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Abstract Let k[ε]2 := k[ε]/(ε2). The single valued real analytic n-polylogarithm
Ln : C → R is fundamental in the study of weight n motivic cohomology over a
field k, of characteristic 0. In this paper, we extend the construction in Ünver (Algebra
Number Theory 3:1–34, 2009) to define additive n-polylogarithms lin:k[ε]2 → k and
prove that they satisfy functional equations analogous to those of Ln . Under a mild
hypothesis, we show that these functions descend to an analog of the nth Bloch group
B ′

n(k[ε]2) defined by Goncharov (Adv Math 114:197–318, 1995). We hope that these
functions will be useful in the study of weight n motivic cohomology over k[ε]2.

1 Introduction

1.1 Extensions in the conjectural category of mixed Tate motives

Let S be any scheme. One expects an abelian category MS, of mixed motivic per-
verse Q-sheaves on S, together with Tate sheaves QM(n) as objects in MS, for every
n ∈ Z [1, 5.10]. The interest in such a category lies in the expectation that this cat-
egory be rich enough that the K -theory of S, which holds arithmetic and geometric
significance, can be expressed as extension groups in this category. Namely, that

Exti
MS

(QM(0), QM(n)) $ K2n−i (S)
(n)
Q ,

where the right hand side denotes the nth graded piece of the K -theory of S with
respect to the gamma filtration tensored with Q, [1, 5.10]). The left hand side of the
last equation is called the i th motivic cohomology of S of weight n and is denoted
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by Hi
M(S, Q(n)). For more information on motivic cohomology as it relates to the

discussion below, see the introduction of [21] and the references therein.
It is expected that there is a much smaller full subcategory of MS, called the cate-

gory of mixed Tate motives and denoted by MT MS, whose objects consist of iterated
extensions of the Tate motives QM(n), for various n. The extension groups should
be the same [1, 5.10]:

Exti
MS

(QM(0), QM(n)) = Exti
MT MS

(QM(0), QM(n)).

In the case when S := Spec k, where k is a number field, a candidate for the cate-
gory MT MS has been constructed as a tannakian category over Q by Deligne and
Goncharov in [8], using Voevodsky’s triangulated category of motives. The tannakian
fundamental group of this category, at a canonical fiber functor ω, is a semi-direct
product Gm ! Uω of the multiplicative group and a unipotent group Uω [8, §2]. Let
A·(k) denote the graded Hopf algebra corresponding to the ring of regular functions
on Uω : the grading on A·(k) comes from the Gm action on Uω [8, §2.1]. The general
conjectures on MT MS imply that it is a mixed Tate category in the sense of [12,
§1.10]. These conjectures and the formalism in [8, §2], then gives a graded Hopf alge-
bra A·(k) as above, such that a mixed Tate motive over k is the same as a graded vector
space over Q with a comodule structure over A·(k). We will need this Hopf algebra
only in order to describe where our construction stands in regards to the general theory
and conjectures.

1.2 Volume map on Hodge–Tate structures

Let E ∈ {Q, R}. A mixed Tate E-Hodge structure is a mixed E-Hodge structure such
that for every r ∈ Z, its graded piece of degree −2r with respect to the weight fil-
tration are direct sums of the Tate E-Hodge structure E(r), of weight −2r; and its
graded pieces of odd degree are equal to 0. Let HE · denote the graded Hopf algebra
associated to the tannakian category of mixed Tate E-Hodge structures. The Hodge
realization functor should give a morphism A·(C) → HQ · of graded Hopf algebras.

A construction of Beilinson and Deligne [§2.5, [2]; pp. 248–249, [12]] gives a map
pH,n : HR,n → R. Composing pH,n with the natural map HQ · → HR · gives a
homomorphism:

voln(R) : An(C) → R,

which we denote by voln(R), for reasons that are going to be explained below. In other
words, if A·(C) is the graded Hopf algebra associated to mixed Tate motives, voln(R)

is the composition of the R-Hodge realization functor and pH,n .

1.3 Volume map in the infinitesimal case

In general, for an arbitrary field k one cannot expect a nontrivial natural map An(k) →
k, similar to voln(R) above, since the construction of voln(R) uses integration.
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However, below we will try to explain why one can expect such a map in the infinitesi-
mal case. More precisely, let k be a field of characteristic 0 and let k[ε]m := k[ε]/(εm).

Then if A·(k[ε]2) denotes the Hopf algebra of the (as yet undefined) tannakian category
of mixed Tate motives over k[ε]2 then we expect a natural non-trivial map

vol◦n(k) :An(k[ε]2) → k.

We will give more details and motivation about this question in Sect. 2, especially as
it relates to the scissors congruence class groups and Hilbert’s 3rd problem [11,13].

1.4 Goncharov’s motivic complexes

Since the objects in MT MS should be constructed from Tate objects by means of
extensions, one expects MT MS to have a linear algebraic description. In [3], a graded
Hopf algebra A·(k) was defined, using linear algebraic objects, such that one should
have a natural map A·(k) → A·(k).

Let A·(k) denote the graded Hopf algebra of Aomoto polylogarithms over k defined
in [3] (also [12, §1.16]). An(k) is generated by pairs of simplices (L; M) in Pn

k [12,
§1.16]. There are certain configurations, called polylogarithmic configurations, in
An(k) that play an important role in understanding the motivic cohomology of k,

since they act as building blocks for all configurations [3,12, §1.16 and Fig. 1.14].
Namely, for every t ∈ k# := {x ∈ k×|1 − x ∈ k×}, there is a special configuration
(L , Mt ) ∈ An(k) [12, Fig. 1.14]. This defines a map Z[k#] → An(k), which induces:

ln :Z[k#] → An(k)/Pn(k),

where Pn(k) denotes the subgroup of prisms [12, §1.16, p. 242]. Denote the image of
ln in An(k)/Pn(k) by B ′

n(k). One expects the comultiplication on A·(k) to induce a
complex:

B ′
n(k) → B ′

n−1(k) ⊗ k× → · · · → B ′
2(k) ⊗ $n−2k× → $nk×

[12, §1.9, (1.25b)]; [12, §1.16, Conjecture 1.40], which would compute the motivic
cohomology of k of weight n (§1.9, Conjecture A, [12]).

1.5 Volume maps and polylogarithms

The canonical mixed Hodge structure on Hn(Pn
C\L , M\L) is a mixed Tate Hodge

structure. As above this gives a map A·(C) → HQ · and hence, after composing with
the map pH in Sect. 1.2, a map: An(C) → R, which we also denote by voln(R) since
it would not cause confusion. This map in fact descends to a map [12, p. 248]:

voln(R) : An(C)/Pn(C) → R.
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In the complex case, we then have a map

voln(R) ◦ ln : Z[C#] → R,

which has the following description. Let %in(z) := ∑
1≤k

zk

kn , denote the classical
complex valued n-polylogarithm, convergent on the disc |z| < 1 and Ln its real single
valued analytic continuation defined by Zagier [24, p. 202]; [12]:

Ln(z) := Rn




n∑

j=0

2 j B j

j ! (log |z|) j%in− j (z)



 ,

where Bn is the nth Bernoulli number; Rn is the real part if n is odd and the imaginary
part if n is even; and %i0(z) := −1/2. Then for z ∈ C#, voln(R)◦ ln(z) = Ln(z) (§1.5,
[2]; cf. Remark in §1.16, [12]).

1.6 Additive polylogarithms

Our principal aim in this note is to define an analog of the map Ln : C# → R, in the
infinitesimal case, where the base ring C is replaced with k[ε]2.

