0)∩
(k[t]M−n), the closed subscheme Vα for α = β × 1, is dominant over Spec (Ô), and

(3) these so obtained polynomials f1,α, · · · , fn,α ∈ k[t][y1, · · · , yn] ⊆ O[y1, · · · , yn] of Vα
satisfy fj,α ≡ fj mod tm for each 1 ≤ j ≤ n.

Proof. The proof is almost identical to that of Corollary 4.2.3, where we use Lemma 4.2.7
instead of Lemma 4.2.2, so we omit it. �

4.2.6. Geometric integrality. Although we began with an integral scheme W , this inte-
grality may not necessarily be preserved under “small” perturbations of the coefficients.
However, we will show that the geometrical integrality over k in the sense of [8, Définition
4.6.2] is better behaved. Later in Case 2 of the proof of Theorem 4.3.2, we will reduce
the general integral situation to the geometrically integral situation.

Lemma 4.2.9. Under the Situation (⋆′), suppose further that W is geometrically integral

over k. Then there exists an open neighborhood Ugi ⊆ AM−n

Ô
of β0 such that for each

β ∈ Ugi, the fiber Vα with α = β × 1, is geometrically integral over k.

Proof. Note that Vα is geometrically integral over k if and only if so is its Zariski closure
V α in �

n

Ô. Now, by Lemma 4.2.6 with F = �
n

Ô, the morphism prB : pr−1(B) →
B = AM−n

Ô
× 1 is proper and flat. Hence by [9, Théorème 12.2.4(viii)], the set Ugi :=

{β ∈ AM−n

Ô
|V α with α = β × 1, is geometrically integral} is open in AM−n

Ô
. This Ugi is

nonempty because β0 ∈ Ugi. But again, for each β ∈ Ugi with α = β × 1, we have that
V α is geometrically integral over k if and only if so is Vα. This proves the lemma. �

Corollary 4.2.10. Under the assumptions of Lemma 4.2.9, for every sufficiently large

integer N > 0, there exists an open ball BN (β0) ⊆ k[[t]]M−n in the non-archimedean t-
adic sup-norm, such that (1) BN (β0)∩ (k[t]M−n) is nonempty, (2) for every β ∈ BN (β0)∩
(k[t]M−n) and α := β × 1, the closed subscheme Vα is geometrically integral over k, and
(3) these so obtained polynomials f1,α, · · · , fn,α ∈ k[t][y1, · · · , yn] ⊆ O[y1, · · · , yn] of Vα
satisfy fj,α ≡ fj mod tm for each 1 ≤ j ≤ n.
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Proof. The proof is almost identical to that of Corollary 4.2.3, where we use Lemma 4.2.9
instead of Lemma 4.2.2, so we omit it. �

4.3. The mod tm moving lemmas. First observe:

Lemma 4.3.1. Let T be an Spec(Ô)-scheme of finite type. Let W1,W2 ⊆ T be two

integral closed subschemes, both surjective over Spec (Ô), such that we have the equality

W1,s =W2,s of the special fibers. Then dim W1 = dim W2.

Proof. Let di := dim Wi. The morphisms Wi → Spec (Ô) for i = 1, 2 are flat (of relative

dimension di−1) because they are surjective and Spec (Ô) is a regular scheme of dimension
1 (see [8, Corollaire 6.1.2] or [10, Proposition III-9.7, p.257]). Since W1,s =W2,s, we have
d1 − 1 = d2 − 1. Hence d1 = d2. �

We now prove the main result of §4:
Theorem 4.3.2. For the completion homomorphism ξn : zn

m
(O, n)c → zn

m̂
(Ô, n)c, the

composition ξnm : znm(O, n)c
ξn→ zn

m̂
(Ô, n)c → zn(km, n) is a surjection.

Proof. Let W ∈ zn
m̂
(Ô, n)c be a nonempty integral closed subscheme of �n

Ô
. By Lemma

2.2.7, the structure morphism W → Spec (Ô) is surjective.
Case 1: First consider the case when W is geometrically integral over k. Take the

generators of the ideal of W given by f1, · · · , fn ∈ Ô[y1, · · · , yn] satisfying the Situation
(⋆′), i.e. of the form in (4.1.1) in Proposition 4.1.5.

