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Abstract. We prove that the p-adic multi-zeta values satisfy the Drinfel’d-

Ihara relations in Grothendieck-Teichmüller theory ([10], [22]). This requires
a detailed study of the crystalline theory of tangential basepoints in the higher

dimensional case and Coleman integrals ([5]) as they relate to the frobenius

invariant path of Vologodsky ([32]). The main result (Theorem 1.8.1) is used
in [14, pp. 1133-1135]

1. Introduction

1.1. For s1, · · · , sk−1 ≥ 1 and sk > 1, the multi-zeta values are defined as

ζ(sk, · · · , s2, s1) :=
∑

nk>···>n2>n1>0

1

nskk · · ·n
s2
2 n

s1
1

.

They were first defined and studied by Euler. More recently, they appeared in
many different branches of mathematics, including deformations of Hopf algebras
([10]), the geometry of modular varieties ([19]), renormalization, knot theory etc.
Their main importance stems from their being periods for mixed Tate motives over
Z ([9], [18]).

There are two important classes of relations that are known for the multi-zeta
values. One class of these, called the shuffle relations, is an immediate consequence
of the Euler-Kontsevich integral representation of multi-zeta values ([18], [29]) and
is of geometric nature. The other class, called the (regularized) harmonic shuffle
relations, can be proven via the series representation above in a non-geometric way
([18], [29]). These relations together are called the double shuffle relations and
conjecturally are the only algebraic relations with rational coefficients between the
multi-zeta values.

1.2. If ω1, · · · , ωk are one-forms on a manifold M, and α : [0, 1]→M is a smooth
path then the iterated integral is defined as:∫

α

ωk ◦ · · · ◦ ω1 :=

∫
1>tk>···>t1>0

π∗kα
∗ωk ∧ · · · ∧ π∗1α∗ω1,

where πi : [0, 1]k → [0, 1] is the i-th projection. With this notation, the Euler-
Kontsevich formula for the multi-zeta values:

ζ(sk, · · · , s1) =

∫
[0,1]

(dz
z

)◦(sk−1) ◦ dz

1− z
◦ · · · ◦

(dz
z

)◦(s1−1) ◦ dz

1− z
,
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expresses these numbers as periods. This expression realizes ζ(sk, · · · , s1) as (−1)k-

times the coefficient of esk−1
0 e1 · · · es1−1

0 e1 in a formal non-commutative power se-
ries ΦKZ(e0, e1) ∈ C〈〈e0, e1〉〉. Conversely, the multi-zeta values determine ΦKZ
uniquely.

Letting ω := e0
dz
z + e1

dz
z−1 , ΦKZ(e0, e1) is defined as the limit:

lim
t→0

exp(−e1 log(t)) · (1 +
∑
1≤k

∫
[t,1−t]

ω◦k) · exp(e0 log(t)).

1.3. The Drinfel’d associator ΦKZ(e0, e1) first appeared in ([10]), where it was
shown that it gives an element in M2πi(C). The pro-variety M/Q has a canonical
morphism to A1, and its fiber Mλ over λ ∈ A1(K) is a torsor on the left under the
unipotent part of the Grothendieck-Teichmüller group GT1, and a torsor on the
right under its graded version GRT1(= M0) ([10], [27]).

The assertion that ΦKZ(e0, e1) ∈ M2πi(C) is saying that ΦKZ satisfies the
Grothendieck-Teichmüller relations with µ = 2πi ((5.3), (2.12), (2.13) in [10]).
Since multi-zeta appear as coefficients, any relation on ΦKZ implies a similar re-
lation on the multi-zeta values. By a result of Furusho (Theorem 0.2, [15]) and
independently of Deligne and Terasoma ([29]), these relations imply the double
shuffle relations for the multi-zeta values.

1.4. The definition of ΦKZ(e0, e1) can be rephrased in terms of the Betti-de Rham
comparison theorem for the unipotent fundamental group of X := P1 \ {0, 1,∞}.
Namely, let t01 and t10 be the standard tangential basepoints at 0 and 1 (§5.4) and
γ ∈ t10PB,t01 be the standard real path from t01 to t10 in the Betti fundamental
groupoid of XC. By the Betti-de Rham comparison theorem (Proposition 10.32,
[7]), this gives a path

dRcompB(γ) ∈ t10PdR,t01(C)(1.4.1)

in the de Rham fundamental groupoid of X. Since H1(X,O) = 0, the de Rham
fiber functor ωdR (§2.2.5) gives an identification

t10PdR,t01
∼→ π1,dR(X,ω(dR)).(1.4.2)

Viewing π1,dR(X,ω(dR))(C) as group-like elements of C〈〈e0, e1〉〉 (§6.8) and using
(1.4.1) and (1.4.2) gives and element in C〈〈e0, e1〉〉 which is nothing other than
ΦKZ(e0, e1).

1.5. In ([9]), Deligne and Goncharov constructed an abelian category MTMOK
of mixed Tate motives over the ring of integers OK , of a a number field K, us-

ing Voevodsky’s triangulated category DMeff,−
Nis (K). Moreover, they show that the

unipotent fundamental group π1(X, t01) of X naturally defines an object of MTMZ.
Then the motivic philosophy and the construction of ΦKZ suggest that for the other
comparison theorems, namely the Betti-étale and crystalline-de Rham, one would
have elements in M similar to ΦKZ .

1.6. In the Betti-étale case, such an element was constructed by Drinfel’d and Ihara
([10], [21]). Let

χ : Gal(Q/Q)→ Ẑ×

denote the cyclotomic character and F̂2 denote the pro-finite completion of the free
group generated by x and y. Then for every σ ∈ Gal(Q/Q) the action of σ on the
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fundamental groupoid of paths from t01 to t10 determines an element fσ ∈ F̂2 such
that (Theorem, §1.7, [21]):

fσ(x, y)fσ(y, x) = 1;

fσ(z, x)zmfσ(y, z)ymfσ(x, y)xm = 1,

for xyz = 1 and m = (χ(σ)− 1)/2; and

fσ(x12, x23)fσ(x34, x45)fσ(x51, x12)fσ(x23, x34)fσ(x45, x51) = 1,

with xij as in (§3.1, [22]).

1.7. The crystalline-de Rham case is the main topic of this article. For X/k
a smooth variety over a perfect field k of characteristic p, one has a category

Isoc†uni(X/W ) of unipotent overconvergent isocrystals on X/W (§2.3.1), where W
is the ring of Witt vectors of k. This is a tannakian category whose fundamental
group at a fiber functor is the unipotent crystalline fundamental group of X. Sup-
pose that X has a compactification X which is smooth, projective and such that
D := X \X is a simple normal crossings divisor in X. If X log denotes the canon-

ical log structure on X associated to the divisor D (§2.1.1) and Isoccuni(X log/W )

denote the category of unipotent log convergent isocrystals on X log then a theorem
of Shiho ([30]) implies that the restriction functor

Isoccuni(X log/W )→ Isoc†uni(X/W )

is an equivalence of categories (Lemma 2, [31]). These categories are endowed with
the frobenius functor induced by the frobenius morphism on X log.

Assume that X/W is a smooth, projective scheme with geometrically connected
fibers and D ⊆ X is a relative simple normal crossings divisor. Let X := X \D, and
let the subscripts η and s denote the generic and special fibers respectively.

Let K be the fraction field of W. Deligne’s theory of canonical extensions gives
an equivalence of categories (II.5.2, [8]; §2.2.4):

Micuni(Xlog,η/K)→ Micuni(Xη/K)

from the the category of unipotent vector bundles with connection on Xlog,η to that
on Xη.

The crystalline-de Rham comparison theorem is an equivalence of categories
(§11, [7]; §2.4):

Micuni(Xlog,η)→ Isoccuni(Xlog,s/W ).(1.7.1)

Combining with the above and choosing a (tangential) basepoint x this gives an
isomorphism of the crystalline and de Rham fundamental groups:

π†1,crys(Xs, xs)
∼→ π1,dR(Xη, xη).

This induces a frobenius map F∗ on π1,dR(Xη, xη). When H1(Xη,O) = 0, there
is a canonical isomorphism π1,dR(Xη, xη) ' π1,dR(Xη, ωdR), with ωdR the de Rham
fiber functor of Deligne (§5.9, §12.4, [7]; 2.2.5).

Applying this to X = P1
Zp , D = {0, 1,∞}, and the tangential basepoint t01

and noting that the universal enveloping algebra of π1,dR(Xη, ω(dR)) is the set of
formal associative, and non-commutative power series ring Qp〈〈e0, e1〉〉, we have a
frobenius map:

F∗ : Qp〈〈e0, e1〉〉 → Qp〈〈e0, e1〉〉.



4 Sinan Ünver

Note that Qp〈〈e0, e1〉〉 is naturally a Hopf algebra under the co-product induced by
∆(ei) = 1⊗ ei + ei ⊗ 1, i = 1, 2. The frobenius map is determined by F∗(e0) = pe0

and F∗(e1) = pg−1e1g, for a unique group-like power series g whose e0 and e1

coefficients are 0. In fact, g is the image of the de Rham path from t01 to t10 under
F∗ and so is the exact analog of ΦKZ in the crystalline case.

Deligne (unpublished) defines the p-adic multi-zeta value ζp(sk, · · · , s1) as p−
∑
si

times the coefficient of esk−1
0 e1 · · · es1−1

0 e1 in g (§4.3, [31]). A series representation
for p-adic muti-zeta values is given for k ≤ 2 in ([31]). An essentially equivalent
definition is given and studied in ([13]); the double shuffle relations were proved by
Furusho and Jafari ([16]).

1.8. Let K be a field of characteristic 0. The set M0(K) of Drinfel’d associators
with µ = 0 consists of ϕ(X,Y ) ∈ K〈〈X,Y 〉〉 such that ϕ(X,Y ) is group-like for the
usual co-product on K〈〈X,Y 〉〉, i. e. that

ϕ(0, 0) = 1 and ∆(ϕ(X,Y )) = ϕ(X,Y )⊗ ϕ(X,Y );

and that ϕ satisfies the following 2-cycle, 3-cycle and 5-cycle relations:

ϕ(X,Y )ϕ(Y,X) = 1

in K〈〈X,Y 〉〉,

ϕ(Z,X)ϕ(Y,Z)ϕ(X,Y ) = 1

in K〈〈X,Y, Z〉〉/(X + Y + Z) and

ϕ(X23, X34)ϕ(X40, X01)ϕ(X12, X23)ϕ(X34, X40)ϕ(X01, X12) = 1

in K〈〈Xij〉〉0≤i,j≤4/R, where R is the ideal in K〈〈Xij〉〉0≤i,j≤4 generated by the
following elements:

Xii, for 0 ≤ i ≤ 4;∑
0≤j≤4

Xij , for 0 ≤ i ≤ 4;

Xij −Xji, for 0 ≤ i, j ≤ 4;

and

[Xij , Xkl],

for 0 ≤ i, j, k, l ≤ 4 such that {i, j} ∩ {k, l} = ∅.
Our main theorem in this paper is the following, which is the exact crystalline

version of the corresponding results in the Betti (§1.3) and étale (§1.6) cases:

Theorem 1.8.1. With notation as above, we have

g ∈ M0(Qp).

In order to prove this, we need to check that g satisfies the 2-cycle, 3-cycle and
5-cycle relations above. Note that these immediately imply relations on the p-adic
multi-zeta values. In particular, by Furusho’s result mentioned above ([15]), these
give another proof of the p-adic double shuffle relations ([16]).



Drinfel’d-Ihara relations for p-adic multi-zeta values 5

1.9. The proof of Theorem 1.8.1 relies on the construction and study of crystalline
tangential basepoints in higher dimensions and its relation to limits of the frobenius
invariant path. In defining tangential basepoints, we use the language of log geom-
etry which appears naturally in this context. This gives an equivalent definition to
the one given in (§3, [31]) in the one dimensional case.

Let X/k and D be as in (§1.7), and let x ∈ D(k). The natural equivalence of

categories Isoccuni(X log/W ) → Isoc†uni(X/W ) together with the pull-back via the

inclusion xlog → X log gives a functor

Isoc†uni(X/W )→ Isoccuni(xlog/W ).

Choosing a tangent vector v ∈ N×
Dx/X

(x) at x transversal to the the divisor D,

gives a splitting of the log structure on xlog, i. e. an isomorphism xlog ' kx,log.
Since kx,log has a canonical lifting, namely Wx,log, we get a realization functor for
Isoccuni(kx,log/W ). Combining this with the above gives us the fiber functor

ω(v) : Isoc†uni(X/W )→ VecK .

Suppose that X, D be also as in (§1.7), and x ∈ D(W ). If v ∈ N×
Dx/X

(x), then

the fiber functor ω(vη) on Micuni(Xη/K) is a realization of the fiber functor ω(vs)
through the equivalence (1.7.1). Choosing a similar w ∈ N×

Dy/X
(y), and assuming

W = Zp, we obtain a frobenius action on wηP dR(Xη)vη , the fundamental groupoid
from xη to yη defined over Qp. Since the frobenius depends on the choice of a tangent
vector we integrated it into the notation above.

Let Qp,st := Qp[l(p)], where l(p) is a symbol standing for a possible branch of
the p-adic logarithm. For any a, b ∈ Xη(Qp), not necessarily of finite reduction,
Vologodsky (based on the work of Coleman, Besser, etc.) defines a canonical path

bca ∈ bPdR,a(Qp,st) that is fixed under frobenius. We study the limit of this path
along a tangent vector at a point in Dη.

The universal enveloping algebra of the de Rham fundamental group of M0,5/Qp
is Qp〈〈Xij〉〉0≤i,j≤4/R, with the notation above. We apply the results on tangential
basepoints and the limit of the frobenius invariant path to the five ”infinitesimal
imbeddings” of M0,4 into M0,5. Namely, we look at a parameter of imbeddings of
M0,4 into M0,5 and let the parameter go to zero. We, then, express the crystalline
invariant paths in terms of Coleman integrals and explicitly compute the limits of
these Coleman integrals which finishes the proof of the 5-cycle relation. The proofs
of the 2-cycle and 3-cycle relations are straightforward.

1.10. Outline. In §2, we start with the basics of logarithmic geometry and the de
Rham and crystalline fundamental groups. We describe the trivializations of a log
point in Lemma 2.1.2 in §2.1.3. This will be important when we are defining the
tangential basepoints. Logarithmic differentials and its relation to the log product
over a frame is reviewed in §2.1.4. In Lemma 2.1.3 in §2.1.5, we remark a canonical
isomorphism between two log points which will be used in comparing tangential
basepoints to ordinary basepoints in the tangent space. In §2.2, we review the de
Rham fundamental group: in particular, canonical extensions of unipotent connec-
tions and the de Rham fiber functor for a variety X that satisfies H1(X,O) = 0. In
§2.3, we review the crystalline fundamental group, where we review the comparison
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theorem between unipotent overconvergent isocrystals and unipotent log conver-
gent isocrystals. We describe the comparison between the de Rham and crystalline
fundamental groups in §2.4.

In §3, we define the de Rham and crystalline versions of tangential basepoints
and the comparison between them. In §4, we show that evaluating at a tangential
basepoint is equivalent to pulling back to the tangent space and then evaluating at
the ordinary basepoint in the tangent space. This will be used when we compute the
limit of the frobenius invariant path. In §5, we describe the de Rham fundamental
group of M0,5 and define a canonical set of tangential basepoints on it.

In §6, we describe the limit of the frobenius invariant path of Besser ([3]) and
Vologodsky ([32]). We give an alternative description of this path in §6.5 and §6.6,
which will be used later on, and relate it to the tangential basepoints. In §6.7,
we show that changing a tangential basepoint by multiplication by a root of unity
does not change the frobenius invariant path. Note that the analog of this is not
true in the Betti-de Rham case. This will be important while we are proving the
Drinfel’d-Ihara relations. In §6.8, we describe the main object of our study, p-adic
multi-zeta values.

In §7, we prove the Drinfel’d-Ihara relations. The proofs of the 2-cycle and 3-
cycle relations are fairly straightforward. In §7.3, we prove the 5-cycle relation, by
first expressing the frobenius invariant path in terms of Coleman integrals and then
taking a limit which enables us to interpret certain frobenius invariant paths on
M0,5 in terms of those on M0,4.

We assume that the reader is familiar with the basic notions of logarithmic
geometry, as in (§1-2, [23]) or (§1, [24]); and the basic notions of rigid geometry as
in ([28]).

1.11. Notations and conventions. If C is a category and A is an object of C,
we will abuse notation, for the sake of brevity, and write A ∈ C.

We denote the category of vector spaces over a field K by VecK .
By a variety X over a field k, we mean a separated and geometrically integral

k-scheme X, which is of finite type over k. If X/k is smooth, we say that D ⊆ X is a
simple normal crossings divisor, if D :=

∑
j∈J Dj is the sum of smooth divisors Dj

meeting transversally. Since we will always be dealing with simple normal crossings
divisors we will not distinguish between a divisor and its support.

If A is a finite dimensional k-space, we denote the corresponding affine variety,
namely SpecSym•A ,̌ by V(A).

If X and Y are S-schemes, we remove the subscript S in the fiber product X×SY
of X and Y over S, and denote it by X × Y, if it is likely to cause no confusion.
If A is a ring, sometimes we will denote the associated scheme by A, rather than
SpecA.

