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Abstract. In this paper we compute the values of the p-adic multiple polylogarithms of
depth two at roots of unity. Our method is to solve the fundamental differential equation
satisfied by the crystalline frobenius morphism using rigid analytic methods. The main
result could be thought of as a computation in the p-adic theory of higher cyclotomy. We
expect the result to be useful in proving non-vanishing results since it gives quite explicit
formulas.

1. Introduction

LetM > 1, ¢ aprimitive Mthrootofunity and E := Q(¢).Let Vi := Gy g\UM.E
be the complement of the group of Mth roots of unity 1, in the multiplicative
group G,, over E. The unipotent completion of the fundamental group of Vj; has
a motivic interpretation. The case of M = 1 was studied in detail in [3], where the
unipotent completion of 71 (V)y, -) was defined in different cohomology theories
and comparison isomorphisms were given between them. The periods of the Betti—
de Rham comparison isomorphism give multi-zeta values. The algebra that they
generate has arithmetic significance since it is related to the Hopf algebra of the
motivic Galois group through a conjecture of Grothendieck. The periods of the
crystalline-de Rham comparison isomorphism give p-adic multi-zeta values which
we studied in [11].

Choosing appropriate basepoints Deligne and Goncharov define the unipotent
motivic fundamental group ﬂi"‘” (Vm, -) of Vy; whose ring of functions is an ind-
object in the tannakian category of mixed Tate motives over Op[M -11 16, §51.
Moreover, for M = 1, F. Brown showed that n{””’ (Vm, -) generates this category
as a tannakian category [1]. Similar results for M = 2,4, 6, 8 were shown by
Deligne [5]. As a consequence of this, the periods of mixed Tate motives over these
rings are Q-linear combinations of periods of the fundamental group 7{"*' (Vyy, ).
Therefore studying these periods have important arithmetic consequences. It is of
special importance to prove linear independence or transcendence statements for
the p-adic periods and for this, one would want to have as explicit a description as
one can have for these values. This is what we aim to do for the p-adic periods in
depth less than or equal to two. We describe the problem in more detail below.
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406 S. Unver

The comparison between the Betti and de Rham realization of m(Vy,, -) is
completely described by the cyclotomic versions of multi-zeta values [6, Propo-
sition 5.17]. Namely, fix an imbedding of E in C. In the de Rham theory of the
fundamental group, there is a canonical fiber functor denoted by wgg (Sect. 2.1.2).
Moreover, for any basepoint x, there is a canonical isomorphism between the fiber
functor at x, and wgg (2.1.1). In the following, when we refer to the de Rham
fundamental group without specifying the fiber functor, we always mean to use
wqr- The Lie algebra of the de Rham fundamental group of Vi over C is the
free pro-nilpotent Lie algebra with generators {e; }o<i<m, Where eg (resp. e;) are
the functionals which send a unipotent connection to its residues at O (resp. ¢')
(Sect. 2.1.3). Hence the set of C-valued points of the de Rham fundamental group
is the set of group-like elements in the non-commutative formal power series ring
C({eo, - .., epm)). The image of the Betti path from the tangential basepoint 1 at O
to the tangential basepoint —1 at 1 under the de Rham—Betti comparison isomor-
phism gives an element of the de Rham fundamental groupoid between the same
tangential basepoints. Using the above identification of the fiber functors at these
basepoints and wgr, we obtain an element of the de Rham fundamental group and

hence a group-like element 1y in C({eg, ..., ey)). By [6, Proposition 5.17], the
coefficient ofeg’”_le,-m o--e‘f)'*]eil in 10, where M > i,,, ..., i1 > lands, > I,

18

é‘im (nm—1—nm)+-+(—i1n1)

(_ l)m Sm s
n,,,>§n1>0 M “.nll
The study of these numbers is the Hodge-theoretic analog of higher cyclotomy [9].

The main result below is the crystalline analog of the above for m < 2. We
describe this in more detail. Letting p be a prime which does not divide M,
71" (Vp, -) has good reduction modulo p, and hence one would expect a crys-
talline realization of this motive at p. This is completely described by the frobenius
action on the de Rham fundamental group 71 4r(Vu, -). Let X denote the base
change of Vy; to K := Q,(¢) and let g; denote the image under frobenius of the
canonical de Rham path from the tangential basepoint 1 at O to the tangential base-
point 1 at Ci/P (c.f. Sect. 2.2.3) on X 7. As above g; is naturally in K ({eg, ..., em)).
The main result of the paper, Theorem 6.4.3 below, gives an explicit formula for
the coefficient of e jef)*]ekef)*l in g;, in terms of iterated sums, exactly as above.
Since g; is group-like, this also determines the coefficients of terms of the form
e(’)_le j eg_lek 66_1. This might be thought of as the p-adic theory of higher cyclo-
tomy in depth two.

The restriction to depth two is only for computational reasons. The coefficients
and the contributions coming from the lower depth values that are to be added
for the regularization get very complicated when the depth increases. However, if
we are only interested in the Q-vector space, hence algebra, of (cyclotomic) p-
adic multi-zeta, we might show that this algebra is contained in an explicit algebra
formed by the regularized iterated sums such as the ones that appear in the present
paper. This is the content of a work in progress. The M = 1 case of this work is
done in [12]. The corresponding result for the algebra of cyclotomic p-adic values
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will give a result less precise than the one in the present paper, but it will have the
advantage that it will work in all depths and not just depth two.

Comparison with Furusho’s definition. Furusho defines p-adic multiple-zeta
values (as in the case M = 1 above) using Coleman’s theory of iterated p-adic
integrals instead of our use of Deligne’s theory of the comparison isomorphism.
However, the information that is contained in both of these definitions are precisely
the same and can be transferred from one to another just by basic linear algebraic
computations [8, Theorem 2.8, Examples 2.10]. One can similarly define a version
of the cyclotomic p-adic multiple-zeta values using Coleman’s theory and this will
again have a similar relation to our definition. Therefore our explicit computations
also give explicit computations for these Coleman integrals. We would like to
emphasize that no other explicit expressions are known for the p-adic multiple-
zeta values of Furusho (M = 1) and their higher cyclotomic analogs (M > 1).

We describe the contents of the paper. In Sect. 2, we review the de Rham and
crystalline fundamental groups of a curve in a manner which will be suitable for
our purposes. In particular, using the horizontality of the frobenius with respect to
the canonical connection we arrive at the fundamental differential equation (2.2.9).
At the end of this section, we fix the notation for what follows. In Sect. 3, we obtain
a certain relation between the coefficients of the power series expansions of rigid
analytic functions on U/, which is essential for the computations (Corollary 3.0.4).
In Sect. 4, we compute cyclotomic p-adic multi-zeta values of depth one, which
is fairly straightforward. Next there is a section on the type of iterated sums that
appear in the computations. These functions will appear as coefficients of the power
series expansions above and will satisfy the hypotheses of Corollary 3.0.4, so the
inductive process will continue. In Sect. 6, we will proceed with the computation,
and finish with the main result in Theorem 6.4.3.

2. The fundamental differential equation

In this section, we will recall the de Rham-crystalline isomorphism theorem through
which we will define the cyclotomic p-adic multi-zeta values. Studying the variation
of the fundamental torsor of paths on X, with respect to the standard lift of the
frobenius will give us a differential equation (2.2.10) which will be one of the main
tools for computing these values.

We start by reviewing the de Rham fundamental group of a curve X /K over an
arbitrary field K of characteristic 0 in Sect. 2.1. This is defined as the automorphism
group of a fiber functor on the category Mic,,;(X/K) of vector bundles with
unipotent connection on X.

In case, X has a compactification X such that H 1(7, O) = 0, this category
has a canonical fiber functor called the de Rham fiber functor. The corresponding
fundamental group will be denoted by 71 4z (X/K). The fundamental r; 4z (X/K)-
torsor 7;g on X whose fiber at a point x € X represents the isomorphisms between
wy, the fiber functor at x, and wyr is endowed with a natural connection. This
connection is explained in detail in Sect. 2.1.3.

Next we describe the crystalline fundamental group of a smooth variety Y /k
over a perfect field k of characteristic p in Sect. 2.2. The definition is similar to the
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one above and is based on the category of unipotent overconvergent isocrystals on
Y. The essential difference is that there is an action of frobenius on the crystalline
fundamental group. When Y has a sufficiently nice lifting over W, the ring of
Witt vectors of k, then there is a comparison isomorphism between the crystalline
fundamental group of Y and the de Rham fundamental group of the generic fiber
of the lifting. Using this isomorphism one defines a frobenius action on this de
Rham fundamental group. Applying this to X; we define the cyclotomic p-adic
multi-zeta values in Sect. 2.2.3. The interplay between the canonical connection
and the frobenius is summarized by the differential equation in Sect. 2.2.4, which
is a restatement of the fact that frobenius is horizontal with respect to the canonical
connection.

Fix a prime p, which does not divide M. Let X, denote the base change of
Vm to K = Q,(¢). Let Ay denote the rings of regular functions on X ;. Finally,
let Dy := X \ Xy, where Xy = }P’}( is the smooth compactification of X ;.

2.1. The de Rham fundamental group of Xy

We review the theory of the de Rham fundamental group [3, 10.24-10.53, §12],
[11, §4, §5]. This theory is valid for any geometrically connected, smooth variety
X /K over a field K, of characteristic 0. For simplicity, we will assume that X is
a curve and after Sect. 2.1.2, we will assume that X has a compactification X that
satisfies H (X, ©) = 0.

Suppose that K — C is an imbedding and let X, be the underlying topologi-
cal space of X¢. The category of unipotent C-local systems on X, correspond to,
after fixing a point x on X, the unipotent complex representations of the topolog-
ical fundamental group 71 (X,,, x). By the Riemann—Hilbert correspondence this
category has a completely algebraic description [3, §10.25]: it is equivalent to the
category of vector bundles with unipotent integrable connection on X¢. This latter
category makes sense over an arbitrary field and is the basis of the de Rham theory
of the fundamental group.

