
INFINITESIMAL BLOCH REGULATOR

SİNAN ÜNVER

Abstract. In this paper, we continue our project of defining and studying the infinitesimal

versions of the classical, real analytic, invariants of motives. Here, we construct an infinitesimal
analog of Bloch’s regulator. Let X/k be a scheme of finite type over a field k of characteristic 0.

Suppose that X ↪→ X is a closed subscheme, smooth over k, and defined by a square-zero sheaf

of ideals, which is locally free on X. We define two regulators: ρ1, from the infinitesimal part
of the motivic cohomology H2

M(X,Q(2)) of X to ker(H0(X,Ω1
X/dOX) → H0(X,Ω1

X/dOX);

and ρ2, from ker(ρ1) to H1(X,D1(OX)), where D1(OX) is the Zariski sheaf associated to the
first André-Quillen homology. The main tool is a generalization of our additive dilogarithm

construction. Using Goodwillie’s theorem, we deduce that ρ2 is an isomorphism. We also rein-

terpret the above results in terms of the infinitesimal Deligne-Vologodsky crystalline complex
D◦

X(2), when X is smooth over the dual numbers of k.

1. Introduction

Let X/C be a smooth curve over the complex numbers. The regulator map from the mo-

tivic cohomology H2
M (X,Q(2)) = K2(X)

(2)
Q to analytic Deligne cohomology H2

D(Xan,Z(2)) '
H1(Xan,C×) is fundamental both in the arithmetic [7] study of X, when it is defined over a
number field, and in the geometric study of X [3]. The construction associates to every pair f, g
of meromorphic functions on X, a line bundle with connection on Xan, such that the monodromy
at each point is given by the tame symbol of f and g at that point [2]. Using the identification
H1(X ′an,C×) = Hom(H1(X ′an,Z),C×), where X ′an is the open set where f and g are invertible,
this line bundle with connection corresponds to the homomorphism that sends the closed path
γ to

exp(
1

2πi
(

∫
γ

log f · dlog(g)− log g(p)

∫
γ

dlog(f)))

in C× [7]. Here p is an arbitrary point on X ′an and the construction is independent of the choice

of p. Since, by the Gersten resolution, K2(X)
(2)
Q = Γ(X,KM

2 (OX)Q), the above construction

gives the regulator from K2(X)
(2)
Q .

The aim of the present paper is to give a precise infinitesimal analog of this construction. In
order to do this, we first need to define the correct infinitesimal verison of the motivic cohomology
group and interpret it in terms of a Zariski sheaf. The global sections of the sheafification of KM

2

gives only a quotient of the correct cohomology group. Instead, we need need to consider the
Bloch complex of weight two, one of whose cohomology groups is KM

2 , but also has another non-
trivial cohomology group. We define these motivic cohomology groups in weights 1 and 2 in §2.
The basic set-up is a scheme X/k, over a field k of characteristic 0, together with a square-zero
sheaf of ideals such that the corresponding closed scheme X is smooth over k. We justify this
definition by relating it to the infinitesimal part of the K-theory of X, when X is smooth over
k2 := k[t]/(t2). This is done by comparing this construction to the Deligne-Vologodsky complex
in §7.

The infinitesimal complex we define is denoted by Γ◦X(2). The corresponding hypercohomology

group H2(X,Γ◦X(2)) is the analog of the group K2(X)
(2)
Q in the classical case. This very explicit

and function theoretic complex allows us to construct the infinitesimal analog of the classical
function theoretic approach above as follows.
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Suppose that A is a local k-algebra together with a square-zero ideal I such that A := A/I is a
smooth k-algebra. Then corresponding to each splitting τ of the surjection A→ A as k-algebras,
we construct, in §3, a regulator `i2,τ from B2(A) to D1(A), the André-Quillen homology of A.
We would like to think of the choice of a splitting as the analog of the choice of a path in the
classical analytic theory. We give two different but equivalent constructions, one computational,
the other one conceptual.

In order to globalize this construction, we need to compare different choices of liftings. We give
an example that this comparison is not possible unless we impose the additional hypothesis that
I is a free A-module. Before making this homotopy construction, we study the local structure
of Γ◦X(2) in detail in §4. In §5, we make this construction for an arbitrary morphism of pairs
of rings with a nilpotent ideal. This generality will allow us to deduce the functoriality of the
constructions. Based on the above analogy, this section should be thought of as the study of what
happens when one chooses a different path of integration. In §5.2, we give an explicit formula
for this homotopy map.

Letting (Ω1
X/dOX)◦ := ker(Ω1

X/dOX → Ω1
X/dOX) denote the infinitesimal part of Ω1

X/dOX
and FΓ◦X(2) an appropriate subcomplex of Γ◦X(2) defined in §2, we have the following main
theorem:

Theorem 1.0.1. Suppose that X/k is a scheme of finite type over a field k of characterictic
0. Suppose that X ↪→ X is a closed subscheme of X defined by a square-zero sheaf of ideals.
Suppose further that X is smooth over k and that the conormal sheaf of X in X is locally free.
Then we have the following regulators:

ρ1 : H2(X,Γ◦X(2))→ H0(X, (Ω1
X/dOX)◦)

and

ρ2 : H2(X,FΓ◦X(2))→ H1(X,D1(OX)),

such that ker(ρ1) = H2(X,FΓ◦X(2)) and ρ2 is an isomorphism. These maps are functorial for
arbitrary morphisms of k-schemes.

This can be thought of as the infinitesimal version of the injectivity conjecture for the Bloch
regulator [3, Conjecture 1.1]. Here, we should emphasize that the construction of ρ1 is immediate,
the content of the theorem is in the construction of ρ2 and proving that it is an isomorphism. We
would like to emphasize that the map above is completely explicit just as in the classical case.

We leave the question of finding the infinitesimal version of the above analytic bundle with
connection to future work. This requires finding the right topology to define this object and is not
directly related to the contents of this paper. Unlike the classical case above, in the infinitesimal
case, we do not need to restrict ourselves to the case of curves. A heuristic argument, based on
the conjectural Bloch-Beilinson filtration, on why we can get away without this restriction is as
follows. In the classical case, for curves, the first graded quotient Ext0M(Q(0),H2

M(X/Q,Q)(2))
is 0, whereas this may not be true for higher dimensions. On the other hand, in the infinitesimal
setting, this quotient is always 0 regardless of the dimension.

Finally, we would like to remark that this paper is part of a project of defining and studying
the infinitesimal versions of classical regulator constructions, which was started in [9].