By Corollaries 4.2.3, 4.2.5, 4.2.8 and 4.2.10, there exists a sufficiently large integer
N > m such that for every β ∈ BN (β0) ∩ (k[t])M−n with α := β × 1, the corresponding
cycle Vα ⊆ �

n
Ô

has empty intersection with all proper faces of �n
Ô

(in particular, the

intersections with all faces are proper), is proper and dominant (in particular surjective)

over Spec (Ô), and is geometrically integral over k, and furthermore the defining ideal

of Vα in Ô[y1, · · · , yn] is given by polynomials fj,α ∈ k[t][y1, · · · , yn] satisfying fj ≡
fj,α mod tm for all 1 ≤ j ≤ n. Since both W and Vα are geometrically integral over k,
they are integral, thus we haveW ∼tm Vα. By Lemma 4.3.1, this implies dimW = dim Vα.
Furthermore, for each proper face F ( �

n
Ô
, we have Vα∩Fs = ∅ so that codimF (Vα∩Fs) ≥

n, while for F = �
n
Ô
we have codimF (Vα ∩ Fs) = codimF ((Vα)s) = codimF (Ws) ≥ n, so

that Vα ∈ znm̂(Ô, n)c.
Note that Vα is given by the ideal generated by {f1,α, · · · , fn,α} in Ô[y1, · · · , yn] with

fj,α ∈ k[t][y1, · · · , yn] ⊆ O[y1, · · · , yn]. So, if we let Z ⊆ �
n
O be the closed subscheme

given by the ideal generated by the same set {f1,α, · · · , fn,α}, this time in O[y1, · · · , yn],
then we have Ẑ := Z ×O Ô = Vα by definition.

We need to show that Z ∈ zn
m
(O, n)c. Here for each face FO ⊆ �

n
O, we have dim (Z ∩

FO) = dim (Ẑ ∩ FÔ), where FÔ is the base change of FO. In particular, when FO = �
n
O,

we have dim Z = dim Vα, while when F ( �
n
O is a proper face, Z intersects with F

properly. Furthermore via the identification O/m = Ô/m̂, we have Zs = (Vα)s = Ws so
that codimFO

(Z ∩ FO,s) ≥ n for each face FO ⊆ �
n
O. Hence Z ∈ znm(O, n). The structure

morphism Z → Spec (O) is proper by [8, Proposition 2.7.1(vii)], because its base change

Z ×O Ô = Vα → Spec (Ô) via the faithfully flat morphism Spec (Ô) → Spec (O), is
proper. Hence Z ∈ znm(O, n)c and Vα = ξn(Z). Combined with that W ∼tm Vα, we thus
have W ∈ im(ξnm).

Case 2: Now we suppose that W is integral, but not geometrically integral over
k. Let k′ be an algebraic closure of k. We first claim that there is a finite extension
k ⊂ L contained in k′ such that for pL/k : Spec (L) → Spec (k) and its associated flat

pull-back map p∗L/k : z
n
m̂
(Ô, n)c → zn

m̂′(ÔL, n)
c, the base-change p∗L/k(W ) = W ′ is a closed
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subscheme of�n
ÔL

, whose associated cycle is given by
∑
miW

′
i for some closed subschemes

W ′
i ⊂ �

n
ÔL

geometrically integral over L and integers mi ≥ 1. Here, ÔL := ÔA1
L,0
≃ L[[t]]

and m̂′ := (t) ⊂ L[[t]].
Indeed, by [8, Corollaire 4.5.10], there is a finite extension k ⊂ L such that the ir-

reducible components W̃ ′
i of the base change WL to L are all geometrically irreducible

over L in the sense of [8, Définition 4.5.2]. These irreducible components W̃ ′
i may not be

geometrically reduced over L, but yet when mi is the length of W̃ ′
i over W ′

i := (W̃ ′
i )red,

the cycle associated to W ′ = WL is
∑

imiW
′
i . If k is perfect, geometrically reducedness

over L is equivalent to reducedness by [8, Corollaire 4.6.11], so that each W ′
i is actually

geometrically integral over L, so the claim holds in this perfect field case. If k is not
perfect, then by [8, Proposition 4.6.6], there exists a finite radicial (i.e. purely insepa-
rable) extension L ⊂ L′ such that for the further base change of W ′

i to (W ′
i )L′ from L

to L′, the scheme ((W ′
i )L′)red is geometrically reduced over L′, and under this procedure,

((W ′
i )L′)red is still geometrically irreducible over L′ by definition. Hence replacing the

finite extension k ⊂ L by the further extension k ⊂ L ⊂ L′, with mi replaced by the
lengths for the corresponding base change to L′, we prove the claim.