2.1.1. The fundamental torsor Let K be any field of characteristic 0 and X /K be
a smooth and geometrically connected curve and Mic,,,,; (X /K ) denote the category
of vector bundles with integrable connection which are unipotent. The objects of this
category are vector bundles with connection (E, V) on X for which there exist an
increasing filtration {(F;, V)}; by sub-bundles with connection such that there exists
an N with F; =0fori < —N ori > N, and for all i, (F;/F;_1, V) is isomorphic
to either the zero bundle or to (O, d); and the morphisms are morphisms of vector
bundles which commute with the connections. This category naturally forms a
tensor category over K in the sense of [3, §5.2], [4].

Let S/K be a scheme over K and let Vecg denote the category of locally free
sheaves of finite rank on § and w : Mic,,; (X/K) — Vecs be a fiber functor
[3, §5.9]. Then to w there is associated a K -groupoid acting over S [4, §1.6] called
the fundamental groupoid of X at w and denoted by P;g (X, w). The fundamental
groupoid is faithfully flat and affine over S x g S and represents the functor on the
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category of § x g S-schemes whose T-valued points forany 7 : T — § xg S is
the set of ®-isomorphisms from 7*pjw to 7*pfw, where p1, po : S xg S — §
are the projections [4, §1.11, Théoreme 1.12].

Taking the cartesian product of Pyr(X, w) — S xk S with the diagonal A :
S — S xk S gives w1 4r (X, w), the de Rham fundamental group of X at the fiber
functor w.

Let x € S(K) then attaching F(x), the fiber of F at x, to F € Vecg gives rise
to a fiber functor

Wy : Micy,i (X/K) — Vecg.

Assuming that S = X and pulling back Psr (X, @) = X x g X viathe inclusion
X — X xg X that sends s to (s, x) we obtain a torsor 7;g (X, w), on X under
the group scheme 71 4g (X, wy). If M is a manifold and x € M, the topological
analog of this torsor is the 1 (M, x)-torsor on M whose fiber at a point y in M is
the homotopy class of paths from y to x.

2.1.2. The de Rham fiber functor on Xy~ From now on we assume that the smooth
projective model X of X is isomorphic to P!. In this case, there is a canonical fiber
functor [3, §12]:

wqr : Mic,,i (X/K) — Veck

defined as follows.

For any (E, V) € Mic,,; (X/K) let (E.q,, V) denote the unique vector bundle
with connection on X that has logarithmic singularites with nilpotent residues at
X \ X. The pair (E.q,, V) is called the canonical extension of the unipotent vector
bundle with connection (E, V). Since H' (X, ©) = 0, the bundle E_q, is trivial
[3, Proposition 12.3] and the functor w,g defined as

@ar(E, V) :=T(X, Ecan)
is a fiber functor [3, §12.4]. For a subscheme Y of X let
w(Y) : Micy,i (X/K) — Vecy

denote the fiber functor that sends (E, V) to E.4,|y. There are canonical isomor-
phisms

war Qk Oy = w(Y) (2.1.1)

of fiber functors.

LetPyr := Par(X, ©(X)), Tar x := Tar(X, 0(X))x, Par := Par(X, (X))
and T4p x = Tar(X, w(X)),. Finally let 73z and 7 4 denote the torsors Z4r
and T, R.x after the identification (2.1.1) of wgg with w(x). Thus they are (right)
m1,dr(X) := w1, 4r (X, wgr) torsors which depend only on X.
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2.1.3. Connection on the fundamental torsor Tyg  Let Ax C X xg X denote
the diagonal and A ) its first infinitesimal neighborhood. Let p(1> A(l) - X
denote the two project1ons Let 7 be a right torsor on X under an algebralc group

(1)*

G. A connection on 7 is an isomorphism V : p(l)*T — T between the two

pull-backs of 7 to A( ) which reduce to the identity map on A. If « is a section

(D= (=

of 7 on an open subset U of X, then V(p; ") and p, "a, which abusing the

notation we denote by Vo and «, denote two sections of pé *T on AS). Then
o~ V() defines a map from A(L}) to G, whose restriction to Ay is the constant
map with value the identity element e of G. Giving such a map is equivalent
to giving a K-linear map mG,e/mZG’e — I'(U, Qb/K) and hence an element of
Lie(G) ®k I'(U, Qb / x)- Abusing the notation, let us denote the corresponding
element in Lie(G)Qx (U, Q! /K) by o'V (). For g amorphism fromU — G,
for any u € U let (dg), denote the linear map from 7' o ,G o T U. If we identify
Tg( )G with T,)G = = (Lie(G))", the dual of Lie(G), via multiplication by g(u) for
every u, we get alinear map g‘ldg from (Lie(G))" to (U, Q! /K) Again abusing
the notation, we denote the corresponding element in Lie(G) ®x I'(U, Ql U/ u/k) by

¢~ 'dg. Note that ag denotes another section of the torsor 7 over U, and with the
notation above, we have the following formula

(@g) 'V(ag) =g 'dg + g (@' V())g.

In case 7 is the trivial G-torsor G x g X then a connection on 7 is determined
by —e"V(e) € Lie(G) ®k I'(X, Q}(/K), where e is the identity section. If
—e ! V(e) = 2, then for every section g of 7,

g 'V =g 'dg— g 'Qq. (2.12)

By the definition of P, g, the sections of its restriction to A g(l) are ®-isomorphisms

(L - A(l) — X are the two projections. If

from pil w(X) to p, " w(X) where p;
(E, V) € Micyn (X/K), then pf“*w(X)(E, V) = p!V*(E) and the connection V
induces an isomorphisms from pil)*(E ) to pél)*(E ) reducing to the identity on the
diagonal. This in turn induces a canonical isomorphism between the above fiber
functors, and hence a section of Pyp| AD over Ag(l) which is the identity section
when restricted to Ax. This defines an isomorphism between the two pull-backs
of TR to Ag(l), which, by definition, is a connection on the 71 4g (X)-torsor 7.

Because of the canonical isomorphism 7y = 71 4r(X) X g X (2.1.1) aconnec-
tion on 74 is completely determined by e 1V(e) € Lie m1.4rR(X)®k (X, Qg(/,()
as above. Let Q.u, € H L} rX W Rk H c} r(X) denote the canonical element, where
Hle(X)v denotes the dual of HC}R(X) Since X is affine, H'(X, Ox) = 0 and

rx, ol /K) = H[}R(X) Below we will describe an imbedding

Hlp(X)¥ — Liem 4r(X).
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We continue to denote the image of 2.4, in Lie w1 4r(X) @k I'(X, Q}(/K), via the
map induced by this imbedding, by the same notation. Then by Deligne [3, §12.12],
we have

e~ 'V(e) = —Qean (2.1.3)

in Lie 71 ag(X) ®x T'(X. Q5.

From now on we let X = X7 and K = Q,(¢). Forany x € X \ X and (E, V),
we have the residue endomorphism

resy @ Ecan(x) = Ecan(x),

induced by the map that sends the local section u of E.4, near x, to (V(u), t%),
where ¢ is a uniformizer at x. The residue endomorphism is independent of the
choice of a uniformizer and satisfies,

res, ((E1, V1) ® (E2, V2)) = 1 ®resc(E2, Vo) +res, (Ep, Vi) ® 1.

Henceres, € Lie my 4 (X, w(x)) = Lie 1 4r (X), under the identification (2.1.1).
It Extg( denotes the extension groups in the category of modules with integrable
connection on X then we have HL}R(X) = Ext}((((’), d), (O, d)). Using this, res,
defines an element in H [} R(X )Y as follows. Given w € H dl r(X) we get a vector
bundle with connection (E,, V) in the above extension group. The fiber at x gives
an extension 0 - K — E, can(x) = K — 0. Let f] be the image of 1 € K in
E, can(x) and let f> be any lift of 1 € K in E) cqn(x). Then resy(f2) = Af1 for
some A € K, and the map that sends w to A defines an element of H [} r(X )V. Viewed
in this manner the subspace that res,, with x € 7\ X, generate in Lie my 4p(X) is
precisely H;R(X)V. Forl <i < M, welete; € Liem; 4r(X ) denote res;i and
eo denote resg. If we also put wg := dlogz and w; := dlog(z —¢"), forl <i < M,
then

Qean = z eiw;. (2.1.4)

O<i<M

The de Rham fundamental group of X, has a simple description. For any
K -algebra A, denote the associative (non-commutative) algebra of formal power
series in {¢;|0 < i < m} over A by A((ep, ..., epn)) and let

Uar(A) == A{{eo, ..., em)).

Then the universal enveloping algebra of 71 4r(Xn) is Usr(Xm)(K). The co-
product of the Hopf algebra structure on U,z (A) is induced by the fact that ¢; are
primitive elements: A(e;) = 1 ®e; +¢; ® 1, for | <i < M. The A-valued points
of 1 4r(Xm) then correspond to the group-like elements in Uy g (A), i.e. elements
g satisfying A(g) = g®g and with constant term equal to 1. For any g let g denote
the image of g under the Hopf algebra automorphism of U g (A) that sends ¢; to
p‘lei, for all i.
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The canonical connection on Zyg = 71 4r (X ) X X can be described as fol-
lows. A section of 7y over Xy is given by a group-like element «(z) € Uyr (A ),
where z denotes the parameter on Spec Ay = Xy C A}(. Let

d : Uar(Am) — Uar(Am)®ay s, /x

denote the continuous differential extending the canonical differential Ay; —
QkM/K such that d(e;) = 0, for 0 < i < M. In other words, applying d to
an element «(z) amounts to applying d to each coefficient of «(z). Note that the
identity section e of the trivial torsor 7 is given by the element 1 € Uy (Ayr). By
(2.1.3) and (2.1.4), the action of the canonical connection on the identity section e
of the trivial torsor 7, is described by the formula:

71V(€) Qean = — Z €. (2.1.5)

0<i<M

The action of the connection on arbitrary sections of 7; g was described by Eq. (2.1.2).
Therefore for any group-like element «(z) € Uyr(Apr), we have:

@(x)'V(@@) =a@) 'de) —a@ | D] ewi|a) (2.16)

o<i<m

in Lie m,dR(XM)@QixM/K’

2.2. Crystalline fundamental group of X i

We review the theory of the crystalline fundamental group as described in [3, §11]
and [11, §2.4]. The crystalline fundamental group can be defined for any smooth
variety Y/k over a perfect field k, and if it has a smooth compactification Y such
that Y \ Y is a simple normal crossings divisorin Y, it agrees with the appropriately
defined crystalline fundamental group of the log scheme Y, log- This will be essential
when constructing a comparison isomorphism between the de Rham fundamental
group of a lifting of ¥ and the crystalline fundamental group of Y. The comparison
theorem between the crystalline and de Rham fundamental groups will give us the
frobenius map on the de Rham fundamental group which will play a central role.

