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Abstract. The cyclotomic p-adic multi-zeta values are the p-adic periods of
π1(Gm \ µM , ·), the unipotent fundamental group of the multiplicative group

minus theM -th roots of unity. In this paper, we compute the cyclotomic p-adic

multi-zeta values at all depths. This paper generalizes the results in [7] and [8].
Since the main result gives quite explicit formulas we expect it to be useful in

proving non-vanishing and transcendence results for these p-adic periods and

also, through the use of p-adic Hodge theory, in proving non-triviality results
for the corresponding p-adic Galois representations.

1. Introduction

There are not many examples of motives over Z. The most basic examples of
such motives are the Tate motives. Another one is the unipotent completion of
the fundamental group of the thrice punctured projective line π1(Gm \ {1}, ·), at
a suitable tangential basepoint [2]. In fact by a theorem of F. Brown, this motive
generates the tannakian category of mixed Tate motives over Z. The complex pe-
riods of π1(Gm \ {1}, ·) are Q-linear combinations of the multi-zeta values given
by

ζ(s1, s2, · · · , sk) :=
∑

0<n1<···<nk

1

ns11 n
s2
2 · · ·n

sk
k

,

for s1, · · · , sk−1 ≥ 1 and sk > 1. These values were defined by Euler and studied
by Deligne, Goncharov, Terasoma, Zagier etc.

Similarly, one can consider the unipotent fundamental group π1(Gm \ µM , ·) of
the multiplicative group minus the group µM of M -th roots of unity for M ≥ 1. If
OM denotes the ring of integers of the M -th cyclotomic field, then this fundamental
group defines a mixed Tate motive over OM [1/M ]. The periods of this motive are
linear combinations of the cyclotomic multi-zeta values∑

0<n1<···<nk

ζi1n1+···iknk

ns11 n
s2
2 · · ·n

sk
k

,

where ij , for 1 ≤ j ≤ k, are fixed integers and ζ is an M -th root of unity. These
values were studied and related to modular varieties and the theory of higher cy-
clotomy in [4].

This paper concerns the p-adic periods of the motive π1(Gm \ µM , ·). We have a
realisation map from the category of mixed Tate motives over a number field to the
category of mixed Tate filtered (ϕ,N)-modules for any non-archimedean place of
the number field [1]. Also for any (framed) mixed Tate filtered (ϕ,N)-module we
associate a period. The cyclotomic p-adic multi-zeta values (henceforth cmv’s) are
the p-adic periods associated to the mixed Tate motive defined by the unipotent
fundamental group of Gm \µM , for p -M. These values were defined in terms of the
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action of the crystalline frobenius on the fundamental group in [7], generalising the
notion of p-adic multi-zeta values (henceforth pmv’s) in [6]. In this paper we give
an explicit series representation of these p-adic periods. This is a generalisation of
[8] to the cyclotomic case.

We give an overview of the contents of the paper. In §2, we start with studying
certain types of series in terms of which the cmv’s will be expressed. These series can
be of two types, denoted by σ or γ, and are called the cyclotomic p-adic iterated sum
series (or ciss). In fact the ciss are divergent and we will need to regularise them.
The regularisation can be intuitively thought of as removing a combination of the
summands which have large p factors in the denominators that cause divergence.
More precisely, we extend the algebra of M -power series functions by adding some
highly divergent functions which we denote by σp and we show in Proposition 2.9
that the ciss are contained in this algebra. In Corollary 2.6, we show that the
{σp(s; i)}’s form a basis for this extended algebra as a module over the algebra of
M -power series functions. These two facts help us to define the regularised versions
of the ciss, denoted by σ̃ and γ̃, in Definition 2.10. The limits of these regularised
series are called the cyclotomic p-adic iterated sums (or cis), and denoted by σ
and γ. Let ζ be a primitive M -th root of unity. Let PM denote the Q(ζ)-algebra
generated by the cis, and ZM the algebra generated by the cmv. The main theorem
is

Theorem 1.1. We have the inclusion ZM ⊆ PM .

The proof of this theorem occupies the whole of §3. The proof expresses in
an inductive way every cmv as a series and should be thought of as an explicit
computation of these values.