Now, pick any W ′
i of the claim. This is in zn

m̂′(ÔL, n)
c by construction. Since pL/k is

proper and flat, we have pL/k(W
′
i ) = W . Note that we have the following commutative

diagram, where OL := OA1
L,0

and m′ := mA1
L,0

:

(4.3.1) zn
m′(OL, n)

c
ξnL

//

pL/k

��

zn
m̂′(ÔL, n)

c

pL/k

��

// zn(Lm, n)

pL/k

��

zn
m
(O, n)c ξn

// zn
m̂
(Ô, n)c // zn(km, n),

where the left square is clearly commutative, while the right square is well-defined and

commutative because pL/k is a Spec (Ô)-morphism of Spec (Ô)-schemes so that pL/k maps
a pair of mod tm-equivalent integral cycles to a pair of mod tm-equivalent integral cycles.

Going back to the proof of Case 2, since W ′
i is geometrically integral over L, by Case

1, there exists some Z ′ ∈ zn
m′(OL, n)

c such that ξnL(Z
′) = Ẑ ′ ∼tm W ′

i . Hence we have

W = pL/k(W
′
i ) ∼†

tm pL/kξ
n
L(Z

′) =‡ ξnpL/k(Z
′), where † and ‡ hold by the commutativity

of the right and the left squares of the diagram (4.3.1), respectively. This shows that W
lies in the image of ξnm. This finishes the proof that ξnm is surjective. �

Corollary 4.3.3. The morphism ξnm : zn
m
(O, •)pc → zn(km, •) of complexes induces a

surjective group homomorphism CHn
m(O, n)pc → CHn(km, n).

Proof. Let K• := ker(ξnm) and I• := im(ξnm) so that we have a short exact sequence
0 → K• → zn

m
(O, •)pc → I• → 0 of homological complexes. From the morphisms

zn
m
(O, •)pc → I• →֒ zn(km, •) of complexes, we have homomorphisms

(4.3.2) CHn
m
(O, n)pc → Hn(I•)→ CHn(km, n).

Here, by Remark 2.2.3, we have znm(O, n−1)pc = 0 so thatKn−1 = 0, while we haveKj = 0
for all j ≤ n− 1 due to dimension reason. In particular, Hn−1(K•) = 0 and we have part
of the associated long exact sequence · · · → CHn

m
(O, n)pc → Hn(I•) → Hn−1(K•) = 0 so

that the first map CHn
m
(O, n)pc → Hn(I•) of (4.3.2) is surjective.

On the other hand, by Theorem 4.3.2, we have In = zn(km, n), while Ij = 0 for all
j ≤ n− 1 by Remark 2.3.6 and dimension reason. Hence

Hn(I•) =
zn(km, n)

∂(ξnm(z
n
m(O, n+ 1)pc))

, CHn(km, n) =
zn(km, n)

∂(zn(km, n+ 1))
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with ∂(ξnm(z
n
m(O, n + 1)pc)) ⊆ ∂(zn(km, n + 1)) in zn(km, n), so that the second map

Hn(I•) → CHn(km, n) in (4.3.2) is the surjective quotient map. Hence the composite in
(4.3.2) is surjective, as desired. �

Remark 4.3.4. One may wonder whether Theorem 4.3.2 extends beyond the Milnor range,

i.e. when q < n, whether the composite zqm(O, n)pc → zq
m̂
(Ô, n)pc → zq(km, n) is surjec-

tive. To test if this question is affirmatively answerable, concentrate only on the subset of

integral effective cycles. Since the cycles considered are flat over Spec(Ô), such effective
cycles may be, under mild additional assumptions, represented by (a locally closed subset

of) a Hilbert scheme H , and there exists a (nonconstant) morphism Spec (Ô) → H of
schemes. On the other hand, if the surjectivity assertion mod tm would hold for those
integral effective cycles, then it implies that for the fpqc cover Spec (Ô)→ Spec (O), the
morphism Spec (Ô) → H should give an fpqc descent to a morphism Spec (O) → H .
However, this means that there exists a nonconstant rational map A1 → H , which im-
poses a restrictive condition on H . Thus, we do not expect an extension of Theorem
4.3.2 to cycles of arbitrary dimension.