If X/W is a scheme over a discrete valuation ring W, we let Xs and Xη denote
the special and generic fibers respectively.

If X/Qp is a variety, we will denote the associated rigid analytic variety with
the same notation in order to go easy on the subscripts, since this is likely to no
confusion.

If a ∈ R〈〈xi〉〉i∈I , the ring of associative formal power series ring in xi, then we
let a[xJ ] denote the coefficient of xJ in a, for a multi-index J.

Acknowledgements. The author thanks A. Ogus and S. Bloch for mathematical
suggestions and encouragement.
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2. On log geometry and the crystalline fundamental group

2.1. Conventions on log geometry. Our main references for logarithmic geom-
etry are [23], [24], and (§4, [25]). We will pass between a set of tangent vectors
transversal to a divisor D at x and trivializations of a log point xlog using Lemma
2.1.2 below; we will use (2.1.5) to describe connections with logarithmic singulari-
ties; and (2.1.6) to give a description of tangential basepoints.

2.1.1. Canonical log structure. Let X/k be a smooth variety over a field k, D ⊆ X,
a simple normal crossings divisor, X := X \D and x ∈ D(k). Let {Dj |j ∈ Jx}, be
the set of irreducible components of D passing through x and Dx := ∪j∈JxDj .

Denote by X log the canonical log structure on X defined by D (§1.3, [23]): the

underlying scheme of X log is X and the log structure is defined by the inclusion

MX := OX ∩ j∗(O
×
X)→ OX ,

where j : X ↪→ X is the open imbedding. X log is a fine saturated log scheme (§1.3,
[24]) and there is a canonical isomorphism of monoids

MX,x := MX,x/O
×
X,x

∼→ Cart−(X,Dx),(2.1.1)

where Cart−(X,Dx) denotes the monoid of anti-effective Cartier divisors on X
supported on Dx. If the Dj are defined locally by tj ∈ OX,x, and t := Πj∈Jxtj then

MX,x = OX,x ∩ ((OX,x)t)
×.

2.1.2. Log point at x. Let xlog denote the log scheme obtained by pulling back the

log structure on X log via the map Spec k → X corresponding to x. Note that the
monoid Mx on xlog is MX,x ⊗O×

X,x

k×, and (2.1.1) gives

Mx := Mx/k
× ∼→ Cart−(X,Dx).(2.1.2)

2.1.3. Splittings of the log structure on xlog. With the notation in (2.1.2), let

S(Dx, X) := {ϕ : ϕ is a splitting of Mx →Mx}.
Let Ij ⊆ mx be the ideal defining Dj in OX,x and d : mx → mx/m

2
x = Ω1

X,x
, the

canonical projection. Then

S(Dx, X) ' {(· · · , tj , · · · )j∈Jx : tj ∈ (dIj \ {0}), for j ∈ Jx}.(2.1.3)

Let

NDx/X(x) :=
∏
j∈Jx

NDj/X(x),

be the fiber at x of the product of the normal bundles of Dj in X.
Let N×

Dj/X
(x) := NDj/X(x) \ {0}, and N×

Dx/X
(x) :=

∏
j∈Jx N

×
Dj/X

(x). Note

that by (2.1.3), there is a one-to-one correspondence between S(Dx, X) and the set
{(· · · , αj , · · · )|αj : NDj/X(x) ' k, a linear isomorphism, for j ∈ Jx} and hence

with N×
Dx/X

(x).

Definition 2.1.1. Let Spec kx,log denote the log scheme with underlying scheme

Spec k, and log structure associated to the pre-log structure Cart−(X,Dx) → k
that maps all the nonzero elements of Cart−(X,Dx) to 0.

Then by (2.1.2) and (2.1.3) we have:
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Lemma 2.1.2. There are natural bijections between S(Dx, X), N×
Dx/X

(x), and

{α|α : xlog
∼→ Spec kx,log}, the set of isomorphisms between the log schemes xlog

and Spec kx,log over k.

2.1.4. Logarithmic differentials. For any map f : Ylog → Zlog of log schemes, let
Ω1
Ylog/Zlog

denote the associated sheaf of Kähler differentials (§1.5, [23]) on Y.

We will be interested in this only when Zlog = Spec k, endowed with the trivial

log structure, and when Ylog is either X log, or xlog as in (§2.1.1 and §2.1.2).

Let P := Γ(Y,MY ). The identity map P → Γ(Y,MY ) gives a frame Ylog → [P ],
in the sense of (Definition 4.1.3, [25]). Let Ylog ×[P ] Ylog denote the log product
of Ylog with itself over k and [P ] (Definition 4.2.4, [25]). There is an exact closed
immersion (Corollary 4.2.8, [25])

∆̃ : Ylog → Ylog ×[P ] Ylog,(2.1.4)

whose conormal bundle is canonically isomorphic to Ω1
Ylog/k

.

Let ∆̃(Y )(1) denote the first infinitesimal neighborhood of Ylog ×[P ] Ylog. Then
O∆̃(Y )(1) can be thought of as a sheaf of OY -algebras through the first projection

Ylog ×[P ] Ylog → Y. If we endow OY ⊕ Ω1
Ylog/k

with the ring structure such that

(f1, ω1) · (f2, ω2) := (f1f2, f1ω2 + f2ω1) then we have a natural isomorphism of
sheaves of OY -algebras (Corollary 4.2.8, [25]):

O∆̃(Y )(1) ' OY ⊕ Ω1
Ylog/k

.(2.1.5)

Case (a): Ylog = X log.
In this case, Ω1

Xlog/k
= Ω1

X/k
(log(D)), where, if locally around a point x ∈

X, D is defined by x1 · · ·xr = 0 for a system of parameters (x1, · · · , xn) then
Ω1
X/k

(log(D)) is locally generated by

dx1

x1
, · · · , dxr

xr
, dxr+1, · · · , dxn.

Let (X × X)∼ denote the blow-up of X ×k X along ∪i∈JDi × Di, where D =
∪i∈JDi. The fiber of (X ×X)∼ over the point (x, x) ∈ X ×X is∏

i∈Jx

P(NDi×Di/X×X(x, x)) =
∏
i∈Jx

P(NDi/X(x)⊕2) =
∏
i∈Jx

P1
k,(2.1.6)

where Jx is the set of i ∈ J such that x ∈ Di, and P denotes projectivization.
Endow (X ×X)∼ with the canonical log structure associated to the exceptional

divisor of the blow-up. This gives the log scheme (X × X)∼log. The diagonal map
from ∆ : X → X ×X extends to a map

∆̃ : X log → (X ×X)∼log.

In this case, P = Cart−(X,D) and X log ×[P ] X log is an open subscheme of

(X × X)∼ which contains the image of ∆̃(X) (Example in §4.2, Corollary 4.2.8,
[25]).

Case (b): Ylog = xlog.
In this case, if for j ∈ Jx, the component Dj of Dx is locally defined by xj = 0,

then

Ω1
xlog/k

= ⊕j∈Jxk
dxj
xj

.(2.1.7)
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Let {xj ∂
∂xj
}j∈Jx denote the dual basis.

We have P = Cart−(X,Dx) ' ⊕j∈JxN and

xlog ×[P ] xlog =
∏
j∈Jx

Gm,(2.1.8)

(Corollary 4.2.6; Example §4.2, [25]), which embeds canonically into the fiber of
(x, x) in (X ×X)∼ using (2.1.6).

2.1.5. Comparison of two log points. This section will be useful in studying tan-
gential basepoints. Namely, it will help us localize near a point in a variety by
passing from the variety to its tangent space.

Let D(x) ⊆ V(NDx/X(x)) denote the simple normal crossings divisor that is the

union of the coordinate axes through the origin. In other words, if t1, · · · , tn is a
regular system of parameters onX at x, such thatD is defined locally by t1 · · · tr = 0
then D(x) is defined by dt1 · · · dtr = 0. Let V(N)log := V(NDx/X(x))log be the

scheme V(NDx/X(x)) endowed with the log structure associated to the divisor D(x),

and 0log the log scheme induced by the inclusion 0→ V(NDx/X(x)).

Lemma 2.1.3. The log schemes xlog and 0log are canonically isomorphic.

Proof. Note that both log schemes have the same underlying scheme Spec k. Let
the component Dj of D be defined locally at x by the ideal Ij , for 1 ≤ j ≤ r.

If {tj}1≤j≤n is as above then Ij = (tj), for 1 ≤ j ≤ r. We have a map

ϕ : ⊗1≤j≤rSym
•(dIj/dI

2
j )→ OX,x,

with the property ϕ(dtj) = tj . Since MV(N) = (OV(N),0)×dt1···dtr , and MX,x =

(OX,x)×t1···tr , this gives a map MV(N) →MX,x and hence a map

MV(N) ⊗O×V(N),0
k× →MX,x ⊗O×

X,x

k×

which we continue to denote by ϕ.
This map is independent of the choice of {tj}1≤j≤n. If {sj}1≤j≤n is another set

then sj/tj ∈ O×X,x, for 1 ≤ j ≤ r. Let ψ be the map corresponding to {sj}1≤j≤n.
To show the independence it is enough to show that ψ and ϕ agree on {dsj}1≤j≤r.
Note that

ϕ(dsj) = ϕ(d(
sj
tj
· tj)) = ϕ(d(

sj
tj

) · tj +
sj
tj

(x) · dtj) =
sj
tj

(x) · tj

and ψ(dsj) = sj . Therefore

ϕ(dsj)

ψ(dsj)
=
sj
tj

(x) · tj
sj

and ϕ(dsj) and ψ(dsj) are equal in MX,x ⊗O×
X,x

k×, for 1 ≤ j ≤ r.
This map makes the diagram

0 −−−−→ k× −−−−→ M0log −−−−→ M0log −−−−→ 0yid y yα
0 −−−−→ k× −−−−→ Mxlog −−−−→ Mxlog −−−−→ 0

commute, where α is the natural identification. This implies that the middle map
is also an isomorphism. 2
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2.2. The de Rham fundamental group. We review the theory of the de Rham
fundamental group (10.24-10.53, [7]).

2.2.1. The categories Micreg(X/K) and Micuni(X/K). Let K be a field of charac-
teristic 0 and X/K, a smooth variety over K. Let Micreg(X/K) denote the category
whose objects consist of vector bundles with integrable connection (E,∇) that has
regular singularities at infinity (I.5, [1]); and whose morphisms are vector bundle
morphisms which are compatible with the connections. Since we assume that X/K
is geometrically integral, End((O, d)) = K, and Micreg(X/K) naturally forms a
tensor category over K (§5, [7]).

We will be mostly interested in a full-subcategory Micuni(X/K) of Micreg(X/K).
A vector bundle with integrable connection (E,∇) is unipotent, if it has an increas-
ing filtration by sub-vector bundles with connection Fili(E,∇) ⊆ (E,∇), 0 ≤ i ≤ n,
such that Fil0(E,∇) = 0, Filn(E,∇) = (E,∇) and gri(E,∇) ' (O, d) or 0. Since
regularity is stable under extensions (I, Proposition 5.2, [1]), unipotent connec-
tions are regular. Unipotent vector bundles with connection then form a tensor
full-subcategory Micuni(X/K) of Micreg(X/K).

Definition 2.2.1. If ω : Micuni(X/K)→ VecK is a fiber functor, with values in K-
spaces, we let π1,dR(X/K,ω) denote the fundamental group of this tensor category
at ω (§6, [7]) and call it the de Rham fundamental group of X/K at ω.

2.2.2. Connections with logarithmic poles. We follow (I.4, [1]; II.3.8, [8]; §11.1,
[7]).

Let Ylog/K be either X log or xlog as in §2.1.4. A vector bundle with connection
(E,∇) on Ylog is a vector bundle E on Y and a K-linear map

∇ : E → E ⊗ Ω1
Ylog/K

satisfying the Leibniz property and it is integrable, if ∇2 : E → E ⊗ Ω2
Ylog/K

is 0.

We denote the corresponding category by Mic(Ylog/K).
Continuing with the notation in §2.1.4, let pi : Ylog ×[P ] Ylog → Ylog, for i = 1, 2,

denote the two projections.
A vector bundle with connection (E,∇) on Ylog is equivalent to giving an iso-

morphism

p∗2E|∆̃(Y )(1)
∼→ p∗1E|∆̃(Y )(1) ,

that induces the identity on ∆̃(Y ). If the connection is integrable, then this isomor-
phism extends to an isomorphism,

p∗2E|∆̃(Y )̂
∼→ p∗1E|∆̃(Y )̂,

to the formal completion ∆̃(Y )̂ of ∆̃(Y ) in Ylog ×[P ] Ylog, since we assume that K
is of characteristic 0.

2.2.3. Residues of connections with logarithmic poles. We follow (I.4, [1]; II.3.8,
[8]).

Let {tj |j ∈ Jx} be part of a local set of parameters in a neighborhood U of x ∈ X,
as in §2.1.1. Then letting ij,U : Dj ∩ U → X be the locally closed immersion, we
have a linear map:

∇j,U : i∗j,UE → i∗j,UE
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induced by pairing ∇ with the derivation tj
∂
∂tj
. Even though tj

∂
∂tj

depends on the

choice of a system of parameters extending {tj |j ∈ Jx}, ∇j,U is independent of any

choice of system of parameters and hence patches to give a map ∇j : i∗jE → i∗jE,

where ij : Dj → X is the closed immersion, which is called the residue map along
Dj . It turns out that the characteristic polynomial Pj(z) ∈ ODj [z] of ∇j is, in
fact, in K[z] (II.3.10, [8]). Therefore, the eigenvalues of the residue map, called
exponents, are constant along the divisor Dj .

The construction of residues is compatible with duality and tensor products, i.e.

(∇1 ⊗∇2)j = id⊗∇2
j +∇1

j ⊗ id,(2.2.1)

and an exact sequence of vector bundles with connection

0→ (E1,∇1)→ (E2,∇2)→ (E3,∇3)→ 0

on X log induces a corresponding exact sequence of vector bundles with endomor-
phisms

0→ (i∗jE1,∇1,j)→ (i∗jE2,∇2,j)→ (i∗jE3,∇3,j)→ 0,

on Dj .
The residue map also gives the following description of Mic(xlog/k).

Definition 2.2.2. For x ∈ X(k), let Tx denote the following category. Its objects
are pairs (V, (Tj)j∈Jx) of vector spaces V over k and linear operators Tj on V,
indexed by Jx, such that for every i, j ∈ Jx, [Ti, Tj ] = 0. The morphisms are maps
of vector spaces that commute with the operators.

The map that sends (E,∇) ∈ Mic(xlog/k) to (E, (∇j)j∈Jx), where

∇j = (idE ⊗ xj
∂

∂xj
) ◦ ∇

(c. f. §2.1.4 (b)), induces an equivalence of categories

Mic(xlog/k)→ Tx,(2.2.2)

whose restriction to unipotent objects on both sides induces the equivalence

Micuni(xlog/k)→ Tx,uni.(2.2.3)

One sees that the objects on the right hand side, in fact, consist of vector spaces V
together with commuting nilpotent linear operators Tj on V, indexed by Jx.

2.2.4. Canonical extensions of unipotent connections. Let X/K and X/K be as
above. Let (E,∇) ∈ Micuni(X/K) be a unipotent vector bundle with connection.
Then there exists a vector bundle with connection (Ecan,∇) on X log which extends
(E,∇) and has the property that all the residue maps ∇j are nilpotent (II.5.2, [8];
I. Theorem 4.9, [1]). This extension, which is unique up to unique isomorphism,
is called the canonical extension of (E,∇) to X. To ease the notation, we will
sometimes denote Ecan by E.

The functor

can : Micuni(X/K)→ Mic(X log/K),

that sends (E,∇) to (Ecan,∇) is exact, and is compatible with taking duals and
tensor products. This follows from the corresponding properties of the residue map
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in §2.2.2 and the stability of nilpotence under these constructions. The functor can,
then, induces an equivalence of categories

can : Micuni(X/K)→ Micuni(X log/K),(2.2.4)

where Micuni(X log/K) is the full-subcategory of Mic(X log/K) whose set of objects
is the essential image of can.

2.2.5. The de Rham fiber functor ω(dR). Assume further that X/K is proper and
H1(X,O) = 0. Then Deligne defines a fiber functor (§5.9, §12.4, [7]):

ω(dR) : Micuni(X/K)→ V ecK ,

from Micuni(X/K) to V ecK , the category of vector spaces over K, as follows.
The condition H1(X,O) = 0 implies that the underlying bundle Ecan of the

canonical extension of (E,∇) ∈ Micuni(X/K) is trivial (Proposition 12.3, [8]).