We would like to mention that Furusho defined in [3] another p-adic version of
multi-zeta values that is essentially equivalent to ours in [6]. More precisely, the two
versions generate the same algebra and each version can be obtained from the other
one by elementary linear algebraic manipulations. This is explained in detail in [8,
Lemma 3.13]. One can also define a version of cyclotomic version of Furusho’s p-
adic multi-zeta values which will again be essentially equivalent to the above version
by the proof of [8, Lemma 3.13]. Finally, we would also like to mention that D.
Jarossay has a different explicit expression for cyclotomic p-adic multi-zeta values
in [5] obtained independently except for the dependence on [6] and [7].

Acknowledgements. This paper was written while the author was visiting H.
Esnault at Freie Universität Berlin supported by the fellowship for experienced
researchers of the Humboldt Foundation. The author thanks Prof. H. Esnault and
the Humboldt Foundation for this support.

2. Cyclotomic p-adic iterated sum series

Fix a prime p and M ≥ 1, with p - M. Let ζ be a primitive M -th root of unity,
K = Qp(ζ) and q, the cardinality of the residue field of K. For s := (s1, · · · , sk),
with 0 ≤ si; i := (i1, · · · , ik) with 0 ≤ ij < M ; and m := (m1, · · · ,mk), with
0 ≤ mi < p, let

σ(s; i;m)(n) :=
∑ ζi1n1+···iknk

ns11 · · ·n
sk
k

,
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where the sum is over 0 < n1 < n2 < · · · < nk < n with p|(ni − mi). If we let
n := (n1, · · · , nk) we will also write the numerator of the above summand as ζi·n

and the denominator as ns.

Similarly, we let γ(s; i;m)(n) := ζikn

nsk
· σ(s′; i′;m′)(n), if p|(n−mk) and 0 other-

wise, with s′ = (s1, · · · , sk−1), i′ := (i1, · · · , ik−1), and m′ = (m1, · · · ,mk−1). Let
σp(s; i)(n) := σ(s; i; 0)(n), where 0 = (0, · · · , 0). We define the depth as d(s) = k
and the weight as w(s) :=

∑
si.

We call a sequence of the form σ(s; i;m) or γ(s; i;m) a cyclotomic p-adic iterated
sum series (or ciss).

Definition 2.1. Let n ∈ N and let f : N≥n → K be any function. We say that
f is an M -power series function, if there exist power series pi(x) ∈ K[[x]], which
converge on D(0, ri) for some ri > |p|, for 0 < i ≤ pM, such that f(a) = pi(a− i),
for all a ≥ n and pM |(a− i).

Clearly there is a unique M -power series function with domain N and which
extends f. We identify two M -power series functions if they agree on their common
domains of definition. By the Weierstrass preparation theorem, the power series pi
in the above definition are unique. Fix 0 < l ≤ pM, and let f be as above. Then
there is a power series p(x) ∈ K[[x]] which converges on some D(0, r) with r > |p|
and f(lqN ) = p(lqN ), for N sufficiently large.

Example 2.2. (i) Let s ∈ Z and f(k) := ζikks, for p - k and f(k) = 0 for p|k.
Then f is an M -power series function.

(ii) Clearly the sums and products of M -power series functions are M -power
series functions.

(iii) Let f be an M -power series function. For any 0 < l ≤ pM, with p|l let

fl := lim
n→0

pM|(n−l)

f(n),

with n ranging over positive integers such that pM |(n− l), and tending to 0 in the
p-adic metric.

Let f [1] be defined by

f [1](k) =
f(k)− fl

k
,

if p|k and pM |(k− l); and f [1](k) = 0, if p - k. We then see that f [1] is an M -power
series function. In fact, if p|l, and p is a power series around 0 such that f(n) = p(n)
for all pM |(n− l) then f [1](n) = q(n), for all pM |(n− l), where

q(x) =
p(x)− p(0)

x
.

Inductively, we let f [k+1] := (f [k])[1].
(iv) Using the notation as above, let f (1) be defined by f (1)(k) := f [1](k), if p|k;

and f (1)(k) = f(k)
k , if p 6 |k. Then f (1) is also an M -power series function.