5. Milnor range II: mod tm-equivalence and conclusion

In §5.1, we use the mod tm moving lemma of Theorem 4.3.2 to transport the main

theorem of [5, Theorem 3.4] (or equivalently, [6], [15]) to our situation of cycles over Ô
modulo tm. This allows a significant simplification of the generators of our relative cycle
group CHn((km, (t)), n), and helps in finally proving in §5.2 that the regulators Υi defined
in Proposition 3.0.2 of §3 descend to the cycle classes mod tm-equivalence. Using this,
the proof of the main theorem of the article, Theorem 3.0.1, is finished in §5.3.
5.1. The graph cycles. Recall that for each integral k-domain R of finite Krull dimen-
sion, and a sequence a1, · · · , an ∈ R× of units, we have its associated closed subscheme
Γ(a1,··· ,an) ⊂ �

n
R given by the set of equations {y1 = a1, · · · , yn = an}. This closed sub-

scheme is called the graph cycle of the sequence, and this is geometrically integral over
k. In case R is local with the maximal ideal m, actually Γ(a1,··· ,an) ∈ znm(R, n), and we
get the graph homomorphism gr : KM

n (R)→ CHn
m
(R, n). This was proven in [5, Lemma

2.1] for a ring R essentially of finite type over k, but exactly the same argument proves
it for the general case. By construction, the Zariski closure Γ of Γ in �

n

R is equal to Γ,
so that in particular Γ is closed in �

n

R as well. Furthermore, one sees immediately that

∂ǫi (Γ) = 0 for each 1 ≤ i ≤ n and ǫ ∈ {0,∞}. In our situation of R = O, Ô, the graph

cycles lie in zn
m
(O, n)c and zn

m̂
(Ô, n)c, respectively.

Definition 5.1.1. For R = O or Ô, let zngr(R, n) be the subgroup generated by the
images of the graph cycles Γ(a1,··· ,an) over all sequences a1, · · · , an ∈ R×. For the well-

defined homomorphism zngr(Ô, n) → CHn
m̂
(Ô, n)pc → CHn(km, n), define CHn

gr(km, n) to

be the image of zngr(Ô, n) in CHn(km, n).

Lemma 5.1.2. Let k be an infinite field. The composite KM
n (Ô) gr→ CHn

m̂
(Ô, n)pc →

CHn(km, n) is surjective. In particular, the group CHn(km, n) is generated by the graph cy-

cles Γ(a1,··· ,an) for sequences a1, · · · , an ∈ Ô×, and the natural homomorphism CHn
gr(km, n)→

CHn(km, n) is an isomorphism.

Proof. We have a commutative diagram

KM
n (O) grO

//

��

CHn
m(O, n)pc

ξ
��

∗

''P
P

P

P

P

P

P

P

P

P

P

P

KM
n (Ô)

gr
Ô
// CHn

m̂
(Ô, n)pc // CHn(km, n),
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where the left square commutes by [5, Proposition 2.3]. The map grO is surjective since
the map KM

n (O)→ CHn(O, n) is surjective by [5, Theorem 3.4] (or [6], [15]; this uses the
assumption that k is infinite), and by [5, Lemma 3.11], every cycle in CHn(O, n) is repre-
sented by a cycle in the group called CHn

sfs(O, n), which is some subgroup of CHn
m
(O, n),

where each irreducible component is finite (in particular, proper) surjective over Spec (O).
(See [5] for its precise definition.) In particular, CHn

sfs(O, n) is a subgroup of CHn
m(O, n)pc.

Thus we have CHn
sfs(O, n) = CHn

m
(O, n)pc = CHn

m
(O, n) = CHn(O, n). The sloped map ∗

is surjective by Corollary 4.3.3. By diagram chasing, the map KM
n (Ô) → CHn(km, n) is

surjective. The second assertion follows immediately from the first one. �

Lemma 5.1.3. Let k be an infinite field. The surjection KM
n (Ô) → CHn(km, n) of

Lemma 5.1.2 induces a surjection KM
n (km)→ CHn(km, n).