Let k be a field of characteristic 0. The definitions of An(k), Pn(k), ln and
B ′

n(k) in [12, §1.16]] exactly carry over to the k[ε]2 case to define the groups
An(k[ε]2), Pn(k[ε]2), and B ′

n(k[ε]2), and a map, ln : Z[k[ε]#2] → An(k[ε]2). One
would again expect a natural map A·(k[ε]2) → A·(k[ε]2) so that vol◦n(k) on An(k[ε]2)

would give a corresponding map

vol◦n(k) : An(k[ε]2) → k,

which we continue to denote with the same notation.
Then the analog of Ln that we are seeking is the hypothetical map

lin : Z[k[ε]#2] → k (1.6.1)

that would be the composition vol◦n(k) ◦ ln .

1.7 Outline

The main aim of this note is to give an explicit construction of (1.6.1) that does not
rely on any conjecture on mixed Tate motives. Such a construction was made by Bloch
and Esnault [4] in the slightly different context of additive Chow groups in weight
two. This construction was the main motivation for [21] where additive dilogarithms
over k[ε]2 was constructed. This note can be considered as a generalization of [21] to
higher weights. We briefly sketch the contents of the paper.
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In Sect. 2, we recall very briefly the basic constructions and the conjectures of
[11,12] in the infinitesimal case. This is necessary to put our construction in perspec-
tive.

Section 3 is the main part of the construction where a lifting to k[ε]n+1 argument
is used as in [21] to define the polylogarithm. In Definition 1, a formula for lin is
given in terms of &

(n+1)
n . If one had a tannakian category of mixed Tate motives

over k[ε]r this formula would immediately give a construction of additive polyloga-
rithms over the Hopf algebra corresponding to such a category, where &

(n+1)
n would

be replaced with a map constructed out of the comultiplication map (see e.g. Sect. 3.2).
In Corollary 1 and 2, lin is made explicit. In Sects. 3.2–3.4, we need to assume the
existence of a comultiplication map on A·(R). This map is known on the subgroup
of generic configurations in A·(R) [3], but at this point this map is not known on the
whole group. Assuming this, in Theorem 1 we prove that lin descends to give a map
B ′

n(k[ε]2) → k. In Sects. 3.3 and 3.4, using the analogs of the standard conjectures
of mixed Tate motives in the k[ε]2 case, we show that the additive polylogarithm
map that we define is injective when restricted to ker◦(&n−1,1) (Proposition 2 and
Remark 6). This is the analog of the injectivity of the regulator conjecture of Rama-
krishnan.

In Sect. 4, we show that lin satisfies the analogs of the functional equations for clas-
sical polylogarithms, such as the inversion formula, distribution formula, and Gangl’s
functional equations for the trilogarithm and the tetralogarithm. In Sect. 4.2, we use
the context of functional equations of additive polylogarithms to prove that the addi-
tive dilogarithm and its higher modulus generalizations in [21] satisfy Wojtkowiak’s
functional equations.

There are many questions that are left unanswered in this paper. One of these is
the question of additive polylogarithms over a field of characteristic p, this situation
being radically different from the characteristic 0 case. Another one is to construct a
volume-like map as in Sect. 1.6, at least for small weights, n ≤ 4. We will address
these questions in a future paper. Another question that is left out is to relate the
cohomology of '′

k[ε]2
(n) to motivic cohomology. We hope that our construction of

the additive polylogarithm will be useful in understanding the infinitesimal part of
motivic cohomology.

For infinitesimal motivic cohomology in the context of additive Chow groups we
refer the reader to [5,18,16,19].

Notation For an abelian group A, we let AQ = A ⊗ Q. We let R# := {r ∈ R|
r(1 − r) ∈ R×} and k[ε]m := k[ε]/(εm). For a set S, we let Z[S] denote the free
abelian group generated by S. For r ∈ R#, let {r}n denote the image of r ∈ Z[R#]
under the natural projection ln:Z[R#] → B ′

n(R).

If A is an object defined over k[ε]m, we let A◦ denote its infinitesimal part. Since
the map k[ε]m → k has a canonical splitting, A◦ is naturally a direct summand of
A. In general, we will not mention the natural maps A → A◦ or A◦ → A, and take
other liberties of this kind. For example, k[ε]◦m = εk[ε]m, An(k[ε]m) = A◦

n(k[ε]m)⊕
An(k) etc.
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2 On the volume map

2.1 Expected cohomology in the inifinitesimal case

Continuing with the notation in Sects. 1.4 and 1.6, one expects a complex '′
k[ε]2

(n),

concentrated in degrees [1, n]:

B ′
n(k[ε]2) → B ′

n−1(k[ε]2) ⊗ k[ε]×2 → · · · → B ′
2(k[ε]2) ⊗ $n−2k[ε]×2 → $nk[ε]×2

induced by a comultiplication map on A·(k[ε]2) and such that {x}i ⊗ y ∈ B ′
i (k[ε]2)⊗

$n−i k[ε]×2 is mapped to:

{x}i−1 ⊗ x ∧ y ∈ B ′
i−1(k[ε]2) ⊗ $n−i+1k[ε]×2 (2.1.1)

if i ≥ 3, and to

(1 − x) ∧ x ∧ y ∈ $nk[ε]×2 (2.1.2)

if i = 2 (§1.9, (1.25b); §1.16, Conjecture 1.40, [12]). The conjectures in [12], extended
to the case of the base ring k[ε]2, imply that Hi ('′

k[ε]2
(n)Q) $ K2n−i (k[ε]2)

(n)
Q .

If k is a field of characteristic 0, Goodwillie’s theorem [14] gives the isomorphism:

K2n−i (k[ε]2, (ε))
(n)
Q $ HC2n−i−1(k[ε]2, (ε))

(n−1),

where the right hand side denotes cyclic homology with respect to Q. The fact that
the graded pieces of the gamma filtrations on both sides of the last equation matches
is proved in [6]. The relative cyclic homology of (k[ε]2, (ε)) is given by [6, p. 594]:

HCn(k[ε]2, (ε))
(m) $ (2m−n

k/Q ,

for
[ n+1

2

]
≤ m ≤ n, and is 0 otherwise. Moreover, for λ ∈ k, the automorphism ρλ

of k[ε]2 that sends ε to λε induces multiplication by λ2(n−m)+1 on (2m−n
k/Q (loc. cit.).

Combining all of these, the expectation for the infinitesimal part of the cohomology
of '′(n) is:

Hi ('′
k[ε]2

(n)◦Q) $ (i−1
k/Q, (2.1.3)

for 1 ≤ i ≤ n and that ρλ induces multiplication by λ2(n−i)+1 on (i−1
k/Q.

Remark 1 One can readily generalize the statements above to the k[ε]m case, using
the description of the relative cyclic homology of (k[ε]m, (ε)) and the straightforward
definition of the objects An(k[ε]m), B ′

n(k[ε]m), etc. (cf. §1.6). In the weight two case,
i.e. when n = 2, the computations in [3] (Corollary in § 3.1, Corollary 3.6.2 and Main
Theorem 2 in §3.8) generalize with the same proof to the k[ε]m case to show that in
our notation B ′

2(k[ε]m)Q = B2(k[ε]m)Q, where the right hand side is the Bloch group
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in [21, §1.3]. This implies that '′
k[ε]m

(2)Q is isomorphic to γk[ε]m (2)Q in [21, §1.3].
Then Theorem 1.3.1 in [21] gives that:

Hi ('′
k[ε]m

(2)◦Q) $ ((i−1
k/Q)⊕(m−1),

for 1 ≤ i ≤ 2, and ρλ induces multiplication by λm(2−i)+ j on the j th component of
((i−1

k/Q)⊕(m−1), for 1 ≤ i ≤ 2 and 1 ≤ j ≤ m −1. This shows that the generalizations
of the above conjectures to the ring k[ε]m is true in the weight two case.

