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Abstract. In this paper we compute the values of the p-adic multiple polylogarithms of
depth two at roots of unity. Our method is to solve the fundamental differential equation
satisfied by the crystalline frobenius morphism using rigid analytic methods. The main
result could be thought of as a computation in the p-adic theory of higher cyclotomy. We
expect the result to be useful in proving non-vanishing results since it gives quite explicit
formulas.

1. Introduction

LetM ≥ 1, ζ a primitiveM th root of unity and E := Q(ζ ).LetVM := Gm,E\μM,E

be the complement of the group of M th roots of unity μM in the multiplicative
group Gm over E . The unipotent completion of the fundamental group of VM has
a motivic interpretation. The case of M = 1 was studied in detail in [3], where the
unipotent completion of π1(VM , ·) was defined in different cohomology theories
and comparison isomorphisms were given between them. The periods of the Betti–
de Rham comparison isomorphism give multi-zeta values. The algebra that they
generate has arithmetic significance since it is related to the Hopf algebra of the
motivic Galois group through a conjecture of Grothendieck. The periods of the
crystalline-de Rham comparison isomorphism give p-adic multi-zeta values which
we studied in [11].

Choosing appropriate basepoints Deligne and Goncharov define the unipotent
motivic fundamental group πmot

1 (VM , ·) of VM whose ring of functions is an ind-
object in the tannakian category of mixed Tate motives over OE [M−1] [6, §5].
Moreover, for M = 1, F. Brown showed that πmot

1 (VM , ·) generates this category
as a tannakian category [1]. Similar results for M = 2, 4, 6, 8 were shown by
Deligne [5]. As a consequence of this, the periods of mixed Tate motives over these
rings areQ-linear combinations of periods of the fundamental group πmot

1 (VM , ·).
Therefore studying these periods have important arithmetic consequences. It is of
special importance to prove linear independence or transcendence statements for
the p-adic periods and for this, one would want to have as explicit a description as
one can have for these values. This is what we aim to do for the p-adic periods in
depth less than or equal to two. We describe the problem in more detail below.
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406 S. Ünver

The comparison between the Betti and de Rham realization of π1(VM , ·) is
completely described by the cyclotomic versions of multi-zeta values [6, Propo-
sition 5.17]. Namely, fix an imbedding of E in C. In the de Rham theory of the
fundamental group, there is a canonical fiber functor denoted by ωdR (Sect. 2.1.2).
Moreover, for any basepoint x, there is a canonical isomorphism between the fiber
functor at x, and ωdR (2.1.1). In the following, when we refer to the de Rham
fundamental group without specifying the fiber functor, we always mean to use
ωdR . The Lie algebra of the de Rham fundamental group of VM over C is the
free pro-nilpotent Lie algebra with generators {ei }0≤i≤M , where e0 (resp. ei ) are
the functionals which send a unipotent connection to its residues at 0 (resp. ζ i )
(Sect. 2.1.3). Hence the set of C-valued points of the de Rham fundamental group
is the set of group-like elements in the non-commutative formal power series ring
C〈〈e0, . . . , eM 〉〉. The image of the Betti path from the tangential basepoint 1 at 0
to the tangential basepoint −1 at 1 under the de Rham–Betti comparison isomor-
phism gives an element of the de Rham fundamental groupoid between the same
tangential basepoints. Using the above identification of the fiber functors at these
basepoints and ωdR, we obtain an element of the de Rham fundamental group and
hence a group-like element 1γ0 in C〈〈e0, . . . , eM 〉〉. By [6, Proposition 5.17], the
coefficient of esm−1

0 eim · · · es1−1
0 ei1 in 1γ0, where M ≥ im, . . . , i1 ≥ 1 and sm > 1,

is

(−1)m
∑

nm>···>n1>0

ζ im (nm−1−nm )+···+(−i1n1)

nsmm · · · ns11
.

The study of these numbers is the Hodge-theoretic analog of higher cyclotomy [9].
The main result below is the crystalline analog of the above for m ≤ 2. We

describe this in more detail. Letting p be a prime which does not divide M,

πmot
1 (VM , ·) has good reduction modulo p, and hence one would expect a crys-

talline realization of this motive at p. This is completely described by the frobenius
action on the de Rham fundamental group π1,dR(VM , ·). Let XM denote the base
change of VM to K := Qp(ζ ) and let gi denote the image under frobenius of the
canonical de Rham path from the tangential basepoint 1 at 0 to the tangential base-
point 1 at ζ i/p (c.f. Sect. 2.2.3) on XM . As above gi is naturally in K 〈〈e0, . . . , eM 〉〉.
The main result of the paper, Theorem 6.4.3 below, gives an explicit formula for
the coefficient of e j e

s−1
0 eke

t−1
0 in gi , in terms of iterated sums, exactly as above.

Since gi is group-like, this also determines the coefficients of terms of the form
er−1
0 e j e

s−1
0 eke

t−1
0 . This might be thought of as the p-adic theory of higher cyclo-

tomy in depth two.
The restriction to depth two is only for computational reasons. The coefficients

and the contributions coming from the lower depth values that are to be added
for the regularization get very complicated when the depth increases. However, if
we are only interested in the Q-vector space, hence algebra, of (cyclotomic) p-
adic multi-zeta, we might show that this algebra is contained in an explicit algebra
formed by the regularized iterated sums such as the ones that appear in the present
paper. This is the content of a work in progress. The M = 1 case of this work is
done in [12]. The corresponding result for the algebra of cyclotomic p-adic values
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Cyclotomic p-adic multi-zeta values 407

will give a result less precise than the one in the present paper, but it will have the
advantage that it will work in all depths and not just depth two.

Comparison with Furusho’s definition. Furusho defines p-adic multiple-zeta
values (as in the case M = 1 above) using Coleman’s theory of iterated p-adic
integrals instead of our use of Deligne’s theory of the comparison isomorphism.
However, the information that is contained in both of these definitions are precisely
the same and can be transferred from one to another just by basic linear algebraic
computations [8, Theorem 2.8, Examples 2.10]. One can similarly define a version
of the cyclotomic p-adic multiple-zeta values using Coleman’s theory and this will
again have a similar relation to our definition. Therefore our explicit computations
also give explicit computations for these Coleman integrals. We would like to
emphasize that no other explicit expressions are known for the p-adic multiple-
zeta values of Furusho (M = 1) and their higher cyclotomic analogs (M > 1).

We describe the contents of the paper. In Sect. 2, we review the de Rham and
crystalline fundamental groups of a curve in a manner which will be suitable for
our purposes. In particular, using the horizontality of the frobenius with respect to
the canonical connection we arrive at the fundamental differential equation (2.2.9).
At the end of this section, we fix the notation for what follows. In Sect. 3, we obtain
a certain relation between the coefficients of the power series expansions of rigid
analytic functions onUM ,which is essential for the computations (Corollary 3.0.4).
In Sect. 4, we compute cyclotomic p-adic multi-zeta values of depth one, which
is fairly straightforward. Next there is a section on the type of iterated sums that
appear in the computations. These functions will appear as coefficients of the power
series expansions above and will satisfy the hypotheses of Corollary 3.0.4, so the
inductive process will continue. In Sect. 6, we will proceed with the computation,
and finish with the main result in Theorem 6.4.3.

2. The fundamental differential equation

In this section,wewill recall the deRham-crystalline isomorphism theorem through
whichwewill define the cyclotomic p-adicmulti-zeta values. Studying the variation
of the fundamental torsor of paths on XM with respect to the standard lift of the
frobenius will give us a differential equation (2.2.10) which will be one of the main
tools for computing these values.

We start by reviewing the de Rham fundamental group of a curve X/K over an
arbitrary field K of characteristic 0 in Sect. 2.1. This is defined as the automorphism
group of a fiber functor on the category Micuni (X/K ) of vector bundles with
unipotent connection on X.

In case, X has a compactification X such that H1(X ,O) = 0, this category
has a canonical fiber functor called the de Rham fiber functor. The corresponding
fundamental groupwill be denotedbyπ1,dR(X/K ).The fundamentalπ1,dR(X/K )-
torsor TdR on X whose fiber at a point x ∈ X represents the isomorphisms between
ωx , the fiber functor at x, and ωdR is endowed with a natural connection. This
connection is explained in detail in Sect. 2.1.3.

Next we describe the crystalline fundamental group of a smooth variety Y/k
over a perfect field k of characteristic p in Sect. 2.2. The definition is similar to the
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408 S. Ünver

one above and is based on the category of unipotent overconvergent isocrystals on
Y. The essential difference is that there is an action of frobenius on the crystalline
fundamental group. When Y has a sufficiently nice lifting over W, the ring of
Witt vectors of k, then there is a comparison isomorphism between the crystalline
fundamental group of Y and the de Rham fundamental group of the generic fiber
of the lifting. Using this isomorphism one defines a frobenius action on this de
Rham fundamental group. Applying this to XM we define the cyclotomic p-adic
multi-zeta values in Sect. 2.2.3. The interplay between the canonical connection
and the frobenius is summarized by the differential equation in Sect. 2.2.4, which
is a restatement of the fact that frobenius is horizontal with respect to the canonical
connection.

Fix a prime p, which does not divide M. Let XM denote the base change of
VM to K = Qp(ζ ). Let AM denote the rings of regular functions on XM . Finally,
let DM := XM \ XM , where XM = P1

K is the smooth compactification of XM .

2.1. The de Rham fundamental group of XM

We review the theory of the de Rham fundamental group [3, 10.24–10.53, §12],
[11, §4, §5]. This theory is valid for any geometrically connected, smooth variety
X/K over a field K , of characteristic 0. For simplicity, we will assume that X is
a curve and after Sect. 2.1.2, we will assume that X has a compactification X that
satisfies H1(X ,O) = 0.

Suppose that K → C is an imbedding and let Xan be the underlying topologi-
cal space of XC. The category of unipotent C-local systems on Xan correspond to,
after fixing a point x on Xan, the unipotent complex representations of the topolog-
ical fundamental group π1(Xan, x). By the Riemann–Hilbert correspondence this
category has a completely algebraic description [3, §10.25]: it is equivalent to the
category of vector bundles with unipotent integrable connection on XC. This latter
category makes sense over an arbitrary field and is the basis of the de Rham theory
of the fundamental group.

2.1.1. The fundamental torsor Let K be any field of characteristic 0 and X/K be
a smooth and geometrically connected curve andMicuni (X/K ) denote the category
of vector bundleswith integrable connectionwhich are unipotent. The objects of this
category are vector bundles with connection (E,∇) on X for which there exist an
increasingfiltration {(Fi ,∇)}i by sub-bundleswith connection such that there exists
an N with Fi = 0 for i < −N or i > N , and for all i, (Fi/Fi−1,∇) is isomorphic
to either the zero bundle or to (O, d); and the morphisms are morphisms of vector
bundles which commute with the connections. This category naturally forms a
tensor category over K in the sense of [3, §5.2], [4].

Let S/K be a scheme over K and let VecS denote the category of locally free
sheaves of finite rank on S and ω : Micuni (X/K ) → VecS be a fiber functor
[3, §5.9]. Then to ω there is associated a K -groupoid acting over S [4, §1.6] called
the fundamental groupoid of X at ω and denoted by PdR(X, ω). The fundamental
groupoid is faithfully flat and affine over S ×K S and represents the functor on the

Author's personal copy



Cyclotomic p-adic multi-zeta values 409

category of S ×K S-schemes whose T -valued points for any π : T → S ×K S is
the set of ⊗-isomorphisms from π∗ p∗

2ω to π∗ p∗
1ω, where p1, p2 : S ×K S → S

are the projections [4, §1.11, Théorème 1.12].
Taking the cartesian product of PdR(X, ω) → S ×K S with the diagonal � :

S → S ×K S gives π1,dR(X, ω), the de Rham fundamental group of X at the fiber
functor ω.

Let x ∈ S(K ) then attaching F(x), the fiber of F at x, to F ∈ VecS gives rise
to a fiber functor

ωx : Micuni (X/K ) → VecK .