This gives a canonical isomorphism Γ(X,Ecan)⊗KOX
∼→ Ecan. Since the canonical

extension functor is a tensor functor (§2.2.3), it follows from the above that

ω(dR) : Micuni(X/K)→ V ecK

that sends (E,∇) to Γ(X,Ecan) is a fiber functor. This called the de Rham fiber
functor. Note that with this notation we have a canonical isomorphism:

ω(dR)(E,∇)⊗K OX
∼→ Ecan,

for any (E,∇) ∈ Micuni(X/K).
Remark. A priori the de Rham fiber functor depends on the choice of a com-

pactification X with H1(X,O) = 0. Let X1 and X2 be two such compactifications.
By resolving the singularities of the closure of the diagonal ∆X in X1×X2 we find
a compactification X̃ of X which maps to X1 and X2. Let (E,∇) ∈ Micuni(X/K)

and let Ei denote the canonical extension of X to Xi, for i = 1, 2. Let πi : X̃ → Xi

denote the projection. Since the exponents of the pull-backs are linear combinations
of the original exponents (I, [1]), we see that (π∗iEi,∇) both have zero exponents

and hence are both the canonical extension of (E,∇) to X̃. Therefore, since Ei are
trivial bundles,

Γ(X1, E1) = Γ(X̃, π∗1E1)
∼→ Γ(X̃, π∗2E2) = Γ(X2, E2).

This shows that, up to isomorphism, ω(dR) does not depend on the compactifica-
tion.

2.3. The crystalline fundamental group. In this section, we review the theory
of the crystalline fundamental group (§11, [7]; §2.4, [31]).

2.3.1. Unipotent overconvergent isocrystals. We follow (§2.3, [2]; §2.4.1, [31]). Let
k be a perfect field of characteristic p, W := W (k), the ring of Witt vectors over k,
and K, the field of fractions of W.

If Q/W is a formal scheme and Z0 ⊆ Q ×W k is a locally closed subscheme,
let ]Z0[Q⊆ QK denote the tube of Z0 in Q ((1.1.2), [2]). Assume further that
Z ⊆ Q ×W k is a closed subscheme with j : Z0 ↪→ Z, an open imbedding. For
a sheaf of abelian groups E on ]Z[Q, j

†E denotes the sheaf on ]Z[Q, which is
characterized by the property that for any quasi-compact U ⊆]Z[Q,

Γ(U, j†E) = lim−→
V

Γ(U ∩ V,E),
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where V runs through the strict neighborhoods of ]Z0[Q in ]Z[Q (§2.1.1, [2]).
Assume, moreover, that Q/W is smooth in a neighborhood of Z0 in Q. Let E

be a j†O]Z[-module with integrable connection ∇ on ]Z[Q. We imbed Z diagonally

into Q2 := Q×W Q, and let p1, p2 :]Z[Q2→]Z[Q denote the two projections induced
by those from Q2 to Q. We say that ∇ is overconvergent along Z \Z0, if there is an

isomorphism p∗2E
∼→ p∗1E on ]Z[Q2 , which induces ∇ when restricted to the formal

completion of the diagonal ((2.2.5), [2]).

Let Y/k be a variety over k, the category of overconvergent isocrystals Isoc†(Y/W )
is defined as follows. Let Y be a compactification of Y, and {Ui}i∈I an open cov-
ering of Y together with closed imbeddings of Ui ↪→ Pi into formal schemes Pi/W,
which are smooth in a neighborhood of Ui ∩ Y. Let ji : Ui ∩ Y → Ui denote the
corresponding open imbedding. Then an overconvergent isocrystal on Y is given by

a collection of j†iO]Ui[ modules with integrable connection which are overconvergent
along Ui \ (Ui ∩ Y ); and a collection of isomorphisms between their restrictions to
]Ui ∩ Uj [Pi×Pj , which satisfy the co-cycle condition (§2.3, [2]). The morphisms are

given by a collection of maps of j†iO]Ui[-modules with connection which are com-
patible with the isomorphisms on ]Ui ∩ Uj [Pi×Pj . The category is independent, up
to canonical equivalence, of all the choices and depends only on Y/W.

For an overconvergent isocrystal (E,∇) ∈ Isoc†(Y/W ), and data {Ui → Pi}i∈I
as above, we call the corresponding j†iO]Ui[-module with connection on ]Ui[Pi , the
realization of (E,∇) on Pi and denote it by (E,∇)Pi .

An overconvergent isocrystal (E,∇) on Y/W is said to be unipotent, if it has
a finite filtration by sub-overconvergent isocrystals Fili(E,∇), 0 ≤ i ≤ n, such
that Fil0(E,∇) = 0, Filn(E,∇) = (E,∇) and gri(E,∇) = (O, d) or 0. We denote

by Isoc†uni(Y/W ) the full-subcategory of Isoc†(Y/W ) consisting of unipotent over-

convergent isocrystals on Y/W. Isoc†uni(Y/W ) has a natural structure of a tensor
category over K.

Definition 2.3.1. If ω : Isoc†uni(Y/W ) → VecK is a fiber functor over K, we let

π†1,crys(Y/W,ω) denote the corresponding fundamental group of Isoc†uni(Y/W ) at

ω (§6, [7]), and call it the crystalline fundamental group of Y/W at ω.

2.3.2. Unipotent log convergent isocrystals. Shiho defines the log convergent site
on a fine saturated log scheme Ylog over k (§2, [30]). As usual we will be interested

in the cases when Ylog is X log or xlog.

Case (a): Ylog = X log.

If we assume that X log is the canonical log scheme associated to a simple normal

crossings divisor D ⊆ X (§2.1.1), the category of log convergent isocrystals on X log

can be described as follows.
First suppose that there is a formal scheme Q/W and a relative simple normal

crossings divisor D ⊆ Q, i. e. that D is a simple normal crossings divisor lying in
the smooth locus of Q/W and is flat over W, satisfying the following properties:
there is a closed immersion i : X ↪→ Q ×W k, such that Q/W is smooth in a
neighborhood of X and D = i∗(D). Let (Q×Q)∼ denote the blow-up as in §2.1.4,

and p1 and p2 denote the two maps from ]∆̃(X)[(Q×Q)∼ to ]X[Q that are induced
by the two projections.

Then a realization of a log convergent isocrystal on X log corresponding to the

data (i,Q,D) is given by a locally free O]X[-module of finite rank E on ]X[Q and an
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integrable connection ∇ on E with logarithmic singularities along ]X[Q∩DK such
that there is an isomorphism

p∗2E
∼→ p∗1E

on ]∆̃(X)[(Q×Q)∼ that induces the map associated to ∇, when restricted to the

formal completion of ∆̃(QK)∩]∆̃(X)[(Q×Q)∼ in ]∆̃(X)[(Q×Q)∼ .

If there is no such global imbedding, choose an open cover {Uj}j∈J of X, such

that there are formal schemes Pj/W, relative normal crossings divisors D(j) ⊆ Pj
and imbeddings Uj ↪→ Pj ×W k as above. For j1, j2 ∈ J, let (Pj1 × Pj2)∼ denote

the blow-up of Pj1 × Pj2 along ∪i∈I(D(j1)
i ×D(j2)

i ) and

qk :]∆̃(Uj1 ∩ Uj2)[(Pj1×Pj2 )∼→]Ujk [Pjk ,

for k = 1, 2, denote the two maps induced by the projections.
Then the realization of a log convergent isocrystal on X/W corresponding to

this data is described as follows. For every j ∈ J, there is an O]Uj [-module Ej on
]Uj [Pj and an isomorphism

αj : p∗2Ej
∼→ p∗1Ej(2.3.1)

on ]∆̃(Uj)[(Pj×Pj)∼ as above, and for every distinct j1, j2 ∈ J, there is an isomor-
phism

fj1j2 : q∗2Ej2
∼→ q∗1Ej1 ,(2.3.2)

which satisfy the co-cycle condition, and which are compatible with the maps (2.3.1)
in the obvious sense. A morphism from an isocrystal {Ej , αj , fj1j2} to another
isocrystal {Fj , βj , gj1j2} is given by a collection of morhpisms Ej → Fj on ]Uj [Pj
that are compatible with the αj and βj ’s and with the fj1j2 and gj1j2 ’s. The
category of log convergent isocrystals is independent of the data of the local lift-
ings {Pj ,D(j), Uj ↪→ Pj ×W k}, up to canonical isomorphism, and is denoted by

Isocc(X log/W ).

A log convergent isocrystal (E,∇) onX is unipotent if it has a filtration Fili(E,∇),
0 ≤ i ≤ n, such that Fil0(E,∇) = 0, Filn(E,∇) = (E,∇), and the graded pieces
are (O, d) or 0. Let Isoccuni(X log/W ) denote the full-subcategory of Isocc(X log/W )
consisting of unipotent log convergent isocrystals.

Assume from now on that X/k is proper and X := X \ D. By restriction we
obtain a natural functor:

Isocc(X log/W )→ Isoc†(X/W ),

which, when restricted to unipotent objects, induces an equivalence of categories
(Lemma 2, [31]):

Isoccuni(X log/W )→ Isoc†uni(X/W ).(2.3.3)

Definition 2.3.2. If ω : Isoccuni(X log/W ) → VecK is a fiber functor, we let

π1,crys(X log/W,ω) denote the fundamental group of Isoccuni(X log/W ) at ω.

A fiber functor ω on Isoc†uni(X/W ) then induces an isomorphism

π†1,crys(X/W,ω)
∼→ π1,crys(X log/W,ω),

by (2.3.3).
Case (b): Ylog = xlog.
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Let xlog be a log scheme structure on SpecW such that the pull-back log struc-
tures on Spec k and SpecK via the canonical maps to SpecW induce isomorphisms
MW

∼→ Mk = P and MW
∼→ MK . The realization of an object of Isocc(xs,log/W )

with respect to this data is then given by a finite dimensional vector space E over
K, endowed with an integrable connection

∇ : E → E ⊗ Ω1
xη,log/K

on xη,log such that there is an isomorphism

p∗2E
∼→ p∗1E(2.3.4)

on ∆̃(xs)]x×[P ]x[ (c. f. §2.1.4), which induces the map associated to∇ when restricted

to the formal completion of ∆̃(xη) in xη,log ×[P ] xη,log.
Note that, using the isomorphism (2.1.8), we have that

]∆̃(xs)[x×[P ]x=
∏
j∈Jx

D(1, 1−),(2.3.5)

where D(a, r−) is the open p-adic disk of radius r and center a.
Choosing a fiber functor ω : Isoccuni(xs,log/W ) → VecK , we define the log crys-

talline fundamental group π1,crys(xs,log/W,ω), as in Definition 2.3.2.

2.3.3. Frobenius.

Case (a): Ylog = X log.

The relative p-power frobenius map F : X log → X
(p)

log induces the following
functors

F ∗ : Isoccuni(X
(p)

log/W )→ Isoccuni(X log/W )

and

F ∗ : Isoc†uni(X
(p)/W )→ Isoc†uni(X/W ).

Let us describe the first of these functors.
Let σ : W → W denote the frobenius map on W, and for a scheme Z/W let

Z(σ)/W denote the base change of Z/W via σ.
Let {Uj}j∈J be a cover of X such that there is data (Pj ,D(j), Uj ↪→ Pj ,Fj)

with (Pj ,D(j), Uj ↪→ Pj) is as in §2.3.2 above and Fj : Pj,log → P(σ)
j,log is a lifting

of the frobenius F, where Pj is endowed with the log structure defined by D(j).

Let (Ej , αj , fj1j2) be the realization of a log convergent crystal (E,∇) on X
(p)

log

corresponding to the data (P(σ)
j ,D(j,σ), U

(p)
j ↪→ P(σ)

j ). Then F ∗(E,∇) is the log

convergent crystal on X log whose realization is given by

(F∗j,K(Ej), (Fj,K ×Fj,K)∼∗αj , (Fj1,K ×Fj2,K)∼∗fj1j2).

This induces maps

F∗ : π1,crys(X log/W,ω)→ π1,crys(X
(p)

log/W,ω ◦ F ∗)(2.3.6)

and

F∗ : π†1,crys(X/W,ω)→ π†1,crys(X
(p)/W,ω ◦ F ∗).(2.3.7)

Case (b): Ylog = xlog.
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First note that, if xlog is given by the map Mx = Mk
γ→ k, then x

(p)
log is the log

scheme structure on Spec k associated to the map

γ(p) : Mk ⊗k× k× → k,

where k× →Mk is the canonical inclusion, k× → k× is the frobenius, and Mk → k

is γ. Then the relative frobenius F : xlog → x
(p)
log is the map given by the identity

on Spec k, and the map

Mk ⊗k× k× →Mk,

which is induced by the multiplication by p on Mk and the canonical inclusion
k× →Mk.

Let xlog be a lifting of xlog as in §2.3.2 and F : xlog → x
(σ)
log be a lifting of F. Let

(E,α), where α is as in (2.3.4), be the realization of an object of Isoccuni(x
(p)
log/W ).

We let Fη ×[P ] Fη denote the induced map

Fη ×[P ] Fη : (xlog ×[P ] xlog)η → (x
(σ)
log ×[P ] x

(σ)
log )η.

Then the realization of the pull-back of (E,α) with respect to F is given by
(F∗ηE, (Fη ×[P ] Fη)∗α).

Let [p] :
∏
j∈Jx D(1, 1−)→

∏
j∈Jx D(1, 1−), be defined by

[p]((zj)j∈Jx) = (zpj )j∈Jx .

Using the identification (2.3.5) the pull-back above is given by (E, [p]∗(α)).
Let (x1log,F1) and (x2log,F2) be two liftings of (xlog, F ); and (Ei, αi) denote the

corresponding realizations of a log isocrystal on x
(p)
log, together with the isomorphism

f12 : p∗2E2 → p∗1E1

on ]∆̃(x(p))[x1(σ)×[P ]x2(σ)
. Then the isomorphism between the pull-backs of F1∗

η E1

and F2∗
η E2 to ]∆̃(x)[x1×[P ]x2 is given by (F1

η ×[P ] F2
η )∗f12.

Let F1 and F2 be two liftings of frobenius on xlog, and (E,α) a realization of an

object in Isoccuni(x
(p)
log/W ) as above. The map (F1

η×[P ]F2
η )∗α gives the isomorphism

between the pull-backs of F i∗η E, i = 1, 2, to ]∆̃(x)[x×[P ]x. When evaluated at ∆̃(xK),
this isomorphism gives an automorphism of E, which can be described as follows.

Suppose that {mi}i∈Jx ⊆MW , is a subset of MW such that it induces the basis
for MW = P = ⊕i∈JxN. Then the maps induced by F i from MW ⊗W×W× to MW

are given by

F i∗(mj) = a
(i)
j mp

j ,

for some a
(i)
j ∈ 1 + pW, j ∈ Jx and i = 1, 2.

Then with the identification above, F1
η ×[P ] F2

η on
∏
j∈Jx D(1, 1−) is given by

(F1
η ×[P ] F2

η )∗(zj) =
a

(2)
j

a
(1)
j

zpj ,

and hence, with this identification, the point (a
(2)
j /a

(1)
j )j∈Jx corresponds to (F1

η×[P ]

F2
η )(∆̃(xη)).
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Let Nj denote the residue map of (E,α) along mj , i. e. Nj = (idE⊗mj
∂

∂mj
)◦∇

(§2.2.3). Then the above automorphism of E is given by (§2.4 (b)):∏
j∈Jx

exp(log(a
(2)
j /a

(1)
j )Nj).

2.4. Comparison of the de Rham and crystalline fundamental groups.
Let X/W be a smooth, proper, and integral scheme, D ⊆ X a relative simple

normal crossings divisor and X := X \D. Let X̂ be the completion of X along Xs.
Case (a): Ylog = X log.
There is a natural equivalence of categories

Micuni(Xη/K)→ Isoccuni(Xs,log/W ),(2.4.1)

(Proposition 2.4.1, [4]) which is a composition of the following functors. The canon-
ical extension functor in (2.2.4) gives the equivalence of categories

Micuni(Xη/K)→ Micuni(Xη,log/K).

Choosing the lifting (X̂, D̂) as a lifting of (Xs,Ds), and noting that the underlying

rigid analytic space Xη,an of Xη is X̂η, we obtain a natural equivalence of categories
(§11, [7]):

Micuni(Xη,log/K)→ Isoccuni(Xs,log/W ),

whose inverse associates to a unipotent log convergent isocrystal on Xs,log its real-
ization corresponding to the lifting Xlog/W. The composition of these functors is
(2.4.1).

If we use the equivalence (2.3.3), we get another equivalence of categories:

γ : Micuni(Xη/K)→ Isoc†uni(Xs/W ).(2.4.2)

A fiber functor ω from Isoc†uni(Xs/W ) to VecK , then induces an isomorphism

π1,crys(Xs/W,ω)
∼→ π1,dR(Xη/K, ω ◦ γ).

This implies that the frobenius map (2.3.7) on the crystalline fundamental group
induces a corresponding map

F∗ : π1,dR(Xη/K, ω ◦ γ)→ π1,dR(X(σ)
η /K, ω ◦ F ∗ ◦ γ)(2.4.3)

on the de Rham fundamental group.
Case (b): Ylog = xlog.