Proof. There is a natural surjection KM
n (Ô) → KM

n (Ô/(tm)) = KM
n (km). So, for any

Milnor symbol {a1, · · · , an} ∈ KM
n (km) with ai ∈ k×m, we choose any liftings ã1, · · · , ãn ∈

Ô× = k[[t]]× and send the symbol {ã1, · · · , ãn} ∈ KM
n (Ô) to the cycle class in CHn(km, n)

of the graph cycle Γ(ã1,··· ,ãn) ⊂ �
n
Ô
. To prove that this map is well-defined, choose

another sequence of liftings ã′1, · · · , ã′n ∈ Ô× of the sequence a1, · · · , an ∈ k×m, and here
ãi − ã′i ∈ tmk[[t]]. By definition, we have Γ(ã1,··· ,ãn) ∼tm Γ(ã′1,··· ,ã

′
n), so that the map

KM
n (km) → CHn(km, n) is well-defined. The surjectivity of this map now follows from

the surjectivity of KM
n (Ô)→ CHn(km, n) of Lemma 5.1.2. �

5.2. The graph cycles over Ô mod tm. For graph cycles, it is easy to describe mod
tm equivalence:

Lemma 5.2.1. Let Z1, Z2 ∈ zngr(Ô, n)c be two integral graph cycles, represented by

(5.2.1) Z1 : {y1 = a1, · · · , yn = an}, Z2 : {y1 = b1, · · · , yn = bn},
where aj, bj ∈ Ô× for 1 ≤ j ≤ n. Then the following are equivalent:

(1) Z1 ∼tm Z2

(2) For each 1 ≤ j ≤ n, we have aj ≡ bj in Ô/(tm).
(3) For each 1 ≤ j ≤ n, there exists cj ∈ Ô such that aj = bj(1 + cjt

m) in Ô.
Proof. The equivalence (1) ⇔ (2) and the implication (3) ⇒ (2) are obvious. For the

implication (2) ⇒ (3), note that aj ≡ bj in Ô/(tm) implies that ajb
−1
j ≡ 1 in Ô/(tm) so

that ajb
−1
j = 1 + cjt

m in Ô for some cj ∈ Ô. This proves (3). �

Proposition 5.2.2. Let k be a field of characteristic 0. Let Z1, Z2 ∈ zngr(Ô, n)c be two

integral graph cycles such that Z1 ∼tm Z2. Then Υi(Z1) = Υi(Z2) for each 1 ≤ i ≤ m−1.

Proof. For Z1 and Z2, express them by the equations as in (5.2.1). By Lemma 5.2.1, the

assumption that Z1 ∼tm Z2 implies that we have aj = bj(1 + cjt
m) for some cj ∈ Ô for

each 1 ≤ j ≤ n. Notice that the common special fiber (Z1)s = (Z2)s is given by a single
closed point p whose coordinates are ā1 = b̄1, · · · , ān = b̄n, where the bars denote the

images in the residue field k of Ô mod (t). For each j, we have

dlogaj − dlogbj = dlog(1 + cjt
m) =

tmdcj + cjmt
m−1dt

1 + cjtm
∈ tm−1Ω1

Ô/Z
.

Hence by expanding out, we immediately have dlogy1 ∧ · · · ∧ dlogyn|Z1 − dlogy1 ∧ · · · ∧
dlogyn|Z2 = dloga1∧· · ·∧dlogan−dlogb1∧· · ·∧dlogbn ∈ tm−1Ωn

Ô/Z
. Thus for each 1 ≤ i ≤

m−1, we have 1
ti
dloga1∧· · ·∧dlogan− 1

ti
dlogb1∧· · ·∧dlogbn ∈ tm−1−iΩn

Ô/Z
⊂ Ωn

Ô/Z
so that

the residue at t = 0 (which is the residue at the unique point p of the common special
fiber) of the difference vanishes. In other words, Υi(Z1) = Υi(Z2) for 1 ≤ i ≤ n. �



MOTIVIC COHOMOLOGY OF FAT POINTS IN MILNOR RANGE 21

Corollary 5.2.3. Let k be a field of characteristic 0. For 1 ≤ i ≤ m− 1, the map Υi of

Proposition 3.0.2 induces a homomorphism Υi : CH
n((km, (t)), n)→ Ωn−1

k/Z .