Notation. Unless stated otherwise, all the schemes as well as the Kähler differentials, crys-
talline cohomology, cyclic homology, Hochschild homology and André-Quillen homology are rel-
ative to Q. We will always use motivic cohomology with Q-coefficients. Therefore, we always
tensor all the groups in a Bloch complex with Q even though our notation might not reflect this.
For example, Λ2A× := (Λ2

ZA
×)Q. For an A-module I, S•

AI denotes the symmetric algebra of M
over A. We remove the subscript A in this notation, if it is fixed in the context. For a ring A,
A[ denotes the set of all units a in A such that 1 − a is also a unit. For a functor F from the
category of pairs (R, I) of rings R and nilpotent ideals I to an abelian category, we let F ◦(R, I)
denote the kernel of the map from F (R, I) to F (R/I, 0). We informally refer to this object as the
infinitesimal part of F. We have the corresponding notion for the category of artin local algebras
over a field, since their maximal ideals are nilpotent.
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2. The Infinitesimal weight two motivic cohomology

Fix a field k of characteristic 0. Suppose that X/k is an scheme of finite type over k, and
I ⊆ OX , I2=0, a square-zero ideal, such that if X denotes the closed subscheme defined by I
in X, then X is a smooth variety over k. These assumptions imply that the imbedding X ↪→ X
is Zariski locally split [4, Proposition 4.4]. In this section, we will define the candidate for the
weight two infinitesimal motivic cohomology of X.

2.1. Weight one infinitesimal motivic complex. First, we will start with the trivial case of
weight one. For a regular scheme Y, the weight one motivic complex ΓY (1) is quasi-isomorphic
to O×Y [−1]. We define the complex (1+I)[−1] of Zariski sheaves on X, which is quasi-isomorphic

to the cone of the map O×X [−1] → O×X [−1] as the weight one infinitesimal motivic cohomology

complex Γ◦X(1). We define

Hi
M(X,Q◦(1)) := Hi(X,Γ◦X(1)).

2.2. Weight two infinitesimal motivic complex. For a ring A, let B2(A) denote the Q-space
generated by [x], with x ∈ A[, subject to the relations

[x]− [y] + [y/x]− [(1− x−1)/(1− y−1)] + [(1− x)/(1− y)] = 0,

for x, y ∈ A× such that (1− x)(1− y)(1− x/y) ∈ A×. Let ΓA(2) denote the Bloch complex:

B2(A)
δ−→ Λ2A×,

where δ([a]) := (1− a)∧ a and B2(A) is in degree 1. This complex was considered for local rings
in [8].

If I ⊆ A is a nilpotent ideal, we let A := A/I. Since the map from ΓA(2) to ΓA(2) is surjective,
its cone is quasi-isomorphic to

B◦2(A)
δ◦−→ (Λ2A×)◦,

which we denote by Γ◦A(2). Note that this complex in fact depends on I, but we suppress it
from the notation since I will always be clear from the context. If A is also a local ring, the
cokernel of δ◦ is KM

2 (A)◦ ' (Ω1
A/dA)◦. The composition of the map from (Λ2A×)◦ to (Ω1

A/dA)◦

is given by log dlog, which sends an element a ∧ b, with a ∈ 1 + I and b in A× to log(a)dbb . We

let F ((Λ2A×)◦) := im(δ◦), and FΓ◦A(2) the subcomplex of Γ◦A(2) which agrees with it in degree
1 and is equal to F ((Λ2A×)◦) in degree 2. Sheafifying this, we obtain the sheaves of complexes
ΓX(2), Γ◦X(2) and FΓ◦X(2) in the Zariski topology. We define

Hi
M(X,Q◦(2)) := Hi(X,Γ◦X(2)).

3. Regulator to André-Quillen homology

3.1. André-Quillen homology. We refer to [6] as a general reference for this section. Let R
be any commutative ring with unity and A an R-algebra. Let P∗ be a free simplicial R-algebra
which is a resolution of A. Then the cotangent complex L∗(A|R) of A over R is the complex,
in the derived category of complexes of A-modules, associated to the simplicial A-module whose
degree n object is given by Ln(A|R) := Ω1

Pn/R
⊗Pn A. André-Quillen homology of A over R with

coefficients in an A-module M is then given as the homology of L∗(A|R)⊗AM :

D∗(A|R,M) := H∗(L∗(A|R)⊗AM).

We denote D∗(A|R,A) by D∗(A|R).
Suppose from now on that R = Q. We then denote D∗(A|Q,M) by D∗(A,M) and D∗(A|Q)

by D∗(A). If A is a quotient of a smooth algebra B with kernel J, then the transitivity long exact
sequence for Q→ B → A gives

· · · → D1(B,A)→ D1(A)→ D1(A|B)→ D0(B,A)→ · · · .
We have D0(B,A) = Ω1

B⊗B A, and since B/Q is smooth, D1(B,A) = 0. In order to compute,
D1(A|B), we use the presentation

0→ J → B → A→ 0.
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The naive cotangent complex of A relative to B is then given by

J/J2 → Ω1
B/B = 0.

Since the naive cotangent complex is the good truncation of the cotangent complex in degree 1,
it can be used to compute the first André-Quillen homology. Therefore, D1(A|B) = J/J2. Since
the map to D0(B,A) = Ω1

B/J · Ω1
B is the natural map induced by the differentiation, by the

above exact sequence we obtain that

D1(A) = ker(J/J2 d−→ Ω1
B/J · Ω1

B).

3.2. Branch of the dilogarithm. Let A be an k-algebra, with a square-zero ideal I such that
A := A/I is smooth over k. Suppose further that τ : A → A is a splitting of the canonical
projection A → A. The main theorem of this section will be the construction of the regulator
map in this context.

Theorem 3.2.1. Associated to the splitting τ, there is a regulator map

`i2,τ : B2(A)→ D1(A),

from the Bloch group to the first André-Quillen homology of A.

We will give two different constructions of `i2,τ . The first one is in terms of explicit formulas.
The second one is more conceptual.

3.2.1. First construction. We will first construct `i2,τ using various choices and then show that
the construction is independent of these choices. Using the splitting τ we regard A as an A-
algebra. Express A as a quotient B � A of a smooth A-algebra B. Let B̂ be the completion of
B along the kernel of this map, Ĵ be the kernel of the projection B̂ � A, and Î be the inverse
image of I in B̂. We denote the structure map A → B̂ by τ̂ . Since, by assumption, I2 = 0, we
have Î2 ⊆ Ĵ .