Assuming that S = X and pulling backPdR(X, ω) → X×K X via the inclusion
X → X ×K X that sends s to (s, x) we obtain a torsor TdR(X, ω)x on X under
the group scheme π1,dR(X, ωx ). If M is a manifold and x ∈ M, the topological
analog of this torsor is the π1(M, x)-torsor on M whose fiber at a point y in M is
the homotopy class of paths from y to x .

2.1.2. The de Rham fiber functor on XM From now onwe assume that the smooth
projective model X of X is isomorphic to P1. In this case, there is a canonical fiber
functor [3, §12]:

ωdR : Micuni (X/K ) → VecK

defined as follows.
For any (E,∇) ∈ Micuni (X/K ) let (Ecan,∇) denote the unique vector bundle

with connection on X that has logarithmic singularites with nilpotent residues at
X \ X. The pair (Ecan,∇) is called the canonical extension of the unipotent vector
bundle with connection (E,∇). Since H1(X ,O) = 0, the bundle Ecan is trivial
[3, Proposition 12.3] and the functor ωdR defined as

ωdR(E,∇) := �(X , Ecan)

is a fiber functor [3, §12.4]. For a subscheme Y of X let

ω(Y ) : Micuni (X/K ) → VecY

denote the fiber functor that sends (E,∇) to Ecan|Y . There are canonical isomor-
phisms

ωdR ⊗K OY ∼= ω(Y ) (2.1.1)

of fiber functors.
LetPdR := PdR(X, ω(X)),TdR,x := TdR(X, ω(X))x ,PdR := PdR(X, ω(X))

and T dR,x := TdR(X, ω(X))x . Finally let TdR and T dR denote the torsors TdR,x

and T dR,x after the identification (2.1.1) of ωdR with ω(x). Thus they are (right)
π1,dR(X) := π1,dR(X, ωdR) torsors which depend only on X.
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410 S. Ünver

2.1.3. Connection on the fundamental torsor TdR Let �X ⊆ X ×K X denote
the diagonal and �

(1)
X its first infinitesimal neighborhood. Let p(1)

i : �
(1)
X → X

denote the two projections. Let T be a right torsor on X under an algebraic group
G. A connection on T is an isomorphism ∇ : p(1)∗

1 T ∼−→ p(1)∗
2 T between the two

pull-backs of T to �
(1)
X which reduce to the identity map on �X . If α is a section

of T on an open subset U of X, then ∇(p(1)∗
1 α) and p(1)∗

2 α, which abusing the

notation we denote by ∇α and α, denote two sections of p(1)∗
2 T on �

(1)
U . Then

α−1∇(α) defines a map from �
(1)
U to G, whose restriction to �U is the constant

map with value the identity element e of G. Giving such a map is equivalent
to giving a K -linear map mG,e/m

2
G,e → �(U,	1

U/K ) and hence an element of

Lie(G) ⊗K �(U,	1
U/K ). Abusing the notation, let us denote the corresponding

element in Lie(G)⊗K �(U,	1
U/K ), by α−1∇(α). For g amorphism fromU → G,

for any u ∈ U let (dg)u denote the linear map from T ∗
g(u)G to T ∗

u U. If we identify
T ∗
g(u)G with T ∗

e G = (Lie(G))∨, the dual of Lie(G), via multiplication by g(u) for

every u,we get a linearmap g−1dg from (Lie(G))∨ to�(U,	1
U/K ).Again abusing

the notation, we denote the corresponding element in Lie(G) ⊗K �(U,	1
U/K ) by

g−1dg. Note that αg denotes another section of the torsor T over U, and with the
notation above, we have the following formula

(αg)−1∇(αg) = g−1dg + g−1(α−1∇(α))g.

In case T is the trivial G-torsor G ×K X then a connection on T is determined
by −e−1∇(e) ∈ Lie(G) ⊗K �(X,	1

X/K ), where e is the identity section. If

−e−1∇(e) = 	, then for every section g of T ,

g−1∇(g) = g−1dg − g−1	g. (2.1.2)

By thedefinitionofPdR, the sections of its restriction to�
(1)
X are⊗-isomorphisms

from p(1)∗
1 ω(X) to p(1)∗

2 ω(X) where p(1)
i : �

(1)
X → X are the two projections. If

(E,∇) ∈ Micuni (X/K ), then p(1)∗
i ω(X)(E,∇) = p(1)∗

i (E) and the connection ∇
induces an isomorphisms from p(1)∗

1 (E) to p(1)∗
2 (E) reducing to the identity on the

diagonal. This in turn induces a canonical isomorphism between the above fiber
functors, and hence a section of PdR |

�
(1)
X

over �
(1)
X which is the identity section

when restricted to �X . This defines an isomorphism between the two pull-backs
of TdR to �

(1)
X , which, by definition, is a connection on the π1,dR(X)-torsor TdR .

Because of the canonical isomorphism TdR ∼= π1,dR(X)×K X (2.1.1) a connec-
tion on TdR is completely determined by e−1∇(e) ∈ Lieπ1,dR(X)⊗K �(X,	1

X/K )

as above. Let 	can ∈ H1
dR(X)∨ ⊗K H1

dR(X) denote the canonical element, where
H1
dR(X)∨ denotes the dual of H1

dR(X). Since X is affine, H1(X,OX ) = 0 and

�(X,	1
X/K )

∼−→ H1
dR(X). Below we will describe an imbedding

H1
dR(X)∨ → Lieπ1,dR(X).
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Cyclotomic p-adic multi-zeta values 411

We continue to denote the image of	can in Lieπ1,dR(X)⊗K �(X,	1
X/K ), via the

map induced by this imbedding, by the same notation. Then by Deligne [3, §12.12],
we have

e−1∇(e) = −	can (2.1.3)

in Lieπ1,dR(X) ⊗K �(X,	1
X/K ).

From now on we let X = XM and K = Qp(ζ ). For any x ∈ X \ X and (E,∇),

we have the residue endomorphism

resx : Ecan(x) → Ecan(x),

induced by the map that sends the local section u of Ecan near x, to (∇(u), t ∂
∂t ),

where t is a uniformizer at x . The residue endomorphism is independent of the
choice of a uniformizer and satisfies,

resx ((E1,∇1) ⊗ (E2,∇2)) = 1 ⊗ resx (E2,∇2) + resx (E1,∇1) ⊗ 1.

Hence resx ∈ Lieπ1,dR(X, ω(x)) � Lieπ1,dR(X), under the identification (2.1.1).
If ExtiX denotes the extension groups in the category of modules with integrable
connection on X then we have H1

dR(X) = Ext1X ((O, d), (O, d)). Using this, resx
defines an element in H1

dR(X)∨ as follows. Given ω ∈ H1
dR(X) we get a vector

bundle with connection (Eω,∇) in the above extension group. The fiber at x gives
an extension 0 → K → Eω,can(x) → K → 0. Let f1 be the image of 1 ∈ K in
Eω,can(x) and let f2 be any lift of 1 ∈ K in Eω,can(x). Then resx ( f2) = λ f1 for
some λ ∈ K , and themap that sendsω to λ defines an element of H1

dR(X)∨.Viewed
in this manner the subspace that resx , with x ∈ X \ X, generate in Lieπ1,dR(X) is
precisely H1

dR(X)∨. For 1 ≤ i ≤ M, we let ei ∈ Lieπ1,dR(XM ) denote resζ i and
e0 denote res0. If we also putω0 := dlogz andωi := dlog(z−ζ i ), for 1 ≤ i ≤ M,

then

	can =
∑

0≤i≤M

eiωi . (2.1.4)

The de Rham fundamental group of XM has a simple description. For any
K -algebra A, denote the associative (non-commutative) algebra of formal power
series in {ei |0 ≤ i ≤ m} over A by A〈〈e0, . . . , eM 〉〉 and let

UdR(A) := A〈〈e0, . . . , eM 〉〉.
Then the universal enveloping algebra of π1,dR(XM ) is UdR(XM )(K ). The co-
product of the Hopf algebra structure on UdR(A) is induced by the fact that ei are
primitive elements: �(ei ) = 1⊗ ei + ei ⊗ 1, for 1 ≤ i ≤ M. The A-valued points
of π1,dR(XM ) then correspond to the group-like elements in UdR(A), i.e. elements
g satisfying �(g) = g⊗̂g and with constant term equal to 1. For any g let g denote
the image of g under the Hopf algebra automorphism of UdR(A) that sends ei to
p−1ei , for all i.
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412 S. Ünver

The canonical connection on TdR = π1,dR(XM )× XM can be described as fol-
lows. A section of TdR over XM is given by a group-like element α(z) ∈ UdR(AM ),

where z denotes the parameter on Spec AM = XM ⊆ A1
K . Let

d : UdR(AM ) → UdR(AM )⊗̂AM	1
AM/K

denote the continuous differential extending the canonical differential AM →
	1

AM/K such that d(ei ) = 0, for 0 ≤ i ≤ M. In other words, applying d to
an element α(z) amounts to applying d to each coefficient of α(z). Note that the
identity section e of the trivial torsor TdR is given by the element 1 ∈ UdR(AM ).By
(2.1.3) and (2.1.4), the action of the canonical connection on the identity section e
of the trivial torsor TdR is described by the formula:

e−1∇(e) = −	can = −
∑

0≤i≤M

eiωi . (2.1.5)

The actionof the connectiononarbitrary sections ofTdR wasdescribedbyEq. (2.1.2).
Therefore for any group-like element α(z) ∈ UdR(AM ), we have:

α(z)−1∇(α(z)) = α(z)−1dα(z) − α(z)−1

⎛

⎝
∑

0≤i≤M

eiωi

⎞

⎠α(z) (2.1.6)

in Lieπ1,dR(XM )⊗̂	1
AM/K .

2.2. Crystalline fundamental group of XM

We review the theory of the crystalline fundamental group as described in [3, §11]
and [11, §2.4]. The crystalline fundamental group can be defined for any smooth
variety Y/k over a perfect field k, and if it has a smooth compactification Y such
that Y \Y is a simple normal crossings divisor in Y , it agrees with the appropriately
defined crystalline fundamental group of the log scheme Y log.This will be essential
when constructing a comparison isomorphism between the de Rham fundamental
group of a lifting of Y and the crystalline fundamental group of Y . The comparison
theorem between the crystalline and de Rham fundamental groups will give us the
frobenius map on the de Rham fundamental group which will play a central role.

2.2.1. The de Rham-crystalline comparison Let k be a perfect field of characteris-
tic p,withW the ringofWitt vectors and K its field of fractions. For a smoothvariety
Y/k, we have Isoc†uni (Y/W ), the category of unipotent overconvergent isocrystals

on Y/W [11, §2.4.1]. If ω is a fiber functor on Isoc†uni (Y/W ), the automorphisms

of ω is represented by the crystalline fundamental group π
†
1,crys(Y, ω) of Y [11].