Proof. By Proposition 3.0.2, the map Υi descends to Υi : CH
n
m̂
(Ô, n)pc → Ωn−1

k/Z . Since

CHn
gr(km, n) = CHn(km, n) by Lemma 5.1.2, we may consider only the graph cycles. For

all the pairs of mod tm equivalent integral graph cycles, by Proposition 5.2.2, the maps
Υi respect the mod tm equivalence, so that we have the induced map Υi : CH

n(km, n)→
Ωn−1

k/Z . Now, since CH
n(km, n) = CHn((km, (t)), n)⊕CHn(k, n), by restriction we have the

desired homomorphism. �

Remark 5.2.4. In fact, Υi|CHn(k,n) = 0 for 1 ≤ i ≤ m − 1. Indeed, by the theorem of
Nesterenko-Suslin [21] and Totaro [27], we have an isomorphism KM

n (k) ≃ CHn(k, n)
so that it is enough to check that for the graph cycles Γ given by the system of the
equations of the form {y1 = a1, · · · , yn = an} considered as a closed subscheme of �n

Ô
,

with a1, · · · , an ∈ k×, we have Υi(Γ) = 0. The form is 1
ti
dlogy1 ∧ · · · ∧ dlogyn|Γ =

1
ti
dloga1 ∧ · · · ∧ dlogan with each aj ∈ k× so that there is no term with dt anywhere in

the form. Thus its residue along t = 0 is 0, i.e. Υi(Γ) = 0.

5.3. Proof of Theorem 3.0.1. Finally, we prove the main theorem of the paper. We
show that

⊕m−1
i=1 Υi : CH

n((km, (t)), n) →
⊕m−1

i=1 Ωn−1
k/Z is an isomorphism. Recall from

Lemma 5.1.3 that we had a surjection KM
n (km)→ CHn(km, n). This induces a surjective

map KM
n (km, (t))→ CHn((km, (t)), n), where K

M
n (km, (t)) := ker(KM

n (km)
evt=0→ KM

n (k)).
We know from Proposition 5.4.2 in the appendix §5.4 below that we have an isomorphism

KM
n (km, (t))

∼−→ Ωn−1
km,(t)/Z/dΩ

n−2
km,(t)/Z

∼←−
⊕

1≤i≤m−1

tiΩn−1
k/Z ,

given by {a1, · · · , an} 7→ log(a1)dlog(a2) ∧ · · · ∧ dlog(an), where a1 ∈ 1 + tkm and

Ωi
km,(t)/Z := ker(Ωi

km/Z

evt=0→ Ωi
k/Z). Then, looking at the k×-weight i parts, we obtain

the maps

(5.3.1) Ωn−1
k/Z

∼−→ tiΩn−1
k/Z →֒ KM

n (km, (t)) ։ CHn((km, (t)), n)
Υi→ Ωn−1

k/Z ,

where r1dr2 ∧ · · · ∧ drn ∈ Ωn−1
k/Z is mapped to {erti, r2, · · · , rn} ∈ KM

n (km, (t)), where r :=

r1 · · · rn. Let Γ ∈ zn
m̂
(Ô, n)c denote the graph of this Milnor element. The composition

(5.3.1) then sends r1dr2 ∧ · · · ∧ drn to Υi(Γ) = ir1dr2 ∧ · · · ∧ drn by a straightforward
calculation. Since i 6= 0, the composition (5.3.1) is an isomorphism. In particular, the
composite

(5.3.2)
m−1⊕

i=1

Ωn−1
k/Z ≃ KM

n (km, (t)) ։ CHn((km, (t)), n)
⊕

i Υi→
m−1⊕

i=1

Ωn−1
k/Z

is an isomorphism. Therefore, the above map KM
n (km, (t)) → CHn((km, (t)), n) is injec-

tive, hence an isomorphism. Since the composite (5.3.2) is an isomorphism, this implies
that

⊕
i Υi is an isomorphism, as desired. �

5.4. Appendix. In the middle of the proof of Theorem 3.0.1 in §5.3, we used the fol-
lowing Proposition 5.4.2. This is probably well-known to the experts, and with some
effort it should follow from e.g. [7]. However, since the Milnor K-groups are given by the
concrete Milnor symbols we sketch a direct argument as follows, partly due to the fact
that the authors could not find a suitable reference. We first have:

Lemma 5.4.1. Let k be a field. Then KM
n (km, (t)) is generated by the Milnor symbols

{a1, · · · , an} with a1 ∈ 1 + tkm and a2, · · · , an ∈ k×m.
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Proof. Let G ⊆ KM
n (km) be the subgroup generated by the Milnor symbols {a1, · · · , an}

with a1 ∈ 1 + tkm (which is contained in k×m) and a2, · · · , an ∈ k×m. Certainly under
the evaluation map evt=0 : KM

n (km) → KM
n (k), we have {a1|t=0, a2|t=0, · · · , an|t=0} =

{1, a2|t=0, · · · , an|t=0} = 0 in KM
n (k). Hence each such generator {a1, · · · , an} with a1 ∈

1 + tkm is contained in ker(evt=0) = KM
n (km, (t)), thus G ⊆ KM

n (km, (t)).
Every a ∈ k×m can be written as the product a = c·b with c ∈ k× and b ∈ 1+tkm. Hence

by the multi-linearity and the anti-commutativity of KM
n (km), every symbol {a1, · · · , an}

with ai ∈ k×m can be written as a sum of symbols in G (type I) and symbols {c1, · · · , cn}
such that ci ∈ k× (type II). Here the splitting ring homomorphisms k → km

evt=0→ k
induce the splitting KM

n (km) = KM
n (k)⊕KM

n (km, (t)). The type II symbols are definitely
in KM

n (k), while the symbols of type I generate G. Hence KM
n (km, (t)) = G. �

Proposition 5.4.2. Let k be a field of characteristic 0 and let m ≥ 2 be an integer. Then

we have an isomorphism φn : KM
n (km, (t)) ≃ Ωn−1

km,(t)/Z/dΩ
n−2
km,(t)/Z given by {a1, · · · , an} 7→

log(a1)dlog(a2)∧· · ·∧dlog(an), where a1 ∈ 1+tkm, where log(a1) makes sense in km. The
isomorphism can be rewritten as KM

n (km, (t)) ≃
⊕m−1

i=1 tiΩn−1
k/Z , where the map tiΩn−1

k/Z →
KM

n (km, (t)) is given by sending r1dr2 ∧ · · · drn to {er1r2···rnti , r2, · · · , rn} ∈ KM
n (km, (t)).

Proof. By Lemma 5.4.1, KM
n (km, (t)) is generated by {a1, · · · , an} with a1 ∈ 1+ tkm and

a2, · · · , an ∈ k×m. We define ψn : Ωn−1
km,(t)/Z/dΩ

n−2
km,(t)/Z → KM

n (km, (t)) by sending r1dr2 ∧
· · ·∧drn, where r1, · · · , rℓ ∈ (t) and rℓ+1, · · · , rn ∈ k×m, to {er1rℓ+1···rn, er2 , · · · , erℓ , rℓ+1, · · · , rn}
in KM

n (km, (t)).
One can check by induction that φn and ψn are well-defined group homomorphisms. We

omit the proof as they follow from elementary but tedious arguments. Let’s check that φn

and ψn are inverse to each other. Indeed, for x = r1dr2 ∧ · · · ∧ drn ∈ Ωn−1
km,(t)/Z/dΩ

n−2
km,(t)/Z

with r1, · · · , rℓ ∈ (t) and rℓ+1, · · · , rn ∈ k×m, we have

(φn ◦ ψn)(x) = φn{er1rℓ+1···rn, er2 , · · · , erℓ , rℓ+1, · · · , rn}
= log(er1rℓ+1···rn)dlog(er2) ∧ · · · ∧ dlog(erℓ) ∧ dlog(rℓ+1) ∧ · · · ∧ dlog(rn)

= r1rℓ+1 · · · rndr2 ∧ · · · ∧ drℓ ∧
drℓ+1

rℓ+1
∧ · · · ∧ drn

rn
= r1dr2 ∧ · · · ∧ drn = x,

so that φn ◦ ψn = Id. On the other hand, for y = {a1, a2, · · · , an} with a1 ∈ 1 + tkm and
ai ∈ k×m for 2 ≤ i ≤ n, we have (ψn ◦ φn)(y) =

(5.4.1) ψn(log(a1)dlog(a2) ∧ · · · ∧ dlog(an)) = ψn

(
log(a1)

a2 · · · an
da2 ∧ · · · ∧ dan

)
.