We define a map

`i2,τ (B̂, τ̂) : Q[A[]→ ker(Ĵ/Ĵ2 → Ω1
B̂
/ĴΩ1

B̂
= Ω1

B̂/Ĵ2/ĴΩ1
B̂/Ĵ2),

by sending [a] to

−1

2

(ã− â)3

â2(â− 1)2
,

where â := τ̂(a), with a is the image of a under the map A� A, and ã is any lifting of a ∈ A to

an element in B̂. Note that the value of `i2,τ (B̂, τ̂) at [a] is 0, if a ∈ τ(A).

First, we show that the value of `i2,τ (B̂, τ̂) on [a] does not depend on the choice of the lifting

ã in B̂ and that it lands in the above subspace of Ĵ/Ĵ2.

Proposition 3.2.2. For a ∈ A[, `i2,τ (B̂, τ̂)([a]) is a well-defined element of ker(Ĵ/Ĵ2 →
Ω1
B̂
/ĴΩ1

B̂
).

Proof. Using the splittings τ and τ̂ , we will assume without loss of generality that A = A ⊕ I
and B̂ = A⊕ Ĵ .

First, let us show that the definition is independent of the choice of the lifting ã. If ã′ is another
lifting, then ã′ = ã+ α, for some α ∈ Ĵ . We need to show that

(ã′ − â)3 − (ã− â)3 = 0

in B̂/Ĵ2. Letting b̃ := ã− â ∈ Î , this is equivalent to showing that

(b̃+ α)3 − b̃3 = 0

in B̂/Ĵ2. Since α ∈ Ĵ , b̃ ∈ Î and Î2 ⊆ Ĵ , the above expression is in (Î2Ĵ + Ĵ2) ⊆ Ĵ2. This proves
the independence with respect to the choice of the lifting ã.

Since ã − â ∈ Î and Î2 ⊆ Ĵ , `i2,τ (B̂, τ̂)({a) ∈ Î3/Ĵ2 ⊆ Ĵ/Ĵ2. Therefore, the image of this

element under d lies in d(Î3) ⊆ Î2ΩB̂/Ĵ2 ⊆ ĴΩ1
B̂/Ĵ2

. This finishes the proof of the proposition. �
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We will abuse the notation and denote `i2,τ (B̂, τ̂)([a]) by `i2,τ (B̂, τ̂)(a). Next we prove that

`i2,τ (B̂, τ̂) satisfies the five-term functional equation of the dilogarithm and hence descends to
give a map from B2(A).

Proposition 3.2.3. The above function `i2,τ (B̂, τ̂) factors through the projection Q[A[] � B2(A)
to induce a map

B2(A)→ ker(Ĵ/Ĵ2 → Ω1
B̂
/ĴΩ1

B̂
).

Proof. Again, without loss of generality, we assume that A and B̂ are split as above. For x :=

a+ α ∈ A = A⊕ I with a ∈ A[ and α ∈ I, `i2,τ maps x to

−1

2

α̃3

a2(a− 1)2
,

where α̃ is any lifting of α to an element of Ĵ ⊆ B̂ = A ⊕ Ĵ . If y := b + β is a similar element,
we need to show that `i2,τ maps

[x]− [y] + [
y

x
]− [

1− x−1

1− y−1
] + [

1− x
1− y

]

to 0. Fix liftings α̃ and β̃ of α and β to Ĵ . Note that y
x = b

a + b
a (βb −

α
a ). Using the lifting b

a ( β̃b −
α̃
a )

of b
a (βb −

α
a ), we see that `i2,τ maps y

x to

−1

2

(aβ̃ − bα̃)3

(ab(a− b))2
.

Similarly, 1−x−1

1−y−1 = 1−a−1

1−b−1 + 1−a−1

1−b−1 ( a−2α
1−a−1 − b−2β

1−b−1 ) and using the lifting 1−a−1

1−b−1 ( a−2α̃
1−a−1 − b−2β̃

1−b−1 ),

we see that this is mapped to

−1

2

(b(b− 1)α̃− a(a− 1)β̃)3

(ab(a− 1)(b− 1)(a− b))2
.

Finally, 1−x
1−y = 1−a

1−b + 1−a
1−b ( β

1−b −
α

1−a ), and using the lifting 1−a
1−b ( β̃

1−b −
α̃

1−a ), we see that `i2,τ

maps 1−x
1−y to

−1

2

((b− 1)α̃− (a− 1)β̃)3

((a− 1)(b− 1)(a− b))2
.

The functional equation is then a consequence of the following identity:

α̃3

(a(a− 1))2
− β̃3

(b(b− 1))2
+

(aβ̃ − bα̃)3

(ab(a− b))2
− (b(b− 1)α̃− a(a− 1)β̃)3

(ab(a− 1)(b− 1)(a− b))2
+

((b− 1)α̃− (a− 1)β̃)3

((a− 1)(b− 1)(a− b))2
= 0.

�

Finally, we need to show how to get a map to André-Quillen homology. Note that J/J2 = Ĵ/Ĵ2

and Ω1
B/JΩ1

B = Ω1
B̂
/ĴΩ1

B̂
. Therefore, we have

ker(J/J2 → Ω1
B/JΩ1

B) = ker(Ĵ/Ĵ2 → Ω1
B̂
/ĴΩ1

B̂
).

Since B is a smooth A-algebra and A is smooth over Q, B is smooth over Q. By the discussion
in §3.1, we therefore have ker(J/J2 → Ω1

B/JΩ1
B) = D1(A). We thus obtain the map from B2(A)

to D1(A) we were looking for. We need to show that this map is independent of the choice of
the presentation B � A, where B/A is smooth. If B′ � A is another such map by considering
B ⊗A B′ � A, we may assume without loss of generality that there is a commutative triangle

B′

��     
B // // A.

Using the functoriality of the construction above, we achieve the proof of the independence.
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3.2.2. Second construction. In this subsection, we give a more conceptual construction of the
above regulator. As above, we start with a presentation B � A of A as a quotient of a smooth
A-algebra B with kernel J.

Let d : B̂ → Ω1
B̂

denote the absolute differential and d : B̂ → Ω1
B̂/A

the differential relative to

A. Note that since B̂ is considered as an A-algebra via the structure map τ̂ , the map d depends
on τ̂ even though we suppress this in the notation.

We start with defining a map

Λ2B̂×
−3·log◦τ̂ ∧dlog // Ω1

B̂/A
,

which we will integrate on the image of δ in a suitable sense. The map log◦τ̂ : B̂× → B̂ is defined

by log◦τ̂ (a) := log( a
τ̂(a) ) and dlog : B̂× → Ω1

B̂/A
by dlog(a) := d(a)

a . Then log◦τ̂ ∧dlog is the map

sending a ∧ b to log◦τ̂ (a)dlog(b)− log◦τ̂ (b)dlog(a).
We will also need the following basic lemma which implies the uniqueness of the anti-derivative

if we restrict to the infinitesimal part.

