
ON THE ADDITIVE DILOGARITHM

Sinan Ünver

Abstract. Let k be a field of characteristic zero, and k[ε]n := k[ε]/(εn). We
construct an additive dilogarithm Li2,n : B2(k[ε]n) → k⊕(n−1), where B2 is the
Bloch group which is crucial in studying weight two motivic cohomology. We use
this construction to show that the Bloch complex of k[ε]n has cohomology groups
expressed in terms of the K-groups K·(k[ε]n) as expected. Finally we compare this
construction to the construction of the additive dilogarithm by Bloch and Esnault
[5] defined on the complex TnQ(2)(k).

1. introduction

1.1. For any scheme S one expects a category MS of motivic (perverse) sheaves
over S, which should be an abelian tensor category that satisfies all the formalism of
mixed sheaf theory (5.10, [1]). The Tate sheaves ZM(n) should play a special role.
Namely, letting

H i(S,ZM(n)) := ExtiMS
(ZM(0),ZM(n)),

the Chern character map

K2n−i(S)
(n)
Q → H i(S,QM(n))(1.1.1)

from the n-th graded piece of Quillen’s K-theory tensored with Q, defined as the
kn-eigenspace for the k-th Adams operator (Remark 3.1.2), to motivic cohomology
of weight n should be an isomorphism when S is regular (5.10, [1]). Since MS is to
have realizations corresponding to various cohomology theories, the regulator map:

K2n−i(S)
(n)
Q → H i(S,QM(n))→ H i

∗(S,Q∗(n)),

where ∗ is the relevant realization, gives arithmetically important information.
The complexes RHomZar(ZM(0),ZM(n)) of sheaves on the Zariski site should have

the property that H i(SZar,RHomZar(ZM(0),ZM(n))) = H i(S,ZM(n)). Hence the
motivic cohomology of S of weight n could be computed as the hypercohomology of
a complex of sheaves on SZar.

Recently progress has been made in motivic cohomology by Voevodsky. If S =
Spec(k), where k is a field of characteristic zero, Voevodsky constucts a triangulated

category DM eff,−
Nis (k) (Ch. 14, [19]) and a complex of sheaves Z(n) on the big Zariski

site over k, which should be isomorphic to the hypothetical RHomZar(ZM(0),ZM(n))
above, such that for any smooth scheme X over k,

H i(XZar,Z(n)) ' Exti
DMeff,−

Nis

(M(X),Z(n))

1991 Mathematics Subject Classification. 11G55.
Key words and phrases. polylogarithms, additive polylogarithms, mixed Tate motives.

1



(14.16, [19]), where M(X) is the motive of X (Definition 14.1, [19]). Since Z(n) and
Bloch’s complex of algebraic cycles of codimension n are isomorphic (Ch. 19, [19]), the
Bloch-Grothendieck-Riemann-Roch theorem [4] implies that the hypercohomology of
Q(n) on XZar is expressed in terms of the K-groups of X as above:

K2n−i(X)
(n)
Q ' H i(XZar,Q(n)).(1.1.2)

In order to study the motivic cohomology of S, it would be sufficient to restrict
to a subcategory of MS. Let MTMS denote the smallest full-subcategory of MS

that contains the Tate motives and is closed under extensions. Then H i(S,QM(n)) '
ExtiMS

(QM(0),QM(n)) = ExtiMTMS
((QM(0),QM(n)). The categoryMTMS would

be simpler thanMS. In fact for S = Spec(k), where k is a number field, a candidate

for MTMS has been constructed as a tannakian category in [8], using DM eff,−
Nis .

It is natural to expect thatMTMS can be constructed by using only the relative
cohomologies of hyperplane arrangements and in turn that motivic cohomology can
be computed using complexes of linear algebraic objects [2], rather than all algebraic
cycles. There are special degenerate configurations of hyperplanes, called the polylog-
arithmic configurations ([2], [10]) which act as building blocks for all configurations
and thus play a special role in describing motivic cohomology.

Using the relations satisfied by the polylogarithmic configurations Goncharov de-
fines a complex Γk(n)Q :

Bn(k)→ Bn−1(k)⊗ k×Q → Bn−2(k)⊗ Λ2k×Q → · · · → B2(k)⊗ Λn−2k×Q → Λnk×Q

which he conjectures to compute the motivic cohomology of weight n (Conjecture A,
Conjecture 1.17, [10]).