2.2.1. The de Rham-crystalline comparison Let k be a perfect field of characteris-
tic p, with W the ring of Witt vectors and K its field of fractions. For a smooth variety
Y/k, we have Isocum (Y/ W), the category of unipotent overconvergent isocrystals
onY/W[11, §2.4.1]. If w is a fiber functor on Isoczm (Y/ W), the automorphisms
of w is represented by the crystalline fundamental group n; erys (Yo @) of Y [11].
Now suppose that ¥ has a smooth compactification Y/k such that D := Y\Y
is a simple normal crossings divisor in Y, and let Yo denote the canonical log

structure on Y associated to the divisor D. Shiho’s theorem [10] implies that the
restriction functor

150, ; (Y10g/ W) — Isoc! (Y/W), (2.2.1)

uni uni
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from the category of unipotent convergent log isocrystals on Ylog toIsoc’
is an equivalence of categories [11, Lemma 2].

This is in complete analogy with the situation over the field K of characteristic
0.If X /K is a smooth variety with a smooth compactification X /K and with simple
normal crossings divisor E := X \ X in X then the restriction

Y/ W),

uni

MicCuni (X10g/K) = Micyni (X/K) (2.2.2)

gives an equivalence of categories [2, I1.5.2].

The de Rham-crystalline comparison can be described as follows. Suppose
that Z/ W is a smooth, projective scheme with geometrically connected fibers and
with F C Z a relative simple normal crossings divisor. Let Z := Z \ F, and
let (X, X, E) and (Y, Y, D) denote the corresponding data over the generic and
special fibers respectively. The canonical functor

Micuni(ylog/K) g ISOCfm,‘(?log/W)

is an equivalence which, when combined with (2.2.2) and (2.2.1) gives the equiv-
alence

Mic,,i (X/K) — Isoc! (Y/W). (2.2.3)

uni

Choosing a (tangential) basepoint z on Z, we get an isomorphism

jTlT,crys(Y’ y) - 71,dR(X, X),

where x and y are the generic and special fibers of z.

Let o : W — W denote the lifting of the p-power frobenius map on k, and
let Z(P) denote the base change of Z/W via o and X () y(P) etc. the corre-
sponding fibers of Z(”). The relative frobenius morphism induces a ®-functor
F* : Isoc’ (YP /W) — Isoc' (Y/W), and hence a map F : ' Y,y) =

uni uni : nl',crys
711 ervs (X () y(P)), This, together with the above isomorphism, gives a morphism
Fyo:migr(X,x) = mar(XP, xP). (2.2.4)
Similarly, for a pair of (tangential) basepoints z; and z we obtain a morphism

Fy: ,Par(X)x — xép)’PdR(X(p))xfp)- (2.2.5)

2.2.2. Tangential basepoints in the crystalline case The definitions of the crys-
talline and de Rham fundamental groups look similar. However, a major difference
is that one does not have a canonical fiber functor on Isoczm. (Y/ W) analogous to
wqr. Therefore, in order to make use of the comparison isomorphism one cannot
simply use wyg and one needs to choose specific basepoints on the variety which
might increase the places of bad reduction for the motivic fundamental group. In
the case of V) /E, which is the important case for us, this takes the following form.
Let S := Spec Og[M~'], and let Vy; := Gum.s \ mm,s be the standard model of
Vi over S, with Vy, := IP’;. Then if we let x € Vy/(E), the fundamental group
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7" (Vyr, x) will have bad reduction at those primes p € S for which x does not
have finite reduction on Vjy € V) at p. Deligne overcomes this problem by intro-
ducing special tangential basepoints at the missing points of the variety and thereby
avoids increasing the places of bad reduction [3, §15]. In the crystalline case, we
gave a detailed exposition of the tangential basepoints in [11, §3]. Below we will
only recall the definition.

Let Z/W be as above with relative dimension 1, for simplicity, and let z €
(Z \ Z)(W) with fibers x and y. Let Tx (Z)/ W denote the tangent space of Z at
z with the zero section removed. It is (non -canonically) isomorphic to G,,/ W. Fix
w € TX(Z)(W), with fibers v € T (Y)(k) and u € T (X)(K). The crystalline
tangential basepoint at v is a fiber functor

o Isoct (Y/W) — Veck.

uni

Corresponding to the lifting Z, z and w and the identification of ISOCZ 2 Y/ W) with

Mic,,,; (X/K) described above this fiber functor corresponds to the fiber functor
Wy : Micy,i (X/K) — Veck

which associates to (E, V) the fiber E.,;, (x) of its canonical extension at x. In this
description it looks as if the fiber functor w, depends only on y and not on the
tangent vector. However, we would like to emphasize that the identification of w,
with w, depends on the choice of an integral model (Z, 7) as above and in order
to define canonical isomorphisms between the fiber functors which correspond to
different choices of integral models one needs to fix a tangent vector at y. Since
it has no direct consequence for what follows, we refer the reader to [11, §3] for
details on the effect of choosing different integral models and the importance of
fixing a tangent vector.

2.2.3. Cyclotomic p-adic multi-zeta values Let ty denote the tangent vector 1 at
0 and #; denote the tangent vector 1 at {i, for 1 <i < M. In the following, we
identify the tangent space at a point x in A with A! itself. Therefore, if z denotes
the coordinate function on A', then #; is the tangent vector that satisfies dz(f;) = 1.
Forl <i < M, leti denote the unique integer such that 1 < i <Mand M |(zT— pi).
Similarly, let i denote the unique integer such that 1 <i < M and M|(i — pi) and
letQ = 0=0. By (2.1.1), for (tangential) basepoints x; on X, there are canonical
isomorphisms between wy, . This gives a canonical element y, ¥y, of x, Pur (X )y,
which we call the canonical de Rham path from x1 to x>.

Forany 1 <i < M, we have elements 4, y;, - Fi(; V1)) € m1,ar (XM, 10)(K),
with K = Q,(¢). Identifying w;, with wsg using (2.1.1), we obtain elements

8i €T dr(Xm)(K) € K{{ep, ..., em)),

for1 <i < M. Let g := gy. We denote the coefficient of the monomial ¢;, - - - ¢;,
in g by gle;, ---e;,] and call it a cyclotomic p-adic multi-zeta value. In analogy
with [11, Definition 3], for 1 <iy,...,if < M,and 1 <1, ..., sk, let us put

sk—1 s1—1 i e s
gley ey eyl = pz”gp(sk, Sk e 1),
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We call k, the depth and >_ s;, the weight of the multi-zeta value.

The p-adic cyclotomic multi-zeta values completely determine the frobenius
action on 1 4r (X p1, to) S m1.dr (X M) as follows.

First note that

Fi(eo) = peo, Fi(ei) = pg{le;g;. (2.2.6)

On the other hand, all the g; are determined by g through functoriality. Let «;
denote the automorphism of X given by «;(z) = ¢’z. Then a;4(ep) = e and
a;x(ej) = ejy;, where i + j is between 1 and M computed modulo M. On the
special fiber we have F o ; = a; o F. By the functoriality of frobenius we have

@is(8j) = &i+j- 2.2.7)

2.2.4. The differential equation satisfied by the frobenius We will first recall the
explicit description of the frobenius on Mic,,; (YM, log/ K), which was explained
in detail in [11, §2.4.2].

Let Pj;/ W denote the formal scheme obtained by completing IED%V along its
closed fiber. Note that IP’%,V is an integral model of Xy = P}{. Let Dy denote the
divisor on Py, obtained by completing the Zariski closure of Dy on P%,V along

its closed fiber. Let {5,-}151'5” be an open cover of Puy, and F; : P; — P; be a
lifting of the frobenius such that 7 (Dy N P;) = p-(Dy N P;). For a formal
scheme P/ W, let Pk denote the associated rigid analytic space over K. Now given
(E, V) in Micm,,-(YM,log), its pull-back via the frobenius is defined as the vector
bundle with connection whose restriction to P; g is given by ]-"l* x(E, V) |5i,1< . The
isomorphisms between the different pull-backs are given by using the fact that
the connections converge within a p-adic disk of radius one and that the different
liftings of the frobenius lie in the same disk [11, §2.4.2].

The computation of the cyclotomic p-adic multi-zeta values would be an easier
problem if there were a global lifting ), of frobenius to P,/ W which satisfies
the property that 7y, (Dy) = p - Dy Unfortunately, such a global lifting does not
exist even for M = 1. The standard way to proceed would be to choose several local
liftings of frobenii and piece the information obtained together. However, it turns
out that using several frobenii as above makes the computations too complicated
for any practical use. Instead, what we do is to work with a single local lifting of
frobenius F and study the associated differential equation in detail to relate the
function g~ to cyclotomic p-adic multi-zeta values.