Lemma 3.2.4. The map B̂◦
d−→ Ω1

B̂/A
is injective.

Proof. We may assume without loss of generality that the spectra of A and B̂ are connected.
With this assumption, A and B̂ are an integral domains. Fix a point x of A, and let Ax̂ and B̂x̂
be the completions of A and B̂ at x. The map B̂ → B̂x̂ is then an injection. By the smoothness
assumptions, Ax̂ ' K[[x1, · · · , xn]] and B̂x̂ ' K[[x1, · · · , xn, y1, · · · , ym]]. This implies that the

kernel of the map d : B̂x̂ → Ω1
B̂x̂/Ax̂

is Ax̂, and hence the map is injective on B̂◦x̂. Combined with

the above injectivity of the completion map finishes the proof of the lemma. �

The regulator we are looking for is the map from B2(A) to ker(d) that is induced from the
diagram below.

Q[B̂[]

����

��

// // B2(B̂)

��

uuuu

��

��

δ // Λ2B̂×

−3·log◦τ̂ ∧dlog
��

Q[A[]

""

// // B2(A)

��

Ĵ �
� d //

����

Ω1
B̂/A

����
ker(d) �

� // Ĵ/Ĵ2
d // (Ω1

B̂/A
/Ĵ)◦

ker(d) �
� //

?�

OO

Ĵ/Ĵ2 d //

∼

OO

(Ω1
B̂
/Ĵ)◦

OOOO

We explain this in detail below. The map δ sends [a+ α̃], with a ∈ A and α̃ ∈ Î , to (a− 1)(1 +
α̃
a−1 ) ∧ a(1 + α̃

a ) ∈ Λ2B̂×. The image of this element under log◦τ̂ ∧dlog is

1

2

α̃2dα̃

(a− 1)2a2
+O(α̃3)dα̃.

There is a unique element

−1

2

α̃3

(a(a− 1))2
+O(α̃4) ∈ Ĵ

whose image under d is exactly

−3 · (log◦τ̂ ∧dlog)(δ({a+ α̃)).
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This element maps to − 1
2

α̃3

(a(a−1))2 ∈ Ĵ/Ĵ
2, which lies in ker(d) since α̃2 ∈ Î2 ⊆ Ĵ . This defines

a map

B2(B̂)→ ker(d).

By the definition of the Bloch group, the diagram

Q[B̂[]

����

// // B2(B̂)

����
Q[A[] // // B2(A)

is co-cartesian. Therefore, in order to prove that the map from B2(B̂) to ker(d) factors through

the projection B2(B̂)→ B2(A), it is necessary and sufficient to prove that its composition with

Q[B̂[]→ B2(B̂) factors through the projection Q[B̂[]→ Q[A[]. By the formula for the map above,

this boils down to showing that if α ∈ I and α̃ and β̃ are two different liftings to Î , then the
reductions of α̃3 and β̃3 in Ĵ/Ĵ2 are the same. This follows from β̃3−α̃3 = (β̃−α̃)(β̃2+β̃α̃+α̃2) ∈
Ĵ · Î2 ⊆ Ĵ2.

In order to show that the map is independent of the presentation, and thus defines a map to
D1(A), we can argue exactly as in the last paragraph of §3.2.1.

4. Map from cyclic homology to the Bloch group

4.1. Comparison of cyclic homology and André-Quillen homology. Suppose that A is
as in the previous section. We will, in fact, assume that A = A⊕ I, using the given splitting τ.
First we recall that cyclic homology can be computed in terms of André-Quillen homology.

Lemma 4.1.1. With A = A⊕ I as above with A smooth over k, we have

HC◦2 (A)(1) = D1(A).

Proof. Since Connes’ long exact sequence degenerates for graded algebras, we have the exact
sequence [6, Theorem 4.1.13]

0→ HC◦n−1(A)→ HH◦n(A)→ HC◦n(A)→ 0.

Using the fact that this exact sequence is compatible with λ-decomposition [6, Theorem 4.6.9]

and the fact that HC◦1 (A)(0) = 0, we deduce the isomorphism HH◦2 (A)(1)
∼−→ HC◦2 (A)(1). Finally,

by [6, Proposition 4.5.13], this part of Hochschild homology coincides with the André-Quillen
homology:

HH◦2 (A)(1) ' D◦1(A).

By the smoothness assumption D1(A) = 0 and we have the statement. �

4.2. Map from cyclic homology to the Bloch group. In order to prove the injectivity of
the regulator, we will have to first recall the natural map from cyclic homology to the Bloch
group.

4.2.1. Review of the map from cyclic homology. By [8] we have a map,

HC◦2 (A)(1) → B◦2(A).

Composing with `i2, the branch of the dilogarithm corresponding to the above splitting of A,
we obtain a map HC◦2 (A)(1) → D1(A). First we would like to give an example which shows that
this map is not always an isomorphism. In fact, in later sections this example will serve as a
counterexample to various other statements such as the generalization of the homotopy map.
Because of this example, we will have to add the assumption that I is a free A-module in order
to prove the injectivity of the regulator.
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Example 4.2.1. By the formula for `i2, for a ∈ A, α ∈ A and λ ∈ Q, we have `i2(a + λα) =
λ3`i2(a + α). Therefore, if tλ : A → A denotes the ring homomorphism defined by tλ(a + α) :=
a+ λα, and tλ,∗ is the induced map on B2(A), then `i2(tλ,∗(q)) = λ3`i2(q), for any q ∈ B2(A).

Let A = Q[x], and A := A[t]/(xt, t2) denote the square-zero infinitesimal thickening of A.
Letting B := A[t] and J := (xt, t2), we have a presentation 0→ J → B → A→ 0, which can be
used to compute D1(A) as

D1(A) = ker(J/J2 → Ω1
B/J).

The element xt2 in ker(J/J2 → Ω1
B/J) = D1(A) is non-zero and corresponds to a multiple of

t ⊗ x ⊗ t in HC◦2 (A)(1). In particular, this element in cyclic homology is nonzero. Let q be its
image in B2(A). Note that tλ,∗(q) = λ2q. Comparing with the above formula, we obtain that

λ3`i2(q) = λ2`i2(q). Therefore, `i2(q) = 0 and `i2 is not injective on HC◦2 (A)(1).