Proposition 2.3. Let f : N≥n0 → K be an M -power series function. If we define
F : N≥n0 → K by

F (n) :=
∑

n0≤k≤n

f(k)

then F is also an M -power series function.
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The following lemma on power series will be essential while we are proving the
linear independence of the σp’s.

Lemma 2.4. Let f, g ∈ K[[z]] be two power series which are convergent on D(a),
for some a > 1. Suppose that g 6= 0, and let h := f/g. If there exist aij ∈ K and
n ≥ 1 such that

h(z +M)− h(z) =
∑

1≤i≤n
0≤j<M

aij
(z + j)i

for infinitely many z ∈ D(a) then h is constant and aij = 0, for all i and j.

Proof. The proof is a generalization of the proof of [8, Lemma 2.0.2]. Note that by
the Weierstrass preparation theorem the number of poles of h on the closed unit
disc D(1) is finite. This set is nonempty if at least one aij 6= 0. Assume that this
is the case and let this set be {α1, · · · , αk}. Arrange αi so that α1 is a pole of
h(z), and hence α1 ∈ {0,−1, · · · ,−(M − 1)}. Since α1 −M is not in the last set,
it cannot be a pole of h(z + M) − h(z), but since it is a pole of h(z + M), it also
has to be a pole of h(z). Let α2 = α1 −M. Continuing in this manner we will get
αi = α1 − (i − 1)M, and that α1 − kM is a pole of h(z + M) − h(z) and hence is
in {0, · · · ,−(M − 1)}. This is a contradiction. �

Let PM denote the algebra of M -power series functions which are 0 on N \ pN.
We will consider these as functions on pN. They are functions f : pN → K such
that there exist power series pi, for 1 ≤ i ≤M, around 0 with radius of convergence
greater than |p| and which satisfy f(pk) = pi(pk) for M |(k − i). Let us consider
σp(s; i) as functions on pN as well and let PM,σ denote the module over PM

generated by the σp(s; i) in F (pN,K). This is an algebra as can be seen by using
the shuffle product formula for series.

Proposition 2.5. The algebra PM,σ is free with basis {σp(s, i)|(s, i) ∈ ∪n(N×n ×
[0,M − 1]×n)} as a module over PM .

Proof. We will prove the linear independence of the set Sm := {σp(s, i)|d(s) ≤ m},
by induction on m. For any function f : pN → K, we let δ(f) denote the function
defined by δ(f)(n) := f(n+ p)− f(n). Note that

δσp(s; i)(n) =
ζikn

nsk
σp(s

′; i′)(n).(2.1)

Let δM (f)(n) = f(n+ pM)− f(n). Then

δM (σp(s; i))(n) =
∑

0≤l<M

ζik(n+pl)

(n+ pl)sk
σp(s

′; i′)(n+ pl).(2.2)

We know the linear independence for the set S0 = {1}. Assuming that we know
the linear independence for Sm−1, we will prove it for Sm. Let us suppose that
{σp(s; i)} ∪ Sm−1 is linearly dependent over PM . Then there exists an l′ with
0 ≤ l′ < M such that we have an expression of the form

σp(s; i) =
∑
(t,j)

d(t)≤m−1

at,jσp(t; j),

which is valid for all n which satisfies pM |(n−pl′) and with at;j a quotient of power

series which converge on an open disc containing |z| ≤ |p|.
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Applying δM to the last equation we get∑
0≤l<M

ζik(n+pl)

(n+ pl)sk
σp(s

′; i′)(n+ pl) =

( ∑
(t,j)

d(t)=m−1

δM (at,j)σp(t; j) +
∑
(t,j)

d(t)<m−1

bt,jσp(t; j)
)

(n),

for n which satisfies pM |(n−pl′). From the identity (2.1) we see that σp(s
′; i′)(n+pl)

is equal to σp(s
′; i′)(n) plus a linear combination of the terms σp(t; j)(n), with

d(t) ≤ m−2 and with coefficients which are quotients of power series. This together
with the induction hypothesis implies that∑

0≤l<M

ζik(p(l
′+l))

(n+ pl)sk
= δM (as′;i′)(n),

which contradicts the lemma above.
Next we do an induction on the number of elements σp(s, i) with d(s) = m, and

as,i 6= 0. Suppose that we have a non-trivial equation∑
(s,i)

d(s)≤m

as,iσp(s, i) = 0.