Now suppose that Y has a smooth compactification Y/k such that D := Y \ Y
is a simple normal crossings divisor in Y , and let Y log denote the canonical log
structure on Y associated to the divisor D. Shiho’s theorem [10] implies that the
restriction functor

Isoccuni (Y log/W ) → Isoc†uni (Y/W ), (2.2.1)
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Cyclotomic p-adic multi-zeta values 413

from the category of unipotent convergent log isocrystals on Y log to Isoc
†
uni (Y/W ),

is an equivalence of categories [11, Lemma 2].
This is in complete analogy with the situation over the field K of characteristic

0. If X/K is a smooth variety with a smooth compactification X/K and with simple
normal crossings divisor E := X \ X in X then the restriction

Micuni (X log/K ) → Micuni (X/K ) (2.2.2)

gives an equivalence of categories [2, II.5.2].
The de Rham-crystalline comparison can be described as follows. Suppose

that Z/W is a smooth, projective scheme with geometrically connected fibers and
with F ⊆ Z a relative simple normal crossings divisor. Let Z := Z \ F , and
let (X , X, E) and (Y ,Y, D) denote the corresponding data over the generic and
special fibers respectively. The canonical functor

Micuni (X log/K ) → Isoccuni (Y log/W )

is an equivalence which, when combined with (2.2.2) and (2.2.1) gives the equiv-
alence

Micuni (X/K ) → Isoc†uni (Y/W ). (2.2.3)

Choosing a (tangential) basepoint z on Z, we get an isomorphism

π
†
1,crys(Y, y)

∼→ π1,dR(X, x),

where x and y are the generic and special fibers of z.
Let σ : W → W denote the lifting of the p-power frobenius map on k, and

let Z(p), denote the base change of Z/W via σ and X (p), Y (p) etc. the corre-
sponding fibers of Z(p). The relative frobenius morphism induces a ⊗-functor
F∗ : Isoc†uni (Y (p)/W ) → Isoc†uni (Y/W ), and hence a map F∗ : π

†
1,crys(Y, y) →

π
†
1,crys(Y

(p), y(p)). This, together with the above isomorphism, gives a morphism

F∗ : π1,dR(X, x) → π1,dR(X (p), x (p)). (2.2.4)

Similarly, for a pair of (tangential) basepoints z1 and z2 we obtain a morphism

F∗ : x2PdR(X)x1 →
x (p)
2
PdR(X (p))

x (p)
1

. (2.2.5)

2.2.2. Tangential basepoints in the crystalline case The definitions of the crys-
talline and de Rham fundamental groups look similar. However, a major difference
is that one does not have a canonical fiber functor on Isoc†uni (Y/W ) analogous to
ωdR . Therefore, in order to make use of the comparison isomorphism one cannot
simply use ωdR and one needs to choose specific basepoints on the variety which
might increase the places of bad reduction for the motivic fundamental group. In
the case of VM/E,which is the important case for us, this takes the following form.
Let S := SpecOE [M−1], and let VM := Gm,S \ μM,S be the standard model of
VM over S, with VM := P1

S . Then if we let x ∈ VM (E), the fundamental group
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πmot
1 (VM , x) will have bad reduction at those primes p ∈ S for which x does not

have finite reduction on VM ⊆ VM at p. Deligne overcomes this problem by intro-
ducing special tangential basepoints at the missing points of the variety and thereby
avoids increasing the places of bad reduction [3, §15]. In the crystalline case, we
gave a detailed exposition of the tangential basepoints in [11, §3]. Below we will
only recall the definition.

Let Z/W be as above with relative dimension 1, for simplicity, and let z ∈
(Z \ Z)(W ) with fibers x and y. Let T×

z (Z)/W denote the tangent space of Z at
z with the zero section removed. It is (non-canonically) isomorphic toGm/W. Fix
w ∈ T×

z (Z)(W ), with fibers v ∈ T×
y (Y )(k) and u ∈ T×

x (X)(K ). The crystalline
tangential basepoint at v is a fiber functor

ωv : Isoc†uni (Y/W ) → VecK .

Corresponding to the liftingZ, z andw and the identification of Isoc†uni (Y/W )with
Micuni (X/K ) described above this fiber functor corresponds to the fiber functor

ωx : Micuni (X/K ) → VecK

which associates to (E,∇) the fiber Ecan(x) of its canonical extension at x . In this
description it looks as if the fiber functor ωv depends only on y and not on the
tangent vector. However, we would like to emphasize that the identification of ωv

with ωx depends on the choice of an integral model (Z, z) as above and in order
to define canonical isomorphisms between the fiber functors which correspond to
different choices of integral models one needs to fix a tangent vector at y. Since
it has no direct consequence for what follows, we refer the reader to [11, §3] for
details on the effect of choosing different integral models and the importance of
fixing a tangent vector.

2.2.3. Cyclotomic p-adic multi-zeta values Let t0 denote the tangent vector 1 at
0 and ti denote the tangent vector 1 at ζ i , for 1 ≤ i ≤ M. In the following, we
identify the tangent space at a point x in A1 with A1 itself. Therefore, if z denotes
the coordinate function onA1, then ti is the tangent vector that satisfies dz(ti ) = 1.
For 1 ≤ i ≤ M, let i denote the unique integer such that 1 ≤ i ≤ M andM |(i− pi).
Similarly, let i denote the unique integer such that 1 ≤ i ≤ M and M |(i − pi) and
let 0 = 0 = 0.By (2.1.1), for (tangential) basepoints xi on XM , there are canonical
isomorphisms between ωxi . This gives a canonical element x2γx1 of x2PdR(XM )x1 ,

which we call the canonical de Rham path from x1 to x2.
For any 1 ≤ i ≤ M, we have elements t0γti · F∗( ti γt0) ∈ π1,dR(XM , t0)(K ),

with K = Qp(ζ ). Identifying ωt0 with ωdR using (2.1.1), we obtain elements

gi ∈ π1,dR(XM )(K ) ⊆ K 〈〈e0, . . . , eM 〉〉,
for 1 ≤ i ≤ M. Let g := gM . We denote the coefficient of the monomial ei1 · · · ein
in g by g[ei1 · · · ein ] and call it a cyclotomic p-adic multi-zeta value. In analogy
with [11, Definition 3], for 1 ≤ i1, . . . , ik ≤ M, and 1 ≤ s1, . . . , sk, let us put

g[esk−1
0 eik · · · es1−1

0 ei1 ] = p
∑

si ζp(sk, . . . , s1; ik, . . . , i1).
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Cyclotomic p-adic multi-zeta values 415

We call k, the depth and
∑

si , the weight of the multi-zeta value.
The p-adic cyclotomic multi-zeta values completely determine the frobenius

action on π1,dR(XM , t0)
∼→ π1,dR(XM ) as follows.

First note that

F∗(e0) = pe0, F∗(ei ) = pg−1
i

ei gi . (2.2.6)

On the other hand, all the gi are determined by g through functoriality. Let αi

denote the automorphism of XM given by αi (z) = ζ i z. Then αi∗(e0) = e0 and
αi∗(e j ) = ei+ j , where i + j is between 1 and M computed modulo M. On the
special fiber we have F ◦ αi = αi ◦ F. By the functoriality of frobenius we have

αi∗(g j ) = gi+ j . (2.2.7)

2.2.4. The differential equation satisfied by the frobenius We will first recall the
explicit description of the frobenius on Micuni (XM,log/K ), which was explained
in detail in [11, §2.4.2].

Let PM/W denote the formal scheme obtained by completing P1
W along its

closed fiber. Note that P1
W is an integral model of XM = P1

K . Let DM denote the
divisor on PM obtained by completing the Zariski closure of DM on P1

W along
its closed fiber. Let {P i }1≤i≤n be an open cover of PM , and Fi : P i → P i be a
lifting of the frobenius such that F∗

i (DM ∩ Pi ) = p · (DM ∩ Pi ). For a formal
schemeP/W, letPK denote the associated rigid analytic space over K .Now given
(E,∇) in Micuni (XM,log), its pull-back via the frobenius is defined as the vector
bundle with connection whose restriction to PiK is given byF∗

i,K (E,∇)|P i,K
. The

isomorphisms between the different pull-backs are given by using the fact that
the connections converge within a p-adic disk of radius one and that the different
liftings of the frobenius lie in the same disk [11, §2.4.2].

The computation of the cyclotomic p-adic multi-zeta values would be an easier
problem if there were a global lifting FM of frobenius to PM/W which satisfies
the property that F∗

M (DM ) = p ·DM . Unfortunately, such a global lifting does not
exist even forM = 1.The standard way to proceedwould be to choose several local
liftings of frobenii and piece the information obtained together. However, it turns
out that using several frobenii as above makes the computations too complicated
for any practical use. Instead, what we do is to work with a single local lifting of
frobenius F and study the associated differential equation in detail to relate the
function gF to cyclotomic p-adic multi-zeta values.

Let P denote the completion of XM ∪ {0,∞} along the closed fiber and let
F(z) = z p. ThenF : P → P is a lifting of frobenius that satisfiesF∗(0) = p · (0)
and F∗(∞) = p · (∞). We identify the π1,dR(XM , t0)-torsor of paths that start at
t0 (Sect. 2.1.1) with T dR (Sect. 2.1.3) by using the identification of ω(t0) and ωdR

(Sect. 2.1.2). Recall that the notation xγt0 in the beginning of Sect. 2.2.3 denotes the
canonical de Rham path from the tangential basepoint t0 to the point x . If we let x
vary we will obtain a section γt0 of the π1,dR(XM , t0)-torsor of paths that start at t0.
We identify this torsor with T dR as above and continue to denote the corresponding
section by γt0 . The principal part of F sends t0 to itself [11, §3.2.(ii)]. Then by
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the description of the frobenius map above, we obtain the following commutative
diagram:

T dR |UM

F∗−−−−→ F∗T dR |UM⏐⏐	∇
⏐⏐	F∗∇

Lieπ1(XM )⊗̂	1
UM

(log(0))
LieF∗−−−−→ Lieπ1(XM )⊗̂	1

UM
(log(0)),

where UM := PK is the rigid analytic space associated to P. Let AM denote
the ring of rigid analytic functions on UM . Applying the lift F of frobenius to
the section γt0 of T dR |UM , we obtain a section F∗(γt0) of F∗T dR |UM . Using the
canonical de Rham path to trivialize the torsor T dR |UM , γt0 corresponds to the
identity element e of the trivial torsor or equivalently the element 1 in UdR(AM )

and F∗(γt0) corresponds to an element in UdR(AM ) which we will denote by gF .

By the commutative diagram and the notation above, we have the equality

LieF∗(e−1∇(e)) = g−1
F (F∗∇(gF )). (2.2.8)

Let us first look at the left hand side of the equality. By Eq. (2.1.5), we have
e−1∇(e) = −∑

0≤i≤M eiωi and hence

LieF∗(e−1∇(e)) = −
∑

0≤i≤M

F∗(ei )ωi .

Now looking at the right hand side, the value of the connection F∗∇ on the
identity element of the trivial torsor is described as follows:

e−1F∗∇(e) = F∗(e−1∇(e)) = F∗
⎛

⎝−
∑

0≤i≤M

eiωi

⎞

⎠ = −
∑

0≤i≤M

eiF∗ωi .

Then just as in (2.1.2) and (2.1.6), the value g−1
F F∗∇(gF ) is given by

g−1
F F∗∇(gF ) = g−1

F dgF + g−1
F (e−1F∗∇(e))gF

= g−1
F dgF − g−1

F

⎛

⎝
∑

0≤i≤M

eiF∗ωi

⎞

⎠ gF .

Therefore by (2.2.8) we obtain the differential equation

−
∑

0≤i≤M

F∗(ei )ωi = g−1
F dgF − g−1

F

⎛

⎝
∑

0≤i≤M

eiF∗ωi

⎞

⎠ gF . (2.2.9)

Putting g0 = 1, and 0 = 0 = 0, and using (2.2.6), we can rewrite this as:

dgF =
( ∑

0≤i≤M

eiF∗ωi

)
gF − gF

( ∑

0≤i≤M

pg−1
i ei giωi

)
. (2.2.10)
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Even though it is clear from the notation, we would like to emphasize that gF
is a non-canonical, technical object, which depends on a lifting of the frobenius
unlike the cyclotomic p-adic multi-zeta values. It could be thought of as an analog
of the multiple polylogarithms on a disc which depend on the specific path chosen
from 0 to a point in that disc.

3. Rigid analytic functions on UM

Recall that in Sect. 2.2.4, we chose the lifting F of frobenius on P and set UM

to be the rigid analytic space associated to P. Reinterpreting the action of F on
the fundamental de Rham path naturally gave us gF whose coefficients are rigid
analytic functions on UM . For our purposes the interesting points are the roots of
unity, all of which, unfortunately, lie outside UM . As a first step we will try to get a
hold of gF and in particular its value at∞. The following fundamental proposition
and its corollary will serve that purpose.

Let D(a, r) and D(a, r)◦ denote the closed and open disks of radius r around
a. Then UM = P1

K \ ∪1≤i≤MD(ζ i , 1)◦. The following proposition, which is a
generalization of (Prop. 2, [11]), describes rigid analytic functions on UM in terms
of their power series expansions around 0.