4.2.2. Injectivity of the regulator on cyclic homology. Suppose further in this section that I is
a free A-module. Note that since I2 = 0, this is equivalent to assuming that the conormal
module associated to the projection A → A be a free A-module. Using a splitting, without loss
of generality, we are in the above situation A = A⊕ I, with I a free A-module.

Let S•(I) denote the symmetric algebra of I, Ĩ the augmentation ideal and J := Ĩ2. Since
S•(I) is smooth over A and the sequence 0→ J → S•(I)→ A→ 0 is a presentation of A, D1(A)
is given by

ker(J/J2 → Ω1
S•(I)/J) = Ĩ3/Ĩ4

∼←− S3(I).

Therefore, we have an isomorphism HC◦2 (A)(1) ' S3(I).
On the other hand, there is another natural map defined as follows. Let σ be the 3-cycle

(123), and C3 := 〈σ〉 the subgroup of S3 generated by σ. C3 naturally acts on I⊗3, with the
rule that σ sends a⊗ b⊗ c to c⊗ a⊗ b. Let I⊗3/(1− σ) denote the group of co-invariants with
respect to this action. The natural map I⊗3/(1 − σ) → HC◦2 (A)(1) factors via the projection
I⊗3/(1− σ) � I⊗A3/(1− σ). Therefore, we obtain a map

I⊗A3/(1− σ)→ HC◦2 (A)(1).

Composing with the map

S3(I) ↪→ I⊗A3/(1− σ)

which sends a⊗ b⊗ c to 1
2 (a⊗ b⊗ c+ a⊗ c⊗ b), we obtain a map

S3(I)→ HC◦2 (A)(1).

This map, being a non-zero constant multiple of the above map, is an isomorphism.
Let us now look at the composition

S3(I)
∼−→ HC◦2 (A)(1) → B2(A)→ D1(A) ' S3(I).

Proposition 4.2.2. The above composition S3(I)→ S3(I) is multiplication by 3.

Proof. The arguments in this proof are analogous to those of [8, §4]. We need to compute the
image of the element a⊗ b⊗ c in I⊗3 under the above composition. This element is mapped to
the 3-cycle βabc := ae12 ∧ be23 ∧ ce31 in the homology of gl3(A). In C∗(gl3(A)), we have

d(e13 ∧ ae12 ∧ be21 ∧ ce31) = −βabc + γabc − ae12 ∧ be21 ∧ ce33,

where γabc := ae12 ∧ be21 ∧ ce11. We claim that the image of the term ae12 ∧ be21 ∧ ce33 is equal
to 0. Since

d(e12 ∧ ae11 ∧ be21 ∧ ce33) = −ae12 ∧ be21 ∧ ce33 + ae11 ∧ be11 ∧ ce33 − ae11 ∧ be22 ∧ ce33,

it suffices to show that the images of ae11 ∧ be11 ∧ ce33 and ae11 ∧ be22 ∧ ce33 are 0. In order to
see this, note that these elements can be lifted to cycles ãe11 ∧ b̃e11 ∧ c̃e33 and ãe11 ∧ b̃e22 ∧ c̃e33
in C∗(gl3(S•(I))), which immediately implies that their images in S3(I) are 0 as in the proof of
[8, Lemma 4.2.1]. Therefore, the image of βabc coincides with that of γabc.



INFINITESIMAL BLOCH REGULATOR 9

Note that γabc is a 3-cycle in C∗(gl2(A). In order to compute its image, we start with a lifting

of this element to an element in C∗(gl2(S•(I))). Let γ̃abc := ãe12 ∧ b̃e21 ∧ c̃e11 be such a lifting.
Its boundary is equal to

d(γ̃abc) = ãb̃e11 ∧ c̃e11 − ãb̃e22 ∧ c̃e11 + ãc̃e12 ∧ b̃e21 − ãe12 ∧ b̃c̃e21.(4.2.1)

By the choice of the vectors v1 = (1, 1), v2 = (0, 1) and v3 = (1, 0), we deduce as in [8, Lemma

4.2.4] that the image of ãb̃e11 ∧ c̃e11 in Λ2Ŝ•(I)× is equal to 0. Note that after obtaining the

image of d(γ̃abc) in Λ2Ŝ•(I)×, we apply −3 log◦ ∧dlog to get an element in Ω1
Ŝ•(I)/A

.

In order to compute the image of γabc in S3(I) = Ĩ3/Ĩ4, we need to find the element in Ŝ•(I)

which maps to the image of this element in Ω1
Ŝ•(I)/A

and then reduce it modulo Ĩ4.

First let us study the images of terms of the type αe11 ∧ βe22, with α ∈ Ĩ and β ∈ Ĩ2. This is
mapped to the element

3(log◦ ∧dlog)(exp(α) ∧ exp(β)) + Ĩ3d(Ĩ) = 3(αdβ − βdα) + Ĩ3d(Ĩ),

in Ω1
Ŝ•(I)/A

/Ĩ3d(Ĩ), by the same computation in [8, Lemma 4.2.6].

With the same α and β, αe12 ∧ βe21 is mapped to

−3(log◦ ∧dlog)(exp(−α) ∧ exp(−β)) + Ĩ3d(Ĩ) = −3(αdβ − βdα) + Ĩ3d(Ĩ)

in Ω1
Ŝ•(I)/A

/Ĩ3d(Ĩ), by the same computation as in [8, Lemma 4.2.7].

Applying the above formulas to the expression (4.2.1) of d(γ̃abc), we deduce that the image of

d(γ̃abc) in Ω1
Ŝ•(I)/A

/Ĩ3d(Ĩ) is −3 times

−c̃ · d(ãb̃) + ãb̃ · d(c̃) + ãc̃ · d(b̃)− b̃ · d(ãc̃)− ã · d(b̃c̃) + b̃c̃ · d(ã) + Ĩ3d(Ĩ) = −d(ãb̃c̃) + Ĩ3d(Ĩ).

By reducing the anti-derivative of this element modulo Ĩ4, we conclude that the image of γabc in
Ĩ3/Ĩ4 is 3ãb̃c̃. This finishes the proof of the proposition. �

Corollary 4.2.3. Suppose that A is a local k-algebra with a square-zero ideal I such that I is
free over A = A/I and A/k is smooth. If τ : A → A is a splitting of the canonical projection,
then the composition

HC◦2 (A)(1) → B◦2(A)
`i2,τ−−−→ D1(A)

is an isomorphism.

Proof. Using the splitting τ, we reduce to the case when A = A ⊕ I, with I a free A-module.
The statement is then a consequence of the above proposition. �

5. Homotopy map

In this section, we would like to compare the different branches of the dilogarithm correspond-
ing to different splittings. First, we give an example that this is not possible for all square-zero
extensions.