By the induction assumption on m, there is an (s, i) with d(s) = m such that
as,i 6= 0. In particular, there exists an 0 ≤ l′ < M such that as,i is not the zero
function when restricted to pl′+pMN. In the remainder of the proof we will consider
all the functions as functions on pl′ + pMN. Dividing by as,i and rearranging we
get

σp(s, i) +
∑

(t,j) 6=(s,i)

d(t)=m

bt,jσp(t, j) =
∑
(t,j)

d(t)<m

bt,jσp(t, j),

where bt,j are quotients of power series. Applying δM to this equation and using

induction on the number of bt,j 6= 0 with d(t) = m we obtain δM (bt,j) = 0 for all

(t, j) with d(t) = m, hence these bt,j are constant and equal to, say ct,j .

So the last equation can be rewritten as

σp(s, i) +
∑

(t,j)6=(s,i)

d(t)=m

ct,jσp(t, j) =
∑
(t,j)

d(t)<m

bt,jσp(t, j).

Applying δM and using the induction hypothesis to compare the coefficients of
σp(s

′; i′) we obtain that

p−sk
∑

0≤l<M

ζikp(l+l
′)

(z + l)sk
+

∑
(a,b)6=(sk,ik)

c(s′,a;i′,b)
∑

0≤l<M

p−a
ζbp(l+l

′)

(z + l)a
= δM (b(s′;i′)),

where we put pz = n. The previous lemma then implies that the left hand side is
equal to 0. Putting αb := c(s;i′,b) and looking at the coefficient of 1

(z+l)sk we find

that

ζikp(l+l
′) +

∑
b 6=ik

αbζ
bp(l+l′) = 0,
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for every 0 ≤ l < M. Rephrasing we see that there exist βb ∈ K, for 0 ≤ b < M
with β0 = 1 such that ∑

0≤b<M

βbζ
lb = 0,

for every 0 ≤ l < M. This contradicts the non-vanishing of the Vandermonde
determinant for {1, ζ, · · · , ζM−1}. �

Let FM denote the algebra of M -power series functions and ι ∈ FM denote the
function that sends n to n. Let FM ( 1

ι ) be the algebra obtained by inverting ι. Note
that ι is already invertible on the components i + pN with 0 < i < p. Let FM,σ

be the module over FM generated by the σp(s; i)’s. Then by the shuffle product
formula for series, FM,σ is an algebra. Let FM,σ( 1

ι ) = FM,σ ⊗FM
FM ( 1

ι ).

Corollary 2.6. The algebra FM,σ (resp. FM,σ( 1
ι )) is free with basis {σp(s; i)|(s, i) ∈

∪n(N×n × [0,M − 1]×n)} as a module over FM (resp. FM ( 1
ι )).

Proof. For a set S, let F (S,K) denote the algebra of functions from S to K. We
have the following decomposition

F (N,K) = ⊕1≤i≤pF (pN,K),

where we send f ∈ F (N,K) to the element on the right hand side whose i-th
component is fi ∈ F (pN,K), defined by

fi(k) = f(k − p+ i),

for k ∈ pN. We have σp(s; i)i = σp(s; i), for all 1 ≤ i ≤ p, where we abuse the
notation and denote by σp(s; i) both the function on the left hand side of the equality
whose domain is N and also the function on the right hand side of the equation
which is its restriction to pN. By the definition of the power series functions, the
above decomposition gives the following decompositions:

FM = ⊕1≤i≤pPM

and
FM,σ = ⊕1≤i≤pPM,σ.

Using this, the freeness of FM,σ over FM follows from Proposition 2.0.3 and the
statement for FM,σ( 1

ι ) follows by localization. �

Definition 2.7. Let r : FM,σ → FM denote the projection with respect to the
above basis. We will denote the projection FM,σ( 1

ι ) → FM ( 1
ι ) by the same no-

tation. Similarly, let s : FM ( 1
ι ) → FM denote the projection that has the effect

of deleting the principal parts of the Laurent series expansions around 0 for the
components pN, and is identity on the components i+ pN with 0 < i < p.

Let s := (s1, · · · , sk), and t := (t1, · · · , tl). We write t ≤ s if there exists an
increasing function j : {1, · · · , l} → {1, · · · , k} such that ti ≤ sj(i), for all i.