Proposition 3.0.1. Let f be a rigid analytic function on UM with f (0) = 0 and a
power series expansion

f (z) =
∑

0<n

anz
n

around 0. Then the sequence of rational functions

fN (z) := 1

1 − zMpN

∑

0<n≤MpN

anz
n

converge uniformly on UM to f. The value of f at ∞ is given by

f (∞) = − lim
N→∞ aMpN .

Proof. Since f is rigid analytic on the affinoid UM , it is a uniform limit of rational
functions with poles outside UM (Sect. 2.2, [7]). We may also assume, without loss
of generality, that these rational functions are 0 at 0.

Claim 3.0.2. If r(z) is a rational function with poles outside UM , then r(z) is a
linear combination of functions of the form

zi

(1 − azM )k
,

for some 0 ≤ k, 0 ≤ i < M, and |1 − a| < 1.
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Proof of the claim. By the method of partial fractions, r(z) is a linear combina-
tion of rational functions of the form

1

(1 − bz)t
, (3.0.11)

with |b − ζ i | < 1, for some 0 ≤ i < M, and 0 ≤ t. Therefore, we need to prove
the statement only for rational functions as in (3.0.11). Note that

1

(1 − bz)t
= p(z)

(1 − azM )t
=

∑

0≤i≤M−1

zi
qi (1 − azM )

(1 − azM )t
,

for some polynomials p(z) and qi (z), 0 ≤ i ≤ M − 1 and a = bM . Since
|1 − a| < 1, and the left hand side does not have a pole at ∞, the right hand side
is exactly as in the form stated in the claim. This proves the claim. �

Using the claim above, we will prove the following estimate on the coefficients
of the Taylor expansion of f :

Claim 3.0.3. For n ∈ N := {1, 2, 3, · · · }, let n|N denote the unique integer such
that 0 < n|N ≤ MpN , and MpN divides n − n|N . If we let cN := supn∈N |an −
an|N |, then

lim
N→∞ cN = 0.

Proof of the claim. First we note that, for 1 ≤ k, 0 ≤ i < M and |1 − a| < 1,

zi

(1 − azM )k
=

∑

0≤n

(
n + k − 1

k − 1

)
anzi+Mn =:

∑

0≤n

anz
n;

satisfy the property in the claim. If n �≡ i(mod M) then an = 0 and hence

cN = sup
n∈N

n≡i(mod M)

|an − an|N | ≤ sup
s,t≥0

|ai+M(t+spN ) − ai+Mt |

= sup
t≥0
s≥1

|q(t + spN )asp
N − q(t)| =: dN ,

where q(t) := (t+k−1
k−1

)
is a polynomial of degree k − 1 in t. Let α denote the

maximum of the absolute value of the coefficients of q(t), and β := |a − 1| < 1.
Since |a p −1| ≤ max(β/p, β p), choosing N0 sufficiently large |a pN0 −1| ≤ p−1,

and hence for N ≥ N0, |a pN − 1| ≤ p−(N−N0). Then for N ≥ N0, dN ≤
α(p−N + p−(N−N0)), and hence limN→∞ dN = limN→∞ cN = 0.

Since any rational function r(z), whose poles are outside UM , is a linear com-
bination of functions as above (Claim 3.0.2), the statement is true for r(z). Note
that for any power series g(z) := ∑

0≤n bnz
n, which is convergent on D(0, 1)◦ :

sup
0≤n

|bn| ≤ sup
|z|<1

|g(z)|. (3.0.12)
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Let (rm) be a sequence of rational functions which are 0 at 0, have poles outside
UM , and which converge, uniformly on UM , to f. Letting

rm(z) :=
∑

0<n

a(m)
n zn,

and c(m)
N := supn∈N |a(m)

n − a(m)
n|N |; we know that limN→∞ c(m)

N = 0, for all m. By

uniform convergence and (3.0.12), limm→∞ supN∈N |c(m)
N − cN | = 0. This implies

the claim. �

Now, note that

fN+1(z) − fN (z) = 1

1 − zMpN+1

∑

0<n≤MpN+1

(an − an|N )zn .

Note that z ∈ UM if and only if 1 ≤ |1 − zM |. Letting 0 < n ≤ MpN+1,

| zn

1 − zMpN+1 | = |zn| < 1,

if |z| < 1; and

| zn

1 − zMpN+1 | ≤ 1

|(1/zM )p
N+1 − 1| ≤ 1,

if 1 ≤ |z| and z ∈ UM . Therefore,

sup
z∈UM

| fN+1(z) − fN (z)| ≤ cN ,

and we conclude, by Claim 3.0.3, that ( fN ) converges uniformly to a rigid analytic
function on UM . To see that this function, indeed, is f, we note that for |z| < 1,
| f (z) − fN (z)| ≤ cN . Then again Claim 3.0.3 implies the assertion. The last
assertion follows from fN (∞) = −aMpN . ��

The following corollary will play a key role in the computations. Let q be the
cardinality of the residue field of K = Qp(ζ ). In the applications, the existence of
the limit limN→∞ lqNalqN will be shown by explicit computations.

Corollary 3.0.4. Let f (z) = ∑
0<n anz

n be as in Proposition 3.0.1, and 0 < l ≤
pM then

lim
N→∞ |alqN+1 − alqN | = 0.

If limN→∞ lqNalqN exists then it is equal to 0.

Proof. Since M |(q −1), MpN |(lqN+1 − lqN ) and hence |alq(N+1) −alqN | ≤ 2cN .

Since limN→∞ cN = 0, the first statement follows. Assume that limN→∞ lqNalqN

= α. Then

qα = lim
N→∞(lqN+1alqN + lqN+1(alqN+1 − alqN )) = lim

N→∞ lqN+1alqN+1 = α.

Hence α = 0. ��
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4. Cyclotomic p-adic multi-zeta values of depth one

In this section, we give a series expression for cyclotomic p-adic multi-zeta values
of depth one. For the reader who wants to get to the main idea behind the proof
of Theorem 6.4.3 without the technical and notational complications, we would
suggest them to first focus on the proof of Proposition 4.2.2. The idea is to use the
differential equation (2.2.9) to relate gF to the gi ’s, and use Corollary 3.0.4 to relate
the coefficients of the power series expansion of gF back to the gi ’s. Below we
give two different expressions for g j [es0ei ]. The one in Sect. 4.1 is analogous to the
expression for p-adic multi-zeta values in [11], but it does not carry over to higher
weights. The other method in Sect. 4.2, which assumes that i �= j, is representative
of the method in depth two in the later sections. We would like to emphasize that
the shape of the expression in Sect. 4.2 is much different than the one in Sect. 4.1,
since there is not a pN in the denominator in the limit in Sect. 4.2 which makes the
computation of the limit much easier and hence the formula much more useful.

For any power series f ∈ K [[z]], we let f [w] denote the coefficient of zw in
f.

4.1. Computation of g j [es0ei ]
Let e∞ ∈ Lieπ1,dR(XM ) denote the elementwhich is obtained by res∞, the residue
at ∞, as in Sect. 2.1.3; and let t∞ denote the tangent vector at ∞ that maps to the
tangent vector t0 under the map θ(z) = 1

z . Let g∞ be defined by the action of
frobenius on the canonical de Rham path from t0 to t∞, analogously to the gi ’s as
in Sect. 2.2.3.

Applying F∗ to the identity
∑

0≤i≤M

ei + e∞ = 0

and using (2.2.6), we get

∑

0≤i≤M

g−1
i ei gi + g−1∞ e∞g∞ = 0,

which gives the fundamental identity

g∞

⎛

⎝
∑

0≤i≤M

g−1
i ei gi

⎞

⎠ =
⎛

⎝
∑

0≤i≤M

ei

⎞

⎠ g∞. (4.1.1)

Noting that F is a lifting of frobenius on P, whose principal parts map t0 and
t∞ to itself [11, §3.2.(ii)], we have

gF (∞) = g∞. (4.1.2)

Proposition 3.0.1 gives a method for computing gF (∞). This makes the last equal-
ity, together with (4.1.1), one of the main tools for the computations.
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From the Eq. (2.2.10), we obtain

dgF [e0] = F∗ω0 − pω0 = 0,

and hence that

gF [e0] = 0, (4.1.3)

since gF (0) = 1.
Similarly, for 1 ≤ i ≤ M, the Eq. (2.2.10) gives dgF [ei ] =

F∗ωi − pωi = p
z p−1dz

z p − ζ i
− p

dz

z − ζ i
= p

(
1

1 − ζ−i z
− (ζ−i z)p−1

1 − (ζ−i z)p

)
d(ζ−i z),

which implies that

gF (z)[ei ] = p
∑

1≤n
p � |n

(ζ−i z)n

n
, (4.1.4)

for z ∈ D(0, 1)◦. Since gF [ei ] is a rigid analytic function on UM , we can use
Proposition 3.0.1 to compute its value at ∞. Then using Eq. (4.1.2) we obtain

g∞[ei ] = gF (∞)[ei ] = − lim
N→∞ gF [ei ][MpN ] = 0, (4.1.5)

since gF [ei ][MpN ] = 0, for all N .

Comparing the coefficients of ei e0 in both sides of (4.1.1) implies that

g∞[ei ] + gi [e0] = g∞[e0].
Using (4.1.5), we obtain gi [e0] = 0.

Lemma 4.1.1. Suppose that α is a group-like element of K 〈〈e0, . . . , eM 〉〉, that is
the constant term of α is 1 and �(α) = α ⊗ α. If α[e0] = 0, then α[en0 ] = 0 for all
n ≥ 1 and

α[ea0ei eb0] = (−1)b
(
a + b

a

)
α[ea+b

0 ei ], (4.1.6)

for a, b ≥ 0.

Proof. Let ei1 · · · eis and e j1 · · · e jt be any two monomials in K 〈〈e0, . . . , eM 〉〉.
Then comparing the coefficients of (ei1 · · · eis ) ⊗ (e j1 · · · e jt ) on both sides of the
equality �(α) = α ⊗ α, using �(ei ) = 1 ⊗ ei + ei ⊗ 1, implies that

α[ei1 · · · eis ]α[e j1 · · · e jt ] =
∑

(k1,...,ks+t )

α[ek1 · · · eks+t ],

where in the sum (k1, . . . , ks+t ) ranges over all shuffles of (i1, . . . , is) and ( j1,
. . . , jt ).

Using the last identity, we obtain 0 = α[en−1
0 ]α[e0] = nα[en0 ], which proves

the first claim.
To prove the second identity, note that

0 = α[ea0ei eb0]α[e0] = (b + 1)α[ea0ei eb+1
0 ] + (a + 1)α[ea+1

0 ei e
b
0].

The result then follows by induction on b. ��
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Since gi [e0] = 0 the above lemma implies

gi [en0 ] = 0, (4.1.7)

for all 0 < n, and 0 ≤ i ≤ M.

Let

S(s; i)(z) := ps
∑

0<n
p�n

ζ−inzn

ns
.

Then we have the following expression for gF [es−1
0 ei ].

Lemma 4.1.2. For z ∈ D(0, 1)◦, and 1 ≤ i ≤ M,

gF (z)[es−1
0 ei ] = S(s; i)(z). (4.1.8)

Proof. Let us compare the coefficients of es−1
0 ei on both sides of Eq. (2.2.10). Since

gF [e0] = 0 by (4.1.3), Lemma 4.1.1 implies that gF [en0 ] = 0 for all n. This and
(4.1.7) then give that

dgF (z)[es−1
0 ei ] = pgF (z)[es−2

0 ei ]dz
z

.

Since gF [ei ] = S(1; i) by (4.1.4), the statement follows by induction on s. ��
Since gF [e0] = 0 by (4.1.3), Lemma 4.1.1 and (4.1.8) give

gF [ea0ei eb0] = (−1)b
(
a + b

a

)
gF [ea+b

0 ei ] = (−1)b
(
a + b

a

)
S(a + b + 1; i).