Let xlog/W be a lifting of xlog as above. Then we have a natural functor:

Isoccuni(xs,log/W )→ Micuni(xη,log/K),(2.4.4)

which sends an isocrystal on xs,log/W to its realization corresponding to the lifting
xlog/W. Using the equivalence of categories (2.2.3), we also get a functor

αx : Isoccuni(xs,log/W )→ Txη,uni.(2.4.5)

In order to prove that (2.4.4) and (2.4.5) are equivalences of categories, it suffices
to prove that (2.4.5) is an equivalence of categories in the case when xlog is the log
scheme SpecW endowed with the log structure associated to the pre-log structure
N⊕r →W, which sends all non-zero elements to 0.
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Suppose that we are given a finite dimensionalK-space and a collection {Ni}1≤i≤r
of commuting nilpotent operators on V. We can define a log convergent isocrys-
tal on xs,log whose realization associated to the lifting xlog is given by the vec-
tor space V, together with the collection of automorphisms of V whose value at
(zi)1≤i≤r ∈

∏
1≤i≤rD(1, 1−) (c.f. (2.3.5)) is given by∏

1≤i≤r

exp(log(zi)Ni).(2.4.6)

This isocrystal has image (V, {Ni}1≤i≤r) under αx.
Conversely, any unipotent log isocrystal on xs,log has to be of this form. This

can be seen as follows. Suppose that we are given an isocrystal (E,∇) with im-
age (E, {Ni}1≤i≤r) under αx. Then the connection defines an isomorphism from

p∗2E|∆̃(1) to p∗1E|∆̃(1) , where ∆̃ denotes ∆̃(xη) and the superscript (1) denotes
the first infinitesimal neighborhood. The integrability of the connection implies
that this isomorphism canonically extends to the formal completion ∆̃̂ of ∆̃ in
xη,log×[P ]xη,log. Using the identification (2.3.5), this isomorphism is given by (2.4.6).

Since the natural map from analytic functions on
∏

1≤i≤rD(1, 1−) to formal power

series around (1, · · · , 1) ∈
∏

1≤i≤rD(1, 1−) is injective, it follows that the above

isomorphism is given by the formula (2.4.6) over all of
∏

1≤i≤rD(1, 1−).

3. Tangential basepoints

Let X/k be as above, where k is of characteristic 0 (resp. p). If x ∈ X(k),

then we have a natural fiber functor on Micuni(X/k) (resp. Isoc†uni(X/W )). In this
section, we will define a similar fiber functor for v ∈ N×

Dx/X
(x) (c. f. §2.1.3), where

x ∈ (X \X)(k).

3.1. de Rham case. Let k be a field of characteristic zero.
Then for x ∈ X(k), the map

ω(x) : Micuni(X/k)→ Veck,

which sends (E,∇) to E(x) is a fiber functor.
Now assume that x ∈ (X \X)(k). Using the equivalence of categories (2.2.4)

can : Micuni(X/k)
∼→ Micuni(X log/k),

the pull-back Micuni(X log/k)→ Micuni(xlog/k) via the inclusion xlog → X log, and

Micuni(xlog/k)
∼→ Tx,uni (2.2.3), we get a functor

Micuni(X/k)→ Tx,uni.

Composing this with the functor Tx,uni → Veck which forgets the operators, we get
the fiber functor

ω(x) : Micuni(X/k)→ Veck,(3.1.1)

which sends (E,∇) to Ecan(x).
We would like to emphasize that, in this de Rham case, the construction of the

fiber functor does not, in fact, depend on the choice of a set of tangent vectors at x.
Namely, given v ∈ N×

Dx/X
(x), ω(x), which only depends on x, could also be defined

as composing the map Micuni(X/k) → Micuni(xlog/k) above with the equivalence
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Micuni(xlog/k)
∼→ Micuni(kx,log/k) induced by v (Lemma 2.1.2) and the natural

forgetful fiber functor on Micuni(kx,log/k) (c. f. §3.2).

3.2. Crystalline case. Let k be a perfect field of characteristic p > 0.
Assume first that x ∈ X(k). Then we have the pull-back morphism

Isoc†uni(X/W )→ Isoc†uni(x/W ).

A lifting x of x induces a map Isoc†uni(x/W )→ Micuni(xK/K) = VecK as in (2.4.4).
This fiber functor

ω(x) : Isoc†uni(X/W )→ VecK

is defined up to canonical isomorphism.
Now assume that x ∈ (X \X)(k) and let v ∈ N×

Dx/X
(x). The closed immersion

xlog → X log induces a pullback functor

Isoccuni(X log/W )→ Isoccuni(xlog/W ),

and v induces the equivalence (2.1.2):

Isoccuni(xlog/W )
∼→ Isoccuni(kx,log/W ).

Applying (2.4.5) to kx,log and Wx,log we get a fiber functor on Isoccuni(X log/W ).
The equivalence of categories in (2.3.3) then provides the fiber functor:

ω(v) : Isoc†uni(X/W )→ VecK(3.2.1)

we were looking for.

3.3. Comparison of the de Rham and crystalline basepoints. Let k be a
perfect field of characteristic p, and X,D, etc. as in §2.4. Let x ∈ D and v ∈
N×

Dx/X
(x) with reduction vs in N×

Ds,x/Xs
(xs). This data will give us a comparison

between the fiber functors ω(vs) on Isoc†uni(Xs/W ) and ω(xη) on Micuni(Xη/K).
If idv and idv denote the trivializations as in Lemma 2.1.2, we have a commuta-

tive diagram
kxs,log −−−−→ Wx,logyidv yidv
xs,log −−−−→ xlogy y
Xs,log −−−−→ Xlog.

For (E,∇) ∈ Isoccuni(Xs,log/W ), let (EX,∇) ∈ Micuni(Xη,log/K) denote its re-

alization on the log rigid analytic space Xη,log. Then, associated to the data given
above, we have

ω(vs)(E,∇)
∼→ EX(xη) = ω(xη)(EX,∇).

This gives an identification of the functors ω(vs) and ω(xη), if we take in to ac-
count the equivalence of categories (2.4.2). We would like to emphasize that this
identification depends on the model, i. e. on X, x, and v.

Let (Y,E, y, u) be another data of a lifting. Associated to this lifting we have an
isomorphism

ω(vs)(E,∇)
∼→ EY(yη) = ω(yη)(EY,∇).
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Corresponding to these two liftings the isomorphism from EX(xη) to EY(yη) is
described as follows.

Let (X×Y)∼log denote the log scheme obtained by blowing up X×Y as in §2.3.2.

The fiber of the blow-up over (x, y) is isomorphic to∏
i

P(NFi/X×Y),

with Fi = Di × Ei. In particular, if v := (· · · , vi, · · · ), u := (· · · , ui, · · · ) and

[v, u] := (· · · , [vi, ui], · · · ),
then [v, u] defines a point in the fiber of (x, y).

If (E,∇) ∈ Isoccuni(Xs,log/W ) then we have a canonical isomorphism between

the pull-backs of (EX,∇) and (EY,∇) to the tube of Xs,log in (X×Y)∼η , and hence

evaluating this isomorphism at [v, u]η gives the isomorphism

EX(xη)
∼→ EY(yη)

we were looking for.

4. Comparison of tangential basepoints and ordinary basepoints

In this section, we describe the relation between the tangential and ordinary
basepoints. We will see that taking the fiber functor at a tangential basepoint v
at x, is equivalent to pulling the object back from X to V×(NDx/X(x)) and then

applying the fiber functor at v, viewed as a point in the variety V×(NDx/X(x)).

Since there is, in general, no algebraic map from V×(NDx/X(x)) to X, the pull-

back functor is defined by passing to the log point in both spaces and using the
identification in §2.1.5. In order to achieve this, we will show that pulling back to
the log point in V(NDx/X(x))log gives an equivalence of categories.

4.1. de Rham case. In this subsection, we continue the standard notation with
k a field of characteristic 0. We let

V×(NDx/X(x)) :=
∏
j∈Jx

V(NDj/X(x)) \ {0},

and
V(NDx/X(x)) :=

∏
j∈Jx

V(NDj/X(x)),

where the bar on the factors in the last expression denotes the projective completion
(of curves). Clearly these varieties are isomorphic to G×rm and (P1)×r, if |Jx| = r.
Let

πj : V(NDx/X(x))→ V(NDj/X(x))

denote the j-th projection, for z ∈ {0,∞}, Lz := ∪j∈Jxπ−1
j ((z)), and DV := L0 ∪

L∞. Note that by the notation in §2.1.5, L0 = D(x). Denote by V(NDx/X(x))log,

the log scheme which is V(NDx/X(x)) endowed with the log structure associated to

DV.

Lemma 4.1.1. The natural pull-back functor

Micuni(V(NDx/X(x))log/k)→ Micuni(0log/k)

is an equivalence of categories.
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Proof. Let Tr,uni denote the tannakian category over k, which consist of pairs
of a vector space and r commuting nilpotent operators on it, as in Definition 2.2.2.
Then by §2.2.3, the natural functor from Micuni(0log/k) to Tr,uni is an equivalence
of categories.

To prove the statement, after choosing coordinates, it suffices to prove it for
Pr,log := (P1)×rlog with the log structure associated to the union of the coordinate
axes passing through 0 and those passing through ∞.

Using the above equivalence, it suffices to prove that the natural functor

Micuni(Pr,log/k)→ Tr,uni

is an equivalence.
This functor associates (E(0), {∇j}1≤j≤r) to (E,∇), where ∇j is the residue

of ∇ along zj = 0 at the point 0. If (V, {Nj}1≤j≤r) is an object of Tr,uni, then
(V ⊗k OPr , d −

∑
j Njd log zj) is an object of Micuni(Pr,log/k), which has image

(V, {Nj}) under this functor. This proves essential surjectivity.
Since the functor above is a tensor functor, in order to prove that this functor is

fully-faithful, it suffices to show that

HomMicuni(Pr,log/k)((OPr , d), (E,∇))→ HomTr,uni((k, {0}j), (E(0), {∇j}j))

is an isomorphism or equivalently that

H0
dR(Pr,log, (E,∇))→ ∩1≤j≤rkerE(0)(∇j)

is an isomorphism.
First note that the underlying bundle E of

(E,∇) ∈ Micuni(Pr,log/k)

is trivial. This follows from the fact that Ext1
Pr (OPr ,OPr ) = H1(Pr,OPr ) = 0 by

induction on the nilpotence level (Proposition 12.3, [7]). Therefore, without loss of
generality, we will assume that (E,∇) = (O⊕nPr , d −

∑
1≤j≤rNj d log zj), for some

nilpotent matrices Nj ∈ Mn×n(k). If α is a global (horizontal) section of (E,∇)
then it is a constant section of O⊕nPr . This immediately implies the injectivity of
the above map. In order to see that it is surjective, we note that for any α ∈
∩1≤j≤rkerE(0)(∇j), the constant section of O⊕nPr with fiber α at 0 is a horizontal
section with respect to the connection d−

∑
1≤j≤rNjd log zj . 2

Then, the fiber functor ω(x) : Micuni(X/k)→ Veck is the composition of

can : Micuni(X/k)
∼→ Micuni(X log/k),

Micuni(X log/k)→ Micuni(xlog/k)
∼← Micuni(0log/k)

∼← Micuni(V(NDx/X(x))log/k)

and

ω(dR) : Micuni(V(NDx/X(x))log/k)→ Veck.

Here the second map in the middle diagram is induced by the canonical identifica-
tion in §2.1.5.
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4.1.1. Functoriality. Let (X,D) and (Y ,E) be pairs of smooth schemes over k and
simple normal crosssings divisors. Assume that x ∈ D, y ∈ E and f : X log → Y log
a morphism of log schemes with f(x) = y. Let

P(f) : V(NDx/X(x))→ V(NEy/Y (y))

denote the unique homogeneous map that induces fx : xlog → ylog under restriction
to 0x,log and the canonical isomorphisms xlog ' 0x,log and ylog ' 0y,log in Lemma
2.1.3. P(f) is called the principal part of f at x relative to the given divisors. P(f)
naturally defines a map

P(f) : V(NDx/X(x))log → V(NEy/Y (y))log.

We, then, have a commutative diagram

Micuni(Y/k)
f∗−−−−→ Micuni(X/k)y y

Micuni(V(NEy/Y (y))log/k)
P(f)∗−−−−→ Micuni(V(NDx/X(x))log/k).

4.2. Crystalline case. In this section, we give a similar description of the tan-
gential basepoint functor in the crystalline case. We assume that k is perfect of
characteristic p.

4.2.1. From log point to the tangent space. In order to do this, we need the crys-
talline analog of Lemma 4.1.1.

Lemma 4.2.1. The natural pull-back functor

Isoccuni(V(NDx/X(x))log/W )→ Isoccuni(0log/W )

is an equivalence of categories.

Proof. First, as in the proof of Lemma 4.1.1, we can reduce to the case of Pr,log.
In this case, the isomorphism (2.4.5) gives an equivalence

Isoccuni(0log/W )→ Tr,uni,
where Tr,uni is the category defined in the proof of Lemma 4.1.1, but with k replaced
with K. We would like to emphasize that there is no such canonical isomorphism for
an arbitrary NDx/X(x), the reason being that NDx/X(x) does not have a canonical

lifting to W, but such a lifting exists for k⊕r.
Next, applying (2.4.1) to Pr,log/W, we see that the functor

Micuni(Pr,log/K)→ Isoccuni(Pr,log/W )

is an equivalence. Then the statement we are trying to prove is equivalent to that
of Lemma 4.1.1. �

Proposition 4.2.2. The fiber functor ω(v) : Isoc†uni(X/W )→ VecK is the compo-
sition of the following functors:

Isoc†uni(X/W )
∼← Isoccuni(X log/W )→ Isoccuni(xlog/W )

∼← Isoccuni(0log/W ),

Isoccuni(0log/W )
∼← Isoccuni(V(NDx/X(x))log/W )

and
ωV(v) : Isoccuni(V(NDx/X(x))log/W )→ VecK ,
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where ωV(v) denotes the fiber functor at the basepoint v ∈ V(NDx/X(x)), and the

last equivalence in the first diagram above is induced by the isomorphism in §2.1.5.

Let ϕ∗ : Isoccuni(X log/W ) → Isoccuni(V(NDx/X(x))log/W ) denote the composi-

tion of the obvious functors above. In order to prove the proposition we first need
to give an alternative description of ϕ∗.

4.2.2. Description of ϕ∗. First we give another description of the functor

Isoccuni(X log/W )→ Isoccuni(0log/W ).(4.2.1)

We use the notation of §3.3 with Xs = X, Ds = D, vs = v etc. Let U ⊆
V(NDx/X

(x))η be a rigid analytic polydisc around zero. Endow U with the associ-

ated log structure induced from that on V(NDx/X
)η.

Let ψ : Ulog → Xη,log, be a map such that:

ψ(0) = x;(4.2.2)

ψ is a closed immersion;(4.2.3)

dψ0 : (NDx/X
)η = T0(U)→ (TxX)η is the canonical inclusion;(4.2.4)

these imply that

ψ∗0 := Cart−(Xη, (Dη)xη ) = MXη,xη
→MU,0 = Cart−(U , (Dη)(xη))(4.2.5)

is the canonical identification.
We have a map

ψ∗ : Micuni(Xη,log/K)→ Micuni(Ulog/K).

Combining this with the restriction map, we obtain

ψ∗0 : Micuni(Xη,log/K)→ Micuni(0xη,log/K).

Note that the category Micuni(0x,log/K)
∼→ Tr,uni/K does not depend, up to canon-

ical isomorphism, on the choices of the models.
Consider another choice of a model, Y,E, and y and let V ⊆ V(NEy/Y

)η, and

ψ̃ : V → Yη be another choice as above, with ψ̃(0) = yη. Then we have a map

(ψ × ψ̃)∼ : (U × V)∼log → (Xη ×Yη)∼log

induced by ψ× ψ̃. The underlying map of schemes is the identity map on the excep-
tional divisors. Note that the exceptional divisors are respectively the products of
the normal bundles of ψ∗(Dη,i)× ψ̃∗(Dη,i) and Dη,i ×Dη,i at (0, 0) and (xη, yη). If

(E,∇) ∈ Isoccuni(X log/W ) then by pulling back with (ψ× ψ̃)∼ we have a canonical

isomorphism between the pullbacks of ψ∗0(EX,∇) and ψ̃∗0(EY,∇) to the tube of the
diagonal in 0x,log×[P ] 0y,log. Here note that even though the diagonal is not defined,
the tube of the diagonal is well-defined as the tube of the diagonal after 0x,log/W
and 0y,log/W are identified by an isomorphism that induces the identity map on
the special fibers. These isomorphisms on the tubes satisfy the cocycle condition.

Therefore, given (E,∇) ∈ Isoccuni(X log/W ) and a model as above ψ∗0(EX,∇) is
a realization of the pull-back of (E,∇) to 0log, corresponding to the given model.
This gives an explicit description of the functor in (4.2.1).

To give a description of ϕ∗, we need to describe

Isoccuni(0log/W )→ Isoccuni(V(NDx/X(x))log/W ).
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Let N/W be any formal vector bundle lifting NDx/X . Then V(N) is naturally

endowed with a log structure and the equivalence

Micuni(V(N)η,log/K)→ Micuni(0log/K)
∼→ Tr,uni/K(4.2.6)

realizes the equivalence in Lemma 4.2.1.
Therefore we only need to find a tensor functor which gives an inverse (up to

isomorphism) of that in (4.2.6). The functor that sends (V, {Nj}1≤j≤r) to

(V ⊗K OV(N)η
, d−

∑
1≤j≤r

Njd log zj) ∈ Micuni(V(N)η,log/K)

does just that.