2.2 Relation to scissors congruence class groups

If Gn is one of the three n-dimensional classical geometries: En, the euclidean; Hn,

the hyperbolic; or Sn, the spherical, then let P(Gn) denote the scissors congruence
class group corresponding to Gn as defined in [11, §3.1]. The Dehn invariant map [11,
p. 572]:

DG
n : P(Gn) → ⊕n−2

i=1 P(Gi ) ⊗ P(Sn−i−1)

endows ⊕P(S ·) with the structure of a coalgebra and, ⊕P(H·) and ⊕P(E ·) with
structures of comodules over this coalgebra.

Goncharov defines a Hopf algebra S·(k) [11, p. 591] similar to scissors congruence
groups and expects a map S·(k) → A·(k). This is known, if k is a number field [11, p.
612]. There is a map: P(H2n−1) → Sn(C) [11, Theorem 5.2] and hence one expects
a map: P(H2n−1) → An(C).

If one considers the Cayley spherical model for the hyperbolic geometry then as
the sphere gets bigger the hyperbolic geometry approaches to the euclidean geometry
[11, p. 616]. Therefore in the limit case one should have a natural map P(E2n−1) →
An(C[ε]2)

◦.
The euclidean scissors congruence class group P(En

k ) can be defined for any field
k [13, §3.2], where this is denoted by En(k)), and, as above, one expects a map

P(E2n−1
k ) → An(k[ε]2)

◦.

The euclidean Dehn invariant endows ⊕P(E ·
k) with the structure of a comodule over

S·(k) [13, §3.4]. If one has a map S·(k) → A·(k) then this gives an A·(k)-comodule
structure on ⊕P(E ·

k), and a cobar complex as in [13, §3.4]; if we let Hi (⊕2n−1P(E ·
k))

denote the i th cohomology of the (2n − 1)th graded part of this complex then we
would have

Hi (⊕2n−1P(E ·
k)) $ (i−1

k/Q,

for k a field of characteristic 0 [11,13, Question 6.4]], and 1 ≤ i ≤ n.

Let Hi (A·(k)(n)) denote the i th cohomology of the nth graded piece of the cobar
complex of A·(k) [3, §3.16]. The general conjectures implying that this cohomology
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group is isomorphic to the i th cohomology of '′(n)Q (Conjecture A′ in §1.11 and
Conjecture 1.40 in [12, §1.16]) together with (2.1.3) give that

Hi (A·(k[ε]2)(n)◦) $ (i−1
k/Q,

for 1 ≤ i ≤ n.

These suggest a close similarity between the structures of An(k[ε]2)
◦ and

P(E2n−1
k ). The euclidean scissors congruence class group has a volume map

P(E2n−1
k ) → k

which is conjectured to induce an isomorphism from H1(⊕2n−1P(E ·
k)), the kernel in

P(E2n−1
k ) of the Dehn invariant map, to k. For n = 2 and k = R, this is Sydler’s

theorem [20]. In analogy, we expect a map:

vol◦n(k) : An(k[ε]2)
◦ → k,

which induces an isomorphism from H1(A·(k[ε]2)(n)◦) to k. Moreover, we should
have the identity vol◦n(k) ◦ ρλ = λ2n−1vol◦n(k), for λ ∈ k.

Remark 2 For n = 2 and A· replaced with A·, the above conjecture and its general-
ization to higher modulus is the main content of Theorem 1.3.2 in [21]. Namely, if
one lets vol◦2(k)r denote the compositions of the inclusion A2(k[ε]r )◦ → A2(k[ε]r ),
the map A2(k[ε]r ) → B2(k[εr ]) in §3.3, [3]; and Li2,r:B2(k[ε]r ) → k⊕(r−1) in [21],
then Theorem 3.1.2 of [21] and Corollary 3.15.4 of [3] imply that vol◦2(k)r induces
an isomorphism between the kernel in A2(k[ε]r )◦ of the comultiplication map and
k⊕(r−1).

3 Additive polylogarithms

3.1 Main construction

For an R-module M let M⊗Rn denote the tensor product of M with itself n-times. We
drop the R from the notation if R = Z.

Consider the map

δ(m)
n : k[ε]#m → (k[ε]×m)⊗n,

that sends a to (1 − a) ⊗ a ⊗ · · · ⊗ a.

Let

log⊗n : (k[ε]×m)⊗n → (k[ε]◦m)⊗n

denote the map induced by the composition of the natural projection k[ε]×m → k[ε]×◦
m

and the logarithm map, log : k[ε]×◦
m → k[ε]◦m .
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Let us denote the composition of log⊗n ◦ δ
(m)
n and the natural projection

(k[ε]◦m)⊗n → (k[ε]◦m ∧k k[ε]◦m) ⊗k (k[ε]◦m)⊗k (n−2),

by

&(m)
n :k[ε]#m → (k[ε]◦m ∧k k[ε]◦m) ⊗k (k[ε]◦m)⊗k (n−2).

For 1 ≤ j2 < j1 and 1 ≤ j3, . . . , jn let

π (m)( j1, j2, . . . , jn) : (k[ε]◦m ∧k k[ε]◦m) ⊗k (k[ε]◦m)⊗k (n−2) → k

be defined by the identiy

α =
∑

1 ≤ j2 < j1 ≤ m − 1
1 ≤ j3, · · · , jn ≤ m − 1

π (m)( j1, j2, · · · , jn)(α)(ε j1 ∧ ε j2) ⊗ ε j3 ⊗ · · · ⊗ ε jn .

Let In := {(i1, i2, · · · , in−1) ∈ Nn−1|i1 ≥ 2, i2 ≥ i3 ≥ · · · ≥ in−1 ≥ 1, i1 + i2 +
· · · + in−1 = 2n − 2}.

We are going to define the additive polylogarithm by first finding a function

c:In → Q

such that the sum
∑

(i1,i2,··· ,in−1)∈In

c(i1, i2, · · · , in−1)π
(n+1)(i1, 1, i2, · · · , in−1) ◦ &(n+1)

n , (3.1.1)

which is a map from k[ε]#n+1 to k, factors through the canonical projection k[ε]#n+1 →
k[ε]#2. This then gives a map from k[ε]#2 to k, which will be defined to be the additive
polylogartihm of weight n.

The following proposition is crucial in what follows:

Proposition 1 There is, up to multiplication by a scalar, a unique c : In → Q that
makes (3.1.1) factor through the canonical projection k[ε]#n+1 → k[ε]#2.
Proof Let us first prove the existence of such a map.