Let P denote the completion of X7 U {0, oo} along the closed fiber and let
F(z) = zP. Then F : P — P is alifting of frobenius that satisfies 7*(0) = p - (0)
and F*(00) = p - (00). We identify the 1 4r (X, fo)-torsor of paths that start at
fo (Sect. 2.1.1) with T 4 (Sect. 2.1.3) by using the identification of w (ty) and wg
(Sect. 2.1.2). Recall that the notation y y;, in the beginning of Sect. 2.2.3 denotes the
canonical de Rham path from the tangential basepoint 7y to the point x. If we let x
vary we will obtain a section y;, of the 71 4g (X m, to)-torsor of paths that start at #o.
We identify this torsor with 7 4 as above and continue to denote the corresponding
section by y;,. The principal part of F sends 1y to itself [11, §3.2.(i1)]. Then by
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the description of the frobenius map above, we obtain the following commutative
diagram:

— F. —
T arluy, —> F*T arluy,

|¥ |7
. A LieF, . A
Lie 11 (Xp)®%), (l0g(0)) ——> Lie w1 (Xs)®K, (10g(0)),
where Uy, = P is the rigid analytic space associated to P. Let Ay denote
the ring of rigid analytic functions on Uy . Applying the lift F of frobenius to
the section y;, of 7 4rly,, ., we obtain a section F (v4,) of F*7 4rly,,. Using the
canonical de Rham path to trivialize the torsor Ta Rluy» V1o corresponds to the
identity element e of the trivial torsor or equivalently the element 1 in Uy (Apr)

and F(y;,) corresponds to an element in Uy (Apr) which we will denote by gr.
By the commutative diagram and the notation above, we have the equality

LieF,(e"'V(e)) = g7 (F*V(g7)). (2.2.8)

Let us first look at the left hand side of the equality. By Eq. (2.1.5), we have
e IV(e) = — 2 0<i<m €@ and hence

LieF.(e"'V(e)) = — > Fulenw.
0<i<M

Now looking at the right hand side, the value of the connection F*V on the
identity element of the trivial torsor is described as follows:

e\ F*V(e) = Fr (e 'V(e) = F* | - Z eiwi | = — Z ei Frw;.
0<i<M 0<i<M
Then just as in (2.1.2) and (2.1.6), the value g;-l}'*V(g]:) is given by

8F F*V(gr) = g7 dgr + g7 (¢ ' F*V(e))gr
= g7 dgr — g7 Z eiFrwi | gF.
0<i<M
Therefore by (2.2.8) we obtain the differential equation
— > Fenwi =gFldgr— g7 | D eFoi|gr. (229
0<i<M 0<i<M

Putting go = 1, and 0 = 0 = 0, and using (2.2.6), we can rewrite this as:

dg]::( Z eif*wi>gj—‘—gj—'( Z Pg,»_leigiwi) (2.2.10)

0<i<M 0<i<M
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Even though it is clear from the notation, we would like to emphasize that g.r
is a non-canonical, technical object, which depends on a lifting of the frobenius
unlike the cyclotomic p-adic multi-zeta values. It could be thought of as an analog
of the multiple polylogarithms on a disc which depend on the specific path chosen
from O to a point in that disc.

3. Rigid analytic functions on Ly,

Recall that in Sect. 2.2.4, we chose the lifting F of frobenius on P and set Uy
to be the rigid analytic space associated to P. Reinterpreting the action of F on
the fundamental de Rham path naturally gave us g whose coefficients are rigid
analytic functions on U),. For our purposes the interesting points are the roots of
unity, all of which, unfortunately, lie outside Uy,. As a first step we will try to get a
hold of g and in particular its value at co. The following fundamental proposition
and its corollary will serve that purpose.

Let D(a, r) and D(a, r)° denote the closed and open disks of radius r around
a. Then Uy = }P’}( \ U]SiSMD(g“i, 1)°. The following proposition, which is a
generalization of (Prop. 2, [11]), describes rigid analytic functions on /), in terms
of their power series expansions around 0.

Proposition 3.0.1. Let f be a rigid analytic function on Uy with f(0) = 0 and a
power series expansion

@ =2 a"

O<n
around 0. Then the sequence of rational functions

1
fn (@) T Z an?"

- 0<n<MpN

converge uniformly on Uy to f. The value of f at oo is given by
o00) =— lim a .
f( ) N—o00 MpN

Proof. Since f is rigid analytic on the affinoid Uy, it is a uniform limit of rational
functions with poles outside U/, (Sect. 2.2, [7]). We may also assume, without loss
of generality, that these rational functions are O at 0.

Claim 3.0.2. If r(z) is a rational function with poles outside Uy, then r(z) is a
linear combination of functions of the form
Z
(1 —azM)k’

forsome 0 <k,0<i < M,and |l —a| < 1.
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Proof of the claim. By the method of partial fractions, r(z) is a linear combina-
tion of rational functions of the form
1

T (3.0.11)

with |b — {i| < 1, forsome 0 <i < M, and O < ¢. Therefore, we need to prove
the statement only for rational functions as in (3.0.11). Note that

[ 16 N > 1qi(1 —az')
— r — g-My T _ oMyt

(1—>bz2) 1 —az") O<ieti—1 (1 —az™)

for some polynomials p(z) and ¢;(z), 0 < i < M — 1 and a = bM. Since

|1 —al| < 1, and the left hand side does not have a pole at oo, the right hand side

is exactly as in the form stated in the claim. This proves the claim. o
Using the claim above, we will prove the following estimate on the coefficients

of the Taylor expansion of f:

Claim 3.0.3. Forn € N := {1, 2, 3, - - -}, let n|y denote the unique integer such
that 0 < n|y < Mp", and Mp" divides n — n|y. If we let cy = Sup,, N lan —
any |, then

lim ¢y =0.
N—o0

Proof of the claim. First we note that, for | <k,0<i <M and |l —a| <1,

i

Z n+k—1 Mn )
(1—azM)k=Z( k—1 )anzl "=-Zanz”a

0<n 0<n

satisfy the property in the claim. If n # i (mod M) then a,, = 0 and hence

CN = sup |ap — an|y| = SUP |Gy pr(i45pNy — QitMel
neN 5,t>0
n=i(mod M)
N N .
=sup|q(t +spt)a’lt —q(t)| =:dn,
>0
s>1

where (1) = ("t*7") is a polynomial of degree k — 1 in 7. Let « denote the
maximum of the absolute value of the coefficients of g(¢), and g ;= |a — 1] < 1.

Since |[a? — 1| < max(8/p, ), choosing Ny sufficiently large |a"’N0 —1]<p !,

and hence for N > N, |a?" — 1| < p~¥=N)_ Then for N > Ny, dy <
a(p~™ 4+ p~(N=No)y and hence limy— o0 dy = limy_ o0 cy = 0.

Since any rational function r(z), whose poles are outside Ufyy, is a linear com-
bination of functions as above (Claim 3.0.2), the statement is true for r(z). Note
that for any power series g(z) := 20<n bpz", which is convergent on D(0, 1)°:

sup |b,| < sup |g(2)]. (3.0.12)

0<n lz]<1



Cyclotomic p-adic multi-zeta values 419

Let (r,,) be a sequence of rational functions which are 0 at 0, have poles outside
Uy, and which converge, uniformly on Uy, to f. Letting

rm(2) == Zay(lm)zny

O<n

(m) . (m) (m)
and cy —

= sup,, oy lan an|N|; we know that limy_s oo cg\’,") = 0, for all m. By
uniform convergence and (3.0.12), lim,;,— oo SUPy N |c§\’,") —cn| = 0. This implies

the claim. O
Now, note that

1
fa1@ = S = T > (an — ag)".

0<n<MpN+I

Note that z € Uy if and only if 1 < |1 — zM|. Letting 0 < n < MpN+!,

Z}’l

T =

|Zn| < 1’

if |z] < 1; and

" 1

MpN+1 | = M~ pN+1 = 1’
1 —zMp [(1/zM)p — 1]

if 1 < |z| and z € Uys. Therefore,

sup |fn+1(z) — fn @I = cew,

zeUy
and we conclude, by Claim 3.0.3, that ( fi) converges uniformly to a rigid analytic
function on Uy,. To see that this function, indeed, is f, we note that for |z] < 1,
|f(z) — fn(@)| < cn. Then again Claim 3.0.3 implies the assertion. The last
assertion follows from f (00) = —ay,~. |

The following corollary will play a key role in the computations. Let g be the
cardinality of the residue field of K = Q) (¢). In the applications, the existence of
the limit limy— o0 [g™ g ¢V Will be shown by explicit computations.

Corollary 3.0.4. Let f(z) = ZO<n an?" be as in Proposition 3.0.1, and 0 < [ <
pM then

lim |ag;,n+1 —a;,n| = 0.
Nes oo | lg lg |
Iflimy_ o0 quaqu exists then it is equal to 0.

Proof. Since M|(g —1), Mp"|(lg"+! —1g") and hence |a;, v+ —ajyn| < 2¢y.
Since limy _, oo ¢y = 0, the first statement follows. Assume that limy _, oo quaqu
= «a. Then

N+1 N+1

qo = IVILInoo(lq ajgn + qu+l(Clqu+l —aqN)) = ngnoo lg ApgN+1 = Q.

Hence o = 0. m]
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4. Cyclotomic p-adic multi-zeta values of depth one

In this section, we give a series expression for cyclotomic p-adic multi-zeta values
of depth one. For the reader who wants to get to the main idea behind the proof
of Theorem 6.4.3 without the technical and notational complications, we would
suggest them to first focus on the proof of Proposition 4.2.2. The idea is to use the
differential equation (2.2.9) to relate g r to the g;’s, and use Corollary 3.0.4 to relate
the coefficients of the power series expansion of gz back to the g;’s. Below we
give two different expressions for g;[eje;]. The one in Sect. 4.1 is analogous to the
expression for p-adic multi-zeta values in [11], but it does not carry over to higher
weights. The other method in Sect. 4.2, which assumes that i # j, is representative
of the method in depth two in the later sections. We would like to emphasize that
the shape of the expression in Sect. 4.2 is much different than the one in Sect. 4.1,
since there is not a p? in the denominator in the limit in Sect. 4.2 which makes the
computation of the limit much easier and hence the formula much more useful.
For any power series f € K[[z]], we let f[w] denote the coefficient of z* in

f

4.1. Computation of g j[eye;]

Letes € Lie my 4r (X ) denote the element which is obtained by resoo, the residue
at 0o, as in Sect. 2.1.3; and let 7, denote the tangent vector at oo that maps to the
tangent vector 7y under the map 0(z) = % Let g be defined by the action of
frobenius on the canonical de Rham path from #j to 7+, analogously to the g;’s as
in Sect. 2.2.3.

Applying F to the identity

Z e +e0o =0
0<i<M

and using (2.2.6), we get

> g leigi+ 83 ecogoo =0,
0<i<M

which gives the fundamental identity

goo | D glesi | = D e ) g @.1.1)

0<i<M 0<i<M

Noting that F is a lifting of frobenius on P, whose principal parts map 7o and
tso toitself [11, §3.2.(i1)], we have

8F(00) = goo- 4.1.2)

Proposition 3.0.1 gives a method for computing g~ (00). This makes the last equal-
ity, together with (4.1.1), one of the main tools for the computations.
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From the Eq. (2.2.10), we obtain
dgrleo]l = F*wo — pwo =0,
and hence that
grleo] =0, 4.1.3)

since g7 (0) = 1.
Similarly, for 1 <i < M, the Eq. (2.2.10) gives dgrle;] =
P ldz dz 1 (¢!
pz i P\1

Frwi — i = - — — - dt R
wiT e pzl’—;” -7z 1—(4“’Z)") (€

which implies that

gr@lell=p> % (4.1.4)
1<n

pln

for z € D(0, 1)°. Since gr[e;] is a rigid analytic function on Ufy;, we can use
Proposition 3.0.1 to compute its value at co. Then using Eq. (4.1.2) we obtain

gooleil = gF(00)lei] = = lim_gzle;[Mp™] =0, (4.1.5)

since g 7[e; [[MpN] =0, forall N.
Comparing the coefficients of ¢;eq in both sides of (4.1.1) implies that
8ooleil + gileo]l = gooleol.
Using (4.1.5), we obtain g;[eg] = 0.