This helps us compute the following coefficients of g∞:

Corollary 4.1.3. For all a, b ≥ 0,

g∞[ea0ei eb0] = 0. (4.1.9)

Proof. We have seen that g∞ = gF (∞) in (4.1.2). We also know that gF [ea0ei eb0]
is a rigid analytic function on UM with the power series expansion around 0 given
in terms of S(a+b+1; i) above. Then by Proposition 3.0.1, we only need to prove
that limN→∞ S(s; i)[MpN ] = 0. The statement then follows from the observation
that S(s; i)[MpN ] = 0, for any s, i and N . ��

Using (2.2.10) and (4.1.7) we obtain that dgF [ei es−1
0 e j ] =

F∗ωi gF [es−1
0 e j ] − p

(
gi [es−1

0 e j ]ωi + gF [ei es−1
0 ]ω j + g−1

j [ei es−1
0 ]ω j

)
.

From (4.1.9) and the fact that the above differential is regular at ∞, we get

g−1
j [ei es−1

0 ] = −gi [es−1
0 e j ].

Using this and solving the differential equation we obtain that
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gF [ei es−1
0 e j ]

= −S(s, 1; j, i; d2) + (−1)s−1S(s, 1; i, j) + gi [es−1
0 e j ](T (1; i) − T (1; j)),

(4.1.10)

where
T (s; i) := ps

∑

0<n

ζ−inzn

ns
,

S(s1, s2; j, i; d2) := ps1+s2
∑

0<n1<n2
p�n1,p|(n2−n1)

ζ (i− j)n1−in2 zn2

ns11 n
s2
2

,

and

S(s1, s2; j, i) := ps1+s2
∑

0<n1<n2
p�n1

ζ (i− j)n1−in2 zn2

ns11 n
s2
2

.

This gives that

g∞[ei es−1
0 e j ] = (−1)s ps+1 lim

N→∞
1

MpN
∑

0<n<MpN
p � |n

ζ ( j−i)n

ns
.

Using this we find a formula for g j [es0ei ], with s ≥ 1, as follows. First upon
comparing the coefficients of e0ei e

s−1
0 e j in (4.1.1) and using (4.1.7) and (4.1.9) we

find that

g∞[ei es−1
0 e j ] = g−1

j [e0ei es−1
0 ].

Again by (4.1.7), g−1
j [e0ei es−1

0 ] = −g j [e0ei es−1
0 ] and by (4.1.6), g j [e0ei es−1

0 ] =
(−1)s−1sg j [es0ei ]. Combining these we get the following expression.

Proposition 4.1.4. For s ≥ 1,

g j [es0ei ] = ps+1

s
lim

N→∞
1

MpN
∑

0<n<MpN
p � |n

ζ ( j−i)n

ns
.

4.2. An alternative expression for g j [es−1
0 ei ] when i �= j

Let F(s; i) be the function defined by

F(s; i)(n) := ps
∑

0<n1<n
p�n1

ζ in1

ns1
.
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Then note that the expression (4.1.10) for gF [ei es−1
0 e j ] in Sect. 4.1 gives the

following identity for the coefficients of its power series expansion around 0, for
0 < l ≤ pM,

lqN gF [ei es−1
0 e j ][lqN ] = p((−1)s−1ζ− jl F(s; j − i)(lqN )

+gi [es−1
0 e j ](ζ−il − ζ− jl)).

Claim 4.2.1. limN→∞ lqN gF [ei es−1
0 e j ][lqN ] = 0.

Proof. We know that the coefficients of gF are rigid analytic functions on UM .

Therefore in order to show that the above limit is 0 we only need to show that
the above limit exists by Corollary 3.0.4. More explicitly, the above expression for
lqN gF [ei es−1

0 e j ][lqN ] can be written as

p((−1)s−1ζ− jl ps
∑

0<n1<lqN

p�n1

ζ ( j−i)n1

ns1
+ gi [es−1

0 e j ](ζ−il − ζ− jl)).

Therefore the fact that the limit limN→∞ lqN gF [ei es−1
0 e j ][lqN ] exists follows

from the observation that

∑

0<n<lqN+1
p � |n

ζ n

ns
−

∑

0<n<lqN
p � |n

ζ n

ns
=

∑

1≤t≤q−1

∑

0<n<lqN
p � |n

ζ n+tlqN

(n + tlqN )s

is congruent modulo qN to

∑

1≤t≤q−1

ζ lt ·
∑

0<n<lqN
p � |n

ζ n

ns
.

The term on the left is equal to 0 if ζ l �= 1. If ζ l = 1, then the term on the right
converges to 0. This last statement can be seen, for example, by the existence of
the limit in Proposition 4.1.4. ��

LetX (s; i) := limN→∞ F(s; i)(qN ). Letting l = 1 in the expression before Claim
4.2.1 and taking the limit as N → ∞, we obtain the expression for gi [es−1

0 e j ] we
were looking for:

Proposition 4.2.2. For i �= j, we have

gi [es−1
0 e j ] = (−1)s−1

1 − ζ j−i
X (s; j − i).
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4.3. Computation of g j [ei ]

By (2.2.7), g j [ei ] = (α j∗(g))[ei ] = g[ei− j ]. Let ι : XM → X1 denote the inclu-
sion. If i = j then using the functoriality of frobenius with respect to ι we see that
g[ei− j ] computed on XM is equal to g[e1] computed on X1. But this last expres-
sion is 0 by [11, §5.6]. Suppose now that i �= j. Then g j [ei ] = αi∗(g j−i )[ei ] =
g j−i [eM ]. Then as above, by the functoriality of frobenius for ι, g j−i [eM ], which
is computed on XM , is equal to

( t0γz′ · F∗( zγt0))[e1], (4.3.1)

which is computed on X1. Here z = ζ j−i and z′ = ζ j−i . Note that F is good
lifting of frobenius on U1 ⊆ X1. Since i �= j, z ∈ U1, and since F(z) = z p = z′,
we see that (4.3.1) is equal to gF [ζ j−i ][e1]. The last expression is computed by
Proposition 3.0.1 to be

lim
N→∞

p

1 − ζ ( j−i)pN

∑

0<n<pN
p � |n

ζ ( j−i)n

n
.

Therefore we have the following expression for g j [ei ].
Proposition 4.3.1. If i = j then g j [ei ] = 0. Otherwise

g j [ei ] = log
1 − ζ j−i

(1 − ζ j−i )p
.

5. M-power series functions

In order to compute the higher depth part of the frobenius action, we first study the
type of functions that appear in these computations which we call M-power series
functions. From an M-power series function f we will construct another M-power
series function f (s) which could be thought of as a regularized version of f (k)

ks . The
main result is Proposition 5.0.5 below which will help us continue the inductive
process in the proof.

Definition 5.0.2. Let n ∈ N and let f : N≥n → Qp[ζ ] be any function.We say that
f is an M-power series function, if there exist power series pi (x) ∈ Qp[ζ ][[x]],
which converge on D(0, ri ) for some ri > |p|, for 0 < i ≤ pM, such that
f (a) = pi (a − i), for all a ≥ n and pM |(a − i). We define the absolute value of a
power series around 0 to be the supremum of the absolute values of its coefficients
and the absolute value of the M-power series function f to be the maximum of the
absolute values of the pi .

Remark 5.0.3. (i) By the Weierstrass preparation theorem, the power series pi in
the above definition are unique.
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(ii) Fix 0 < l ≤ pM, and let f be as above. Then there is a power series
p(x) ∈ Qp[ζ ][[x]] which converges on some D(0, r) with r > |p| and

f (lqN ) = p(lqN ),

for N sufficiently large.

Example 5.0.4. (i) Let s ∈ Z and f (k) := ζ ikks, for p � |k and f (k) = 0 for p|k.
Then f is an M-power series function.

(ii) Clearly the sums and products of M-power series functions are M-power
series functions.

(iii) Let f be an M-power series function. For any 0 < l ≤ pM, with p|l let
fl := lim

n→0
pM|(n−l)

f (n),

with n ranging over positive integers such that pM |(n − l), and tending to 0
in the p-adic metric.
Let f [1] be defined by

f [1](k) = f (k) − fl
k

,

if p|k and pM |(k − l); and f [1](k) = 0, if p � |k. We then see that f [1] is
an M-power series function. In fact, if p|l, and p is a power series around
0 such that f (n) = p(n) for all pM |(n − l) then f [1](n) = q(n), for all
pM |(n − l), where

q(x) = p(x) − p(0)

x
.

Inductively, we let f [k+1] := ( f [k])[1].
(iv) Using the notation as above, let f (1) be defined by f (1)(k) := f [1](k), if p|k;

and f (1)(k) = f (k)
k , if p � |k. Then f (1) is also an M-power series function.

Proposition 5.0.5. Let f : N≥n0 → Qp[ζ ] be an M-power series function. If we
define F : N≥n0 → Qp[ζ ] by

F(n) :=
∑

n0≤k≤n

f (k)

then F is also an M-power series function.

Proof. Note that f is uniquely extended to an M-power series function f̃ which is
defined on all N. Then since F̃(n) := ∑

1≤k≤n f̃ (k) = F̃(n0 − 1) + F(n) for all

n ≥ n0, that F̃ is an M-power series function implies the same for F. Therefore,
without loss of generality, we will assume that n0 = 1.

For 1 ≤ t ≤ pM, let

Ft (n) :=
∑

1≤k≤n
pM|(k−t)

f (k) =
∑

0≤α≤n−t
pM|α

pt (α),

for t ≤ n and Ft (n) = 0 otherwise.
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Since F(n) = ∑
1≤t≤pM Ft (n), it suffices to prove that each Ft is an M-power

series function. Fix 1 ≤ i, t ≤ pM and suppose first that t ≤ i. Let pt (x) =∑
0≤ j a j x j . By assumption there is an ε > 0 such that limn→∞ a j p j (1−ε) = 0.
Recall the formula for the sum of the j-th powers:

∑

1≤m≤n

m j = 1

j + 1

∑

0≤k≤ j

(
j + 1

k

)
(−1)k Bkn

j+1−k

where Bk are the Bernoulli numbers defined by

x

ex − 1
=

∑

0≤k

Bkxk

k! .

The Von Staudt–Clausen theorem gives the bound |Bk | ≤ p.
Then for n ≥ 0

Ft (i + npM) =
∑

0≤k≤ j

a j (pM) j

j + 1

(
j + 1

k

)
(−1)k Bkn

j+1−k

=
∑

1≤l
0≤k

al+k−1(pM)k−1

l + k

(
l + k

k

)
(−1)k Bk(npM)l .

Therefore letting qt (x) = ∑
1≤l bl x

l , with

bl =
∑

0≤k

al+k−1(pM)k−1

l + k

(
l + k

k

)
(−1)k Bk,

we have Ft (i + npM) = qt (npM).

Note that

|bl pl(1−ε/2)| ≤ p1+εmaxk |al+k−1 p
(l+k−1)(1−ε) p

(l/2+k)ε

l + k
|.

Since liml→∞ al+k−1 p(l+k−1)(1−ε) = 0 and

lim
l→∞ | p

(l/2+k)ε

l + k
| ≤ lim

l→∞ | p
(l+k) ε

2

l + k
| = 0,

we see that liml→∞ bl pl(1−ε/2) = 0.
On the other hand if i < t, then we have

Ft (i + npM) = Ft (t + npM) − f (t + npM) = qt (npM) − pt (npM).

This proves that Ft is an M-power series function as desired. ��
Corollary 5.0.6. If f1, f2, . . . , fk are M-power series functions, then the function
G defined by

G(nk) :=
∑

0<n1<n2<···<nk

f1(n1) f2(n2) · · · fk(nk)

is an M-power series function.
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6. Computation of the higher depth part

In this section, we will concentrate on multi-zeta values of depth two. The proof of
the series expression for these values is a somewhat lengthy argument. The main
idea of the proof is contained in the simplest case of gi [e j ek], which correspond
to ζp(1, 1; a, b). The expression for these values is given in Proposition 6.1.4. The
main idea is to use Corollary 3.0.4 to show that limN→∞ lqN gF [eI ][lqN ] = 0 for
a monomial eI in the ei ’s. In order to be able to use this corollary we need to first
show that the limit exists. This is done by rearranging the terms in the expression
for gF [eI ]’s in such a way that each term is an M-power series function. The last
step is to deduce from the knowledge of this limit the expression for the multi-zeta
values.