Example 5.0.1. Assume the same notation as in Example 4.2.1. Let τ be the splitting of A
corresponding to the direct sum decomposition A = A ⊕ I, where I = (t), and σ : A → A the
splitting such that σ(x) = x+t. Let q be the image of the element t⊗x⊗t ∈ HC◦2 (A)(1) in B◦2(A).
We have seen in Example 4.2.1 that `i2,τ (q) = 0. In order to compute `i2,σ(q), by an elementary
transport of structure, we see that `i2,σ(q) = `i2,τ (q′), where q′ is the image of t⊗ (x− t)⊗ t ∈
HC◦2 (A)(1) in B◦2(A). If q′′ is the image of t ⊗ t ⊗ t ∈ HC◦2 (A)(1) in B◦2(A), then q′ = q − q′′.
By Proposition 4.2.2, we have `i2,τ (q′) = `i2,τ (q)− `i2,τ (q′′) = −`i2,τ (q′′) = −3t3 ∈ (t3)/(t4). In
particular, since the last element is non-zero, `i2,τ (q) 6= `i2,σ(q). Note that that q ∈ ker(δ), but
the different branches of the dilogarithm do not necessarily have the same value on q. We will
see below that this cannot happen if I is a free A-module as in §4.2.2.
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Let Ai, for i = 1, 2, be k-algebras, with square-zero ideals Ii, as in §4.2.2. Suppose that
f : A1 → A2 is a k-algebra homomorphism and that

τ1 : A1 → A1

and

τ2 : A2 → A2,

are splittings of k-algebras. We do not require that f be compatible with the τi’s. Namely, if
f : A1 → A2 denotes the map induced by f, then f ◦ τ1 is not necessarily equal to τ2 ◦ f.

We would like to define a map

hf (τ1, τ2) : F ((Λ2A×1 )◦)→ D1(A2),

with the property that, for every α ∈ B◦2(A1), we have

`i2,τ2(f(α))− f∗(`i2,τ1(α)) = hf (τ1, τ2)(δ(α)).(5.0.1)

This proved in Propostion 5.1.3 below. This map is a measure of the defect between f ◦ τ1 and
τ2 ◦ f. In the sense that, hf (τ1, τ2) is 0 if f ◦ τ1 = τ2 ◦ f. An explicit formula for this map is given
in Proposition 5.2.1.

5.1. Construction of hf (τ, σ). In this section, we will construct the above mentioned homotopy.

Let Bi denote the symmetric algebra S•

Ai
(Ii) of the free Ai-module Ii and B̂i its completion along

the augmentation ideal. Let τ̂i : Ai → B̂i denote the structure map. There is a natural surjection

B̂i → Ai, with kernel Ĵi, which is the square of the augmentation ideal Îi.

Lemma 5.1.1. There is a map f̂ : B̂1 → B̂2 which makes the diagram:

B̂1

����

f̂ // B̂2

����
A1

f // A2

commute. We do not require that f̂ be compatible with τ̂i, in the sense above.

Proof. Since we do not require compatibility with the τi’s, we will assume, without loss of gen-
erality, that Ai = Ai⊕ Ii are split. In this setting, f need not map A1 ⊆ A1 into A2 ⊆ A2. Since

A1/k is smooth we can lift the map A1 → A2 = B̂2/Î
2
2 , using successive thickenings, to a map

A1 → B̂2. We can extend this to a map B1 → B̂2 by sending α ∈ I1 to f(α) ∈ I2 ⊆ B̂2. This
factors through the completion to give a map as in the statement of the lemma. �

The map f̂ is not unique. We will first define a map

hf̂ (τ̂1, τ̂2) : F ((Λ2(B̂1/Ĵ
2
1 )×)◦)→ B̂◦2/Ĵ

2
2 .

Let F ((Λ2B̂×1 )◦) := ker((Λ2B̂×1 )◦ → (Ω1
B̂1
/dB̂1)◦). Note that since B̂1 is not an artin ring,

F ((Λ2B̂×1 )◦) need not coincide with the image of δ◦.
We have the following diagram:

F ((Λ2B̂×1 )◦)

log◦τ̂1
∧dlog

��yy

// // F ((Λ2(B̂1/Ĵ
2
1 )×)◦)

uu

B̂◦1

����

� � d // Ω1
B̂1/A1

B̂◦1/Ĵ
2
1 .
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Therefore, given α̃ ∈ F ((Λ2(B̂1/Ĵ
2
1 )×)◦), we can define

d−1(log◦τ̂1 ∧dlog)(α̃) ∈ B̂◦1/Ĵ2
1 .

We have a similar diagram for B̂2 and τ̂2 and since f̂(α̃) ∈ F ((Λ2(B̂2/Ĵ
2
2 )×)◦),

d−1(log◦τ̂2 ∧dlog)(f̂(α̃)) ∈ B̂◦2/Ĵ2
2 .

Finally, we let hf̂ (τ̂1, τ̂2)(α̃) to be −3 times the element

d−1(log◦τ̂2 ∧dlog)(f̂(α̃))− f̂(d−1(log◦τ̂1 ∧dlog)(α̃)) ∈ B̂◦2/Ĵ2
2 .

The following diagram

B◦2(B̂1/Ĵ
2
1 ) // //

����

F ((Λ2(B̂1/Ĵ
2
1 )×)◦)

����

hf̂ (τ̂1,τ̂2)

''
B◦2(A1)

`i2,τ2◦f∗−f∗◦`i2,τ1
((

// // F ((Λ2A×1 )◦)

hf (τ1,τ2)

��

B̂◦2/Ĵ
2
2

D1(A2)
) 	

77

then defines hf (τ1, τ2). Let us first show the commutativity of the outer pentagon.

Lemma 5.1.2. The two maps from B◦2(B̂1/Ĵ
2
1 ) to B̂◦2/Ĵ

2
2 in the above diagram are the same.

Proof. The definition of hf̂ (τ̂1, τ̂2) �

The following proposition then finishes the construction of hf (τ1, τ2) :

Proposition 5.1.3. The map

`i2,τ2 ◦ f∗ − f∗ ◦ `i2,τ1 : B◦2(A1)→ D1(A2)

factors via δ◦ : B◦2(A1)→ F ((Λ2A×1 )◦) to give hf (τ1, τ2).

Proof. We need to show that elements in the kernel of δ◦ are mapped to 0 by the above map.
We will assume, without loss of generality, that Ai are local rings. Then the map HC◦2 (A1)(1) →
B◦2(A1) surjects onto ker(δ◦) [8]. Therefore, the statement reduces to the commutativity of the
following diagram:

HC◦2 (A1)(1)

`i2,τ1
��

// HC◦2 (A2)(1)

`i2,τ2
��

D1(A1) // D1(A2).