Lemma 2.8. Let f be an M -power series function and let g be defined as

g(n) =
∑

0<a<n

f(a)σp(s; i)(a)

for some s := (s1, · · · , sk) and i := (i1, · · · , ik). Then

g =
∑
(t,j)

t≤s

ft,jσp(t, j),
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for some M -power series functions ft,j . Similarly, if h is defined as

h(n) :=
∑

0<a<n
p|a

f(a)

as
σp(s; i)(a),

for some s ≥ 1 then

h =
∑
(t,j)

t≤s′

ft,jσp(t; j),

for some M -power series functions ft,j , where s′ := (s1, · · · , sk, s).

Proof. We will prove this by induction on d(s). Suppose that d(s) = 0 and hence
σp(s; i) = 1. Then for g the assertion follows from Proposition 2.3. For 0 ≤ l < M,
let fl be the power series in K[[z]] which has the property that f(n) = fl(n) for n
such that p|n and M |(n− l). Write fl(z) =

∑
0≤i bilz

i, for |z| ≤ |p| then

h(n) =
∑

0≤l<M

∑
0≤i<s

∑
0<a<n

p|a,M|(a−l)

bil
as−i

+
∑

0<a<n

f(a),

where f is the unique M -power series function which satisfies f(n) = 0 if p - n
and f(n) =

∑
s≤i biln

i−s if p|n and M |(n − l). Then Proposition 2.3 implies that
the second sum defines an M -power series function. In order to see that h is an
M -power series functions it suffices to show that the function

t(n) :=
∑

0<a<n
p|a,M|(a−l)

1

at
,

for any 0 ≤ l < M, is a K-linear combination of the σp(t; i)’s for 0 ≤ i < M. This
follows immediately from the fact that the characters χi : Z/M → K defined by
χi(α) = ζiα are distinct for 0 ≤ i < M and hence are K-linearly independent.

Now assume the statement for all (s, i) with d(s) ≤ k and fix s := (s1, · · · , sk+1)
and i := (i1, · · · , ik+1). Let F be as in Proposition 2.3, then

g(n) = F (n− 1)σp(s; i)(n)−
∑

0<nk+1<n

p|nk+1

F (nk+1)
ζik+1nk+1σp(s

′; i′)(nk+1)

n
sk+1

k+1

and the statement follows from the induction hypothesis on h.
On the other hand, to prove the statement on h, we write h(n) =∑

0≤l<M

∑
0≤i<s

∑
0<a<n

p|a,M|(a−l)

bil
as−i

σp(s; i)(a) +
∑

0<a<n

f(a)σp(s; i)(a),

using the notation above. The second summand defines a function which is of the
form as in the statement of the lemma because of the induction hypothesis on g.
To finish the proof, it suffices to show that the function which sends n to∑

0<a<n
p|a,M|(a−l)

1

at
σp(s; i)(a)

is a K-linear combination of the functions σp(s, t; i, j), for 0 ≤ j < M. We prove
this exactly as above. �

Proposition 2.9. For any s and m, σ(s; i;m) ∈ FM,σ.
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Proof. We will prove this by induction on d(s). If d(s) = 1, then σ(s; i;m) = σp(s; i)
if m1 = 0; and σ(s; i;m) ∈ FM otherwise, by Proposition 2.3. Suppose we know
the result for d(s) ≤ k, and fix s with d(s) = k + 1.

Since

σ(s; i;m)(n) =
∑

0<a<n
p|(a−mk+1)

ζaik+1σ(s′;m′)(a)

ask+1
,

using the induction hypothesis we realize that we only need to show that functions
of the form ∑

0<a<n
p|(a−m)

f(a)

as
σp(t; j)(a),

with f an M -power series function, are in FM,σ and this is exactly the statement
of the previous lemma. �

In fact, from the proof above it follows that σ(s; i;m) is an FM -linear combina-
tion of σp(t; j) with t ≤ s.

Definition 2.10. For a function f ∈ FM,σ, let f̃ := r(f) ∈ FM . We call f̃ the
regularization of f. Since by the previous proposition σ(s; i;m) ∈ FM,σ, we let
σ̃(s; i;m) ∈ FM be its regularization and for 0 < l ≤ M, we let σ(s; i;m)[l] :=
limN→∞ σ̃(s; i;m)(lqN ) and σ(s; i;m) := σ(s; i;m)[1].