Note that if

log
(

1 + 1
s
(a1ε + · · · anεn)

)
= b1ε + · · · + bnεn =: u(ε)

then

&(n+1)
n (s + a1ε + · · · anεn) = log

(
1 − s

1 − s
(eu(ε) − 1)

)
∧ u(ε) ⊗ (u(ε))⊗(n−2)

= −%i1(t (eu(ε) − 1)) ∧ u(ε) ⊗ (u(ε))⊗(n−2),
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where t = s/(1 − s) and %i1(z) := ∑
1≤n

zn

n . Letting

u(ε) :=
∑

1≤n

b1ε
n ∈ (k[b1, b2, · · · ])[[ε]],

ψt (u) := %i1(t (eu − 1)) ∈ (k[t])[[u]],

and

ψt (u(ε)) =
∑

1≤n

βn(t)εn,

where βn(t) ∈ k[t, b1, b2, · · · ], finding c as above is equivalent to finding c such that
the sum

∑

(i1,··· ,in−1)∈In

c(i1, · · · , in−1)(βi1(t)b1 − β1(t)bi1)bi2 · · · bin−1

depends only on t and b1. Since β1(t) = b1t this is equivalent to requiring that

∑

(i1,··· ,in−1)∈In

c(i1, · · · , in−1)β i1
(t)bi2 · · · bin−1 (3.1.2)

depend only on t and b1, where ψ t (u) = ψt (u) − tu and

ψ t (u(ε)) =
∑

2≤n

βn(t)εn =
∑

1≤n

(βn(t) − bnt)εn .

From now on for (i1, i2, · · · , in−1) ∈ In, let

c(i1, i2, . . . , in−1) := (−1)n−(l2+···+ln−1)i1
(n − 1 + (l2 + · · · + ln−1))!

(n − 1)!(l2)! · · · (ln−1)!
, (3.1.3)

where lk is the number of k’s occuring among (i2, . . . , in−1), for 2 ≤ k ≤ n − 1.

The following lemma, due to D. Zagier, then proves the existence part of Proposi-
tion 1:

Lemma 1 (Zagier) With c : In → Q defined as in (3.1.3), the sum

∑

(i1,...,in−1)∈In

c(i1, . . . , in−1)β i1
(t)bi2 . . . bin−1

depends only on b1 and t. In fact, is equal to

(−1)nb2n−2
1

%i1(t (eu − 1))(n)(0)

(n − 1)! .
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Proof The sum in the statement above is equal to

∑

0≤l≤n−2

(n − l)βn−l(t)Sn,l(b1, . . . , bn−1)

where

Sn,l(b1, . . . , bn−1)

=
∑

l2, . . . , ln−1 ≥ 0
l2 + 2l3 + · · · + (n − 2)ln−1 = l

((n − 1) + (l2 + · · · + ln−1))!
(n − 1)!(l2)! · · · (ln−1)!

×(−b1)
(n−2)−(l2+···+ln−1)bl2

2 . . . bln−1
n−1.

Now notice that for 0 ≤ l ≤ n − 2,

Sn,l(b1, . . . , bn−1)

= Coefficient of εl in
∑

0≤ j

(
n − 1 + j

j

)
(−b1)

n−2− j (b2ε + · · · + bn−1ε
n−2) j

= Coefficient of εl in (−1)nb2n−2
1 (b1 + b2ε + · · · + bn−1ε

n−2)−n

= (−1)nb2n−2
1 Resε=0(

εn−l−1

u(ε)n dε).

This implies that the expression in the statement of the lemma is equal to

(−1)nb2n−2
1 Resε=0

(
dψ t (u(ε))/dε

u(ε)n dε

)

= (−1)nb2n−2
1 Resu=0(

dψ t (u)

un )

= (−1)nb2n−2
1 n

ψ
(n)
t (0)

n!

= (−1)nb2n−2
1

%i1(t (eu − 1))(n)(0)

(n − 1)! .

In order to prove the uniqueness, we only need to show that if c : In → Q is a
function such that (3.1.2) depends only on t and b1 and that c(n, 1, . . . , 1) = 0 then
c = 0. Assume that c -= 0 and let n0 be the greatest integer such that there is an
(n − 1)-tuple (n0, k2, . . . , kn−1) ∈ In such that c(n0, k2, . . . , kn−1) -= 0. Note that
2 ≤ n0 < n.
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By looking at the coefficient of tn0 in

ψ t (u(ε)) =
∑

2≤n

βn(t)εn = −tu(ε) + t (u(ε) + u(ε)2/2! + · · · )

+ 1
2
(t (u(ε) + u(ε)2/2! + · · · )2 + · · ·

we see that the coefficient of tn0 in (3.1.2) is

bn0
1

n0

∑

(n0,i2,...,in−1)∈In

c(n0, i2, . . . , in−1)bi2 . . . bin−1 . (3.1.4)

Since n0 < n, if (n0, i2, . . . , in−1) ∈ In then at least one of the i2, . . . , in−1 is greater
than 1. This implies that the sum (3.1.4) is 0. But since c(n0, k2, . . . , kn−1) -= 0, this
contradicts the algebraic independence of b1, b2, . . . .

Definition 1 Let lin denote

1
n

∑

(i1,i2,··· ,in−1)∈In

c(i1, i2, . . . , in−1)π
(n+1)(i1, 1, i2, . . . , in−1) ◦ &(n+1)

n

where c is defined as in (3.1.3). Then by Lemma 1, lin descends to a map

lin :k[ε]#2 → k

which we call the additive polylogarithm of weight n.

Corollary 1 For s + aε ∈ k[ε]#2,

lin(s + aε) = (−1)n+1

n! (a/s)2n−1%i1(
s(eu − 1)

1 − s
)(n)(0),

where the derivative is with respect to u.

Proof Follows directly from the definition of lin and the proof of Proposition 1.

Remark 3 The referee noted that some of the values of lin can be expressed in terms
of the values of the Riemann zeta function at negative integers. Namely, after making
the substitution t = eu, Corollary 1 gives

lin(s + aε) = (−1)n+1

n! (a/s)2n−1(td/dt)n−1
(

st
1 − st

) ∣∣∣∣
t=1

.

Then using Euler’s formula ([15, p. 27]):

(1 − 2n)ζ(1 − n) = (td/dt)n−1
(

t
1 + t

) ∣∣∣∣
t=1
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for n ≥ 2, we get

lin(−1 + aε) = (−1)n+1

n! a2n−1(1 − 2n)ζ(1 − n).

Corollary 2 For s + aε ∈ k[ε]#2, we have

lin(s + aε) = (−1)n+1

n! (a/s)2n−1
∑

1≤i≤m≤n

(−1)m−i

m
(

s
1 − s

)m
(

m
i

)
in

Proof Note that the coefficient of un in %i1(
s(eu−1)

1−s ) is

1
n!

∑

1≤i≤m≤n

(−1)m−i (s/(1 − s))m

m

(
m
i

)
in .

The corollary follows.

Remark 4 As the referee pointed out to us, there is an analogy between our construc-
tion and that of Dupont in [9]. Namely, let C× denote C× modulo torsion. Consider
the map

Ln : C# → C× ⊗ C× ⊗ · · · ⊗ C× (n copies)

that sends z to (1 − z) ⊗ z ⊗ · · · ⊗ z. Let

ωi := 1
2π i

dz
z − i

,

and let t01 denote the unit tangential basepoint at 0 pointing towards 1 as in [7]. If
p : C̃# → C# denotes the projection map from the universal covering space of C# and

e : C ⊗ C ⊗ · · · ⊗ C → C× ⊗ C× ⊗ · · · ⊗ C×

denotes the nth tensor power of the map that sends z to exp(2π i z) then we have a
commutative diagram

C̃# −−−−→ C ⊗ C ⊗ · · · ⊗ C

p
/ e

/

C#
Ln−−−−→ C× ⊗ C× ⊗ · · · ⊗ C×

where the upper horizontal map is the one that sends a path γ starting at t01 to

∫

γ

ω1 ⊗
∫

γ

ω0 ⊗ · · · ⊗
∫

γ

ω0.
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Since the integrals depend on the path, this map does not descend to C#. But Dupont
shows [9, §4] that by adding the correct linear combination of the tensor product of
iterated integrals

∫
γ ωi1 ◦ · · · ◦ ωik , where i j is 0 or 1, to the upper horizontal map,

one defines a map

Ln : C̃# → C ⊗ C ⊗ · · · ⊗ C

such that the above diagram still commutes, and moreover Ln descends to give a map

Ln : C# → C ⊗ C ⊗ · · · ⊗ C.