Notation. We fix the notation for the series which appear as summands in the
power series expansion of gF around 0. Most of these series themselves do not
extend to rigid analytic functions on UM , however certain linear combinations of
their regularized versions do. Next we will fix the notation for these regularized
versions, which we described in Sect. 5.

Suppose that s = (s1, . . . , sk), where s j are positive integers and i := (i1, . . . ,
ik), where 1 ≤ i j ≤ M. For each i ∈ N, let fi and di be symbols and let
α := {α1, . . . , αr } ⊆ { fi |1 ≤ i ≤ k} ∪ {di |1 ≤ i ≤ k}. Then we let

S(s; i;α)(z) := p
∑

si
∑ ζ (i2−i1)n1+(i3−i2)n2+···+(−ik )nk

ns11 · · · nskk
znk ,

where the sum is taken over all 0 < n1 < · · · < nk, which satisfy:

(i) p � |n1
(ii) p|ni , if fi ∈ α,

and
(iii) p|(ni − ni−1), if di ∈ α,

If we take the sum over all 0 < n1 < · · · < nk which satisfy (ii) and (iii) [and
not necessarily (i)] then we denote the resulting series by T (s; i;α)(z).We use S(·)
and T (·) to denote S(·) and T (·) without the p

∑
si factors. Let

F(s; i;α)(n) := p
∑

si
∑ ζ i1n1+···+iknk

ns11 · · · nskk
,

where the sum is over all 0 < n1 < · · · < nk < n that satisfy (i), (ii) and (iii)
above. We denote the function obtained by taking the sum over 0 < n1 < · · · < n
that satisfy (ii) and (iii) [and not necessarily (i)], by G(s, i, α)(n). Similarly, let F
and G be the versions without the p-power factor. Clearly,

S(s; i)[n] = ζ−ikn

nsk
F(s′, i ′)(n),

where s′ = (s1, . . . , sk−1) and i ′ = (i2 − i1, . . . , ik − ik−1).
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Using the definition of L(k) for an M-power series function L in Example 5.0.4
(iv), we define F(s1, (s2); i, j) as follows. Noting that

F(s1, s2; i, j)(n) = ps2
∑

0<k<n

F(s1; i)(k)
ks2

ζ jk,

we put

F(s1, (s2); i, j)(n) = ps2
∑

0<k<n

F (s2)(s1; i)(k)ζ jk .

We define F(s1, (s2); i, j;α) analogously, and we let F (·)(·) := F(·)(·). When the
limit exists, we let X (·)(·) := limN→∞ F (·)(·)(qN ).

If we put i = (i, j, k), then we define S(a, (b), c; i) and S(a, (b), (c); i) as
follows:

S(a, (b), c; i)[n] = pcζ−kn

nc
F(a, (b); i ′)(n)

and

S(a, (b), (c); i)[n] = pcζ−kn F (c)(a, (b); i ′)(n).

We define S(a, b, (c); i;α) and S(a, (b), c; i;α) and S(a, (b), (c); i;α) similarly.

6.1. Computation of gi [e j ek]

In this section we will get two expressions relating gi [e j ek] and g−1
k [ei e j ]. The

first one will be obtained by looking at residues in the differential equation (2.2.10).
The second one will be obtained using Claim 6.1.3 below. Combining these two
will give the main result.

Since gF is regular at∞ computing the residues at∞ in the differential equation
(2.2.10) gives the equality:

−g∞[e j ek] + g∞[ei e j ] + g−1
k [ei e j ] + g−1

j [ei ]g j [ek] + gi [e j ek] = 0.

(6.1.1)

Since by Sect. 4.1,

g∞[ei e j ] = −g j [e0ei ] = X (2; i − j)

1 − ζ i− j

for i �= j, we have, for i, j, k all distinct, g−1
k [ei e j ] =

X (2; j − k)

1 − ζ j−k
− X (2; i − j)

1 − ζ i− j
+ g j [ei ]g j [ek] − gi [e j ek]. (6.1.2)

Recall the expression for gF [elem] from Sect. 4.1:

gF [elem] = −S(1, 1;m, l; d2) + S(1, 1; l,m) + gl [em](T (1; l) − T (1;m)).
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6.1.1. Computation of gi [e j ei ] Firstwe dealwith the degenerate casewhen i = k.
Using (6.1.1) with k = i, the fact that gF and gl are group-like we obtain:

gi [e j ei ] = 1

2
g j [ei ]2 − g∞[ei e j ].

Then Proposition 4.3.1 gives the following expression for gi [e j ei ].
Proposition 6.1.1. Assuming that i �= j, we have

gi [e j ei ] = 1

2

(X (1; i − j)

1 − ζ i− j

)2

− X (2; j − i)

1 − ζ j−i
.

6.1.2. Computation of gi [e j ek] Using the differential equation above gives that

gF [ei e j ek]
= S(1, 1, 1; k, j, i; d2, d3) − S(1, 1, 1; j, k, i; d3) − S(1, 1, 1; j, i, k; d2)

+ S(1, 1, 1; i, j, k) − g j [ek](T (1, 1; j, i; d2) − T (1, 1; k, i; d2))
+ gi [e j ](T (1, 1; i, k)−T (1, 1; j, k))−gk[e j ]S(1, 1; i, k)+g−1

k [ei e j ]T (1; k)
+ g j [ek]S(1, 1; i, j) − g j [ei ]g j [ek]T (1; j) + gi [e j ek]T (1; i).

For a fixed 0 < l ≤ pM,we are interested in showing that limN→∞ lqN gF [ei e j ek]
[lqN ] is 0. In order to do this, first we group the terms in the limit as follows so that
each summand has a limit.

(i) lqN S(s; i; d2, d3)[lqN ] = 0, for any s := (s1, s2, s3) and i := (i1, i2, i3).
(ii) lqN T (1; i)[lqN ] = ζ−il

(iii) lqN S(s, 1; i, j)[lqN ] = ζ− jl F(s; j − i)(lqN ). Hence the limit exists and for
l = 1 it is

lim
N→∞ qN S(s, 1; i, j)[qN ] = ζ− jX (s; j − i).

(iv) lqN S(s1, s2, 1; j, i, k; d2)[lqN ] = ζ−kl F(s1, s2; i− j, k−i; d2)(lqN ).Again
the limit exists and limN→∞ qN S(s1, s2, 1; j, i, k; d2)[qN ] = ζ−kX (s1, s2; i−
j, k − i; d2).

(v) lqN (S(1, 1, 1; j, k, i; d3)+g
j
[ek](T (1, 1; j, i; d2)−T (1, 1; k, i; d2)))[lqN ]

is equal to

ζ−il(F(1, 1; k − j, i − k; f2)(lq
N )

+g
j
[ek]((G(1; i − j; f1) − G(1; i − k; f1))(lq

N )))

Let us rewrite the same expression as

ζ−il
∑

0<n2<lqN

p|n2

ζ n2(i−k)

n2

(
g
j
[ek](ζ (k− j)n2 − 1) + F(1; k − j)(n2)

)
.
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Lemma 6.1.2. Let 0 < l ≤ pM such that p|l, and 1 ≤ t then

lim
n→0

pM|(n−l)

F(t; i)(n) = (−1)t−1g[et−1
0 ei ](1 − ζ il),

with n ranging over positive integers such that pM |(n − l), and tending to 0 in the
p-adic metric.

Proof. By Corollary 5.0.6, F(t; i) is an M-power series function. Note that if f is
an M-power series function and p|l then

lim
n→0

pM|(n−l)

f (n) = lim
N→∞ f (lqN ),

where in the first limit n goes to 0 in the p-adic metric and in the second one N
goes to ∞ in the archimedean metric. Therefore the limit in the statement of the
lemma exists and is equal to

lim
N→∞ F(t; i)(lqN ) = pt lim

N→∞
∑

0<n1<lqN

p � |n1

ζ in1

nt1
= pt

∑

0≤a<l

ζ ia lim
N→∞

∑

0<n<qN
p � |n

ζ in

nt
,

which is equal to g[et−1
0 ei ](1 − ζ il), if 0 < i < M, by Proposition 4.2.2. On the

other hand, if i = M, then the equality follows since both sides of the expressions
are 0 [11, §5.11]. ��

The above expression then can be written as

ζ−il
∑

0<n2<lqN

p|n2

ζ n2(i−k)F (1)(1; k − j)(n2) = ζ−il F(1, (1); k − j, i − k; f2)(lq
N ).

By Example 5.0.4 (iii), F (1)(1; k − j; f1) is an M-power series function. Then by
Proposition 5.0.5, and Remark 5.0.3 (ii), the limit exists as N → ∞ and is equal
to ζ−iX (1, (1); k − j, i − k; f2), if l = 1.

(vi) lqN (S(1, 1, 1; i, j, k) + g
i
[e j ](T (1, 1; i, k) − T (1, 1; j, k)))[lqN ]

= ζ−kl
∑

0<n2<lqN

ζ (k− j)n2

n2
(g

i
[e j ](ζ ( j−i)n2 − 1) + F(1; j − i))

= ζ−kl(F(1, (1); j − i, k − j) + g
i
[e j ](F(1; k − i) − F(1; k − j)))(lqN ).

As above the limit of the main expression as N → ∞ exists and is equal to
ζ−k(X (1, (1); j − i, k − j) + g

i
[e j ](X (1; k − i) − X (1; k − j))), if l = 1.

Claim 6.1.3. limN→∞ lqN gF [ei e j ek][lqN ] = 0.

Proof. The proof is exactly as that of Claim 4.2.1. We only need to add that (i)–(vi)
imply the existence of the limit. ��

Author's personal copy



432 S. Ünver

A direct consequence of this is the following proposition and its corollary.

Proposition 6.1.4. For distinct i, j, k, (1− ζ i−k)gi [e j ek] is equal to the following
sum of series:

X (1, (1); k − j, i − k; f2) − ζ i−kX (1, (1); j − i, k − j)

+ ζ i−kX (1, 1; i − j, k − i; d2) − ζ i−kX (2; j − k)

1 − ζ j−k
+ ζ i−kX (2; i − j)

1 − ζ i− j

− ζ i− jX (1; j − i)X (1; k − j)

1 − ζ k− j
+ ζ i−kX (1; j − k)X (1; k − i)

1 − ζ j−k

+ (ζ i− j − ζ i−k)X (1; i − j)X (1; k − j)

(1 − ζ i− j )(1 − ζ k− j )

− ζ i−k X (1; j − i)

1 − ζ j−i
(X (1; k − i) − X (1; k − j)).

Proof. This follows from combining Claim 6.1.3 and (6.1.2), which expresses
g−1
k [ei e j ] in terms of gi [e j ek], and rearranging the terms. ��

Recall the notation S(s, (t); i, j), where the parenthesis stands for the regularized
version of the series S(s, t; i, j) as explained in the beginning of § 6.

Corollary 6.1.5. We have the following expression for gF [ei es−1
0 e j ], using the

notation above:

−S(s, 1; j, i; d2) + (−1)s−1S(s, (1); i, j) + gi [es−1
0 e j ](S(1; i) − S(1; j)).

Proof. We saw in Sect. 4.1 that gF [ei es−1
0 e j ] is equal to

−S(s, 1; j, i; d2) + (−1)s−1S(s, 1; i, j) + gi [es−1
0 e j ](T (1; i) − T (1; j)).

The fact that limN→∞ lqN gF [ei es−1
0 e j ][lqN ] = 0, which we have shown in

Sect. 4.2, shows that we obtain the above answer after regularization. ��

Similarly we have the following corollary.