Lemma 4.1.1. Suppose that o is a group-like element of K ({eq, ..., epm)), that is
the constant term of a is 1 and A(a) = a @ a. If aleg] = 0, then aleg] = 0 for all
n>1and

b
aleleiel] = (—1)”(&;r )a[eg+bei], (4.1.6)
fora,b > 0.
Proof. Let e; ---e;; and ej, ---¢j, be any two monomials in K{{eo, ..., eun)).
Then comparing the coefficients of (e;, - - - e;;) ® (e}, - - - €,) on both sides of the

equality A(0) = o @ o, using A(e;) = 1 ® ¢; + ¢; ® 1, implies that

ale - --ejlalej - -e;] = Z ofeg, - e, ],
(k1 seenskestr)
where in the sum (kq, ..., ks4;) ranges over all shuffles of (i1, ..., i) and (ji,
e J)-
Using the last identity, we obtain 0 = ot[e(')’_l]a[eo] = na[eg], which proves
the first claim.
To prove the second identity, note that

0 = afeleieblaleg] = (b + Dalebeiel ™ + (a + Daled ™ e;eb].

The result then follows by induction on b. O
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Since g;i[eg] = 0 the above lemma implies

gilegl =0, “4.1.7)
forall0 <n,and0 <i < M.
Let
D ¢
S D@ = p' Y
O<n
pin

Then we have the following expression for g f[e(s)_lei].
Lemma 4.1.2. Forz € D(0,1)°,and 1 <i < M,
gr(le) el = S(s:1)(2). (4.1.8)

Proof. Letus compare the coefficients of e;,~ le; onboth sides of Eq. (2.2.10). Since
grleo] = 0 by (4.1.3), Lemma 4.1.1 implies that gr[e;] = O for all n. This and
(4.1.7) then give that

_ - dz
dgr(2)ley el = pgr(2)le) 2ei]7.
Since grle;] = S(1; i) by (4.1.4), the statement follows by induction on s. O

Since gr[ep] = 0 by (4.1.3), Lemma 4.1.1 and (4.1.8) give
a+b a—+b .
grlegeief] = (—1)”( . )gf[e(‘;“’ez-] = (—1)”( i )S(a +h+ 1),
This helps us compute the following coefficients of guo:
Corollary 4.1.3. Foralla,b > 0,
goclefeiel] = 0. (4.1.9)

Proof. We have seen that goo = g#(00) in (4.1.2). We also know that g}-[egei elo’]
is a rigid analytic function on U, with the power series expansion around O given
in terms of S(a + b+ 1; i) above. Then by Proposition 3.0.1, we only need to prove
that limy oo S(s; 1) [M pN ] = 0. The statement then follows from the observation
that S(s; i)[Mp™N] =0, for any s, i and N. o

Using (2.2.10) and (4.1.7) we obtain that dg]:[eief)_lej] =
Froigrley 'ejl — p(gile) " ejloi + grleiey lwj + g7 ' leie) ;).
From (4.1.9) and the fact that the above differential is regular at co, we get
g; ' leiey "1 = —gile) ;.

Using this and solving the differential equation we obtain that
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grleie) el
= —S(s, 1; j,isda) + (=D 7'S(s, 14, j) + giled e, (T (5 0) — T(1; ),

(4.1.10)
where ;—in n
=z
C 7Y e— N
T(s:i)i=p" D >,
O<n
(i—jni—ina _ny
.. g = z
S(s1,82; j,i5dp) := p*1 T2 Z s
nyn
O<ny<ny 172
piny,pling—ny)
and
(i—jni—ina _ny
.. == Z
S(s1o52:joi) 1= p1F2 D e
nyn
O<ny<np 172
piny
This gives that
1 oo ! o
S— S .5 s
eien ei]l=(—1 lim —— .
grcleielej] = (<P lim oo pr
O<n<MpN
phn

Using this we find a formula for g;[eje;], with s > 1, as follows. First upon
comparing the coefficients of eoeie(sfl e;in (4.1.1) and using (4.1.7) and (4.1.9) we
find that

gooleied el = gjl[eoeiefj”]-
Again by (4.1.7), g,-‘1 leoeiel '1 = —gjleoeiel 1 and by (4.1.6), g lepeiel '] =
(—1)~lsg jlegei]. Combining these we get the following expression.
Proposition 4.1.4. For s > 1,
s+1 1 é-(l*i)"
lim —— .
s N MpN Z ns

N

gjleyeil =
O<n<Mp
pln

4.2. An alternative expression for g [6‘8_16,-] wheni # j
Let F(s; i) be the function defined by

;i’ll

—.
n

F(s;i)(m):==p* >

O<ny<n
piny
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Then note that the expression (4.1.10) for gf[eie(sfle ;1 in Sect. 4.1 gives the
following identity for the coefficients of its power series expansion around 0, for
0<l<pM,

1g" grleie teilllgN ] = p((—=1)* 'L F(s; j —i)Ug™)
tgiledlej1c 7 — 7y,
Claim 4.2.1. limy_ qug;c[e,eO e,][qu] =0.

Proof. We know that the coefficients of g are rigid analytic functions on Uy;.
Therefore in order to show that the above limit is 0 we only need to show that
the above limit exists by Corollary 3.0.4. More explicitly, the above expression for
qugf[eieff]ej][qu] can be written as

G=Dn

le1c7" — ¢y,

p((=1 e + giley”
0<n]<qu
phny

N
m

Therefore the fact that the limit limy_ o0 Ig" g £le; ef)_le 1l1g™N ] exists follows
from the observation that

C" C n+th
DI RD D DD TRt
0<n<quJrl O<n<lq 1<t<q 10<n<[q ( q )
P 124

is congruent modulo ¢V

n
It ¢
LR IS
n
I<t<q-—1 0<n<lgN
pn

The term on the left is equal to 0 if ¢/ % 1. If ¢/ = 1, then the term on the right
converges to 0. This last statement can be seen, for example, by the existence of
the limit in Proposition 4.1.4. O

Let X (s;i) :=limy_ 00 F(s;1 )(qN ). Letting/ = 1 in the expression before Claim
4.2.1 and taking the limit as N — oo, we obtain the expression for g; [eff1 ejlwe
were looking for:

Proposition 4.2.2. Fori # j, we have

gi[e(s)_lej] = ﬁ/y(s J—.
1—¢i
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4.3. Computation of g;|e;]

By (2.2.7), gjlei]l = (aj«(g))lei] = glei—;]. Let ¢t : Xy — X denote the inclu-
sion. If i = j then using the functoriality of frobenius with respect to ¢ we see that
glei— ;] computed on Xy is equal to g[e;] computed on X;. But this last expres-
sion is 0 by [11, §5.6]. Suppose now that i # j. Then g;[e;] = o (gj-i)[ei] =
gj—ilem]. Then as above, by the functoriality of frobenius for ¢, g;_;[ep], which
is computed on Xy, is equal to

(roV2 - Fi(z¥i))len], (4.3.1)

which is computed on X ;. Here z = ¢ 7l and 7/ = ¢/~ Note that F is good
lifting of frobenius on ¢; € X;. Since i # j, z € U, and since F(z) = 2P =2/,
we see that (4.3.1) is equal to g #[¢2*][e1]. The last expression is computed by
Proposition 3.0.1 to be

i p é—(l—i)n
1m — .
N—oo | _ ;(L—DP Nt n

P

Therefore we have the following expression for g;[e;].

Proposition 4.3.1. If i = j then gjle;] = 0. Otherwise

|

T

5. M-power series functions

In order to compute the higher depth part of the frobenius action, we first study the
type of functions that appear in these computations which we call M-power series
functions. From an M -power series function f we will construct another M-power
series function £ which could be thought of as a regularized version of A k(sk) . The
main result is Proposition 5.0.5 below which will help us continue the inductive

process in the proof.

Definition 5.0.2. Letn € Nandlet f : N>, — Q[¢] be any function. We say that
f is an M-power series function, if there exist power series p; (x) € Q,[¢][[x]],
which converge on D(0, r;) for some r; > |p|, for 0 < i < pM, such that
f(a) = pi(a—i), foralla > n and pM|(a —i). We define the absolute value of a
power series around O to be the supremum of the absolute values of its coefficients
and the absolute value of the M-power series function f to be the maximum of the
absolute values of the p;.

Remark 5.0.3. (i) By the Weierstrass preparation theorem, the power series p; in
the above definition are unique.
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(i) Fix 0 < [ < pM, and let f be as above. Then there is a power series
p(x) € Qpl¢][[x]] which converges on some D(0, r) with r > |p| and

fg™)y = pig™),
for N sufficiently large.

Example 5.0.4. (i) Lets € Z and f(k) := ¢**k*, for p fk and f (k) = O for pl|k.
Then f is an M-power series function.
(ii) Clearly the sums and products of M-power series functions are M-power
series functions.
(iii) Let f be an M-power series function. For any 0 < [/ < pM, with p|l let

fri="lim  f(n),
pM|(n—I)
with n ranging over positive integers such that pM|(n —[), and tending to O

in the p-adic metric.
Let £l be defined by

gy = f k) — fl’

k
if plk and pM|(k —1); and fU(k) = 0, if p fk. We then see that fI1] is
an M-power series function. In fact, if p|/, and p is a power series around
0 such that f(n) = p(n) for all pM|(n — [) then fU(n) = g(n), for all
pM|(n — ), where

_ p®) = p(0)
-2 -r0)

q(x)

Inductively, we let fI<H11 .= (fI)II,
(iv) Using the notation as above, let f (1) be defined by £V (k) := fI(k), if p|k;

and (k) = %, if p fk. Then £V is also an M-power series function.