Composing this map with maps of the form C ⊗ · · · ⊗ C → R, obtained by taking
linear combinations of products of the real or imaginary parts of the factors, one gets
real valued polylogarithmic functions. For example, when n = 2, we have

(m ◦ (Re ⊗ Im) ◦ L2)(z) = −1
4π2 D(z),

where m:R ⊗ R → R is the multiplication and D(z) is the single valued real analytic
Bloch–Wigner dilogarithm [12, p. 201].

Our construction of additive polylogarithms is similar to this. We have a commu-
tative diagram

k[ε]#n+1 −−−−→ k[ε]◦n+1 ⊗ k[ε]◦n+1 ⊗ · · · ⊗ k[ε]◦n+1/
/

k[ε]#2 −−−−→ k[ε]×◦
2 ⊗ k[ε]×◦

2 ⊗ · · · ⊗ k[ε]×◦
2

where the upper and lower horizontal maps are the ones that send z to log(1 − z) ⊗
log(z) ⊗ · · · ⊗ log(z) and to (1 − z) ⊗ z ⊗ · · · ⊗ z, respectively, and the vertical maps
are the reduction map and the n-the tensor power of the exponential map composed
with the reduction map. Then composing the upper horizontal map with a map from
k[ε]◦n+1 ⊗ k[ε]◦n+1 ⊗ · · · ⊗ k[ε]◦n+1 to k, that is constructed by choosing the right

algebraic combinations of the coefficients in k[ε]n+1, we get a map from k[ε]#n+1 to

k that descends to give the additive n-polylogarithm lin : k[ε]#2 → k.

3.2 Aomoto polylogarithms in the infinitesimal case

A simplex in Pn
k[ε]r is an ordered (n + 1)-tuple H := (H0, . . . , Hn) of hyperplanes

in Pn
k[ε]r . We denote the reduction of H to a simplex in Pn

k by H . H is said to be
non-degenerate, if ∩0≤i≤n Hi = ∅. A face of H is an intersection ∩i∈I Hi , for some
I ⊂ {0, 1, . . . n}. A pair of simplices (L , M) is said to be admissible if L and M do not
have a common face, and generic if all the faces of L and M are in general position.
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The groups A·(k) were first defined in [3, §2.1]. We let A0(k[ε]r ) = Z. For n > 0,

let An(k[ε]r ) be the abelian group generated by pairs of admissible simplices (L , M)

modulo the following relations:

(i) (L , M) = 0, if L or M is degenerate
(ii) For σ ∈ Sym(n), the group of permutations of {0, . . . , n}, let

σ (L0, . . . , Ln) := (Lσ (0), . . . , Lσ (n)).

Then for every σ ∈ Sym(n),

(σ (L), M) = (L , σ (M)) = sgn(σ )(L , M).

(iii) If L0, . . . , Ln+1 are n + 2 hyperplanes in Pn
k[ε]r such that for all 0 ≤ i ≤ n + 1,

((L0, . . . , L̂i , . . . , Ln+1), M)

is admissible then we have the additivity relation for the first component:

∑

0≤i≤n+1

(−1) j ((L0, . . . , L̂i , . . . , Ln+1), M) = 0.

We have the analogous additivity relation for the second component.
(iv) For every α ∈ PGLn+1(k[ε]r ),

(αL ,αM) = (L , M).

There is a product from An′(k[ε]r ) ⊗ An′′(k[ε]r ) to An′+n′′(k[ε]r ) that can be
described as follows [3, p. 148]. Let L ′ ⊆ Pn′

k[ε]r , L ′′ ⊆ Pn′′
k[ε]r and L ⊆ Pn′+n′′

k[ε]r
be the standard coordinate simplices: L ′ = (z0 = 0, . . . , zn′ = 0), etc. By (iv),
we can always assume this. Let M ′ and M ′′ be non-degenerate simplices such that
(L ′, M ′) and (L ′′, M ′′) are admissible. Identifying An

k[ε]r with Pn
k[ε]r \{z0 = 0}, we

have (M ′ ∩ An′
k[ε]r ) × (M ′′ ∩ An′′

k[ε]r ) ⊆ An′+n′′
k[ε]r . Let P be the closure of this in Pn′+n′′

k[ε]r .

In general, P is not a simplex but can be subdivided into simplices
∑

i Mi . Then the
product of (L ′, M ′) and (L ′′, M ′′) is

∑
i (L , Mi ). By (iii), this is independent of the

subdivision.
A prism in An(k[ε]r ) is a product (L ′, M ′) · (L ′′, M ′′) with (L ′, M ′) and (L ′′, M ′′)

simplices in Pn′
k[ε]r and Pn′′

k[ε]r and n′, n′′ ≥ 1, n = n′ + n′′. The group of prisms
Pn(k[ε]r ) is the subgroup generated by the prisms in An(k[ε]r ).

For x ∈ k[ε]#r , let (L , Mx ) be the configuration in Pn
k[ε]r such that L is the standard

coordinate simplex and Mx is the simplex defined as

(z1 − z0 = 0, z1 + z2 = z0, z3 − z2 = 0, . . . , zn − zn−1 = 0, zn − xz0 = 0).

This then defines a map ln : Z[k[ε]#r ] → An(k[ε]r ), by letting ln(x) := (L , Mx ).

We denote the induced map from Z[k[ε]#r ] to An(k[ε]r )/Pn(k[ε]r ) by the same letter.
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We let B ′
n(k[ε]r ) denote the image of ln in An(k[ε]r )/Pn(k[ε]r ), and the image of

ln(x) in B ′
n(k[ε]r ) by {x}n .

One expects that there is a natural coproduct on the graded ring

A·(k[ε]r ) :=
∑

0≤n

An(k[ε]r )

that will make it a graded Hopf algebra over Z [3, §2.16]. Such a coproduct was defined
by Zhao on the subgroup of generic configurations in [25] and in the case of all ad-
missable configurations for n ≤ 3 in [26]. In Theorem 1, we will assume that there is
a coproduct on A·(k[ε]r ) that makes it a Hopf algebra and that this coproduct behaves
as expected on the elements {x}n (c.f. Proposition, [3, §2.10]). Next we proceed to
make this more precise.

A coproduct that makes A·(k[ε]r ) a Hopf algebra, induces a Lie coalgebra structure
on A·(k[ε]r )/P·(k[ε]r ) [3, §2.16]:

A·(k[ε]r )/P·(k[ε]r ) → A·(k[ε]r )/P·(k[ε]r ) ∧ A·(k[ε]r )/P·(k[ε]r ).

We obtain, by restriction, a map from B ′
n(k[ε]r ) to

(A·(k[ε]r )/P·(k[ε]r ) ∧ A·(k[ε]r )/P·(k[ε]r ))n .

The projection of this to the (n − 1, 1) component gives a map to

An−1(k[ε]r )/Pn−1(k[ε]r ) ⊗ A1(k[ε]r ) = An−1(k[ε]r )/Pn−1(k[ε]r ) ⊗ k[ε]×r :
&n−1,1 : B ′

n(k[ε]r ) → An−1(k[ε]r )/Pn−1(k[ε]r ) ⊗ k[ε]×r ,

if n ≥ 3, and

&1,1 : B ′
2(k[ε]r ) → $2k[ε]×r .