4.3. Proof of Proposition 4.2.2. We need to find a natural isomorphism be-
tween ωV(v) ◦ ϕ∗ and ω(v).

Choose a model X,D, x for (X,D, x) as above and let v ∈ N×
Dx/X

(x) be a lifting

of v. Finally, let ψ be as in §4.2.2. Then corresponding to the data (X,D, x, v) and
ψ the realization of (ωV(v) ◦ ϕ∗)(E,∇) is EX(xη).

Similarly, corresponding to the data (X,D, x, v) the realization of ω(v)(E,∇) is
also EX(xη).

This gives an obvious identification of the two fiber functors corresponding to
each data. We need to check that these identifications are compatible with the
isomorphisms on the isocrystal when we change the data.

Namely, let (Y,E, y, u) be a similar lifting of (X,D, x, v) and ψ̃ : V → Yη be as
in §4.2.2.

Then the isomorphism between ω(v)(EX,∇) = EX(xη) and ω(v)(EY,∇) =

EY(yη) is the one obtained by evaluating at [vη, uη] the isomorphism between the

pull-backs of EX and EY to the tube in (Xη ×Yη)∼.
Similarly, the isomorphism between

(ωV(v) ◦ ϕ∗)(EX,∇) = EX(xη)

and

(ωV(v) ◦ ϕ∗)(EY,∇) = EY(yη)

is the one obtained by evaluating at [vη, uη] the isomorphism between the pull-
backs of EX and EY on the tube in (V(NDx/X

) × V(NEy/Y
))∼η,log. Note that the

isomorphism between the pull-backs to the tube in (V(NDx/X
) × V(NEy/Y

))∼η,log

is obtained by pulling back via (ψ × ψ̃)∼ the isomorphism on the tube in (X ×
Y)∼η,log. However, because of condition (4.2.4) the map induced by (ψ× ψ̃)∼ on the
exceptional divisor is the identity map.

This implies that the isomorphisms between EX(xη) and EY(yη) agree in both
cases. 2

5. de Rham fundamental group of M0,5

In this section, we will construct an exact sequence that describes the de Rham
fundamental group of M0,5. In order to do this we will use the corresponding exact
sequence in the Betti case and the comparison theorem between the Betti and the
de Rham fundamental groups.
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5.1. de Rham basepoint of M0,5. We have seen in §2.2.5 that there is a de

Rham fiber functor ω(dR) if X/K has a smooth compactification X/K with the
property that H1(X,O) = 0.

Let

M0,n/Q := {(x0, · · · , xn−1) ∈ (P1)nQ|xi 6= xj , for 0 ≤ i < j ≤ n− 1}/PGL2,

where PGL2 acts diagonally by linear fractional transformations and let

M0,5 := ((P1)5 \ L)/PGL2,

where L := {(x0, · · · , x4) ∈ (P1)5| ∃ 0 ≤ i < j < k ≤ 4 with xi = xj = xk}. We

have M0,5 ⊆ M0,5 as an open subvariety with the complement a simple normal

crossings divisor. Let Dij ⊆ M0,5 denote the divisor defined by xi − xj = 0.

Let M0,5,log denote M0,5 endowed with the log structure associated to the normal

crossings divisor ∪0≤i<j≤4Dij = M0,5 \M0,5.

Since M0,5 is the blow-up of (P1)2 at three points, H1
B((M0,5)C,Z) = 0. Then

Grothendieck’s comparison theorem gives

H1
dR((M0,5)C, (O, d)) ' H1

B((M0,5)C,C) = 0.

By the Hodge decomposition, we have H1((M0,5)C,O) = 0, and since

H1(M0,5,O)⊗Q C = H1((M0,5)C,O)

we have H1(M0,5,O) = 0.
Therefore there is a de Rham fiber functor

ω(dR) : Micuni(M0,5/Q)→ VecQ

5.2. Malcev completion and the de Rham-Betti comparison theorem.
We will review the construction of Malcev completion of groups as it relates to the
comparison theorem between the de Rham and Betti fundamental groups. Gen-
eral references for this section are §9 in [7]; Appendix A in [26]; §2.5 in [20]; and
Appendice A in [9].

Let G be a (discrete) group. Denote by {Gi}i≥1 the lower central series of G, i.e.
G1 := G and Gi+1 := [G,Gi], the subgroup generated by [g, h] with g ∈ G and h ∈
Gi. Let G[N ] denote the nilpotent uniquely divisible envelope of G(N) := G/GN+1

(Corollary 3.8, p. 278, [26]). There is a canonical map j : G(N) → G[N ] which
is universal for maps of G(N) into nilpotent uniquely divisible groups. Moreover
the map j is characterized by the properties that G[N ] is nilpotent and uniquely
divisible, ker(j) is the torsion subgroup of G(N) and for every g ∈ G[N ], there exists
an n 6= 0 such that gn ∈ im(j) (see loc. cit.). G[N ] is the Malcev completion of
G(N).

For any group H and a field of characteristic zero K let K[H] denote the group
algebra over K, considered with its standard augmented Hopf algebra structure,
i.e. with the co-multiplication ∆ : K[H] → K[H] ⊗K[H] given by ∆(h) = h ⊗ h.
Let J be its augmentation ideal. Let K̂[H] be the J−adic completion of K[H].

Let G(K̂[H]) := {x ∈ 1 + Ĵ |∆(x) = x⊗̂x} the set of group-like elements in K̂[H],

and P(K̂[H]) := {x ∈ K̂[G]|∆(x) = 1⊗̂x + x⊗̂1}, the set of primitive elements in

K̂[H]. The set of group-like elements form a group under multiplication and the set
of primitive elements form a Lie algebra under commutator as bracket. Moreover
the logarithm map log : G(K̂[H])→ P(K̂[H]) induces a bijection ([20], Proposition
2.5.1). This is, of course, a bijection of pointed sets only.
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If H is a uniquely divisible nilpotent group then the natural map H → G(Q̂[H]) is
an isomorphism (Corollary 3.7, Appendix A, [26]). Therefore we obtain a bijection

H → P(Q̂[H]) of H with a Lie algebra over Q. In this case, abusing the notation,

we denote P(Q̂[H]) by Lie(H).
IfX/C is a smooth, quasi-projective complex algebraic variety then this construc-

tion applied to π1(Xan, ∗), the topological fundamental group, gives finite dimen-
sional nilpotent Lie algebras {Lie(π1(Xan, ∗)[N ])}N≥1 (§9.8, [7]). Since the functor
Lie induces an equivalence of categories between unipotent algebraic groups over Q
and finite dimensional nilpotent Lie algebras over Q (§9.1, [7]) we obtain unipotent
algebraic groups {π1(Xan, ∗)[N ]}N≥1 with Lie algebras {Lie(π1(Xan, ∗)[N ])}N≥1.

These algebraic groups satisfy π1(Xan, ∗)[N ] = π1(Xan, ∗)[N ](Q), for N ≥ 1.

Proposition 5.2.1. Let X/C be a smooth, quasi-projective variety. If π1(Xan, ∗)
denotes the pro-unipotent group that is the inverse limit of

{π1(Xan, ∗)[N ]}N≥1,

then there is a canonical isomorphism

π1,dR(X/C, ∗) ' π1(Xan, ∗)

Proof. See Proposition 10.32(b) in [7]. �

Lemma 5.2.2. The natural map π4 : M0,5 → M0,4 that sends [z0, · · · , z4] to
[z0, · · · , z3] induces an exact sequence

1→ π1,dR(Fb,C, a)→ π1,dR(M0,5,C, a)→ π1,dR(M0,4,C, b)→ 1

where a ∈M0,5(C), b := π4(a) and Fb is the fiber over b, of pro-unipotent algebraic
groups over C.

Proof. We base-change all the varieties to C. Let M := A2\{(z1, z2)|z1z2(1−z1)(1−
z2)(z1 − z2) = 0}. Then the map M → M0,5 defined by (z1, z2) → [0, 1,∞, z1, z2]
is an isomorphism. Similarly the map X := A1 \ {0, 1} → M0,4 defined by
z → [0, 1,∞, z] is an isomorphism. Under these isomorphisms π4 transforms to
(z1, z2)→ z1.

The homotopy exact sequence for the locally trivial fibration Man → Xan gives

· · · → π2(Xan, b)→ π1(F anb , a)→ π1(Man, a)→ π1(Xan, b)→ · · · .

Since Fb is connected, the map π1(Man, a)→ π1(Xan, b) is surjective. On the other
hand, Xan has the unit disc as its universal covering space (Uniformization, [12])
and hence π2(Xan, b) = 0. This gives the exactness of the sequence

1→ π1(F anb , a)→ π1(Man, a)→ π1(Xan, b)→ 1.

The projection Man → Xan has a (topological) section defined by σ(z) = (z, (1 +
|z|2)1/2). Note that the statement in the lemma remains the same if we change
a with another point a′ such that π4(a) = π4(a′). Therefore from now on we will
assume without loss of generality that a = σ(b). Then we have a splitting of the
last exact sequence defined by the map σ∗ : π1(Xan, b)→ π1(Man, a). This induces
an action of π1(Xan, b) on π1(F anb , a), by conjugation. And hence an action of
π1(Xan, b) on H1(Fb,Z).
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The injectivity of H1(F anb ,Z) → H1(Man,Z) implies, by Lemma (2.3) of [11],
that the action of π1(Xan, b) on H1(Fb,Z) is trivial. Now in this situation, Theorem
(3.1) of loc. cit implies that the induced sequences

1→ π1(F anb , a)(N) → π1(Man, a)(N) → π1(Xan, b)(N) → 1

are split exact for all N ≥ 1.
By the description of the Malcev completion we see that the same is true for the

sequences

1→ π1(F anb , a)[N ] → π1(Man, a)[N ] → π1(Xan, b)[N ] → 1.

Using the diagram

1 −→ π1(F anb , a)[N ] −→ π1(Man, a)[N ] −→ π1(Xan, b)[N ] −→ 1y y y
0 −→ Lie(π1(F anb , a)[N ]) −→ Lie(π1(Man, a)[N ]) −→ Lie(π1(Xan, b)[N ]) −→ 0

of pointed sets where the vertical arrows are the logarithm bijections imply that
the lower horizontal line is exact. Passing to the corresponding unipotent algebraic
groups we see that

1→ π1(F anb , a)[N ] → π1(Man, a)[N ] → π1(Xan, b)[N ] → 1.

is exact. To see the exactness of the inverse limit of the last sequence we only
need to note that the maps π1(F anb , a)[N+1] → π1(F anb , a)[N ] are surjective, which

follows from the surjectivity of the π1(F anb , a)(N+1) → π1(F anb , a)(N). This gives the
exactness of corresponding sequence of pro-unipotent algebraic groups

1→ π1(F anb , a)→ π1(Man, a)→ π1(Xan, b)→ 1.

Finally we use Proposition 5.2.1 to deduce the statement in the lemma. �

Lemma 5.2.3. Let b ∈ M0,4(Q). The natural map π4 : M0,5 → M0,4 induces an
exact sequence

1→ π1,dR(Fb, ω(dR))→ π1,dR(M0,5, ω(dR))→ π1,dR(M0,4, ω(dR))→ 1

of pro-unipotent algebraic groups over Q.

Proof. Let us first choose a ∈ Fb(Q). Then the previous lemma shows that the
sequence corresponding to π4,C and the basepoint a ∈M0,5(C) is exact. However we
know that if X/k is a smooth, quasi-projective variety over a field k of characteristic
zero, x ∈ X(k) and k′/k is any field extension then the natural map π1,dR(Xk′ , x)→
π1,dR(Xk, x)k′ of pro-unipotent algebraic groups over k′ is an isomorphism (10.43
Corollaire, [7]). This fact applied to the extension C/Q and the exact sequence in
Lemma 5.2.2 implies the exactness of

1→ π1,dR(Fb, a)→ π1,dR(M0,5, a)→ π1,dR(M0,4, b)→ 1

of pro-unipotent algebraic groups over Q.
In order to prove the exactness of the corresponding sequence with the de Rham

basepoint, we need to show that the pull-back maps induced by the inclusion i :
Fb →M0,5 and the projection M0,5 →M0,4 commute with the fiber functor ω(dR).

Note that i and π4 naturally extend to morphisms of log schemes: i : F b,log →
M0,5,log and π4 : M0,5,log →M0,4,log. Since the map

π4
∗ : Micuni(M0,4,log/Q)→ Micuni(M0,5,log/Q)
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commutes with the de Rham fiber functors, the same statement is true for π∗4 as
the de Rham fiber functor on Micuni(X/Q) is induced by composing the one on
Micuni(X log/Q) with the canonical extension functor can (§2.2.4, §2.2.5). The same
argument also shows that i∗ commutes with ω(dR). �

5.3. Residues. For (E,∇) ∈ Micuni(M0,5,log/Q), let ∇ij : E|Dij → E|Dij denote

the residue of∇ along Dij . Since E is a trivial bundle, ∇ij ∈ EndQ(Γ(Dij , E|Dij )) =

EndQ(ω(dR)(E,∇)). Because of the identity (2.2.1), the map that assigns ∇ij to

(E,∇) defines an element eij ∈ Lieπ1,dR(M0,5, ω(dR)).
If {i, j} ∩ {k, l} = ∅ then Dij ∩ Dkl 6= ∅. Computing the residues at the point

Dij ∩Dkl we see that [eij , ekl] = 0. Similarly, by computing the residues along the
fibers of the projections M0,5 →M0,4, we see that

∑
i eij = 0. Let

H := Lie 〈〈eij〉〉0≤i,j≤4/(eii, eij − eji,
∑
i

eij , [eij , ekl]| for {i, j} ∩ {k, l} = ∅),

with Lie 〈〈·〉〉 denoting the free pro-nilpotent Lie algebra generated by the argu-
ments. We have an obvious map H → Lieπ1,dR(M0,n, ω(dR)), which induces iso-
morphisms

H4 := 〈〈ei4〉〉0≤i≤3/(
∑
i

ei4)
∼→ Lieπ1,dR(Fb, ω(dR))

and
H/H4

∼→ Lieπ1,dR(M0,4, ω(dR)).

This implies that H → Lieπ1,dR(M0,n, ω(dR)) is an isomorphism.

5.4. Tangential basepoints on M0,4 and M0,5.
(i) Basepoints on M0,4. First consider basepoints on X := P1 \ {0, 1,∞}. For

i, j ∈ {0, 1,∞} let tij denote the unit tangent vector at the point i that points in

the direction from i to j. For example, t01 := d
dz at 0, t10 := − d

dz at 1, t∞0 := z2 d
dz

at ∞ etc. The following claim will be useful in defining tangential basepoints on
the configuration spaces.

Claim 5.4.1. For any σ ∈ Aut(X) and any i, j ∈ {0, 1,∞}, d(σ)(tij) = tσ(i)σ(j).

Proof. Explicit computation. 2

This defines tangential basepoints tij on M0,4, well-defined up to multiplication

by +
−1, for i, j ∈ {0, 1, 2, 3}, with i 6= j, in the following manner. Take k ∈ {i, j}. Fix

any isomorphism γ : M0,4 → X, and any bijection α : {0, 1, 2, 3} \ {k} → {0, 1,∞}.
Let k′ ∈ {0, 1, 2, 3} such that {k, k′} = {i, j}, and {a, b} = α({0, 1, 2, 3}\{i, j}) Then
define {+

− tij} := {((dγ−1)α(k′))(tα(k′)a), ((dγ−1)α(k′))(tα(k′)b)}. The claim above

shows the well-definedness of the tij up to sign. Note, for example, that {+
− t01} =

{+
− t23}. We will never fix the choice of signs since this is unnatural and will not be

necessary.
(ii) Basepoints on M0,5. We will define tangential basepoints on M0,5 at the

points x01,23, x01,34, x12,34, x04,12 and x04,23 where by xi1i2,j1j2 we denote the point

in M0,5 defined by xi1 = xi2 and xj1 = xj2 . Let πi : M0,5 →M0,4 denote the map
that sends [x0, · · · , xi, · · · , x4] to [x0, · · · , x̂i, · · · , x4].

Claim 5.4.2. Let 0 ≤ i1 < i2 ≤ 4 and 0 ≤ j1 < j2 ≤ 4 such that {i1, i2}∩{j1, j2} =
∅. Then the subset {t|∀k ∈ {i1, i2, j1, j2}, dπk(t) ∈ {+

− tab|0 ≤ a, b ≤ 3}} of the

tangent space Txi1i2,j1j2M0,5 has exactly four elements. The elements of this set,
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considered as a subset of Txi1i2,j1j2M0,5 ' NDi1i2/M0,5
⊕ NDj1j2/M0,5

are the pairs

(v, w) such that (d(xi2/xi1), v) = +
−1 and (d(xj2/xj1), w) = +

−1.

Proof. Elementary computation. 2

Let ti1i2,j1j2 be one of the tangent vectors at xi1i2,j1j2 as in the statement of
the claim. There are four different choices. However, in the crystalline setting, the
choice between these four points will not be important since in the normal bundle
decomposition the different choices differ only by multiplication by +

−1. Again we
are not fixing these choices.