Proposition 5.0.5. Let f : N>,y — Q,[¢] be an M-power series function. If we
define F : N>,, — Q,[¢] by

Fn):= > fk)
no<k<n
then F is also an M -power series function.

Proof. Note that f is uniquely extended to an M-power series function f which is
defined on all N. Then since F(n) := >, ., f(k) = F(ng — 1) + F(n) for all
n > ng, that Fisan M -power series function implies the same for F. Therefore,
without loss of generality, we will assume that ng = 1.

Forl <t < pM, let

Fny:= > f= D pl,
l<k<n O<a<n—t

pMI(—1) pMla

for t < n and F;(n) = 0 otherwise.
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Since F(n) = ZISZSPM F;(n), it suffices to prove that each F; is an M-power
series function. Fix 1 < i,t < pM and suppose first that ¢t < i. Let p;(x) =
2051' ajxj. By assumption there is an ¢ > 0 such that lim,,_, o ajpj(l_g) =0.

Recall the formula for the sum of the j-th powers:

. 1 j 1 .
2 = (’ : )(—DkBkn-/“—k
1<m<n J + 0<k<j
where By are the Bernoulli numbers defined by

X o Z kak
e’ —1 o=t k!

The Von Staudt—Clausen theorem gives the bound | Bi| < p.
Then forn > 0

(oMY [i+1 .
Fi+nppy = S GO (THIY e i
o j+1 k
0<k<j
-y arpi—1(pM) ! (l +k

k !
Ik k )(—1) Bi(npM)'.

1<l
0<k
Therefore letting ¢, (x) = >, < bix!, with

ark—1(pM= (14 k X
b = _ —1)" By,
! Oz<k I+k p )P B

we have F;(i +npM) = g;(npM).

Note that
1(1—¢/2 1 I+k—1)(1 pl/2rhe
by p' 2| < p' T emaxylag g pH DI
I+ k
Since lim;_, o0 a745—1 pUT*=D1=8) = 0 and
(1/2+k)e (+h 5
lim |2 | < lim |2 =0,

-0 [+k -0 [+ k

we see that lim;_, o0 by p!1=¢/2) = 0.
On the other hand if i < ¢, then we have

Fi(i +npM) = Fi(t + npM) — f(t +npM) = q;(npM) — p;(npM).

This proves that F; is an M-power series function as desired. O
Corollary 5.0.6. If f1, f2, ..., fx are M-power series functions, then the function
G defined by

Gp)= . filn) fam2) - film)

O<ny<np<---<ng

is an M -power series function.
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6. Computation of the higher depth part

In this section, we will concentrate on multi-zeta values of depth two. The proof of
the series expression for these values is a somewhat lengthy argument. The main
idea of the proof is contained in the simplest case of g;[e;ex], which correspond
to £, (1, 1; a, b). The expression for these values is given in Proposition 6.1.4. The
main idea is to use Corollary 3.0.4 to show that limy_ qug}-[el][qu] = 0 for
a monomial e’ in the ¢;’s. In order to be able to use this corollary we need to first
show that the limit exists. This is done by rearranging the terms in the expression
for gz[e’]’s in such a way that each term is an M-power series function. The last
step is to deduce from the knowledge of this limit the expression for the multi-zeta
values.

Notation. We fix the notation for the series which appear as summands in the
power series expansion of gz around 0. Most of these series themselves do not
extend to rigid analytic functions on Ufy;, however certain linear combinations of
their regularized versions do. Next we will fix the notation for these regularized
versions, which we described in Sect. 5.

Suppose that s = (s1, ..., sx), where s; are positive integers and i := (iy, ...,
ir), where 1 < i; < M. For eachi € N, let f; and d; be symbols and let
o :={ay, ..., CS{fill <i <k}U{d;i|]l <i <k}. Then we let

c (i2—iDn1+(i3—iz)na+-+(—ix)nk

S(s:i:0)(2) == p= > T 2,

nl ...nk

where the sum is taken over all 0 < n; < --- < ng, which satisfy:

i p fm
(i) pln;, if f; € a,
and
(ii)) pl(n; —n;—1),ifd; € a,

If we take the sum over all 0 < ny < --- < n; which satisfy (ii) and (iii) [and
not necessarily (i)] then we denote the resulting series by 7'(s; i; o)(z). Weuse S(-)
and 7 (-) to denote S(-) and T (-) without the pzsf factors. Let

é-l;ln1+“‘+l;kﬂk
F(s:iza)(n) == p=% . TRk
1 k
where the sum is over all 0 < n; < --- < ng < n that satisfy (i), (ii) and (iii)

above. We denote the function obtained by taking the sumover0 <n; < --- <n
that satisfy (ii) and (iii) [and not necessarily (i)], by G (s, i, &)(n). Similarly, let F
and G be the versions without the p-power factor. Clearly,

—ign

F(s', i),

ns

S(s: D] =

where s' = (s1,...,s,_1) and i’ = (ip — iy, ..., 0k — ik_1).
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Using the definition of L® for an M-power series function L in Example 5.0.4
(iv), we define F (s, (s2); i, j) as follows. Noting that
FoiD0)

o2

F(s1, 8251, j)(n) = p*

O<k<n

’

we put

F(s1, (52, ) = p? D" FOsp; st

O<k<n
We define F (s, (s2); i, j; @) analogously, and we let FO@) := F()"). When the
limit exists, we let X () 1= limy_ 00 FO () (gV).
If we put i = (i, j, k), then we define S(a, (b), c;i) and S(a, (b), (c); i) as
follows:
p054kn
nC

S(a, (b), c; DIn] = F(a, (b); i) (n)

and
S(a, (b), (¢); DIn] = pc M FO(a, (b); i ().
We define S(a, b, (¢); i; &) and S(a, (b), c; i; o) and S(a, (b), (¢); i; @) similarly.

6.1. Computation of g;lejei]

In this section we will get two expressions relating g;[e;ex] and g, 1[e,-e ;1. The
first one will be obtained by looking at residues in the differential equation (2.2.10).
The second one will be obtained using Claim 6.1.3 below. Combining these two
will give the main result.

Since g r isregular at oo computing the residues at oo in the differential equation
(2.2.10) gives the equality:

—8olejer] + goleiej] + gk_l [eie;] + gj_l leilgjler] + gilejer] = 0.

(6.1.1)
Since by Sect. 4.1,
X25i—j)
goleiej]l = —gjlegei] = 1——4“5_1
fori # j, we have, for i, j, k all distinct, gk_l[eié’j] =
X2;j—k)y X2ii—])
g - ] + gjleilgjler] — gilejex]. (6.1.2)

1—¢ik 1—¢id

Recall the expression for gz[e;ep,] from Sect. 4.1:

grleen] = =S, 1ym, I dy) + S(1, 1; 1, m) + gilen |(T(1; 1) — T (15 m)).
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6.1.1. Computationof gi[eje;] First we deal with the degenerate case wheni = k.
Using (6.1.1) with k = i, the fact that g and g; are group-like we obtain:

1
gilejeil = Egj[é’i]2 — gooleiej].
Then Proposition 4.3.1 gives the following expression for g;[e;e;].

Proposition 6.1.1. Assuming thati # j, we have

1(X(1;i—j))2_ X@ij—i)
2\ 1= ;i*l 1— ;l*i '

gilejeil =

6.1.2. Computation of gi[ejer] Using the differential equation above gives that

grleiejer]
=S, 1, 1k, j,isdy,d3) — S, 1,15 j, k,i;d3) — S, 1, 1; j, i, k; d2)
+S, 1 L d, j, k) — gjlex(T (L, 15 j i3 do) — T (1, 1s k, i do))
+gile; (T (L, 1, k)—=T (1, 1; j k) —gilej1S(1, 1 i, k) +g; ' [eie 1T (1: k)
+gjlelS(, 154, j) — gjleilgjlex]T(1; j) + gilejer T (1; i).
Forafixed0 < [ < pM, we are interested in showing that limy_, oo qug}-[eiejek]

[1g"™1is 0. In order to do this, first we group the terms in the limit as follows so that
each summand has a limit.

(i) g™ S(s;isda, d3)llg™N] = 0, forany s := (s1, 52, 53) and i := (i1, 2, i3).
(i) 1g"T(1; DlUgN =¢74
(iii) IgN S(s, 150, PligN1 = ¢ L' F(s; j —i)(Ig"). Hence the limit exists and for
[ =1itis

lim ¢"S(s, 14, DlgN1=¢7LX(s; j — ).
N—o0

Av) IgNS(s1, 82,15 7, i ks do)[IgN] = ¢ 8 F(sy, 505 i—j, k—i; dr)(Ig"). Again
the limitexists and limy _, o0 ¢V S(s1, 52, 1; j, i, k; d2)[q™ ] = CEX (51, 5050 —
Jjk—i;d).

v) Ig™ (S, 1, L jk,izds)+g lex](T(L, 1 j, iz do) = T(1, sk, i:dy)llg™]
is equal to 4

cTHEQ k= ji =k f)Ag™)
+g [e(G (i = ji fi) = G(1ii —k: f))g™)

Let us rewrite the same expression as

¢y

O<np<lq
plny

o (i—k)

(g, tect¢ 2" — 1) + E(1ik = (n2)).

N
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Lemma 6.1.2. Let 0 < I < pM such that p|l, and 1 <t then

lim  F(t:i)(n) = (=D glef tei1(1 — ¢,

pM|(n=1)

with n ranging over positive integers such that pM|(n — 1), and tending to 0 in the
p-adic metric.

Proof. By Corollary 5.0.6, F'(¢; i) is an M-power series function. Note that if f is
an M-power series function and p|/ then
lim f(n)= lim f(q").
n—0 N—o00
pM|(n—1)
where in the first limit » goes to 0 in the p-adic metric and in the second one N
goes to oo in the archimedean metric. Therefore the limit in the statement of the
lemma exists and is equal to
N é‘i’ll . in
lim F(t;i)( = p' lim 2 =p 4 1im A
N—oo ( )(q ) p N—oo Z ntl P Z ¢ N—oo n!