For a function f : N → K and 0 ≤ m < p, let f[m] denote the function which
is equal to f for values n which are congruent to m modulo p and is 0 other-
wise. Recall that γ(s; i;m)(n) := ζnikn−sk · σ(s′; i′;m′)[mk](n). We will define the
regularized version γ̃(s; i;m) of γ(s; i;m) as follows. If mk 6= 0, then it is de-
fined as γ̃(s; i;m)(n) = ζnikn−sk · σ̃(s′; i′;m′)[mk](n). If mk = 0, and for 0 ≤ l < M,

pl(z) = a0l+a1lz+· · · is such that σ̃(s′; i′;m′)(n) = pl(n) for p|n and M |(n−l), then
γ̃(s; i;m)(n) := ζnik(askl+ask+1,ln+· · · ), if p|n and M |(n−l) and 0 if p - n. Finally,
we let γ(t; i;m)[l] = limN→∞ γ̃(t; i;m)(lqN ) = ζlikaskl and γ(t; i;m) := γ(t; i;m)[1].

Another way to describe this is as follows. For any s, i and m, γ(s; i;m) ∈
FM,σ( 1

ι ), and γ̃(s; i;m) := s ◦ r(γ(s; i;m)).

Definition 2.11. Let PM (resp. SM , S̃M ) denote the Q(ζ)-algebra (resp. vector
space) spanned by the σ(s; i;m) (resp. σ(s; i;m), σ̃(s; i;m)) and the γ(s; i;m) (resp.
γ(s; i;m), γ̃(s; i;m)).

We call p-adic numbers of the form σ(s; i;m) or γ(s; i;m), the cyclotomic p-adic
iterated sums (or cis).

3. proof of theorem 1.1

3.1. Cyclotomic p-adic multi-zeta values. We recall notation and concepts
from [7]. Fix M ≥ 1, and p - M. Let K〈〈e0, · · · , eM 〉〉 denote the ring of non-
commutative power series in the variables e0, e1, · · · , eM . Studying the action of the
crystalline frobenius on the fundamental group of Gm \ µM , we defined, for every
1 ≤ i ≤ M, gi ∈ K〈〈e0, · · · , eM 〉〉 [7, §2.2.3]. For an element α ∈ K〈〈e0, · · · , eM 〉〉
and any monomial eI = ei1 · · · ein , let α[eI ] denote the coefficient of eI in α. If
eI = ei1 · · · ein , we call w(eI) = w(ei1 · · · ein) := n, the weight of eI . By [7, (2.2.7)],
we see that {gi[eI ]|I} = {gj [eI ]|I}, for any i, j. Therefore it makes sense to study
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only one of the gi’s. We let g := gM , and we defined the cyclotomic p-adic multi-zeta
values (or cmv) as the coefficients g[ei1 · · · ein ], and we used the notation

g[esk−10 eik · · · e
s1−1
0 ei1 ] = p

∑
siζp(sk, · · · , s1; ik, · · · , i1),

where 1 ≤ i1, · · · , ik ≤M. We call k the depth of the monomial esk−10 eik · · · e
s1−1
0 ei1

or the corresponding cmv, and denote it by d(eI).
Let UM denote the affinoid that is obtained by removing discs of radius one in

P1
K around every M -th root of unity. Let AM denote the algebra of rigid analytic

functions on UM . Then choosing the lifting F of frobenius given by F(z) = zp,
defines a corresponding element gF ∈ AM 〈〈e0, · · · , eM 〉〉. Let ω0 := dlog(z) and
ωi := dlog(z − ζi), for 1 ≤ i ≤ M. For 1 ≤ i ≤ M, let i be the unique integer
such that M |(i − pi). Then in [7, (2.2.10)], we proved the following fundamental
differential equation for gF :

dgF =
∑

eiF∗ωi · gF − gF ·
∑

pg−1i eigiωi,

where the sums are over 0 ≤ i ≤M and g0 := 1. We can rewrite this as follows,

dgF [eI ] = F∗ωagF [eI
′
]− p

∑
i,J,K

(gFg
−1
i )[eJ ]gi[e

K ]ωi(3.1)

where I = (a, I ′), and the second sum runs over J,K and 0 ≤ i ≤ M such that
(J, i,K) = I.