6. p-adic integration

Our main references for p-adic integration are [5], [32], and [3]. From now on we
will restrict to the case k = Fp and hence also to W = Zp. Let X, D etc. be as in
§2.4. Let PdR := PdR(Xη/Qp) denote the de Rham fundamental groupoid of Xη/Qp
(Définitions 10.27, [7]). Through the use of the canonical extension (§2.2.4), the
fundamental groupoid naturally extends to a scheme P dR affine over Xη×Xη, whose

fiber yP dR,x over a point (y, x) ∈ Xη×Xη represents the functor IsomQp(ω(x), ω(y))

of isomorphisms from the fiber functor ω(x) to ω(y).

The equivalence Micuni(Xη/Qp) ' Isoc†uni(Xs/Zp) and the frobenius functor on
the second category induce a morphism

F∗ : yηPdR,xη → yηPdR,xη ,(6.0.1)

for x, y ∈ X(Zp). Similarly, if x, y ∈ D(Zp) and v ∈ N×
Dx/X

(x), u ∈ N×
Dy/X

(y) then

depending on these tangential basepoints (§3.3), we have a morphism

F∗ : yηP dR,xη → yηP dR,xη .(6.0.2)

6.1. The frobenius invariant path. Let Qp,st denote the ring of polynomials
Qp[l(p)], where l(p) is a formal variable. In this context, one should think of l(p) as
(a multi-valued) log p. If D(1, 1−) denotes the open p-adic disc of radius 1 centered
at 1 then log z : D(1, 1−) ∩Qp → Qp extends uniquely to a homomorphism log z :
Q∗p → Qp,st such that log p = l(p) (cf. 1.14, [32]).

There is a unique path that is left invariant by (6.0.1). Namely, Vologodsky [32],
extending the work of Coleman [5], Colmez [6], and Besser [3], shows (§4.3 and §4.4
in [32]) that:

Theorem 6.1.1. For x, y ∈ Xη(Qp), there is a unique path ycx ∈ yPdR,x(Qp,st)
such that

F∗(ycx) = ycx.(6.1.1)

Remark. For x, y ∈ X(Zp), and x := xη, y := yη, ycx ∈ yPdR,x(Qp). In this case,
F∗ is defined over Qp. Projecting ycx via the morphism Qp,st → Qp that sends l(p)
to 0 and using the uniqueness in the statement of the above theorem, we see that

ycx is, in fact, defined over Qp.
Example. (i) We will describe the frobenius invariant path on Gm/Qp. By

Lemma 4.1.1, (2.2.4) and (2.2.3), Micuni(Gm/Qp)
∼→ Tuni. With this equivalence

ycx assigns an automorphism of VQp,st := V ⊗Qp Qp,st to every pair (V,N) in Tuni.
If x, y ∈ Gm(Qp) are two points with the same finite reduction let yparx denote

the path that corresponds to the parallel transport along the connection. Then

yparx(V,N) = exp(log(y/x)N) : V → V.
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If the points do not have finite reduction then we need the construction in §4
of [32] to construct the parallel transport. Suppose that x and y have reduction
x0 ∈ {0,∞}. For (E,∇) ∈ Micuni(Gm/Qp), let Ecrys denote the corresponding
unipotent log isocrystal on P1

log and Ψun
x0

(Ecrys) denote the unipotent nearby cycles

of Ecrys (3.4, [32]) at x0.
Then the parallel transport on (E,∇) from x to y is given by the isomorphisms

(4.4 in [32]):

E(x)Qp,st ' Ψun
x0

(Ecrys)Qp,st ' E(y)Qp,st .

Following these isomorphisms gives:

yparx(V,N) = exp(log(y/x)N) : VQp,st → VQp,st .

Let ycx, for any x, y ∈ Qp be given by the above formula. We would like to show
that ycx is fixed by frobenius. If F is a lifting of the frobenius to P1

Zp with the

property that F∗((0)) = p(0) and F∗((∞)) = p(∞). In order to fix the choices
let F(z) = zp. The residue of F∗(E,∇) at 0 is p times the residue of (E,∇) at 0.
Therefore F∗ sends (V,N) to (V, pN).

For any path yγx from x to y,

F∗( yγx) = yparF(y) · F∗( yγx) · F(x)parx.

Then we have

F∗( ycx)(V,N) = ( yparF(y) · F∗( ycx) · F(x)parx)(V,N)

= exp(log(y/yp)N)exp(log(y/x)pN)exp(log(xp/x)N)

= exp(log(y/x)N)

= ycx(V,N).

Hence

ycx(V,N) = exp(log(y/x)N) : VQp,st → VQp,st .

(ii) The same kind of reasoning gives the frobenius invariant path on (Gm)r1 ×
(A1)r2 . First note that Micuni((Gm)r1 × (A1)r2)

∼→ Tr1,uni. With this equivalence
the frobenius invariant path ycx from

x := (x1, x2, · · · , xr1+r2) ∈ ((Gm)r1 × (A1)r2)(Qp)

to

y := (y1, y2, · · · , yr1+r2) ∈ ((Gm)r1 × (A1)r2)(Qp)

is given by

ycx(V,N1, · · · , Nr1) = exp(log(
y1

x1
)N1) · exp(log(

y2

x2
)N2) · · · exp(log(

yr1
xr1

)Nr1)

as an automorphism of VQp,st . 2

There is a unique path vcu satisfying (6.1.1) even when u and v are tangential
basepoints. The proof of Theorem 19 in [32] extends to this case to show the
existence and uniqueness of vcu. We will give an explicit description of this path
below, which implicitly shows its existence and uniqueness in the case of tangential
basepoints.
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6.2. Description of the limit of the frobenius invariant path. In order to
describe the path ucv when u or v is a tangential basepoint, we can choose an
ordinary basepoint y and note by the uniqueness that ucv =ucy · (vcy)−1. Therefore
it suffices to describe ucy when y is an ordinary basepoint and u a tangential
basepoint.

Let X,D etc. be as in the beginning of this section; x ∈ D(Zp). Assume that
u ∈ N×

Dη/Xη
(xη), which is not necessarily of finite reduction with respect to the

given model.
Let U ⊆ V(ND/X(x))η be a rigid analytic polydisc around zero; ψ : Ulog → Xη,log

a rigid analytic map as in §4.2.2. Recall the pull-back to the tangent space functor

ϕ∗ : Micuni(Xη/Qp)→ Micuni(V(ND/X(x))log,η/Qp)

in §4.2.1. The rigid analytic description of ϕ∗ in §4.2.2 implies that if (E,∇) ∈
Micuni(Xη/Qp) and ψ is as above then the restriction of

ψ∗(E,∇) ∈ Micuni(Ulog/Qp)

to Micuni(0log/Qp) is canonically isomorphic to the restriction of

ϕ∗(E,∇) ∈ Micuni(V(ND/X(x))log,η/Qp)

to Micuni(0log/Qp).

Lemma 6.2.1. There is a polydisc U◦ ⊆ U such that the restrictions of ϕ∗(E,∇)
and ψ∗(E,∇) to U◦log are canonically isomorphic.

Proof. Because of the above isomorphism on the restrictions

ϕ∗(E,∇)|0log → ψ∗(E,∇)|0log
to 0log; and the equivalence of categories

Micuni(V(ND/X(x))log,η/Qp)→ Micuni(0log/Qp)

by Lemma 4.1.1, to finish the proof of the lemma it suffices to show that there is
a polydisc U◦ ⊆ U such that (E,∇)|U◦ is in the essential image of the restriction
functor

Micuni(V(ND/X(x))log,η/Qp)→ Micuni(U◦log/Qp).

This follows immediately from Lemma 1 in §3.2 of [32]. �

Therefore

(ϕ∗(E,∇))(ε) is canonically isomorphic to (ψ∗(E,∇))(ε) = E(ψ(ε))

for all ε ∈ U◦ \ (D(x))η.

Notation 6.2.2. For ε sufficiently close to 0 in V(ND/X(x))η \ (D(x))η let

εγ(ψ)ψ(ε)(E,∇)

denote the above isomorphism

E(ψ(ε))
∼−−−−→ ϕ∗(E,∇)(ε)(= E(xη)),

for (E,∇) ∈ Micuni(Xη/Qp).
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Notation 6.2.3. For x ∈ D(Zp), u ∈ N×Dη/Xη
(xη), y ∈ Xη(Qp), and x := xη we let

uc(ψ)y ∈ uP dR,y(Qp,st)

denote the isomorphism between the fiber functors ω(y)⊗Qp,st and ω(u)⊗Qp,st on
Micuni(Xη/Qp) given by the limit

lim
ε→0

( ucε · εγ(ψ)ψ(ε) · ψ(ε)cy),

over ε ∈ U \ (D(x))η, where ucε denotes the canonical frobenius invariant path
satisfying (6.1.1) between ε and u in V(ND/X(x))η \ (D(x))η, and ψ(ε)cy denotes the

similar crystalline invariant path between y and ψ(ε) in Xη.

6.3. Well-definedness of uc(ψ)y. Several remarks are in order to explain the
definition and notation above. The question of the existence of the limit in Notation
6.2.3 above is completely local. Therefore we will assume without loss of generality
that

ψ : U◦log ⊆ D(0, 1−)rlog → D(0, 1−)nlog ⊆ Xη,log

is a closed immersion of logarithmic analytic spaces, where both spaces are endowed
with the log structures associated to the divisor z1 · · · zr = 0, and D(0, 1−)n reduces
to a single point (namely the reduction of x) in the special fiber. Furthermore

ψ(0) = 0 and
ψi
zi
∈ 1 + m0, for 1 ≤ i ≤ r

with ψ := (ψ1, · · · , ψn) and m0, the maximal ideal in the local ring at 0. Again,
without loss of generality, we will assume that (E,∇)|D(0,1−)n is the vector bundle
with connection associated to a vector space V and r commuting nilpotent operators
N1, · · · , Nr. Therefore we will view every path as an automorphism of VQp,st .

Note that for any a1, a2 ∈ Xη(Qp)

ucε · εγ(ψ)ψ(ε) · ψ(ε)ca2 = ucε · εγ(ψ)ψ(ε) · ψ(ε)ca1 · a1ca2
therefore when trying to prove the existence of

lim
ε→0

(ucε · εγ(ψ)ψ(ε) · ψ(ε)cy)

we will assume without loss of generality that y ∈ D(0, 1−)n. Let y := (y1, · · · , yn),
u := (u1, · · · , ur) and ε := (ε1, · · · , εr).

Lemma 6.3.1. Using the notation above,

εγ(ψ)ψ(ε) : VQp,st = ψ∗(E)(ε)Qp,st → ϕ∗(E,∇)(ε)Qp,st = VQp,st

is given by ∏
1≤i≤r

exp(Ni log(
εi

ψi(ε)
)),

for ε sufficiently small.

Proof. Because of the assumption on ψ, the expression in the statement makes
sense for ε sufficiently small, and is the identity map at 0. By direct computation,
one checks that the map induces a morphism of vector bundles with connection:

ψ∗(E,∇) = ψ∗(V,N1, · · · , Nr)→ (V,N1, · · · , Nr) = ϕ∗(E,∇)

which is the identity map at the origin and hence is the unique such map γ(ψ). �
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Because of the computation of the frobenius invariant path on (Gm)r in the
example following Theorem 6.1.1 and on small discs using the unipotent nearby
cycles functor, the limit that we are interested in is

lim
ε→0

(
∏

1≤i≤r

exp(Ni log
ui
εi

) ·
∏

1≤i≤r

exp(Ni log(
εi

ψi(ε)
)) ·

∏
1≤i≤r

exp(Ni log
ψi(ε)

yi
))

=
∏

1≤i≤r

exp(Ni log(
ui
yi

)).

Therefore the path uc(ψ)y is well-defined.

6.4. Frobenius invariance of uc(ψ)y. We would like to show that uc(ψ)y is
invariant under frobenius. Since

uc(ψ)a = uc(ψ)b · bca

and

F∗(uc(ψ)a) = F∗(uc(ψ)b) · F∗(bca) = F∗(uc(ψ)b) · bca,

we will assume without loss of generality that we are in the local situation above
with y ∈ D(0, 1−)n.

Let F be a local lifting of frobenius to X/Zp near x. Choose local coordinates
as in §6.3 with the additional property that F(D(0, 1−)n) ⊆ D(0, 1−)n. Let P(F)
denote the principal part of F as in §4.1.1.

Then by the definition of the frobenius action, for (E,∇) ∈ Micuni(Xη/Qp) and
(V,N1, · · · , Nr) associated to that as in §6.3,

F∗( ucy)(E,∇) = uparP(F)(u)(ϕ
∗(E,∇)) · ( ucy)(F∗(E,∇)) · F(y)pary(E,∇),

where on the right hand side of the equation the first par denotes parallel transport
along the connection on V(NDx/X(x))η \(D(x))η and the second one denotes parallel
transport along the connection on Xη. We temporarily omit ψ from the notation.
For ε sufficiently small we know that, by §6.3,

ucy(F∗(E,∇)) = ( ucε · εγψ(ε) · ψ(ε)cy)(F∗(E,∇))

= ucε(ϕ
∗(F∗(E,∇))) · εγψ(ε)(F∗(E,∇)) · ψ(ε)cy(F∗(E,∇))

= ucε(P(F)∗(ϕ∗(E,∇))) · εγψ(ε)(F∗(E,∇)) · ψ(ε)cy(F∗(E,∇)).

The frobenius invariance of ucε implies that

ucε(ϕ
∗(E,∇)) =

uparP(F)(u)(ϕ
∗(E,∇)) · ucε(P(F)∗(ϕ∗(E,∇))) · P(F)(ε)parε(ϕ

∗(E,∇))

and the frobenius invariance of ψ(ε)cy implies that

ψ(ε)cy(E,∇) = ψ(ε)parF(ψ(ε))(E,∇) · ψ(ε)cy(F∗(E,∇)) · F(y)pary(E,∇).

Putting these together we obtain

F∗( ucy)(E,∇) = ucε(ϕ
∗(E,∇)) · εparP(F)(ε)(ϕ

∗(E,∇)) · εγψ(ε)(F∗(E,∇)) ·

F(ψ(ε))parψ(ε)(E,∇) · ψ(ε)cy(E,∇).
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Lemma 6.4.1. The isomorphism

εγψ(ε)(F∗(E,∇)) : VQp,st = E(F(ψ(ε)))Qp,st → ϕ∗(F∗(E,∇))(ε)Qp,st = VQp,st

is given by ∏
1≤i≤r

exp(Ni log(
P(F)i(ε)

(F ◦ ψ)i(ε)
)),

where

P(F)(ε) = (P(F)1(ε), · · · ,P(F)r(ε))

and

F ◦ ψ(ε) = ((F ◦ ψ)1(ε), · · · , (F ◦ ψ)n(ε)).

Proof. Note that if F = (F1, · · · ,Fn), then we have Fi
zpi

= ai+m0 for some ai ∈ Q×p ,
for all 1 ≤ i ≤ r. We have P (F)(z1, · · · , zr) = (a1z

p
1 , · · · , arzpr ) and ψi

zi
∈ 1 + m0.

Putting all of these together we see that

P(F)i
(F ◦ ψ)i

∈ 1 + m0.

This implies that the map in the statement above makes sense for ε sufficiently
small.

Note that ϕ∗(F∗(E,∇)) is the vector bundle with connection associated to
(V, pN1, · · · , pNr). In other words it is

(V ⊗Qp O, d−
∑

1≤i≤r

pNid log(zi)) = (V ⊗Qp O, d−
∑

1≤i≤r

Nid log(P(F)i)).

It can now be checked easily that the above defined map gives an isomorphism
ψ∗(F∗(E,∇)) → ϕ∗(F∗(E,∇)), which is the identity at the origin, and hence is
the map γ as in the statement of the lemma. �

Now the lemma above gives

εparP(F)(ε)(ϕ
∗(E,∇)) · εγψ(ε)(F∗(E,∇)) · F(ψ(ε))parψ(ε)(E,∇) = εγψ(ε)(E,∇)

and hence

F∗( ucy)(E,∇) = ucε(ϕ
∗(E,∇)) · εγψ(ε)(E,∇) · ψ(ε)cy(E,∇) = ucy(E,∇).

This finishes the proof of the frobenius invariance of ucy.

Corollary 6.4.2. The path ucy(ψ) does not depend on ψ.

Proof. Let ψ′ be any other map as above that satisfies (4.2.2), (4.2.3), (4.2.4) and
(4.2.5). The frobenius invariance above gives

F∗((uc(ψ
′)y)−1 · uc(ψ)y) = F∗(uc(ψ

′)y)−1 · F∗(uc(ψ)y) = (uc(ψ
′)y)−1 · uc(ψ)y.

Therefore (uc(ψ
′)y)−1 · uc(ψ)y, being the frobenius invariant path from y to y, is

the trivial path. �

Notation 6.4.3. We let ucy := uc(ψ)y for any ψ as above. And if u and v are
any two tangential basepoints we let ucv := ucy · ycv for any basepoint y.

Corollary 6.4.4. The path ucv described above is the unique frobenius invariant
path from v to u.
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Corollary 6.4.5. Let (X/Zp,D) be as in the beginning of §6. Let x, y ∈ D(Zp) and

u ∈ N×
Dx/X

(x), v ∈ N×
Dy/X

(y).

Then the path

uηcvη ∈ uηPdR,vη (Qp,st)
is in fact defined over Qp.