When the source and target of `i2,τi are identified with S3(Ii), through natural morphisms, this
map corresponds to multiplication by 3, by Proposition 4.2.2. This proves the commutativity of
the diagram and finishes the proof of the lemma. �

5.2. Explicit computation of hf (τ1, τ2). We continue to use the notation of the previous
section. Using the splittings, without loss of generality, we assume that Ai = Ai ⊕ Ii and

Bi = S•(Ii). Recall that f̂ : B̂1 → B̂2 is a lifting of f. If a ∈ B̂1 is a homogenous element of

degree n, then we let f̂i(a) be defined by f̂ =
∑

0≤i f̂i(a), with f̂i(a) homogenous of degree n+ i.

If f is compatible with the splittings, we can choose f̂ so that it is a morphism of graded algebras

and hence f̂i = 0, for 0 < i. However, we do not assume that f is compatible with these splittings.
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5.2.1. Description of hf̂ (τ̂1, τ̂2). We continue with the notation above and explicitly compute

hf̂ (τ̂1, τ̂2) on certain specific elements in F (Λ2A×1 )◦.

(i) Suppose that we are given (1 + α) ∧ (1 + aα) ∈ F (Λ2A×1 )◦, with α ∈ I1 and a ∈ A1. In

order to compute its image under hf (τ1, τ2). We first need to lift it to an element in F (Λ2B̂×1 )◦.

Because of our choice of the rings B̂i, α ∈ I1 ⊆ Î1 and a ∈ A1 ⊆ B̂1. The element

γ̃ := eα ∧ eaα − 1

2
eaα

2

∧ a

is a lifting of the above element and has the property that its image under the map log dlog is
equal to

α · d(aα)− 1

2
aα2 da

a
=

1

2
α2da+ aαdα =

1

2
d(aα2) = 0 ∈ (Ω1

B̂1
/d(B̂1))◦.

Therefore we need to apply hf̂ (τ̂1, τ̂2) to γ̃. We first compute

(log◦τ̂1 ∧dlog)(γ̃) = αd(aα)− aαd(α) = 0,

since both log◦τ̂1(a) and d(a) are 0.

Therefore, hf̂ (τ̂1, τ̂2)(γ̃) = −3d−1(log◦τ̂2 ∧dlog)(f̂(γ̃)) ∈ Ĵ2/Ĵ2
2 = Î22/Î

4
2 . The value of the map

(log◦τ̂2 ∧dlog) ◦ f̂ on the element − 1
2e
aα2 ∧ a is equal to the sum of

−1

2
(f̂0(aα2)

d(f̂1(a))

f̂0(a)
− f̂1(a)

f̂0(a)
d(f̂0(aα2))) = −1

2
(f̂0(α)2d(f̂1(a))− f̂1(a)d(f̂0(α)2))

and an element in Î32d(Î2).
Similarly, the value of the same map on the term eα ∧ eaα is equal to the sum of

(f̂0(α) + f̂1(α))d(f̂0(aα) + f̂1(aα))− (f̂0(aα) + f̂1(aα))d(f̂0(α) + f̂1(α))

=f̂0(α)d(f̂1(a)f̂0(α))− f̂1(a)f̂0(α)d(f̂0(α)) = f̂0(α)2d(f̂1(a))

and an element in Î32d(Î2).
Combining these two statements we deduce that

hf̂ (τ̂1, τ̂2)(γ̃) = −3

2
f̂0(α)2f̂1(a).

(ii) Suppose that we start with the element

(1 +
β

b− 1
) ∧ b− (1 +

β

b
) ∧ (b− 1) ∈ F (Λ2A×1 )◦,

with β ∈ I1 and b ∈ A[1 ⊆ A1. Analogous to the above case, the element

δ̃ := eβ/(b−1) ∧ b− eβ/b ∧ (b− 1) ∈ F (Λ2B̂×1 )◦

lifts the above element. Since (log◦τ̂1 ∧dlog)(δ̃) = 0, we have

hf̂ (τ̂1, τ̂2)(δ̃) = −3d−1(log◦τ̂2 ∧dlog)(f̂(δ̃)) ∈ Ĵ2/Ĵ2
2 = Î22/Î

4
2 .

By an explicit computation, we see that (log◦τ̂2 ∧dlog)(f̂(δ̃)) is the sum of

1

2

f̂1(b)2d(f̂0(β))

(f̂0(b)(f̂0(b)− 1))2
+
f̂0(β)f̂1(b)d(f̂1(b))

(f̂0(b)(f̂0(b)− 1))2

and an element in Î32d(Î2). This implies that

hf̂ (τ̂1, τ̂2)(δ̃) = −3

2

f̂1(b)2f̂0(β)

(f̂0(b)(f̂0(b)− 1))2
.
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5.2.2. Description of hf (τ1, τ2). Using the notation above, let us denote f̂1 by θ̂. We define a
map

hθ̂ : (Λ2A×1 )◦ → Î32/Î
4
2

as follows.
For α, β ∈ I1 ⊆ Î1, note that f(α), f(β) ∈ I2 ⊆ Î2, and we define

hθ̂((1 + α) ∧ (1 + β)) := f(α)θ̂(β)− θ̂(α)f(β).

For a ∈ A[1 ⊆ B̂1 and α ∈ I1 ⊆ Î1, we let

hθ̂((1 + α) ∧ τ1(a)) := −θ̂(α)
θ̂(a)

f(a)
,

where we view f(a) ∈ A2 ⊆ B̂2. The additivity in the second component follows from the Leibniz

formula θ̂(ab) = f(a)θ̂(b) + θ̂(a)f(b) in B̂2/Î
2
2 , for a, b ∈ A1.

The following proposition then gives the explicit expression for hf (τ1, τ2) we are looking for.

Proposition 5.2.1. The map hf (τ1, τ2) coincides with the restriction of − 3
2hθ̂ to F (Λ2A×1 )◦. In

particular, hθ̂ does not depend on the liftings f̂ , τ̂1, and τ̂2 on F (Λ2A×1 )◦.