If &n−1,1({x}n) = {x}n−1 ⊗ x then the additive polylogarithm defines a map from
B ′

n(k[ε]2) to k:

Theorem 1 Suppose that A·(k[ε]r ) has a natural coproduct such that

&n−1,1({x}n) = {x}n−1 ⊗ x

for n ≥ 3 and &1,1({x}2) = (1 − x) ∧ x . Then the additive polylogarithm lin :
Z[k[ε]#2] → k factors through the projection ln:Z[k[ε]#2] → B ′

n(k[ε]2) to give a map
B ′

n(k[ε]2) → k.

Proof Note that any prism in An(k[ε]2) can obviously be lifted to one in An(k[ε]n+1).

Then by the definition of lin and B ′
n(k[ε]2), it suffices to show that &

(n+1)
n

(l−1
n (P(n+1)

n )) = 0, where P(n+1)
n is the group of prisms in An(k[ε]n+1).

Let id⊗m denote the identity function on (k[ε]×n+1)
⊗m . By the hypothesis on the

value of &n−1,1 on {x}n, it is easy to see that, &
(n+1)
n factors through
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(&1,1 ⊗ id⊗(n−2)) ◦ · · · ◦ (&n−3,1 ⊗ id⊗2) ◦ (&n−2,1 ⊗ id⊗1) ◦ &n−1,1 ◦ ln .

The claim then follows from that &n−1,1(P(n+1)
n ) = 0.

Corollary 3 The additive polylogarithm lin : Z[k[ε]#2] → k induces a map B ′
n(k[ε]2)

→ k, for n ≤ 3.

Proof The hypotheses of the previous theorem are satisfied in case n ≤ 3. Namely,
Zhao constructs such a coproduct [26, Example 6.4].

3.3 Nontriviality of the additive polylogarithm

We will need the following lemma in order to show the non-triviality of lin . From now
on let ω := 1+√−3

2 . We assume in this section that ω ∈ k.

Lemma 2 For n ≥ 2,

%i1

(
ω(eu − 1)

1 − ω

)(n)

(0) -= 0.

Proof Let sm := (−1)m

m

∑
1≤i≤m(−1)i

(m
i

)
in . Since the coefficient of un in (eu − 1)m

is 0 if m > n, sm = 0, for m > n.

First note that %i1(
ω(eu−1)

1−ω )(n)(0) is equal to

ω2




∑

1 ≤ m ≤ n
m ≡ 1(mod 3)

sm −
∑

1 ≤ m ≤ n
m ≡ 2(mod 3)

sm



 +




∑

1 ≤ m ≤ n
m ≡ 0(mod 3)

sm −
∑

1 ≤ m ≤ n
m ≡ 2(mod 3)

sm



 ,

since ω/(1−ω) = ω2, and ω4 = −ω2−1. Therefore if the expression in the statement
of the lemma is 0 then we have

∑

1 ≤ m ≤ n
m ≡ 0(mod 3)

sm =
∑

1 ≤ m ≤ n
m ≡ 1(mod 3)

sm =
∑

1 ≤ m ≤ n
m ≡ 2(mod 3)

sm . (3.3.1)

We will see that this is not possible by looking at the 2-adic valuations of these terms.

Claim For m ≥ 3, 2|sm .

Proof of the claim When m is odd, it is enough to remark that

∑

1≤i≤m

(−1)i
(

m
i

)
in ≡

∑

1 ≤ i ≤ m
i, odd

(
m
i

)
≡

∑

0≤i≤m−1

(
m − 1

i

)
≡ 0 (mod 2).
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Assume, then, that m is even. If ν2(a) denotes the 2-adic valuation of a number
then

ν2

((
m
i

))
=

([m
2

]
−

[
i
2

]
−

[
m − i

2

])
+

([m
4

]
−

[
i
4

]
−

[
m − i

4

])
+ · · ·

(3.3.2)

Note that each of the terms
[ m

2n

]
−

[ i
2n

]
−

[m−i
2n

]
is either 0 or 1, and is 1 if i is not

divisible by 2k and m is. Therefore ν2(
(m

i

)
) ≥ ν2(m) − ν2(gcd(m, i)), and hence if i

is even ν2(
(m

i

)
in) ≥ ν2(m) + 1. So it is enough to show that

ν2




∑

1 ≤ i ≤ m
i, odd

(
m
i

)
in



 ≥ ν2(m) + 1.

First assume that 4|m. Then
∑

1 ≤ i ≤ m
i, odd

(m
i

)
in = ∑

1 ≤ i ≤ m/2 − 1
i, odd

(m
i

)
(in + (m − i)n),

and each of the terms in the last sum have valuation at least ν2(m) + 1.

If, on the other hand, ν2(m) = 1 then

∑

1 ≤ i ≤ m
i, odd

(
m
i

)
in =

∑

1 ≤ i ≤ m/2 − 2
i, odd

(
m
i

)
(in + (m − i)n) +

(
m

m/2

) (m
2

)n
.

The first sum on the right hand side of the equation has valuation at least ν2(m)+1 = 2,

as above. We need to see that ν2
( m

m/2

)
≥ 2. But this follows immediately from (3.3.2),

since if 2k < m/2 < 2k+1 then [m
2 ] − 2[m

4 ] and [ m
2k+1 ] − 2[ m

2k+2 ] are both equal to 1.

Since s1 and s2 are odd, the last claim implies that the first two sums in the expression
(3.3.1) are not divisible by 2, whereas the last one is.

3.4 Injectivity of the regulator

For the rest of this section we assume the existence of the comultiplication map & as
in Sect. 3.2, whose restriction to B ′

n is given as in Theorem 1. We would like to find an
element in the kernel of &n−1,1 in B ′

n(k[ε]2)
◦
Q on which lin does not vanish. In order

to do this, we will look at the the action of ρλ, for λ ∈ Q.

Remark 5 Let ker◦(&n−1,1) denote the kernel of &n−1,1 in B ′
n(k[ε]2)

◦
Q. Then the

k[ε]2 analog of Goncharov’s conjectures imply that ker◦(&n−1,1) $ k ((2.1.3) in
Sect. 2.1), and that the automorphisms ρλ of k[ε2] act on ker◦(&n−1,1) as multiplica-
tion by λ2n−1, for λ ∈ Q. Therefore the hypothesis of the next lemma is in consistent
with these conjectures.

Lemma 3 Assume that the automorphisms ρλ act on ker◦(&n−1,1) as multiplication
by λ2n−1, for all n ≥ 2 and λ ∈ Q. Then there are integers αn(a, b) ∈ Z, for 0 ≤ a, b,
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with αn(a, b) = 0 if a + b(2n − 1) ≥ (n − 1)(2n − 1), such that for any λ ∈ Q and
q ∈ k,

{ω + λn−1qε}n +
∑

0≤a,b

αn(a, b)λa{ω + λbqε}n

is in ker◦(&n−1,1).

Proof Start with {ω + qε}n ∈ B ′
n(k[ε]2)

◦
Q. This is mapped to

{ω + qε}n−1 ⊗ (ω + qε) = {ω + qε}n−1 ⊗
(

1 + q
ω

ε
)

∈ (B ′
n−1(k[ε]2) ⊗ k[ε]×2 )◦Q,

for n ≥ 3 and to

(1 − (ω + qε)) ∧ (ω + qε) =
(

1 − q
1 − ω

ε

)
∧

(
1 + q

ω
ε
)

∈ (k[ε]×2 ∧ k[ε]×2 )◦Q

if n = 2, since ω and 1 − ω are both roots of unity.
For n = 2 by the above computation we see that

{ω + λqε}2 − λ2{ω + qε}2

is in the kernel of &1,1.