Proof. The proof is exactly as in the remark following Theorem 6.1.1. We only
need to remark that when the tangential basepoints have finite reduction as above
then F∗ is defined over Qp. �

6.5. Alternative description of ucy. Let the notation be as in §6.2 with y ∈
X(Zp), x ∈ D(Zp) and u ∈ N×

Dx/X
(x); x := xη, y := yη and u := uη. Given a Qp-

vector space V and an operator T : VQp,st → VQp,st , let T̊ : V → V denote the map
induced by T on V = VQp,st/l(p)VQp,st . Let (E,∇) ∈ Micuni(Xη/Qp), ψ and U◦ be
as in §6.2.

Let

α : (ψ∗E)|U◦ → E(x)⊗Qp OU◦
be any isomorphism of the vector bundles, such that α(0) is the identity map.

Consider the following composition

α(pNu) · ψ(pNu)̊cy(E,∇) : E(y)→ E(ψ(pNu))→ E(x).

Lemma 6.5.1. With the notation as above,

lim
N→∞

α(pNu) · ψ(pNu)̊cy(E,∇) = ucy(E,∇).

Proof. The existence and the value of the limit on the left side of the equality is
independent of the choice of α with the property that α(0) is the identity map.
Below we will show the equality in the statement of the lemma for a specific choice
of α.

We know, by Lemma 6.2.1, that there is an isomorphism

ψ∗(E,∇)|U◦ → ϕ∗(E,∇)|U◦

which is the identity map on the fibers at 0. Let

α : ψ∗E|U◦ → E(x)⊗Qp OU◦

denote the underlying isomorphism of the vector bundles. We will use this choice
of α below.

Then for N sufficiently large, by the definition in §6.2, we see that

ucy(E,∇) = ucpNu(ϕ∗(E,∇)) · α(pNu) · ψ(pNu)cy(E,∇).

By the finite reduction assumptions on y and u, Corollary 6.4.5 implies that

ucy(E,∇) : E(y)Qp,st → E(x)Qp,st

is in fact induced from a map from E(y)→ E(x), i.e.

ucy(E,∇) = uc̊y(E,∇)⊗ idQp,st .

We will suppress the symbol idQp,st from now on. Therefore we have

ucy(E,∇) = uc̊y(E,∇) = uc̊pNu(ϕ∗(E,∇)) · α(pNu) · ψ(pNu)̊cy(E,∇).



36 Sinan Ünver

By the computation of the frobenius invariant path in Grm in the Example in §6.1,
we see that if ϕ∗(E,∇) corresponds to the vector bundle with connection on Grm '
V(NDx/X

)η \ (D(x))η associated to (E(y), N1, · · · , Nr) then

ucpNu(ϕ∗(E,∇)) =
∏

1≤i≤r

exp(log(p−N )Ni) =
∏

1≤i≤r

exp(−Nl(p) ·Ni),

and

uc̊pNu(ϕ∗(E,∇)) = id.

Hence for N sufficiently large

α(pNu) ·ψ(pNu) c̊y(E,∇) = ucy(E,∇),

for this special choice of α, which proves the lemma. We emphasize that for a
general α one needs to, in fact, pass to the limit. �

6.6. Description of ucy using the de Rham fiber functor. Use the above

notation, but with the additional assumption that H1(Xη,O) = 0. Note that in
this case if s is any (tangential) basepoint, there is a natural isomorphism from
ω(dR) to ω(s). Denote this by se(dR)ω(dR), its inverse by ω(dR)e(dR)s, and let

te(dR)s := te(dR)ω(dR) · ω(dR)e(dR)s.

Lemma 6.6.1. With u, y and ψ be as in §6.5, the path

ω(dR)e(dR)u · ucy · ye(dR)ω(dR) ∈ π1(Xη, ω(dR))

is equal to the limit

lim
N→∞ ω(dR)e(dR)ψ(pNu) · ψ(pNu)̊cy · ye(dR)ω(dR).

Proof. Let (E,∇) ∈ Micuni(Xη/Qp). Then the expression in the limit evaluated at

(E,∇) is the automorphism of Γ(Xη, E) that is the composition of the isomorphisms

Γ(Xη, E) −−−−→ E(y)
ψ(pNu)c̊y−−−−−−→ E(ψ(pNu)) −−−−→ Γ(Xη, E),

where the first and the last isomorphisms are the ones induced by the canonical
isomorphism

E
β−−−−→ Γ(Xη, E)⊗Qp OXη

.

Letting for α : ψ∗E|U◦ → E(x) ⊗Qp OU◦ , following the notation in §6.5, the com-
position

(β(x)−1 ⊗ (id)) ◦ ψ∗(β)

the expression in the limit evaluated at (E,∇) takes the form

ω(dR)e(dR)u · α(pNu) · ψ(pNu)̊cy(E,∇) · ye(dR)ω(dR).

Then the statement follows immediately from Lemma 6.5.1. �



Drinfel’d-Ihara relations for p-adic multi-zeta values 37

6.7. Change of tangential basepoints. In order to see that changing the tan-
gential basepoints by multiplication with roots of unity have no effect in the crystalline-
de Rham theory, we need the following lemma.

If

w ∈ N×
Dx/X

(x) =
∏

1≤i≤r

N×
Di/X

(x),

where Di, for 1 ≤ i ≤ r, are the components of D passing through x, let w :=
(w1, · · · , wr).

Lemma 6.7.1. With notation as above, if u, v ∈ N×
Dx/X

(x) is such that vi/ui ∈ Z×p
is a root of unity for every 1 ≤ i ≤ r then

vcy = ucy.

Proof. First, note that if (E,∇) ∈ Micuni(Xη/Qp) then ucy(E,∇) and vcy(E,∇)

are both isomorphims from E(y)Qp,st to E(x)Qp,st .
The local description of ucy and vcy, by using a map ψ and the local rigid analytic

trivialization (E(x), N1, · · · , Nr) of (E,∇) as in §6.3 gives immediately that

vcy =
∏

1≤i≤r

exp(log(
vi
ui

)Ni) · ucy.

Since log(ζ) = 0, if ζ is a root of unity, the statement follows. �

6.8. p-adic multi-zeta values. (§4.3, [31]) For a smooth variety X/Qp and a
(tangential) basepoint x onX, let UdR(X,x) denote the universal enveloping algebra

of the Lie algebra Lieπ1,dR(X,x) and ÛdR(X,x) denote its completion with respect
to the augmentation ideal (§4.2, [31]). It is a co-commmutative Hopf algebra and
its topological dual is the Hopf algebra of functions on π1,dR(X,x).

From now on, let X/Zp be Gm \ {1}/Zp, X = P1 and X := Xη. Let e0, e1, and
e∞ ∈ Lieπ1,dR(X/Qp, t01) denote the residues corresponding to the points 0, 1,∞
in X respectively (§5.3). Then Lieπ1,dR(X, t01) ' Lie 〈〈e0, e1, e∞〉〉/(e0 + e1 + e∞)

(§4.3, [31]) and ÛdR(X, t01) is isomorphic to the ring of associative formal power
series on e0 and e1 with the co-product ∆ given by ∆(e0) = 1 ⊗ e0 + e0 ⊗ 1, and
∆(e1) = 1⊗ e1 + e1 ⊗ 1. By the duality above, Qp-rational points of π1,dR(X, t01)
correspond to associative formal power series a in e0 and e1 with coefficients in Qp,
whose constant term is 1 and satisfies ∆(a) = a⊗ a.

We let

g := t01e(dR)t10F∗(t10e(dR)t01) ∈ π1,dR(X, t01)(Qp) ⊆ Qp〈〈e0, e1〉〉.

Using this series, we define the p-adic multi-values ζp(sk, · · · , s1) as

g[esk−1
0 e1 · · · es1−1

0 e1] =: p
∑
siζp(sk, · · · , s1).

In turn, these values determine g.

7. Drinfel’d-Ihara relations

In this section, we prove that the series g satisfies the Drinfel’d-Ihara relations.
These, of course, imply relations on p-adic multi-zeta values. The most tricky
relation is the 5-cycle relation whose proof constitutes most of the section. We
start with the 2-cycle and 3-cycle relations.
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7.1. 2-cycle relation. Letting γ := t10e(dR)t01 , and

g := g(e0, e1) = γ−1 · F∗(γ) ∈ Qp〈〈e0, e1〉〉,
we would like to see that

g(e1, e0)g(e0, e1) = 1.(7.1.1)

Let τ be the automorphism of X that maps z to 1− z. Then

τ(t01) = t10, τ∗(γ) = γ−1, τ∗(e0) = γ · e1 · γ−1, τ∗(e1) = γ · e0 · γ−1.

We have

γ · g(e1, e0) · γ−1 = τ∗(g(e0, e1)) = τ∗(γ
−1) · τ∗(F∗γ)

= τ∗(γ
−1) · F∗(τ∗(γ)) = γ · F∗(γ−1).

Therefore

g(e1, e0) = F∗(γ
−1) · γ = g(e0, e1)−1.

7.2. 3-cycle relation. In this subsection, we will prove that

g(e∞, e0)g(e1, e∞)g(e0, e1) = 1.(7.2.1)

Let δ := t∞0
e(dR)t01 , r := t1∞e(dR)t10 , and q := r · γ = t1∞e(dR)t01 .

First note that:

Lemma 7.2.1. F∗(r) = r.

Proof. Note that t10 and t1∞ are both tangent vectors at 1 with the property that
t1∞ = −t10. Let T1(X) denote the tangent space of X at 1. By the definition of
the frobenius action on tangential basepoints, all we need to show is that if

r′ := −1e(dR)1

denotes the de Rham path from 1 to -1 in Gm ' T1(X) \ {0} then

F∗(r
′) = r′.

Given

(E,∇) := (V ⊗Qp O, d−N
dz

z
) ∈ Micuni(Gm/Qp),

where N is a nilpotent operator on V, and let F(z) = zp be the lifting of the
frobenius on the special fiber to the (log) compactification of Gm/Qp,

F∗(r
′)(E,∇) = −1parF(−1)(E,∇) · F∗(r′)(E,∇) · F(1)par1(E,∇)

= exp(log((−1)p−1) ·N) = idV ,

since log(−1)p−1 = 0. This proves the claim. �

This implies that

q−1 · F∗(q) = γ−1 · r−1 · F∗(r) · F∗(γ) = γ−1 · F∗(γ) = g.

Let ω be the automorphism of X that sends z to 1
1−z . Then

ω(t01) = t1∞, ω(t1∞) = t∞0,

δ = ω∗(q) · q,
ω∗(e0) = q · e1 · q−1, ω∗(e1) = q · e∞ · q−1,

ω2
∗(e0) = ω2

∗(q)
−1 · e∞ · ω2

∗(q), ω2
∗(e1) = ω2

∗(q)
−1 · e0 · ω2

∗(q).
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Applying frobenius to

ω2
∗(q) · ω∗(q) · q = 1

we obtain

1 = ω2
∗(F∗q) · ω∗(F∗q) · F∗q = ω2

∗(F∗q) · ω∗(F∗q) · (q · q−1) · F∗q
= ω2

∗(F∗q) · ω∗(F∗q) · q · g = ω2
∗(F∗q) · ω∗(q) · ω∗(q−1 · F∗q) · q · g

= ω2
∗(F∗q) · ω∗(q) · ω∗(g) · q · g

= ω2
∗(F∗q) · ω∗(q) · q · (q−1 · ω∗(g) · q) · g

= ω2
∗(q) · ω2

∗(q
−1 · F∗q) · ω2

∗(q)
−1 · (q−1 · ω∗(g) · q) · g

= (ω2
∗(q) · ω2

∗(g) · ω2
∗(q)

−1) · (q−1 · ω∗(g) · q) · g
= g(e∞, e0) · g(e1, e∞) · g(e0, e1).

7.3. 5-cycle relation. In this section, with notation as in §5.3, we will prove the
5-cycle relation

g(e23, e34)g(e40, e01)g(e12, e23)g(e34, e40)g(e01, e12) = 1.(7.3.1)

7.3.1. The description of sct. We will use the identification

M0,5 ' (Gm \ {1})2 \ {(z1, z2)|z1z2 = 1} ⊆ A2.(7.3.2)

We will start this section by expressing the frobenius invariant path sct on M0,5

from t to s, where t is the tangent vector (1, 1) at the point (0, 0) and s is the
tangent vector (−1, 1) at the point (1, 0), where to specify tangent vectors we use
the identification of the tangent space of any point in A2 with A2.

By Lemma 6.6.1, using the obvious choices for ψ′s, we see that

ω(dR)e(dR)s · sct · te(dR)ω(dR) ∈ π1(M0,5, ω(dR))(7.3.3)

is equal to

lim
N→∞ ω(dR)e(dR)(1−pN ,pN ) · (1−pN ,pN )̊c(pN ,pN ) · (pN ,pN )e(dR)ω(dR).(7.3.4)

Let XN := A1 \ {0, 1, p−N}, and iN : XN →M0,5, the inclusion that sends z to
(z, pN ). The exact sequences of de Rham fundamental groups:

1→ π1(XN , ωdR)→ π1(M0,5, ωdR)→ π1(X,ωdR)→ 1(7.3.5)

given by Lemma 5.2.3, canonically identify the π1,dR(XN , ω(dR))’s for all N. Note
that Lie π1,dR(XN , ω(dR)) = Lie 〈〈e0, e1, ep−N 〉〉 and the identification between the
fundamental groups for varying N is the obvious one. We will denote the image of
ep−N in this identification by ep−∞ , in order to emphasize its independence of N.

Let c(XN ) denote the frobenius invariant path on XN . We have by functoriality
iN,∗( 1−pN cpN (XN )) = (1−pN ,pN )c(pN ,pN ) and hence

iN,∗( ω(dR)e(dR)1−pN · 1−pN c̊pN (XN ) · pN e(dR)ω(dR))

is equal to

ω(dR)e(dR)(1−pN ,pN ) · (1−pN ,pN )̊c(pN ,pN ) · (pN ,pN )e(dR)ω(dR).

Therefore in order to compute (7.3.3), using (7.3.4), we have to compute the limit
of the paths 1−pN c̊pN (XN ), viewed as group-like elements in Qp〈〈e0, e1, ep−∞〉〉 :
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Proposition 7.3.1. Viewed as an element of Qp〈〈e0, e1, ep−∞〉〉, the limit

lim
N→∞ ω(dR)e(dR)1−pN · 1−pN c̊pN (XN ) · pN e(dR)ω(dR),

in fact, lies in Qp〈〈e0, e1〉〉.

We will postpone the proof of this proposition to the end of this section, after
first making some remarks on Coleman integration which will be needed in the
proof. Let c denote the limit in the statement above. In the course of the proof
we will omit the concatenation of paths with ∗e(dR)ω(dR) or ω(dR)e(dR)∗ from the
notation, for simplicity.

If m := ei1 · · · ein , with eij ∈ {e0, e1, ep−∞}, we need to prove that if m includes
ep−∞ as a factor then c[m] = 0.

Lemma 7.3.2. In order to prove Proposition 7.3.1, it is sufficient to show that
c[m] = 0 for any m which ends with ep−∞ .

Proof. Note that Qp〈〈e0, e1, ep−∞〉〉 is a complete Hopf algebra with the co-product
given by

∆(ei) = 1⊗ ei + ei ⊗ 1, for ei ∈ {e0, e1, ep−∞},
and c is group-like, i. e., the constant term of c is 1 and

∆(c) = c⊗ c.(7.3.6)

Now suppose that we know that c[m0ep−∞ ] = 0, for every monomial m0 in the
ei’s. Assume that c[m′ep−∞m

′′] = 0, if the length of m′′ is less than or equal to n.
In order to show that c[m′ep−∞m

′′] = 0 for m′′ of length n + 1, let us look at the
coefficient of (m′ep−∞)⊗m′′ in (7.3.6). This coefficient is c[m′ep−∞ ] · c[m′′] = 0 on
the right hand side. On the left hand side, it is the sum of c[m′ep−∞m

′′] and of
terms of the form c[m1ep−∞m2] with length of m2 less than n+ 1, and hence equal
to 0 by the induction hypothesis. Therefore c[m′ep−∞m

′′] = 0. �

7.3.2. Coleman integration. Given x ∈ XN (Qp) consider the fundamental torsor of
paths ∗PdR,x(XN ) from x to a variable point. The frobenius invariant path ∗cx(XN )
is a section of ∗PdR,x(XN ) which induces the frobenius invariant path ∗c̊x(XN ) of
Besser [3] corresponding to the branch of the logarithm with log(p) = 0. For each

y we view yPdR,x(XN )(Qp) inside ÛdR(XN , ω(dR)) = Qp〈〈e0, e1, ep−∞〉〉, using the
usual identification of (tangential) basepoints with the de Rham basepoint.

Note that if we fix a monomialm as above, then we get a map from the underlying
analytic space XN,an of XN to Cp given by

y → y c̊x(XN )[m],

which is only locally analytic. Since the section c̊, is frobenius invariant by con-
struction, the map ∗c̊x(XN )[m] is induced by an abstract Coleman function in the
sense of Definition 4.1 and Definition 4.10 of [3]. Let us clarify this below.