Proof. By the definition of hf (τ1, τ2), we only need to show that hf̂ (τ̂1, τ̂2) coincides with − 3
2hθ̂

on F (Λ2A×1 )◦. By the formulas for hf̂ (τ̂1, τ̂2) in §5.2.1 above, we see that these two functions

agree on elements of the form (1 + α) ∧ (1 + aα) and (1 + β
b−1 ) ∧ b − (1 + β

b ) ∧ (b − 1). In

order to finish the proof, we only need to prove that these elements generate F (Λ2A×1 )◦. Since
F (Λ2A×1 )◦ = im(δ◦) and

δ◦({a+ α}2 − {a) = (a− 1) ∧ (1 +
α

a
)− a ∧ (1 +

α

a− 1
) + (1 +

α

a− 1
) ∧ (1 +

α

a
),

these elements indeed generate F (Λ2A×1 )◦. �

6. Regulator map and the Proof of the Theorem

In this section, we continue to assume that X is smooth over k and that the conormal sheaf of
the imbedding X ↪→ X is locally free on X. Let {Ui}i∈I be an open affine cover of X. Suppose that
τi are local splittings of U i ↪→ Ui. Let {aij}i,j∈I be local sections of B◦2 on Uij and {bi}i∈I be local
sections of F (Λ2O×X)◦ on Ui such that δ(aij) = bj |Uij−bi|Uij , and ajk|Uijk−aik|Uijk+aij |Uijk = 0.

Consider the element

γij := `i2,τi(aij) + h(τi, τj)(bj) ∈ D1(Uij).

Since on Uijk, ajk − aik + aij = 0, and h(τj , τk)− h(τi, τk) = h(τj , τi) , we have the following
equalities, γjk − γik + γij =

`i2,τj (ajk)− `i2,τi(aik) + `i2,τi(aij) + h(τj , τk)(bk)− h(τi, τk)(bk) + h(τi, τj)(bj)

=`i2,τj (ajk)− `i2,τi(ajk) + h(τj , τi)(bk) + h(τi, τj)(bj)

=h(τi, τj)(δ(ajk)) + h(τj , τi)(bk) + h(τi, τj)(bj) = h(τi, τj)(bk − bj) + h(τj , τi)(bk) + h(τi, τj)(bj)

=0.

Therefore {γij}i,j∈I defines a cocycle. If {τ ′i}i∈I is another set of splittings and {γ′ij}i,j∈I the
corresponding cocycle, then we have γ′ij − γij =

`i2,τ ′i (aij) + h(τ ′i , τ
′
j)(bj)− `i2,τi(aij)− h(τi, τj)(bj)

=h(τi, τ
′
i)(δ(aij)) + h(τ ′i , τ

′
j)(bj)− h(τi, τj)(bj)

=h(τi, τ
′
i)(bj − bi) + h(τ ′i , τ

′
j)(bj)− h(τi, τj)(bj)

=h(τj , τ
′
j)(bj)− h(τi, τ

′
i)(bi),
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which is the co-boundary of the element {h(τi, τ
′
i)(bi)}i∈I . In order to finish the regulator con-

struction we need to show that the boundaries go to boundaries. Therefore if {ai}i∈I is a
collection of sections of B2 over Ui, the map sends the boundary of this element to

`i2,τi(aj − ai) + h(τi, τj)(δ(aj)) = `i2,τi(aj)− `i2,τi(ai) + `i2,τj (aj)− `i2,τi(aj)

on Uij , which is the boundary of {`i2,τi(ai)}i∈I .
This defines the map

ρ2 : H2(X,FΓ◦X(2))→ H1(X,D1(OX)),

we were looking for. The map ρ1, immediately follows from the surjective map of complexes

Γ◦X(2)→ KM
2 (OX)◦Q[−2],

together with the identification KM
2 (OX)◦Q = (Ω1

X/dOX)◦.
Proof of Theorem 1.0.1. Since the map of complexes ker(δ◦)[−1] → FΓ◦X(2) is a quasi-

isomorphism, we have an isomorphism H1(X, ker(δ◦))
∼−→ H2(X,FΓ◦X(2)). By Corollary 4.2.3,

for any choice τ of a local splitting of U ↪→ U, there is an isomorphism

`i2,τ : ker(δ◦)|U → D1(OX)|U .(6.0.1)

If τ ′ is a different splitting `i2,τ ′ = `i2,τ on ker(δ◦) by (5.0.1). Therefore, the local isomorphism
(6.0.1) is independent of the choice of the splitting and gives a global isomorphism ker(δ◦) →
D1(OX). This proves that ρ2 is an isomorphism.

Suppose that we have a map f : X2 → X1 of k-schemes. The functoriality of ρ1 with respect
to f is clear, whereas that of ρ2 can be deduced easily by using the homotopy maps hf (τ1.τ2),
for choices of, not necessarily compatible, splittings on X1 and X2. �

7. Crystalline Deligne-Vologodsky complex

There is another, somewhat more transcendental, complex of Zariski sheaves which is expected
to compute the motivic cohomology of the infinitesimal part of the motivic cohomology of X.
This is the crystalline version of the Deligne complex as defined by Vologodsky [10]. In this
section, we assume that X/k2 is smooth.

Let JX denote the subsheaf of the crystalline structure sheaf OX which associates to an
infinitesimal thickening U ↪→ T of an open subset U of X, the kernel of the map O(T )→ O(U).
Let π denote the natural map from the crystalline site to the Zariski site over X. For 1 ≤ i, let

D◦X(i) := Cone(Rπ(OX/J iX)→ Rπ(OX/J iX))[−2]

denote the complex defined by Vologodsky [10, §7]. The cohomology groups

H∗crys(X,QD(i))◦ := H∗(X,D◦X(i))

of this complex are the crystalline analog of the Deligne cohomology groups. Using Good-
willie’s theorem [5], Vologodsky proves that the Chern character gives an abstract isomorphism

K◦m(X)
(i)
Q ' H2i−m(X,D◦X(i)).

Note that D◦X(1) = O◦X [−1], the sheaf O◦X in degree 1. We will only be concerned with this
complex when i = 2. When there is a imbedding of X into a smooth scheme P such that the
sheaf of ideals of X in P is J then D◦X(2) is quasi-isomorphic to the complex

O◦
P̂
/J2 → (Ω1

P̂
)◦/J · Ω1

P̂

concentrated in degrees 1 and 2, where Ωi◦
P̂

is the kernel of the map Ωi
P̂
→ ΩiX , and P̂ is the

completion of P along X.
Let H∗(D◦X(i)) denote the Zariski sheaves obtained by taking the cohomology sheaves of

the complex D◦X(i). By choosing local splittings, one sees that H1(D◦X(2)) = D1(OX) and

H2(D◦X(2)) = (Ω1
X/dOX)◦. Therefore, Vologodsky’s theorem also gives maps from K2(X)

(2)
Q

similar to the one that we constructed above. We do not currently know how to compare these
maps, but will consider this problem in a future work.
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