Suppose that we know that the statement of the lemma is true for n = k. Let us
look at the following expression

{ω + λk−1qε}k+1 +
∑

0≤a,b

αk(a, b)λa+(k−1−b){ω + λbqε}k+1.

Note that the sum is only over a, b with a + (2k − 1)b < (k − 1)(2k − 1).

This expression maps to

λk−1({ω + λk−1qε}k +
∑

0≤a,b

αk(a, b)λa{ω + λbqε}k) ⊗
(

1 + q
ω

ε
)

Since by assumption the expression on the left in the tensor product lies in the kernel
of &k−1,1, ρλ acts on it by multiplication with λ2k−1. Therefore ρλ acts on the whole
expression by multiplication by λ2k . This implies that the expression

{ω + λkqε}k+1 +
∑

0≤a,b

αk(a, b)λa+(k−1−b){ω + λb+1qε}k+1

−λ2k{ω + λk−1qε}k+1 −
∑

0≤a,b

αk(a, b)λa+(3k−1−b){ω + λbqε}k+1

lies in the kernel of &k,1. Rearranging the terms, defining the αk+1(·, ·) appropriately
and noting that if a+(2k−1)b < (k−1)(2k−1) then (a+k−1−b)+(2k+1)(b+1),
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2k + (2k + 1)(k − 1) and (a + 3k − 1 − b) + (2k + 1)b are all less than k(2k + 1)

proves the lemma.

Proposition 2 Under the assumptions of Lemma 3, lin : ker◦(&n−1,1) → k is non-
zero.

Proof The image of an element

{ω + λn−1qε}n +
∑

0≤a,b

αn(a, b)λa{ω + λbqε}n ∈ ker◦(&n−1,1) (3.4.1)

under lin is

(λ(n−1)(2n−1) +
∑

0≤a,b

αn(a, b)λa+(2n−1)b)lin(ω + qε). (3.4.2)

The polynomial in λ in the last expression is of degree (n−1)(2n−1), since αn(a, b) =
0 for a + (2n − 1)b ≥ (n − 1)(2n − 1), and so is, in particular, non-zero. So choosing
λ ∈ Q such that it is not a root of this polynomial and q ∈ k× we see that (3.4.2) is
non-zero by Corollary 1 and Lemma 2.

Remark 6 Proposition 2 might be thought of as the infinitesimal version of the conjec-
ture of Ramakrishnan [17, 7.1.2] on the injectivity modulo torsion of the Beilinson reg-
ulator. The general conjectures on mixed Tate motives in fact imply that ker◦(&n−1,1)

should be canonically isomorphic to H1
M(k[ε]2, Q(n))◦ and hence that the map in

Proposition 2 should be an isomorphism, and the elements (3.4.1) should generate
H1

M(k[ε]2, Q(n))◦. This and its generalizations to higher modulus was proved in [21]
for n = 2.

4 Functional equations

4.1 Functional equations for the additive polylogarithm

Our basic references for the functional equations of classical polylogarithms are [10,
22,23].

The analogs of the inversion and distribution formula are valid for the additive poly-
logarithms. The situation in the case of additive polylogarithms is even better than the
classical case since there are no lower order terms appearing in the functional equa-
tions. Below we list some of the functional equations that are satisfied by the additive
polylogarithms. In fact we checked that any functional equation for the polylogarithm
is also satisfied by the corresponding additive polylogarithm. Rather than listing all
of these equations, below we state some of them in order to give the reader some idea
about the statements and to give indications of the proofs.

Theorem 2 (Inversion formula) For s + aε ∈ k[ε]#2 and n ≥ 2, we have

lin((s + aε)−1) = (−1)n−1lin(s + aε).
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Proof Denoting the lifting s + aε ∈ k[ε]#n+1 of s + aε ∈ k[ε]#2 by s, we have the
equality

(
1 − 1

s

)
∧ 1

s
⊗ 1

s
⊗ · · · ⊗ 1

s
= (−1)n−1(s − 1) ∧ s ⊗ s ⊗ · · · ⊗ s

in (k[ε]×n+1 ∧ k[ε]×n+1) ⊗ k[ε]×n+1 ⊗ · · · ⊗ k[ε]×n+1. Projecting this to (k[ε]◦n+1 ∧k

k[ε]◦n+1) ⊗k k[ε]◦n+1 ⊗k · · · ⊗k k[ε]◦n+1 using $2 log ⊗ log⊗(n−2) and then applying

1
n

∑

(i1,i2,...,in−1)∈In

c(i1, i2, . . . , in−1)π
(n+1)(i1, 1, i2, . . . , in−1),

to both sides of the equation gives the result.

Theorem 3 (Distribution formula) Assume that k contains all the mth roots of unity.
Then for s + aε ∈ k[ε]#2 and n ≥ 2, we have

lin((s + aε)m) = mn−1
∑

ζm=1

lin(ζ(s + aε)).

Proof Following the notation in the proof of Theorem 2, we note that,

(1 − sm) ∧ sm ⊗ sm ⊗ · · · ⊗ sm = mn−1
∑

ζm=1

(1 − ζ s) ∧ ζ s ⊗ ζ s ⊗ · · · ⊗ ζ s,

in (k[ε]×n+1 ∧ k[ε]×n+1) ⊗ k[ε]×n+1 ⊗ · · · ⊗ k[ε]×n+1 tensored with Q. Since 1 − zm =
(
∏

ζm=1(1 − ζ z). Continuing as in the proof of Theorem 2 gives the result.

Theorem 4 (9-term relation for the additive trilogarithm) For x, y ∈ k[ε]#2 such that
all the terms below make sense, we have

2li3(x) + 2li3(y) + 2li3

(
x(1 − y)

x − 1

)
+ 2li3

(
y(1 − x)

y − 1

)
+ 2li3

(
1 − x
1 − y

)

+2li3

(
x(1 − y)

y(1 − x)

)
− li3(xy) − li3

(
x
y

)
− li3

(
x(1 − y)2

y(1 − x)2

)
= 0.
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Proof Let x, y ∈ k[ε]#4 be any two liftings of x, y ∈ k[ε]#2. Then we have the identity

2(1 − x) ∧ x ⊗ x + 2(1 − y) ∧ y ⊗ y + 2
1 − x y

x − 1
∧

x(1 − y)

x − 1
⊗

x(1 − y)

x − 1

+2
1 − x y

y − 1
∧

y(1 − x)

y − 1
⊗

y(1 − x)

y − 1
+ 2

x − y

1 − y
∧ 1 − x

1 − y
⊗ 1 − x

1 − y

+2
y − x

y(1 − x)
∧

x(1 − y)

y(1 − x)
⊗

x(1 − y)

y(1 − x)
− (1 − x y) ∧ x y ⊗ x y

−
y − x

y
∧ x

y
⊗ x

y
−

(y − x)(1 − x y)

y(1 − x)2 ∧
x(1 − y)2

y(1 − x)2 ⊗
x(1 − y)2

y(1 − x)2 = 0

in (k[ε]×4 ∧k[ε]×4 )⊗k[ε]×4 , tensored with Q, which can be seen by direct computation.
Now note that if f (u, v) ∈ k(u, v) is any rational function then f (x, y) ∈ k[ε]4 is

a lifting of f (x, y) ∈ k[ε]2 and therefore

li3( f (x, y))

= 1
3

∑

(i1,i2)∈I3

c(i1, i2)(π
(4)(i1, 1, i2) ◦ ($2 log ⊗ log))

×((1 − f (x, y)) ∧ f (x, y) ⊗ f (x, y))

and the statement follows.