Let D(a, r) and D(a, r−) denote, respectively, the closed and open discs of radius
r around a and, for 0 < r < 1, let

Ur := D(0, 1/r) \ (D(0, r−) ∪D(1, r−)).

Then following the notation of Besser [3], the proof of (Theorem 5.7, [3]) implies
that there is an 0 < r < 1 such that the restiction of ∗c̊x(XN )[m] to Ur gives
an element in M(Ur), the ring of functions on Ur which was originally defined by
Coleman in [5]. Some of the properties of M(Ur) is that:
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(i) for every f ∈M(Ur), there is a g ∈M(Ur) such that dg = fdz;
(ii) if g ∈M(Ur) satisfies dg = 0, then g is constant.
(iii) if f is a rigid analytic function on Ur that does not vanish on Ur then

log(f) ∈ M(Ur) (here we fix the branch of the logarithm with log(p) = 0, (p.40,
[3])).

Hence for any x ∈ Ur and f ∈M(Ur), the notation
∫ ∗
x
fdz can be defined as the

unique function g ∈ M(Ur) as in (i) above with the properties that dg = f dz and
g(x) = 0. As usual one defines the iterated integral∫ y

x

fndz ◦ · · · ◦ f2dz ◦ f1dz

for fi ∈M(Ur) inductively as,∫ y

x

fndt ·
( ∫ t

x

fn−1dz ◦ · · · ◦ f2dz ◦ f1dz
)
.

Lemma 7.3.3. Let m := ein · · · ei2ei1 be a monomial. If i ∈ {0, 1, p−∞}, let
ωi,N := ωi = dz

z−i , if i = 0, 1 and ωp−∞,N := dz
z−p−N on XN . Then on XN ,

y c̊x(XN )[m] =

∫ y

x

ωin,N ◦ · · · ◦ ωi2,N ◦ ωi1,N

for x, y ∈ Ur.

Proof of the lemma. Fix x ∈ Ur and think of both sides as functions of y. Since
both sides are in M(Ur), to see the equality one only needs to check that they have
the same derivative because of the property (ii) above, which is easy to check for c
is locally nothing other than the parallel transport. 2

Let D(a, r−1 , r
−
2 ) denote the open annulus around a of points z such that r1 <

|z − a| < r2. If A(D(a, r−1 , r
−
2 )) denotes the space of rigid analytic functions on

D(a, r−1 , r
−
2 ), let

Alog(D(a, r−1 , r
−
2 )) := A(D(a, r−1 , r

−
2 ))[log(z − a)],

the polynomial ring in log(z − a) over A(D(a, r−1 , r
−
2 )). This ring has the following

property: if f ∈ A(D(a, r−1 , r
−
2 )) such that f does not vanish on D(a, r−1 , r

−
2 ) then

log(f) ∈ Alog(D(a, r−1 , r
−
2 )), (Corollary 2.2.a, [5]).

By the local description of the frobenius invariant path that we gave in Example
(i) of §6.1, if we fix x and consider z c̊x(XN )[m] as a function of z ∈ D(1, 0−, 1−)
then it is an element of Alog(D(1, 0−, 1−)). By the rigidity of rigid analytic functions
the restriction

Alog(D(1, 0−, 1−))→ Alog(D(1, r−, 1−))

is injective. Therefore the restriction of ∗c̊x(XN )[m] to D(1, 0−, 1−) is completely
determined by its restriction to D(1, r−, 1−) ⊆ Ur. Since we know that the restric-
tion of ∗c̊x(XN )[m] to Ur is given by the iterated integral in M(Ur) as above, this
idea gives a way to compute z c̊x(XN ) for x ∈ Ur and z as close to 1 as desired.

Applying the same argument to xc̊w(XN ) for w close to 0, using the injection

Alog(D(0, 0−, 1−))→ Alog(D(0, r−, 1−))

gives a way to compute xc̊w(XN ). Using the fact that z c̊x(XN ) · xc̊w(XN ) =

z c̊w(XN ) this gives a way to compute z c̊w(XN ) for z near 1 and w near 0.
We will now apply this idea to compute the limit of 1−pN c̊pN (XN ), which we

denoted by c.
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Let m = ein · · · ei2ei1 . Then

y c̊x(XN )[m] =

∫ y

x

ωin,N ◦ · · · ◦ ωi2,N ◦ ωi1,N ,

for x, y ∈ Ur as in the lemma above. We continue to denote the unique extension
of this iterated integral, which satisfies the logarithmic singularities condition near
0 and 1 above, to D(0, 1/r) \ {0, 1} by the same notation. Then the expression of

y c̊x(XN )[m] as an iterated integral is valid for all x, y ∈ D(0, 1/r) \ {0, 1}.

Notation 7.3.4. For ϕ ∈ A(D(0, 1/r)), the ring of rigid analytic functions on
D(0, 1/r), and α ∈ D(0, 1/r) we let Pα(ϕ) ∈ A(D(0, 1/r)) be the unique primitive
of ϕ with Pα(ϕ)(α) = 0.

We will need a couple of lemmas to finish the proof of the proposition.

Lemma 7.3.5. Let (ϕN (z)) be a sequence of functions in A(D(0, 1/r)), which is
uniformly convergent to 0 on D(0, 1/r). Then the sequences

(P0(ϕN )(z)), (
P0(ϕN )(z)

z − p−N
) and (

Pa(ϕN )(z)

z − a
)

for a = 0, 1, are uniformly convergent to 0 on D(0, 1/r).

Proof of the lemma. If f(z) =
∑
n≥0 anz

n ∈ A(D(0, 1)), then supD(0,1)|f(z)| =

maxn≥0|an|, ([28]). Using this and noting that D(0, 1/r) = D(1, 1/r), easily gives
the statements above. 2

Let us look at the following two statements that both depend on a nonnegative
integer k :
A(k): If (ϕN (z)) is a sequence of functions in A(D(0, 1/r)) which uniformly

converges to 0 on D(0, 1/r) and if m := ein · · · ei1 is any monomial in which ep−∞
appears less than or equal to k−times then

lim
N→∞

∫ 1−pN

pN
ωin,N ◦ · · · ◦ ωi1,N ◦ ϕN (z)dz = 0.

B(k): If m := ein · · · ei1 is any monomial in which ep−∞ appears at least once
and less than or equal to k-times then

lim
N→∞

∫ 1−pN

pN
ωin,N ◦ · · · ◦ ωi1,N = 0,

i.e. c[m] = 0.
The proposition we are proving can be restated as B(k), for all k ≥ 1. We will

prove this by proving the following three staments:
(i) A(0) is true.
(ii) A(k) implies B(k + 1), for all k ≥ 0.
(iii) B(k) implies A(k), for all k ≥ 1.

Claim 7.3.6. A(0) is true.

Proof of the claim. We will prove this by induction on the length of m, which
does not contain any ep−∞ ’s.

The m = 1 case follows immediately from
∫ 1−pN

pN
ϕN (z)dz = P0(ϕN )(1− pN )−

P0(ϕN )(pN ), which converges to 0 since P0(ϕN ) converges uniformly to 0 by Lemma
7.3.5.
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Let m = ein · · · ei1 , not contain any ep−∞ ’s, and asume that we know the state-
ment for m of length less than n. Then note that∫ 1−pN

pN
ωin ◦ · · ·ωi2 ◦ ωi1 ◦ ϕN (z)dz =

∫ 1−pN

pN
ωin ◦ · · ·ωi2 ◦ (ωi1PpN (ϕN )(z)),

and using PpN (ϕN )(z) = Pi1(ϕN )(z)+P0(ϕN )(i1)−P0(ϕN )(pN ), the limit we need
to compute turns out to be∫ 1−pN

pN
ωin ◦· · ·ωi2 ◦

Pi1(ϕN )(z)

z − i1
+(P0(ϕN )(i1)−P0(ϕN )(pN ))

∫ 1−pN

pN
ωin ◦· · ·◦ωi1 .

The limit of the first integral as N → ∞ is zero by the induction hypothesis since

(
Pi1 (ϕN )(z)

z−i1 ) is uniformly convergent to zero by Lemma 7.3.5. By the same lemma

the coefficient in front of the integral
∫ 1−pN

pN
ωin ◦· · ·◦ωi1 goes to zero as well. So all

that remains is to compute the limit of the last integral. However by the description
of the limit of the frobenius invariant path in Lemma 6.6.1, we immediately see that

lim
N→∞

∫ 1−pN

pN
ωin ◦ · · · ◦ ωi1 = t10ct01 [m],

where as usual t10ct01 denotes the frobenius invariant path from the standard tan-
gent vector at 0 to the one at 1. 2

Claim 7.3.7. A(k) implies B(k + 1), for all k ≥ 0.

Proof of the claim. Let m := ein · · · ei2ei1 be a monomial that contains less
than or equal to k + 1 ep−∞ ’s. In order to show that c[m] = 0, we will assume
without loss of generality by the proof of Lemma 7.3.2 that ei1 = ep−∞ . Then

letting m = m′ep−∞ , and ϕN (z) = 1
z−p−N , which is uniformly convergent to 0 on

D(0, 1/r) as N →∞, and applying A(k) to m′ and (ϕN (z)) proves the claim. 2

Claim 7.3.8. B(k) implies A(k) for all k ≥ 1.

Proof of the claim. Let m := ein · · · ei1 be a monomial in which ep−∞ appears
less than or equal to k times. We will prove A(k), assuming B(k), by induction on
the length of m. Let (ϕN (z)) be a sequence of functions in A(D(0, 1/r)) uniformly
convergent to 0.

If m = 1 then the statement follows from
∫ 1−pN

pN
ϕN (z)dz = P0(ϕN )(1 − pN ) −

P0(ϕN )(pN ).
In general let m be as above. We are looking at the limit of∫ 1−pN

pN
ωin,N ◦ · · ·ωi1,N ◦ ϕN (z)dz.

If i1 ∈ {0, 1} then proceeding exactly as in Claim 7.3.6, using the induction hypoth-

esis and the fact that
∫ 1−pN

pN
ωin,N ◦ · · · ◦ ωi1,N goes to 0 (because of B(k)) shows

the claim.

In case i1 = p−∞ then
∫ 1−pN

pN
ωin,N ◦ · · ·ωi1,N ◦ ϕN (z)dz =∫ 1−pN

pN
ωin,N ◦· · ·◦ωi2,N ◦(

P0(ϕN )(z)

z − p−N
dz)−(P0(ϕN )(pN ))

∫ 1−pN

pN
ωin,N ◦· · ·◦ωi1,N ,

and exactly as above this goes to 0. 2
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Proof of Proposition 7.3.1. The statement in the proposition is equivalent to
B(k) for all k. B(k) follows from Claim 7.3.6, 7.3.7 and 7.3.8. 2

Since
Û(XN , ω(dR)) = Qp〈〈e0, e1, ep−∞〉〉

and
Û(X,ω(dR)) = Qp〈〈e0, e1〉〉,

the obvious inclusion Qp〈〈e0, e1〉〉 ⊆ Qp〈〈e0, e1, ep−∞〉〉 induces a map

i∗ : π1,dR(X,ωdR)→ π1,dR(XN , ωdR)→ π1,dR(M0,5, ωdR).(7.3.7)

We would like to stress that this map is not induced by a map of varieties.

Corollary 7.3.9. We have

i∗(ωdRe(dR)t10 t10ct01 t01e(dR)ωdR) = ωdRe(dR)s sct te(dR)ωdR .(7.3.8)

In other words, sct is the image of the frobenius invariant path between the tangen-
tial basepoints at 0 and 1 in X.

Proof. By Proposition 7.3.1, we see that the right hand side of the equation above
lies inside the image of i∗. If π : M0,5 → X denotes the map that sends (z1, z2)
to z1 then π∗ ◦ i∗ is the identity map. Since π∗ maps sct to t10ct01 , the corollary
follows. �

Notation 7.3.10. Let Z = M0,4 or M0,5. If a and b are tangent vectors in the
standard compactification of Z, we let

bga := ωdRe(dR)b · F∗( be(dR)a) · ae(dR)ωdR .

Corollary 7.3.11. We have

i∗(t10gt01) = sgt.

Proof. Because of the functoriality of g with respect to π : M0,5 → X, as in the
proof of the corollary above, all we need to see is that the right hand side lies in
the image of i∗.

Using the description (7.3.2), let π2 : M0,5 → X denote the second projection.
First, we would like to see that sgt maps to 1 under π2,∗ : π1,dR(M0,5, ωdR) →
π1,dR(X,ωdR). Fix an N0, and let t(N0) and s(N0) be the standard tangent vectors
at 0 and 1 on XN0 , that correspond to t01 and t10 under XN0 ⊆ X. Then π2,∗( sgt) =
π2,∗( sgs(N0) · s(N0)gt(N0) · t(N0)gt) = t01gpN0 · pN0 gt01 = 1.

Therefore, sgt ∈ Qp〈〈e0, e1, ep−∞〉〉. Let e′i := te(dR)ωdR · ei · ωdRe(dR)t. Then,
noting that pulling back by frobenius multiplies residues by p, we have

F∗(e
′
0) = pe′0, and F∗(e

′
1) = (sg

′
t)
−1 · pe′1 · sg′t,(7.3.9)

where g′ denotes the image of g under the obvious identification Qp〈〈e0, e1, ep−∞〉〉 '
Qp〈〈e′0, e′1, e′p−∞〉〉.

On the other hand, by Proposition 7.3.1,

sc
′
t := te(dR)s · sct ∈ Qp〈〈e′0, e′1〉〉,(7.3.10)

and

F∗( sc
′
t) = ( sg

′
t)
−1 · sc′t.(7.3.11)

Suppose that there is a monomialm such that ( sg
′
t)
−1[e′p−∞m] 6= 0, and letm0 be

such a monomial of smallest length. Then F∗( sc
′
t)[e
′
p−∞m0] 6= 0 by (7.3.11). On the
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other hand, (7.3.9) implies that F∗( sc
′
t)[e
′
p−∞m0] = 0. Therefore ( sg

′
t)
−1[e′p−∞m] =

0 for every monomial m, and this implies that ( sg
′
t)
−1 does not depend on e′p−∞ by

the argument in the proof of Lemma 7.3.2. This implies that sg
′
t does not depend

on e′p−∞ and hence sgt does not depend on ep−∞ . �

Using the notation in §6.8, the previous corollary can be restated as:

Corollary 7.3.12. Using the coordinates on M0,5 as in (7.3.2), let D0 and D1

denote the divisors on M0,5 that correspond to z1 = 0 and z1 = 1, respectively.
Then

sgt = g(eD0
, eD1

).(7.3.12)

7.3.3. Proof of the 5-cycle relation. Following the notation in §5.4, we choose tan-
gential basepoints ti1i2,j1j2 at xi1i2,j1j2 on M0,5. Notation 7.3.10 then defines ele-
ments:

tk1k2,l1l2
gti1i2,j1j2 ∈ π1,dR(M0,5, ω(dR)).(7.3.13)

Lemma 7.3.13. The elements in (7.3.13) depend only on the points xi1i2,j1j2 and
not on the tangent vectors at these points.

Proof. If u and v are any two of the four tangent vectors above chosen at xi1i2,j1j2
then u and v satisfy the hypothesis of Lemma 6.7.1 and hence we have vcu =

ve(dR)u. This gives that F∗(ve(dR)u) = F∗(vcu) = vcu = ve(dR)u, and hence

vgu = ωdRe(dR)v · F∗(ve(dR)u) · ue(dR)ωdR = 1.

�

Because of the previous lemma, it makes sense to let

k1k2,l1l2gi1i2,j1j2 := tk1k2,l1l2
gti1i2,j1j2 .

Claim 7.3.14. We have

i1k2,j1j2gi1i2,j1j2 = g(ei1i2 , ei1k2).

Proof. Consider the isomorphism

M0,5 → (Gm \ {1})2 \ {(z1, z2)|z1z2 = 1},

given by sending the point which has representative {xi1 , xi2 , xj1 , xj2 , xk2} to

(
xi1 − xi2
xi1 − xj1

· xk2 − xj1
xk2 − xi2

,
xj2 − xj1
xj2 − xi2

· xk2 − xi2
xk2 − xj1

).

Under this isomorphism i1k2,j1j2gi1i2,j1j2 maps to

sgt = g(eD0
, eD1

) = g(ei1i2 , ei1k2).

�

If we apply F∗ to the identity:

34,01e(dR)01,23 · 23,01e(dR)40,23 · 40,23e(dR)40,12 · 40,12e(dR)12,34 · 12,34e(dR)01,34 = 1

and use Claim 7.3.14, we obtain the 5-cycle relation:

g(e23, e34)g(e40, e01)g(e12, e23)g(e34, e40)g(e01, e12) = 1.
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d’enfants. London Math. Soc. 200 (1994).

[22] Y. Ihara: Braids, Galois groups, and some arithmetic functions. Proc. Inter. Cong. of Math.,
Kyoto 1990, Vol 1, 99-120, Springer

[23] L. Illusie: Logarithmic spaces (According to K. Kato). Barsotti Symposium in Algebraic

Geometry (Abano Terme, 1991), 183–203, Perspect. Math., 15, Academic Press, San Diego,
CA, 1994.

[24] L. Illusie: An overview of the work of K. Fujiwara, K. Kato and C. Nakayama on logarithmic
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