Let us h denote gF (∞). Then we proved the following equation in [7, (4.1.1)]
that relates h and the gi’s:

h ·
∑

g−1i eigi =
∑

ei · h,(3.2)

where the sums are over 0 ≤ i ≤M.
For α ∈ K[[z]]〈〈e0, · · · , en〉〉, and a monomial eI , note that α[eI ] ∈ K[[z]] is the

coefficient of eI in α. We let α{eI} denote the function from N to K that sends n
to the coefficient of zn in α[eI ]. If α ∈ AM 〈〈e0, · · · , en〉〉, we define α{eI} by first
viewing α in K[[z]]〈〈e0, · · · , en〉〉, by expanding around the origin.

3.2. Proof of Theorem 1.1. In order to prove Theorem 1.1, we need to show that
gi[e

I ] ∈ PM , for every monomial eI and 1 ≤ i ≤ M. We will prove this together

with the statement that gF{eI} ∈ PM · S̃M . The proof will be by induction on the
weight of eI . We will first show that gF{eI} ∈ K · SM , then we will prove in fact

that it lies in K · S̃M and finally in PM · S̃M .
We will prove the following statements together by induction on w :
(i) gF{eI} ∈ PM · S̃M , for w(I) ≤ w
(ii) h[eJ ] ∈ PM if w(J) ≤ w − 1.
and
(iii) gi[e

J ] ∈ PM if w(J) ≤ w − 1
• Let us look at the statements (i), (ii) and (iii) for w = 1.
From dgF [e0] = 0, we see that gF [e0] = 0. Similarly, from dgF [ea] = F∗ωa−pωa,

we see that

gF [ea](z) = p
∑
0<n
p-n

(ζ−az)n

n
.

From this we see that (i) is valid for w = 1; as for (ii) and (iii), they are trivially
true for w = 1.
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• Assume that we know (i), (ii) and (iii) for w. We will prove them for w replaced
with w + 1.

Note that by the induction assumption gF{eJ} ∈ PM · S̃M ⊆ K ·SM , for w(J) ≤
w. This implies that gF{eI} ∈ K ·SM , if w(I) = w+ 1, by the differential equation
(3.1).

By construction [7, §2.2.4], gF [eI ] is a rigid analytic function on UM . Therefore
by [7, Corollary 3.0.4], for any 0 ≤ l < pM, if limN→∞ lqNgF{eI}(lqN ) exists then
it is equal to 0.

Now note that by the induction assumption gF{eJ} ∈ PM · S̃M ⊆ K · S̃M ,
for w(J) ≤ w. In particular, gF{eJ} is an M -power series function. Then the
differential equation shows that the function which sends n to n · gF{eI}(n) de-
fines an M -power series function by Proposition 2.3. This implies that the limits
limN→∞ lqNgF{eI}(lqN ) exist, for any 0 ≤ l < pM, and therefore they are 0.
This together with the above fact that n · gF{eI}(n) is an M -power series function
then implies that gF{eI}(n) is an M -power series function. Therefore, we have

gF{eI} ∈ K · S̃M .
Now reinterpreting the fact that limN→∞ qNgF{eI}(qN ) = 0, using the differen-

tial equation (3.1) for dgF [eI ], we see, by the induction hypotheses and the definition
of PM , that with eI = eae

Jeb :
(a) if 1 ≤ a, b ≤M, then we get

ζ−aga[eJeb]− ζ−bgb[eaeJ ] ∈ PM
(b) If 1 ≤ a ≤M and b = 0 then

ga[eJe0] ∈ PM
(c) If 1 ≤ b ≤M and a = 0 then

gb[e0e
J ] ∈ PM .

(d) If a = b = 0, we do not get any new information.
Using (a)-(c) we immediately see the following lemma.

Lemma 3.1. If 1 ≤ i ≤M, and R is of weight w, and such that eR contains an e0
factor then gi[e

R] ∈ PM .