Here a1 ∈ 1 + tkm so that log(a1) ∈ (t), hence log(a1)/(a2 · · · an) ∈ (t). Hence (5.4.1)

equals to {e
log(a1)
a2···an

·a2···an , a2, · · · , an} = {a1, · · · , an} = y, i.e. ψn ◦ φn = Id. The second
statement follows from Lemma 5.4.3 below. �

We used the following elementary and nice lemma in the middle of the proof of Propo-
sition 5.4.2, which we learned from the proof of [12, Lemma 6.2]:

Lemma 5.4.3. Let k be a field of characteristic 0. Let m ≥ 2 be an integer. Then for

n ≥ 2, we have Ωn−1
km,(t)/Z/dΩ

n−2
km,(t)/Z ≃ dΩn−1

km/Z/dΩ
n−1
k/Z

≃←
d
tkm ⊗k Ω

n−1
k/Z =

⊕m−1
i=1 tiΩn−1

k/Z .

Proof. We have a commutative diagram with exact rows

0 // Hn−1(Ω•
km/Z)

evt=0

��

// Ωn−1
km/Z/dΩ

n−2
km/Z

evt=0

��

d
// dΩn−1

km/Z

evt=0

��

// 0

0 // Hn−1(Ω•
k/Z)

// Ωn−1
k /dΩn−2

k/Z

d
// dΩn−1

k/Z
// 0,
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where the vertical maps are all split surjections. Furthermore, by the Poincaré lemma in
[33, Corollary 9.9.3], we have Hn−1(Ω•

km,(t)/Z) = 0 so that the left vertical map is actually

an isomorphism. Hence the snake lemma gives an isomorphism Ωn−1
km,(t)/Z/dΩ

n−2
km,(t)/Z ≃

dΩn−1
km/Z/dΩ

n−1
k/Z . The second isomorphism dΩn−1

km/Z/dΩ
n−1
k/Z

≃←
d
tkm ⊗k Ω

n−1
k/Z =

⊕m−1
i=1 tiΩn−1

k/Z

is obvious. �

5.5. Final remarks. We have two remarks on strengthening Theorem 3.0.1.

Remark 5.5.1. We could have defined zq(km, n) in Definition 2.3.5 as zq
m̂
(Ô, n)/ ∼tm using

the complex zq
m̂
(Ô, n), but then part of the perturbation results in §4 may not be easy to

establish. If one can prove the guess that “every integral cycle Z ∈ zn
m̂
(Ô, n) is equivalent

to a cycle in zn
m̂
(Ô, n)pc = zn

m̂
(Ô, n)c modulo the boundary of a cycle in zn

m̂
(Ô, n+1)”, then

we can still prove a stronger version of Theorem 3.0.1 for the cycles using zq
m̂
(Ô, n)/ ∼tm .

In fact, it is easy to see that when n = 1, every integral cycle in z1
m̂
(Ô, 1) is automatically

proper over Spec (Ô). However for n ≥ 2, we could yet find neither a proof nor a
counterexample to the guess, so we gave this version of the definition in Definition 2.3.5.

Remark 5.5.2. Reflecting on the main theorem of [25], it is desirable to remove the
assumption that the base field k is of characteristic 0 in Theorem 3.0.1. The right hand
side (Ωn−1

k/Z )
⊕(m−1) of the isomorphism of Theorem 3.0.1 should be replaced by the big

de Rham-Witt forms Wm−1Ω
n−1
k for a general base field k. To proceed further, we need

to understand whether there exists a Parshin-Lomadze residue for the big de Rham-
Witt complexes when the base field is of positive characteristic, and especially when it
is imperfect. This is not trivial and may require serious works. A more minor problem
is to give an explicit description of the relative Milnor K-groups of the ring of truncated
polynomials over a field of positive characteristic in terms of the big de Rham-Witt
complexes. This would improve Proposition 5.4.2 for a field of positive characteristic.
We leave these as future tasks to finish.
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