0<ny <1gN O<a<l 0<n<gl
Py P

which is equal to g[eé‘lei](l — ¢, if 0 < i < M, by Proposition 4.2.2. On the
other hand, if i = M, then the equality follows since both sides of the expressions
are 0 [11, §5.11]. O

The above expression then can be written as

¢ EOFO Ak = ) = ¢ (k= i — ks ) g™,
0<n2<IqN
plny

By Example 5.0.4 (iii), F(V'(1; k — j; f1) is an M-power series function. Then by
Propqsition 5.0.5, and Remark 5.0.3 (ii), the limit exists as N — oo and is equal
to ¢ tX(L (D k— joi —k; fo), if I = 1.

i) 1gN (S 1 1 d, jo k) + g, e 1T, 15 k) — T(1, 15, k)lgN]

¢ &=

=8

O0<np<lgN
= ¢ MEA () j —i k= )+ g,lejI(F(1 k= i) — E(1; k — j)))(g™).

As above the limit of the main expression as N — oo exists and is equal to
R, s =ik = ) + g lefl(X (s k —i) = XAk = )), ifl = 1.

(8,[e;1¢ ™0™ — 1)+ F(1; j — )

Claim 6.1.3. limy_, » Ig" g rleiejex]llgN ] = 0.

Proof. The proof is exactly as that of Claim 4.2.1. We only need to add that (i)—(vi)
imply the existence of the limit. O
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A direct consequence of this is the following proposition and its corollary.

Proposition 6.1.4. For distinct i, j, k, (1 — 2 %)g[e jex] is equal to the following
sum of series:

X, sk —joi—k fo) = ¢kx, () j—ick— )
CRX Qs j -k RX Qi — )
1—¢i 1—¢id
CIX - DXk — ) EX G — XLk — i)
- -kt i 1l
L@ XU = pX k=)
(1= =5
i X5 j =)

LT k=) = XLk = ).

HCTEX (L i = ok — i dd) —

—¢
Proof. This follows from combining Claim 6.1.3 and (6.1.2), which expresses
& ! [eie;] in terms of g;[e;ex], and rearranging the terms. O

Recall the notation S(s, (¢); i, j), where the parenthesis stands for the regularized
version of the series S(s, #; i, j) as explained in the beginning of § 6.

Corollary 6.1.5. We have the following expression for g}-[eiegfle i1, using the
notation above:

—S(s, 15 joisda) + (=1 7'SCs, (134, ) + gilel e 1S3 0) — S(1; j)).
Proof. We saw in Sect. 4.1 that gf[e,'e(s)_lej] is equal to
—S(s, 15 joisda) + (=1 71S(s, 134, ) + giled e, WT (15 0) — T(1; j)).

The fact that limN_moqug]:[e,-ef)_lej][qu] = 0, which we have shown in

Sect. 4.2, shows that we obtain the above answer after regularization. m]
Similarly we have the following corollary.

Corollary 6.1.6. The coefficients of grle;ejex] define an M-power series. In fact,

grleiejer] = S(1, 1, 1k, j,isdy, d3) — S(1, (1), (1); j, k, i d3)
=S, 1, (1); j,i, ks d2) + S(1, (1), (1); 4, j, k)
—gjlex](S(1, 15 j,is do) —S(1, 15 k, i da)) + gilej1(S(1, (1); i, k)
—S(1, (1) j. k) — gelej1S(, (1) i, k) + g5 Teie;1S(15 k)
+gjlex]S(, (1); 4, j) — gjleilgjlex]S(1; j) + gilejer]S(150).
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6.2. An explicit formula for F(t; i)

ik
Recall that F(¢; i)(n) = p’ > o<k<n % is an M -power series function. In Corol-
p Ik

lary 6.2.3 below we will give a series expression for this function when p|n. The
coefficients of this expansion are in terms of cyclotomic p-adic multi-zeta values.
The proof will be based on the following observation which we will continue to
use throughout the paper.

Proposition 6.2.1. Let f be a rigid analytic function on Uy such that
df =dg+hoo+ Y o,
I<i<M
with g(z) = D o, an", h(2) = > -, buZ", &; € C,,. Suppose that for 0 < | <
pM, limNﬁoo(qua,qN + bqu) exists. Then
: N _ —il .
am (g gy +bign) = >
I<i<M

Proof. Let f(z) := >y, v»2". Since by assumption f is a rigid analytic function
on Uy, Corollary 3.0.4 states that if limy_, oo qu YigN exists then it is equal to 0.
The differential equation in the statement of the proposition gives

by C_inai
Yn = an + " Z PR

I<i=M

ThereforeququN = quaqu Fhign =2 1<i<m ¢ " a; and the statement follows.
O

Suppose that # > 1 and s > 2. Comparing the coefficients of e ]eo eke(s) Uin

(2.2.10) gives the following identity:
dgrlejel tered ™1 = Frwjgrlel "evey ' 1— pgrlejel exel *1wo
—pgj[e(t)_lekeg_l]wl.

Since gxlel texey 1= (=1)°" L 2)S(s+t—1 k) by (4.1.8), letting (x); =
x(x+1)---(x + (k— 1)), we obtain
(=D°
(r—1)!

This gives dg]:[ejeo ekeo ] = ((;—ll);(s),_ldS(s +t—1,1;k, j;do)

();—1dS(s+t—1,1;k, j;do) = F* a)]g]:[eo €k68 1].

Pg]-'[eje() €k€5 2] pg][e() eke(s) l]wi‘

Proposition 6.2.2. If we let g r(z)[e; eo ekeo = D 0en Cn2", then
. - -1
Jim cjgv =¢ g ileh " eredl,

forany O <l < pM.
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Proof. We will proceed by induction on s. We have gr[e jeff]ek] =
—S(t, ik, jido) + (=178, 1 jok) + gjley e (T(1; j) — T(1; b)),
by Sect. 4.1. The coefficient of z”* in gj__[ejef)_lek] is % where K (n) :=

—CTYE@ j—kid)(n) + (=D E @ k= j)(n)
+g ley e (T = ¢TI,

By Lemma 6.1.2, we know that limy_, » F(#; k — j)(qu) is equal to

(=D gjleh el (1 — g &I,

This implies by Example 5.0.4 (iv) that K (")

KV(n) = =@ j— ki dy ) + ¢ EV @ k= (),
is an M-power series function and hence by Remark 5.0.3 (ii),
lim KV (g") = lim ¢ *FV @k - j)ag")
N—o00 N—o00

exists, forany 0 < < pM.
Since dg;r[eje(’flekeo] =tdS(t+1,1;k, j;dp) — Pg]—‘[eje(tflek]wo — Dgj
[e(’)_lekeo]a) 7, the existence of the above limit and Proposition 6.2.1 implies that

lim KV (g") = lim ¢ 2FW @k — j)ig") = 7' [ef exeol.
N—o00 N—o00 25

This implies that g z[e je(’)_lekeo] is equal to

1

T 2 DS n 2 =k i) (S 1S (23 ),

0<r<l1

and the coefficient of z” in this expression is
¢ F(t+r;j—k d)®n)
G 2 D 2

0<r<l

H=DIETEFD 1k — 5 f)(0).

Since F(’n;kdﬁ F (k)(t i; dy), we inductively arrive at gf[ejeo eke ]—
(=1)° . st .
=D D+ DS trs —rik, jidy) + (=) (5): 4. k).

0<r<s—1
The coefficient of z” in this expression is

(e

o 2 PO —kd)m+ DO @k = .

O0<r<s—1
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Now let g 7le; eo ekeo ] = > cnz". Since ¢, is expressed in terms of the val-
ues of an M -power series function by the above expression, the limit limy— o0 ¢~
exists. In order to find this limit, we employ Proposition 6.2.1 in the differential
equation for dgrle; e(’)_leke(s)] and find that

: —jl t—1 K
I\Ih—I)nooCqu = Lgiley  ereyl.

Using the expression above this gives limy oo FO (¢t k — j)(qu) =

=
(r—D!

These limits determine the M-power series function F(¢; i) completely as
F(t:i)(n) = (- 1)f 'gley eil(1 = 5™
> e+ 1aglepteiln”),

1<r

(—1) e EDlg el leped] = ———E D (s 4+ 1), 18;1e5 T Leg].

= 1)'
for p|n. O
The proof of the above proposition has the following corollaries.
Corollary 6.2.3. Fort > 1, pln and M [i, we have
p' Z S = (=D (gl el (1 = g™

O<k<n

plk

= 1),24'”<r+1>, 1gleg™ eiln”).

Corollary 6.2.4. For, t,s > 1 and j # k, we have grle; eo ekes =

(—=1)°
(t— 1!

Z (r+ DS +rs —rik, jsda) + (=1)*T'S(, (5); j, k).

0<r<s—1

6.3. Computation of gilejexey]

We already made this computation for s = 0 in Sect. 6.1. The computation will be

based on induction on s. From now on we assume that s > 0. The pattern of the

proof is the same as that in Sect. 6.1, some parts simplified using Proposition 6.2.1.
The differential equation gives dgrle;ejerey] = grlejerey] F*w

_pg}‘[eiejekea—l]wo — pgilejecedlor
—pg; leilgsleveslo; — perlelsleedlo;.

In order to be able to use Proposition 6.2.1 we note that, using Corollary 6.2.4,
grlejekeo]l Frwi = d(= 2oy SA+1,2 =1, 13k, j i dy, d3) + S(1,(2), 1 j,
k,i;d3)) and —grleiloj =dS(1, 1;1, j).
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As above first we will show that the individual limits exist. To start with note
that lg"N S(a, b, 1; k, j, i; da, d3)[IgN] = 0,

gV S(a, (b), 15 j, k,i; ds)lgN 1= ¢ F(a, b); k — j,i —k; f)Ug")

and
gV S(a, 15 i, HligN = ¢ L' F(a; j — i)(Ug").