Corollary 6.1.6. The coefficients of gF [ei e j ek] define an M-power series. In fact,

gF [ei e j ek] = S(1, 1, 1; k, j, i; d2, d3) − S(1, (1), (1); j, k, i; d3)
−S(1, 1, (1); j, i, k; d2) + S(1, (1), (1); i, j, k)
−g j [ek](S(1, 1; j, i; d2)−S(1, 1; k, i; d2)) + gi [e j ](S(1, (1); i, k)
−S(1, (1); j, k)) − gk[e j ]S(1, (1); i, k) + g−1

k [ei e j ]S(1; k)
+ g j [ek]S(1, (1); i, j) − g j [ei ]g j [ek]S(1; j) + gi [e j ek]S(1; i).
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6.2. An explicit formula for F(t; i)

Recall that F(t; i)(n) = pt
∑

0<k<n
p � |k

ζ ik

kt , is an M-power series function. In Corol-

lary 6.2.3 below we will give a series expression for this function when p|n. The
coefficients of this expansion are in terms of cyclotomic p-adic multi-zeta values.
The proof will be based on the following observation which we will continue to
use throughout the paper.

Proposition 6.2.1. Let f be a rigid analytic function on UM such that

d f = dg + hω0 +
∑

1≤i≤M

αiωi ,

with g(z) = ∑
0<n anz

n, h(z) = ∑
0<n bnz

n, αi ∈ Cp. Suppose that for 0 < l ≤
pM, limN→∞(lqNalqN + blqN ) exists. Then

lim
N→∞(lqNalqN + blqN ) =

∑

1≤i≤M

ζ−ilαi .

Proof. Let f (z) := ∑
0<n γnzn . Since by assumption f is a rigid analytic function

on UM , Corollary 3.0.4 states that if limN→∞ lqNγlqN exists then it is equal to 0.
The differential equation in the statement of the proposition gives

γn = an + bn
n

−
∑

1≤i≤M

ζ−inαi

n
.

Therefore lqNγlqN = lqNalqN +blqN −∑
1≤i≤M ζ−ilαi and the statement follows.

��
Suppose that t ≥ 1 and s ≥ 2. Comparing the coefficients of e j e

t−1
0 eke

s−1
0 in

(2.2.10) gives the following identity:

dgF [e j et−1
0 eke

s−1
0 ] = F∗ω j gF [et−1

0 eke
s−1
0 ] − pgF [e j et−1

0 eke
s−2
0 ]ω0

−pg j [et−1
0 eke

s−1
0 ]ω j .

Since gF [et−1
0 eke

s−1
0 ] = (−1)s−1

(s+t−2
t−1

)
S(s+ t −1; k) by (4.1.8), letting (x)k :=

x(x + 1) · · · (x + (k − 1)), we obtain

(−1)s

(t − 1)! (s)t−1dS(s + t − 1, 1; k, j; d2) = F∗ω j gF [et−1
0 eke

s−1
0 ].

This gives dgF [e j et−1
0 eke

s−1
0 ] = (−1)s

(t−1)! (s)t−1dS(s + t − 1, 1; k, j; d2)
−pgF [e j et−1

0 eke
s−2
0 ]ω0 − pg j [et−1

0 eke
s−1
0 ]ω j .

Proposition 6.2.2. If we let gF (z)[e j et−1
0 eke

s−1
0 ] = ∑

0<n cnz
n, then

lim
N→∞ clqN = ζ− jl g j [et−1

0 eke
s
0],

for any 0 < l ≤ pM.
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Proof. We will proceed by induction on s. We have gF [e j et−1
0 ek] =

−S(t, 1; k, j; d2) + (−1)t−1S(t, 1; j, k) + g j [et−1
0 ek](T (1; j) − T (1; k)),

by Sect. 4.1. The coefficient of zn in gF [e j et−1
0 ek] is K (n)

n where K (n) :=

−ζ−n j F(t; j − k; d2)(n) + (−1)t−1ζ−kn F(t; k − j)(n)

+g
j
[et−1

0 ek](ζ− jn − ζ−kn).

By Lemma 6.1.2, we know that limN→∞ F(t; k − j)(lqN ) is equal to

(−1)t−1g j [et−1
0 ek](1 − ζ (k− j)l).

This implies by Example 5.0.4 (iv) that K (n)
n =

K (1)(n) = −ζ−n j F(t; j − k; d2)(n) + ζ−kn F (1)(t; k − j)(n),

is an M-power series function and hence by Remark 5.0.3 (ii),

lim
N→∞ K (1)(lqN ) = lim

N→∞ ζ−k F (1)(t; k − j)(lqN )

exists, for any 0 < l ≤ pM.

Since dgF [e j et−1
0 eke0] = tdS(t + 1, 1; k, j; d2) − pgF [e j et−1

0 ek]ω0 − pg j

[et−1
0 eke0]ω j , the existence of the above limit and Proposition 6.2.1 implies that

lim
N→∞ K (1)(lqN ) = lim

N→∞ ζ−k F (1)(t; k − j)(lqN ) = ζ− jl g
j
[et−1

0 eke0].

This implies that gF [e j et−1
0 eke0] is equal to

1

(t − 1)!
∑

0≤r≤1

(r + 1)t−1S(t + r, 2 − r; k, j; d2) + (−1)t S(t, (2); j, k),

and the coefficient of zn in this expression is

ζ−n j

(t − 1)!
∑

0≤r≤1

(r + 1)t−1
F(t + r; j − k; d2)(n)

n2−r

+(−1)tζ−nk F (2)(t; k − j; f1)(n).

Since F(t;i;d2)
nk

= F (k)(t; i; d2), we inductively arrive at gF [e j et−1
0 eke

s−1
0 ] =

(−1)s

(t − 1)!
∑

0≤r≤s−1

(r + 1)t−1S(t + r, s − r; k, j; d2) + (−1)s+t S(t, (s); j, k).

The coefficient of zn in this expression is

(−1)sζ−n j

(t − 1)!
∑

0≤r≤s−1

F (s−r)(t + r; j − k; d2)(n) + (−1)s+tζ−nk F (s)(t; k − j)(n).
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Now let gF [e j et−1
0 eke

s−1
0 ] = ∑

cnzn . Since cn is expressed in terms of the val-
ues of an M-power series function by the above expression, the limit limN→∞ clqN

exists. In order to find this limit, we employ Proposition 6.2.1 in the differential
equation for dgF [e j et−1

0 ekes0] and find that

lim
N→∞ clqN = ζ− jl g j [et−1

0 eke
s
0].

Using the expression above this gives limN→∞ F (s)(t; k − j)(lqN ) =

(−1)s+tζ (k− j)l g j [et−1
0 eke

s
0] = (−1)t

(t − 1)!ζ
(k− j)l(s + 1)t−1g j [es+t−1

0 ek].

These limits determine the M-power series function F(t; i) completely as

F(t; i)(n) = (−1)t−1(g[et−1
0 ei ](1 − ζ in)

− 1

(t − 1)!
∑

1≤r

ζ in(r + 1)t−1g[er+t−1
0 ei ]nr ),

for p|n. ��
The proof of the above proposition has the following corollaries.

Corollary 6.2.3. For t ≥ 1, p|n and M � |i, we have

pt
∑

0<k<n
p � |k

ζ ik

kt
= (−1)t−1(g[et−1

0 ei ](1 − ζ in)

− 1

(t − 1)!
∑

1≤r

ζ in(r + 1)t−1g[er+t−1
0 ei ]nr ).

Corollary 6.2.4. For, t, s ≥ 1 and j �= k, we have gF [e j et−1
0 eke

s−1
0 ] =

(−1)s

(t − 1)!
∑

0≤r≤s−1

(r + 1)t−1S(t + r, s − r; k, j; d2) + (−1)s+t S(t, (s); j, k).

6.3. Computation of gi [e j ekes0]
We already made this computation for s = 0 in Sect. 6.1. The computation will be
based on induction on s. From now on we assume that s > 0. The pattern of the
proof is the same as that in Sect. 6.1, some parts simplified using Proposition 6.2.1.

The differential equation gives dgF [ei e j ekes0] = gF [e j ekes0]F∗ωi

−pgF [ei e j ekes−1
0 ]ω0 − pgi [e j ekes0]ωi

−pg−1
j [ei ]g j [ekes0]ω j − pgF [ei ]g j [ekes0]ω j .

In order to be able to use Proposition 6.2.1 we note that, using Corollary 6.2.4,
gF [e j eke0]F∗ωi = d(−∑

0≤r≤1 S(1+ r, 2− r, 1; k, j, i; d2, d3)+ S(1, (2), 1; j,
k, i; d3)) and −gF [ei ]ω j = dS(1, 1; i, j).
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As above first we will show that the individual limits exist. To start with note
that lqN S(a, b, 1; k, j, i; d2, d3)[lqN ] = 0,

lqN S(a, (b), 1; j, k, i; d3))[lqN ] = ζ−il F(a, (b); k − j, i − k; f2)(lq
N )

and

lqN S(a, 1; i, j)[lqN ] = ζ− jl F(a; j − i)(lqN ).

On the other hand usingCorollary 6.1.6we obtain an expression for gF [ei e j ek].
We have:

(i) S(a, (b), (1); j, k, i; d3)[lqn] = ζ−il F (1)(a, (b); k − j, i − k; f2)(lqN )

(ii) S(a, b, (1); j, i, k; d2)[lqN ] = ζ−kl F (1)(a, b; i − j, k − i; d2)(lqN )

(iii) S(a, (b), (1); i, j, k)[lqN ] = ζ−kl F (1)(a, (b); j − i, k − j)(lqN )

(iv) S(a, (1); i, k)[lqN ] = ζ−kl F (1)(a; k − i)(lqN ).

Since the above limits exist as N → ∞ we can use Proposition 6.2.1 and ob-
tain that the limit of the following as N → ∞ is equal to −gi [e j eke0]ζ−il −
g−1
j [ei ]g j [eke0]ζ− jl :

ζ−il F(1, (2); k − j, i − k; f2)(lq
N ) + g j [eke0]ζ− jl F(1; j − i)(lqN )

+ζ−il F (1)(1, (1); k− j, i−k; f2)(lq
N )+ζ−kl F (1)(1, 1; i − j, k − i; d2)(lqN )

−ζ−kl F (1)(1, (1); j − i, k − j)(lqN ) + gk[e j ]ζ−kl F (1)(1; k − i)(lqN )

−g j [ek]ζ− jl F (1)(1; j − i)(lqN ) − gi [e j ]ζ−kl F (1)(1; k − i)(lqN )

+gi [e j ]ζ−kl F (1)(1; k − j)(lqN ).

This gives the following formula, with i, j, and k pairwise distinct, for gi [e j ek
e0] :

−X (1, (2); k − j, i − k; f2) − ζ i− j

1 − ζ k− j
X (2; k − j)X (1; j − i)

−X (1)(1, (1); k − j, i − k; f2) − ζ i−kX (1)(1, 1; i − j, k − i; d2)
+ζ i−kX (1)(1, (1); j − i, k − j) + ζ i− jX (1; i − j)X (2; k − j)

(1 − ζ i− j )(1 − ζ k− j )

−ζ i−kX (1; j − k)X (1)(1; k − i)

1 − ζ j−k
+ ζ i− jX (1; k − j)X (1)(1; j − i)

1 − ζ k− j

+ζ i−kX (1; j − i)X (1)(1; k − i)

1 − ζ j−i
− ζ i−kX (1; j − i)X (1)(1; k − j)

1 − ζ j−i
.