The following is the additive analog of Gangl’s 9-term functional equation for the
tetralogarithm [23, Example 4, p. 396].

Theorem 5 (9-term relation for the additive tetralogarithm) For x ∈ k[ε]#2 such that
1 − x + x2 ∈ k[ε]×2 , we have

2li4(x(1 − x)) + 2li4

( −x
(x − 1)2

)
+ 2li4

(
x − 1

x2

)

−3li4

(
1

1 − x + x2

)
− 3li4

(
(1 − x)2

1 − x + x2

)

−3li4

(
x2

1 − x + x2

)
− 6li4

(
1 − x + x2

x(x − 1)

)

−6li4

(
1 − x + x2

x

)
− 6li4

(
1 − x + x2

1 − x

)
= 0.

Proof Exactly as in the proof of Theorem 4, one chooses a lifting x of x to k[ε]5.

Then the statement follows from the corresponding indentity for x in ($2k[ε]×5 ⊗
(k[ε]×5 )⊗2)Q and Definition 1.
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4.2 Functional equations for the additive dilogarithm of higher modulus

4.2.1 Abel’s functional equation for additive dilogarithm

Let us first recall the definition of the additive dilogarithm from [21]. Fix a modulus
2 ≤ r and a weight r + 1 ≤ w ≤ 2r − 1. Then the additive dilogarithm of modulus r
and weight w is a function

li2,r,w : k[ε]#r → k,

for which an explicit formula is given in Proposition 2.2.3 in [21]. Below we will need
the following description of li2,r,w, given in Proposition 2.1.2 in [21].

Following the notation in the beginning of Sect. 2, the map

∑

1≤ j≤w−r

jπ (w)(w − j, j) ◦ &
(w)
2 :k[ε]#w → k

descends to give li2,r,w :k[ε]#r → k. This definition is the same as that of the additive
polylogarithm defined above for n = 2, when r = 2 and w = 3.

In the proof of Proposition 2.2.2 in [21], it was shown that the li2,r,w satisfy Abel’s
5-term functional equation: for x, y ∈ k[ε]#r such that x/y ∈ k[ε]#r ,

li2,r,w(x) − li2,r,w(y) + li2,r,w

( y
x

)
− li2,r,w

(
1 − x−1

1 − y−1

)
+ li2,r,w

(
1 − x
1 − y

)
= 0.

4.2.2 Wojtkowiak’s functional equation for additive dilogarithm

In this section we assume that k is an algebraically closed field of characteristic 0. We
denote the reduction mod (ε) of an element a ∈ k[ε]r by a.

Suppose

f (z) = λ
∏

1≤i≤q

(z − ai )/
∏

1≤ j≤t

(z − b j ) (4.2.1)

with ai , b j ∈ k[ε]r such that ai -= b j for 1 ≤ i ≤ q and 1 ≤ j ≤ t and λ ∈ k× and

1 − f (z) = µ
∏

1≤k≤l

(z − ck)/
∏

1≤ j≤t

(z − b j ). (4.2.2)

with ck -= b j 1 ≤ k ≤ l and 1 ≤ j ≤ t, and µ ∈ k×. And moreover, suppose that the
decompositions (4.2.1) and (4.2.2) can be lifted to similar decompositions over k[ε]w :
there are ãi , b̃ j , c̃k ∈ k[ε]w lifting ai , b j , ck, for 1 ≤ i ≤ q, 1 ≤ j ≤ t, 1 ≤ k ≤ l
such that

λ
∏

1≤i≤q

(z − ãi )/
∏

1≤ j≤t

(z − b̃ j ) + µ
∏

1≤k≤l

(z − c̃k)/
∏

1≤ j≤t

(z − b̃ j ) = 1.
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In this case we let f̃ (z) and 1 − f̃ (z) denote the first and second sum on the left in the
last expression. Note that such decompositions, if they exist, need not be unique.

Remark 7 Note that such decompositions exist, and are unique if for example f (z) ∈
k(z)× or if f (z) ∈ k[ε]r [z], with leading coefficient in k and such that f (z) and
1 − f (z) have no multiple roots in k. The existence and uniqueness of the decompo-
sition for the latter follows immediately from Hensel’s lemma.

The following is the exact additive analog of Wojtkowiak’s Theorem A in [22]. Note
that in our case the terms coming from the product of lower weight terms disappear.

Theorem 6 With the assumptions as above, we have the functional equation

li2,r,w( f (α))

=
∑

i,k

li2,r,w

(
α − ai

ck − ai

)
−

∑

j,k

li2,r,w

(
α − b j

ck − b j

)
−

∑

i, j

li2,r,w

(
α − ai

b j − ai

)
,

for any α ∈ k[ε]r sufficiently generic that all the terms above make sense.

Proof In the abelian group $2k[ε]×◦
w we have the following identity:

∑

i,k

(
1 − α̃ − ãi

c̃k − ãi

)
∧ α̃ − ãi

c̃k − ãi
−

∑

j,k

(

1 − α̃ − b̃ j

c̃k − b̃ j

)

∧ α̃ − b̃ j

c̃k − b̃ j

−
∑

i, j

(

1 − α̃ − ãi

b̃ j − ãi

)

∧ α̃ − ãi

b̃ j − ãi

=
∑

i,k

((α̃ − c̃k) ∧ (α̃ − ãi ) − (c̃k − ãi ) ∧ (α̃ − ãi ) + (c̃k − ãi ) ∧ (α̃ − c̃k))

−
∑

j,k

((α̃ − c̃k) ∧ (α̃ − b̃ j ) − (c̃k − b̃ j ) ∧ (α̃ − b̃ j ) + (c̃k − b̃ j ) ∧ (α̃ − c̃k))

−
∑

i, j

((α̃ − b̃ j ) ∧ (α̃ − ãi ) − (b̃ j − ãi ) ∧ (α̃ − ãi ) + (b̃ j − ãi ) ∧ (α̃ − b̃ j ))

=
∏

k(α̃ − c̃k)∏
j (α̃ − b̃ j )

∧
∏

i (α̃ − ãi )∏
j (α̃ − b̃ j )

−
∑

i

∏
k(ãi − c̃k)∏
j (ãi − b̃ j )

∧ (α̃ − ãi )

+
∑

k

∏
i (c̃k − ãi )∏
j (c̃k − b̃ j )

∧ (α̃ − c̃k) +
∑

j

∏
k(b̃ j − c̃k)∏
i (b̃ j − ãi )

∧ (α̃ − b̃ j )

= (1 − f̃ (α̃)) ∧ f̃ (α̃) −
∑

i

(1 − f̃ (ãi )) ∧ (α̃ − ãi )

+
∑

k

f̃ (c̃k) ∧ (α̃ − c̃k) +
∑

j

(−λ/µ) ∧ (α̃ − b̃ j ) = (1 − f̃ (α̃)) ∧ f̃ (α̃)
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since f̃ (ãi ) = 0, f̃ (c̃k) = 1 and

∏

j

(z − b̃ j ) = µ
∏

k

(z − c̃k) + λ
∏

i

(z − ãi ).

Applying the map

∑

1≤ j≤w−r

jπ (w)(w − j, j) ◦ $2 log

to both sides of the equation gives the statement.
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