On the other hand using Corollary 6.1.6 we obtain an expression for g z[e;e e ].
We have:

(i) S, (b), (1); j. k.i:d)llg"l = HFD(a, (b); k — j.i —k; f)(Ug™)
(i) S(a,b, (1); j,i,k; d)llgN1=¢ M FD(a, byi — j, k —i;d2)(Ig™)
(i) Sa, (b), (Vs i, j, OlgN] =M FD(a, b); j i,k — j)dg™)
(iv) S, (D31, 0lgN] =M FD(a; k —i)Ug").
Since the above limits exist as N — oo we can use Proposition 6.2.1 and ob-
tain that the limit of the following as N — oo is equal to —g;[e exepl -
g; 'leilgjlexeols ™ :

cTUEQL Q) k= i =k f)UgN) + gjleveolc I F (15 j —i)AgN)
+7TEDA, (1) k= i—k; )M+ M FDOA 10— j k=i da)(Ug™)
¢ HFOA W j =ik = )Ug") + glejle T FU Ak —i)Ug™)
—gilexlc ' FOA; j—iyUg™) — gilej 1 M FO (15 k — iy (Ug™)
+gilej1c M FD A5k — j)ag™).

This gives the following formula, with i, j, and k pairwise distinct, for g;[e e
eyl :

i=j
X1, 2k —j.i —k; f2) — ﬁX(Z;k—j)X(l;j —1i)

XV, Wk —joi—k ) — RV 10— jk— iy do)
X1 - ARk — )

(1 =0y =&
R — XAk =) Ik — XA — i)

+o kDA, (1); =ik — ) +

1—¢i* 1 — ¢k
LR = DXk =) X = DXk — )
1—¢it 1—¢it '

This also implies the following expression of g [e;e;eeo] in terms of regular-
ized series: grle;ejerep] =

- Z SA+p,14+qg,1+rik, jisdy,d3)+ S, (2), (1) j k,i;d3)

0=p.,q,r=1
p+q+r=1
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+S(, (D), ); j. k. isd3) + S0, 1,(2); j, i, ks d2) + g jlexeolS(1, (D)5 4, j)
=S, (D), 254, j. k) + gelej1S(, ()58, k) — gjlex]S(1, (2); 4, j)
+8ilej1S(, (2); j, k) — gile;1S(1, (2): i, k).

We use this information in the differential equation for dgrle;e jeke(z)] above
and this gives a formula for g;[e jeke%]. Inducting on s, we find the following

formulas for 8.7-'[€i€j€k€(s)_l] and g;[e;erep]. Namely, g_;c[e,-ejeke(s)_l] =

DS S+ pol g Lk juindad3) + (=D grle;1S(L, ()0 K)

0=p.q.r

pHq+r=s—1
+(=D° Z S, (1 +p), (L +q); j ok izd3) + (=D'S(L, L, (s); j, i, ks da)
pgiisq—l
r s—1—r N s—1 A
D D g lerey  TTISAL (4 )i )+ (DTS (), ()i . K)
0<r<s—1

+ (=D gile;18(1, (): j. k) + (1) gile;1S(1, (5): 7. k).

Then using the differential equation for dgr[e;e;ere)] and using Proposition
6.2.1 and noting that for the limit limy_, o the coefficient

(i) S(a, (b); i, k)[gN] contributes £ XX ®) (a; k — i)

(i) S(a, (b), (c); j, k,i;d3)[g"N] contributes £ LX) (a, (b): k — j, i —k; f>)
(iii) S(a, b, (¢); j, i, k; d»)[g"] contributes ¢ XX (a,byi — j, k — j; do)
(iv) S(a, (b); i, j)[g"] contributes ¢ LX®) (a; j — i)

W) S(a, (b), (c); 1, j, k)[qN] contributes {‘KX(C)(a, b); j—ik—j);
we obtain the following identity: —¢ ~Lg;[e jerey] — §_lg;1[ei] gjlexey] =

D e R gl JX O 1k — i) + (D) TR A 10— ok = jid)
HEDTTE S X0 s+ 1=k — jii =k f)

0<r<s
+L D (=D gjlekey T1XO A — i) + (=D e RO, () — ik = )
0<r<s

+ (=D e [ 1O 15k — )+ (=1 e Egile;1X 9 (11 k — ).
This can be summarized as the following proposition.

Proposition 6.3.1. Assume that i, j and k are pairwise distinct and that s > 0.
Then we have g;[ejerey] =

X j—k :
(-1 I 0 ”jfk)xmu; k=) + (DR A 150 — ok — i do)
+(=D" > XA s+ 1=k — i =k f2)
0<r<s
¢t

- )X —r+ k= HXOA;j—i)
1—¢* 2

~0<r<s
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RO (1) ik -y 4 i T T DX F B )
1—¢d 1— ;kj

X(sj—i X i
kX070 ’Jj_l.‘);c“)(l;k—j)+(—1)S+lci‘k7( oD

1—¢f 1-¢l™t

+ (=S¢ Xk —i).

6.4. Computation of g; [eje(s)_leke(’)_l]

We know the answer if s = 1 from the previous section. Let us assume that s > 1.
Also first assume that r = 1.

6.4.1. Computationof g;[e ey Yex] The differential equation gives dg rle;e; 68_1
ex] =
s—1 * s—1 s—1
grlejey el F wi — pgilejey  exlwj — pgrleilgjley  exlw;
—ng_] leilg; [68_1 erlwj — Pg]-‘[eiej-e(s)_l Jox — pg]:[ei]gk_1 [ej ef)_] Jox
—pg,:1 [e,'eje(sfl Jok.
Computing residues at oo in the above expression, we obtain that g;[e e(s)_ ! er] =

goolejey 'er] — gooleiejel '] — gj_l leilg el "ex] — g; 'leiejel 1.

Similarly, computing the residues in the differential equation for dgr[e;e;ep]
we obtain that

goo[e,'ejef)_l] = gxclejey] — gilejey] = (—1) g lege;]-
Using the expression goole; efflek] = (—1)%sgk [ege ;] that we found in Sect.
4.1, we arrive at the following identity: g;[e; egflek] =
sileiejel 1+ (—1) (sgelefe;] + gilefe; ]+ geleilgkle) 'ej])
+gjleilgjle) exl.

Using the computation of multi-zeta values of depth one in Sect. 4.2, this can be
rewritten as the following proposition.

Proposition 6.4.1. Assume that i, j, and k are pairwise distinct and that s > 1.
Then g; [ejeg_lek] =

sX(s+1;j—k) Xs+1;j—i) X(A;i—k)X(s;j—k)
P
| X(Li = DX stk —J)
(1=¢Ha -0

gk[eieje(s)_l] +

+(—D*"

where gileie; ef)*l] is given by Proposition 6.3.1.
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Using the expression for g }-[elegemeé’] that we found in Corollary 6.2.4 in the
differential equation above, we see that dgr[e;e; e(s)fl er] =

d(S(s. 1, 1k, j.isdy,d3)) + (=)' S(s. (D). 1; j. k. it d3) + gjle} " ex]S(L, 154, j)
+g lejey ISUL i k) + (=1 D SU4rs—r 15 j.i ki do)

0<r<s—1
H(D IS (), 1, . k) — pilejey exlor — pg;'leilgjley elw;
—pgk_l[e,-eje(s)_]]wk.

By the same arguments as above we see that the hypotheses of Proposition 6.2.1
are satisfied, and we have the following:

Proposition 6.4.2. Suppose that s > 1, then we have g rle; ejef)_lek] =

SGs. L Lk, joidod3)) + (=1 SGs, (1), (1) j. k. iz d3) + gjled e ]S(L (s, )
+g; Mejey NS (i k) + (=D DT SU+rs =1 (1): i ki do)

0<r<s—1

FEDTSA,L (), (D5, jo k) + gilejeder] S i) + g; eilgjley " er1S(Ls j)

+g 'eiejey 1S b,

6.4.2. Computation of gile; ef)_lekef)_l] Assume that s, ¢ > 1. Then the differ-
ential equation gives that dgr|[e;e jeg_lekef)_l] =

s—1 1

-1 -1, -2 -1 i1
grlejey exey 1 F w; — pgrleiejey erey “lwo — pgilejey” exey o

—pg; ' leilgjley " enel Nw; — pgrleilgjley exel ;.
We will use Proposition 6.2.1 and do induction on ¢, starting with the formulas

we found above for g [e;e; 68_16k] and g rle, eéehegl]. We find that g 7 [e; ¢ eg_lek
—1

(4 ] =
0

-1 t—1
D >+ DS +rl—q.t—(q+rik j.itdy, ds)
(s—D! &
r+(17§}[171
+ D (=1 gjley erel TIISAL (L4 1), )
0<r<t-—1

HD g ey TS, (1), k) + (=TS, (s), (0): 1, . k)
HEDTE ST St s =1 (1) i ki do)

0<r<s—1

HEDTEED T S, (4 1= 1), (0): ok, iz dy)

1<r<t

H=D" g eiejey 1S ) + D (1) gilejey erel 1S (s i)

I<r<t
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+ D g eilgjley ey IS ),

1<r<t

fors > landt > 1. _ .
We also obtain that —¢ ~Lg; [ejef)flekeffl] - §_ig;1 lei1g; [e(s)*leke(tfl] =

L (=0 Mgjley eref 21X (1 j i)

0<r<t-2
e D g e 1A Uk = 1)
HEEDHRVA () — ik = )
AR XD U s — i - jok— i dy)

O0<r<s—1
iyt Z X s, (t —r)ik—j,i —k; fr)

1<r<t—1

DT X s, (1) k — joi — ks ) + ¢ Lg el Terel T X (15 j — ).

Using the formula for the depth one multi-zeta values which we found in Sect. 4.2,
we obtain the following.

Theorem 6.4.3. Assume that s,t > 2. Then gi[e je(s)_lekef)_l] =

(_l)sqgg—l(ﬂrt—Z)X(l:i—j) X(s+1t—1k—))

—l S yﬂ(s+t ’—3)X“+"’k2k_jX¥“”Kuj—n
0<r<t-2 s—1 1-¢ ’
tk(1y4£47lﬁx01klk—n+(1f“x”1kla)1—zk—ﬁ
— é‘,
H DT DA s — i - k=i dy)
O0<r<s—1
FEDTC D X s =k =i =k )+ X (s, 0k = i =k f2)
1<r<t—1
t— i X t—Lik—j
(lfc+ )¢ (s + D s j—i,
—1 1 — 5771

for distinct i, j, k.

Using the fact that the g;’s are group-like, one obtains a formula for all the

cyclotomic p-adic multi-zeta values ¢, (s2, s1; 12, i1) of depth two, by Theorem
6.4.3, Propositions 6.4.1 and 6.3.1.
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