This also implies the following expression of gF [ei e j eke0] in terms of regular-
ized series: gF [ei e j eke0] =

−
∑

0≤p,q,r≤1
p+q+r=1

S(1 + p, 1 + q, 1 + r; k, j, i; d2, d3) + S(1, (2), (1); j, k, i; d3)
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+S(1, (1), (2); j, k, i; d3) + S(1, 1, (2); j, i, k; d2) + g j [eke0]S(1, (1); i, j)
−S(1, (1), (2); i, j, k) + gk[e j ]S(1, (2); i, k) − g j [ek]S(1, (2); i, j)
+gi [e j ]S(1, (2); j, k) − gi [e j ]S(1, (2); i, k).
We use this information in the differential equation for dgF [ei e j eke20] above

and this gives a formula for gi [e j eke20]. Inducting on s, we find the following
formulas for gF [ei e j ekes−1

0 ] and gi [e j ekes0]. Namely, gF [ei e j ekes−1
0 ] =

(−1)s−1
∑

0≤p,q,r
p+q+r=s−1

S(1 + p, 1 + q, 1 + r; k, j, i; d2, d3) + (−1)s gk [e j ]S(1, (s); i, k)

+ (−1)s
∑

0≤p,q
p+q=s−1

S(1, (1 + p), (1 + q); j, k, i; d3) + (−1)s S(1, 1, (s); j, i, k; d2)

+
∑

0≤r≤s−1

(−1)r g j [ekes−1−r
0 ]S(1, (1 + r); i, j) + (−1)s−1S(1, (1), (s); i, j, k)

+ (−1)s gi [e j ]S(1, (s); j, k) + (−1)s−1gi [e j ]S(1, (s); i, k).

Then using the differential equation for dgF [ei e j ekes0] and using Proposition
6.2.1 and noting that for the limit limN→∞ the coefficient

(i) S(a, (b); i, k)[qN ] contributes ζ−kX (b)(a; k − i)
(ii) S(a, (b), (c); j, k, i; d3)[qN ] contributes ζ−iX (c)(a, (b); k − j, i − k; f2)
(iii) S(a, b, (c); j, i, k; d2)[qn] contributes ζ−kX (c)(a, b; i − j, k − j; d2)
(iv) S(a, (b); i, j)[qN ] contributes ζ− jX (b)(a; j − i)
(v) S(a, (b), (c); i, j, k)[qN ] contributes ζ−kX (c)(a, (b); j − i, k − j);
we obtain the following identity: −ζ−i gi [e j ekes0] − ζ− j g−1

j [ei ]g j [ekes0] =
(−1)s+1ζ−kgk [e j ]X (s)(1; k − i) + (−1)s+1ζ−kX (s)(1, 1; i − j, k − j; d2)

+ (−1)s+1ζ−i
∑

0≤r≤s

X (r)(1, (s + 1 − r); k − j, i − k; f2)

+ ζ
− j

∑

0≤r≤s

(−1)r g j [ekes−r
0 ]X (r)(1; j − i) + (−1)sζ−kX (s)(1, (1); j − i, k − j)

+ (−1)s+1ζ−kgi [e j ]X (s)(1; k − j) + (−1)sζ−kgi [e j ]X (s)(1; k − i).

This can be summarized as the following proposition.

Proposition 6.3.1. Assume that i, j and k are pairwise distinct and that s > 0.
Then we have gi [e j ekes0] =

(−1)sζ i−k X (1; j − k)

1 − ζ
j−k

X (s)(1; k − i) + (−1)sζ i−kX (s)(1, 1; i − j, k − j; d2)

+ (−1)s
∑

0≤r≤s

X (r)(1, (s + 1 − r); k − j, i − k; f2)

− ζ
i− j

1 − ζ
k− j

∑

0≤r≤s

(−1)rX (s − r + 1; k − j)X (r)(1; j − i)
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+ (−1)s+1ζ i−kX (s)(1, (1); j − i, k − j) + ζ
i− j X (1, i − j)

1 − ζ
i− j

X (s + 1; k − j)

1 − ζ
k− j

+ (−1)sζ i−k X (1; j − i)

1 − ζ
j−i

X (s)(1; k − j) + (−1)s+1ζ i−k X (1; j − i)

1 − ζ
j−i

X (s)(1; k − i).

6.4. Computation of gi [e j es−1
0 eke

t−1
0 ]

We know the answer if s = 1 from the previous section. Let us assume that s > 1.
Also first assume that t = 1.

6.4.1. Computationof gi [e j es−1
0 ek] Thedifferential equationgivesdgF [ei e j es−1

0
ek] =

gF [e j es−1
0 ek]F∗ωi − pgi [e j es−1

0 ek]ωi − pgF [ei ]g j [es−1
0 ek]ω j

−pg−1
j [ei ]g j [es−1

0 ek]ω j − pgF [ei e j es−1
0 ]ωk − pgF [ei ]g−1

k [e j es−1
0 ]ωk

−pg−1
k [ei e j es−1

0 ]ωk .

Computing residues at∞ in the above expression,weobtain that gi [e j es−1
0 ek] =

g∞[e j es−1
0 ek] − g∞[ei e j es−1

0 ] − g−1
j [ei ]g j [es−1

0 ek] − g−1
k [ei e j es−1

0 ].

Similarly, computing the residues in the differential equation for dgF [ei e j es0]
we obtain that

g∞[ei e j es−1
0 ] = g∞[e j es0] − gi [e j es0] = (−1)s+1gi [es0e j ].

Using the expression g∞[e j es−1
0 ek] = (−1)ssgk[es0e j ] that we found in Sect.

4.1, we arrive at the following identity: gi [e j es−1
0 ek] =

gk[ei e j es−1
0 ] + (−1)s(sgk[es0e j ] + gi [es0e j ] + gk[ei ]gk[es−1

0 e j ])
+g j [ei ]g j [es−1

0 ek].
Using the computation of multi-zeta values of depth one in Sect. 4.2, this can be
rewritten as the following proposition.

Proposition 6.4.1. Assume that i, j, and k are pairwise distinct and that s > 1.
Then gi [e j es−1

0 ek] =

gk[ei e j es−1
0 ] + sX (s + 1; j − k)

1 − ζ j−k
+X (s + 1; j − i)

1 − ζ j−i
− X (1; i − k)

1 − ζ i−k

X (s; j − k)

1 − ζ j−k

+(−1)s−1X (1; i − j)X (s; k − j)

(1 − ζ i− j )(1 − ζ k− j )
,

where gk[ei e j es−1
0 ] is given by Proposition 6.3.1.
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Using the expression for gF [elea0emeb0] that we found in Corollary 6.2.4 in the
differential equation above, we see that dgF [ei e j es−1

0 ek] =

d(S(s, 1, 1; k, j, i; d2, d3)) + (−1)s S(s, (1), 1; j, k, i; d3) + g j [es−1
0 ek]S(1, 1; i, j)

+g−1
k [e j es−1

0 ]S(1, 1; i, k) + (−1)s
∑

0≤r≤s−1

S(1 + r, s − r, 1; j, i, k; d2)

+(−1)s+1S(1, (s), 1; i, j, k)) − pgi [e j es−1
0 ek]ωi − pg−1

j [ei ]g j [es−1
0 ek]ω j

−pg−1
k [ei e j es−1

0 ]ωk .

By the same arguments as above we see that the hypotheses of Proposition 6.2.1
are satisfied, and we have the following:

Proposition 6.4.2. Suppose that s > 1, then we have gF [ei e j es−1
0 ek] =

S(s, 1, 1; k, j, i; d2, d3)) + (−1)s S(s, (1), (1); j, k, i; d3) + g j [es−1
0 ek ]S(1, (1); i, j)

+g−1
k [e j es−1

0 ]S(1, (1); i, k) + (−1)s
∑

0≤r≤s−1

S(1 + r, s − r, (1); j, i, k; d2)

+(−1)s+1S(1, (s), (1); i, j, k) + gi [e j es−1
0 ek ]S(1; i) + g−1

j [ei ]g j [es−1
0 ek ]S(1; j)

+g−1
k [ei e j es−1

0 ]S(1; k).

6.4.2. Computation of gi [e j es−1
0 eke

t−1
0 ] Assume that s, t > 1. Then the differ-

ential equation gives that dgF [ei e j es−1
0 eke

t−1
0 ] =

gF [e j es−1
0 eke

t−1
0 ]F∗ωi − pgF [ei e j es−1

0 eke
t−2
0 ]ω0 − pgi [e j es−1

0 eke
t−1
0 ]ωi

−pg−1
j [ei ]g j [es−1

0 eke
t−1
0 ]ω j − pgF [ei ]g j [es−1

0 eke
t−1
0 ]ω j .

We will use Proposition 6.2.1 and do induction on t, starting with the formulas
we found above for gF [ei e j es−1

0 ek] and gF [eael0ebem0 ].Wefind that gF [ei e j es−1
0 ek

et−1
0 ] =

(−1)t−1

(s − 1)!
∑

0≤r,q
r+q≤t−1

(r + 1)s−1S(s + r, 1 − q, t − (q + r); k, j, i; d2, d3)

+
∑

0≤r≤t−1

(−1)r g j [es−1
0 eke

t−1−r
0 ]S(1, (1 + r); i, j)

+(−1)t−1g−1
k [e j es−1

0 ]S(1, (t); i, k) + (−1)s+t S(1, (s), (t); i, j, k)
+(−1)s+t+1

∑

0≤r≤s−1

S(1 + r, s − r, (t); j, i, k; d2)

+(−1)s+t+1
∑

1≤r≤t

S(s, (t + 1 − r), (r); j, k, i; d3)

+(−1)t−1g−1
k [ei e j es−1

0 ]S(t; k) +
∑

1≤r≤t

(−1)r−1gi [e j es−1
0 eke

t−r
0 ]S(r; i)
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+
∑

1≤r≤t

(−1)r−1g−1
j [ei ]g j [es−1

0 eke
t−r
0 ]S(r; j),

for s > 1 and t ≥ 1.
We also obtain that −ζ−i gi [e j es−1

0 eke
t−1
0 ] − ζ− j g−1

j [ei ]g j [es−1
0 eke

t−1
0 ] =

ζ− j
∑

0≤r≤t−2

(−1)r+1g j [es−1
0 eke

t−2−r
0 ]X (1+r)(1; j − i)

+ζ−k(−1)t−1g−1
k [e j es−1

0 ]X (t−1)(1; k − i)

+ζ−k(−1)s+tX (t−1)(1, (s); j − i, k − j)

+ζ−k(−1)s+t+1
∑

0≤r≤s−1

X (t−1)(1 + r, s − r; i − j, k − i; d2)

+ζ−i (−1)s+t+1
∑

1≤r≤t−1

X (r)(s, (t − r); k − j, i − k; f2)

+ζ−i (−1)s+t+1X (s, (t); k − j, i − k; f2) + ζ− j g j [es−1
0 eke

t−1
0 ]X (1; j − i).

Using the formula for the depth one multi-zeta values which we found in Sect. 4.2,
we obtain the following.

Theorem 6.4.3. Assume that s, t ≥ 2. Then gi [e j es−1
0 eke

t−1
0 ] =

(−1)s−1ζ
i− j

(
s + t − 2

s − 1

)X (1; i − j)

1 − ζ
i− j

X (s + t − 1; k − j)

1 − ζ
k− j

− ζ
i− j

∑

0≤r≤t−2

(−1)r+s
(
s + t − r − 3

s − 1

)X (s + t − r − 2; k − j)

1 − ζ
k− j

X (1+r)(1; j − i)

− ζ i−k((−1)t
X (s; j − k)

1 − ζ
j−k

X (t−1)(1; k − i) + (−1)s+tX (t−1)(1, (s); j − i, k − j)

+ (−1)s+t+1
∑

0≤r≤s−1

X (t−1)(1 + r, s − r; i − j, k − i; d2))

+ (−1)s+t (
∑

1≤r≤t−1

X (r)(s, (t − r); k − j, i − k; f2) + X (s, (t); k − j, i − k; f2))

+ (−1)s
(
s + t − 2

s − 1

)
ζ
i− j X (s + t − 1; k − j)

1 − ζ
k− j

X (1; j − i),

for distinct i, j, k.

Using the fact that the gi ’s are group-like, one obtains a formula for all the
cyclotomic p-adic multi-zeta values ζp(s2, s1; i2, i1) of depth two, by Theorem
6.4.3, Propositions 6.4.1 and 6.3.1.
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