This lemma together with the relation (3.2) implies the statement (ii) above for
w replaced with w + 1 :

Proposition 3.2. If R has weight w, then h[eR] ∈ PM .

Proof. Now for any eR with w(R) = w(I)− 1 let us look at the coefficients of e0e
R

on both sides of the identity

h ·
∑

0≤i≤M

g−1i eigi =
∑

0≤i≤M

ei · h

to get

h[eR]− (hg−1r )[e0e
R′ ] ∈ PM

by the induction hypotheses on h and ga, where eR = eR
′
er. Again by this hypoth-

esis we see that

(hg−1r )[e0e
R′ ]− (h[e0e

R′ ]− gr[e0eR
′
]) ∈ PM .
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Noting that gr[e0e
R′ ] ∈ PM we arrive at

h[eR]− h[e0e
R′ ] ∈ PM .

Replacing eR with e0e
R′ above we see that

h[e0e
R′ ]− h[e20e

R′′ ] ∈ PM

where eR
′

= eR
′′
er′ . Proceeding in this manner and adding all the terms we obtain

h[eR]− h[ew0 ] ∈ PM ,

where w is the weight of eR. Since h[ew0 ] = h[e0]
w

w! = 0, we have

h[eR] ∈ PM .

�

Let us continue with the proof of (iii) for w replaced with w + 1. We need to
show that gi[e

J ] ∈ PM for w(J) = w. By the above we know this statement if eJ

has an e0 factor.
Suppose that R has weight w− 1 and let us look at the coefficients of eae

Reb in
the identity

h ·
∑

0≤i≤M

g−1i eigi =
∑

0≤i≤M

ei · h

to obtain

(hg−1b )[eae
R] + ga[eReb]− h[eReb] ∈ PM ,

by Proposition 3.2 and the induction assumption on gi. Simplifying further using
the same results we have

ga[eReb]− gb[eaeR] ∈ PM .(3.3)

Now we can prove (iii) for w replaced with w + 1 :

Proposition 3.3. If w(J) = w then gi[e
J ] ∈ PM for any 1 ≤ i ≤M.

Proof. We proved the statement if eJ has an e0 factor. Note that so far we have
seen that if R has weight w − 1 then for any a and b

ζ−aga[eReb]− ζ−bgb[eaeR] ∈ PM

and

ga[eReb]− gb[eaeR] ∈ PM .
This proves the statement in case eJ does not begin or end with ei. The case when
eJ = ewi is trivially true since gi[e

w
i ] = 0. In the remaining case we can write

eJ = eri e
Sece

s
i for some nonzero c 6= i and r, s ≥ 1. Applying (3.3) s-times and

adding the terms we see that

gi[e
J ]− gi[er+si eSec] ∈ PM .

Since c 6= i, by the above discussion we know that gi[e
r+s
i eSec] ∈ PM . This finishes

the proof that gi[e
J ] ∈ PM . �
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Finally, we prove the statement (i) for w replaced with w + 1. Let eI be a

monomial of weight w+1. We have seen above that gF{eI} ∈ K · S̃M . We also know

by the induction assumption that gF{eJ} ∈ PM · S̃M , for any J of weight less than
or equal to w. This, together with the fact we just proved that gi[e

J ] ∈ PM , for any
1 ≤ i ≤M and J of weight less than or equal to w, implies that all the coefficients
that appear in the differential equation for dgF [eI ] lie in PM . This implies that

gF{eI} ∈ PM · S̃M , proving the claim and finishing the proof of Theorem 1.1.
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[1] A. Chatzistamatiou, S. Ünver. On p-adic periods for mixed Tate motives over a number field.
Math. Res. Lett. 20 (2013), no. 5, 825-844.

[2] P. Deligne. Le groupe fondamental de la droite projective moins trois points. Galois Groups

Over Q, Ihara et. al., Editors (1989), 79-297.
[3] H. Furusho. p-adic multiple zeta values. I. p-adic multiple polylogarithms and the p-adic KZ

equation. Invent. Math. 155 (2004), no. 2, 253-286.

[4] A. Goncharov. Multiple ζ-values, Galois groups, and geometry of modular varieties. European
Congress of Mathematics, Vol. I (Barcelona, 2000), Progr. Math. vol. 201, Birkhäuser (2001),
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