If k = C, integration over the polylogarithmic configurations can be used to define a
map Q[P1(C)]→ R, the single valued real analytic version of the n-th polylogarithmic
function (1.0, [10]), which factors through the projection Q[P1(C)] → Bn(C) (1.0,
[10]) to give

Ln : Bn(C)→ R

the n-th polylogarithm that is expected to induce the regulator K2n−1(C)
(n)
Q '

H1(Spec(C),QM(n))→ Bn(C)→ R (p. 224, [10]).
For a general field k, one cannot expect a polylogarithm on Bn(k). However through

his interpretation of hyperbolic scissor congruence groups in terms of mixed Tate
motives, Goncharov expected that there should be an infinitesimal polylogarithmic
function which acts like a regulator map on K2n−1(k[ε]2, (ε))

(n), for any field k of
characteristic 0 (pp. 616-617, [9]; [11]), where k[ε]m := k[ε]/(εm). In our notation,
assuming the existence of mixed Tate motives and the complex Γn over the dual
numbers, this is translated into the existence of a map

Bn(k[ε]2)/Bn(k)→ k(1.1.3)

such that when composed with K2n−1(k[ε]2, (ε))
(n) → Bn(k[ε]2)/Bn(k), gives an iso-

morphism. The map (1.1.3) is to be an analog of both the volume map for euclidean
scissor congruence groups and of polylogarithms.
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In this paper we are interested in this question for weight two. Next we give details
about this case.

1.2. Let A be an artinian local ring and I an ideal of A. In the rest of the paper,
when we refer to weight two (rational) motivic cohomology of A relative to I, what

we mean are the groups K3(A, I)
(2)
Q and K2(A, I)

(2)
Q and not to the Voevodsky motivic

cohomology groups in §1.1, which were there only to motivate the main results of
this paper. This common abuse of notions is partly justified by the expected Chern
character isomorphism (1.1.1), which is known to be true when A is a field (1.1.2).

Let k be an algebraically closed field of characteristic 0, S the semi-local ring of
rational functions on A1

k that are regular on {0, 1}, and J the Jacobson radical of S.
The first complex computing the weight two motivic cohomology is constructed by

Bloch as follows. Localizing A1
k away from 0 and 1 gives an exact sequence

0→ K3(k)(2) → K2(S, J)
ϕ−−−→

⊕
x∈k×\{1} k

× → K2(k)→ 0,

(proof of 7.1, [18]; [3]), where ϕ is the tame symbol map. Let

B(k) := K2(S, J)/im((1 + J)⊗ k×),

the part of K2(S, J) that does not come from the products of weight 1 terms, then
(
⊕

x∈k×\{1} k
×)/ϕ((1 + J)⊗ k×) = k× ⊗ k× and the sequence

0→ K3(k)
(2)
Q → B(k)Q → (k× ⊗ k×)Q → K2(k)Q → 0,

remains exact (proof of 7.1, [18]; [3]).
In complete analogy, Bloch and Esnault define a complex that computes the motivic

cohomology of k[t]2 relative to the ideal (t) as follows. Let R be the local ring of A1
k

at 0. Then localizing away from 0 on A1 gives the sequence

K2(k[t], (t2))→ K2(R, (t
2))

ϕ−−−→ ⊕x∈k×k× → K1(k[t], (t2)).

Letting C denote the subgroup generated by the symbols 〈a, b〉 ∈ K2(R, (t
2)) with

a ∈ (t2) and b ∈ k, and TB(k) := K2(R, (t
2))/C, we have k× ⊗ k = (⊕x∈k×k×)/ϕ(C)

and an exact sequence

0→ K2(k[t], (t2))(2) → TB(k)→ k× ⊗ k → K1(k[t], (t2))→ 0

(Prop. 2.1 and Cor. 2.5, [5]). Then we have K2(k[t], (t2))
(2)
Q ' K3(k[t]2, (t))

(2)
Q , and

K1(k[t], (t2)) ' K2(k[t]2, (t)) (loc. cit.). Therefore the complex

TB(k)→ k× ⊗ k
(tensored with Q), really computes the motivic cohomology of k[t]2 relative to (t).
Moreover Bloch and Esnault define a dilogarithm map on TB(k) :

Theorem 1.2.1. (Bloch-Esnault, Corollary 2.5, [5] ) Let m be the maximal ideal of
R. There is a well-defined map ρ : TB(k)→ m3/m4 such that for 〈a, b〉 ∈ K2(R, (t

2))
with a ∈ m2, b ∈ R,

ρ(〈a, b〉) = −a · db,
and ρ induces an isomorphism K3(k[t], (t2))(2) → m3/m4 of abelian groups.
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1.3. For k a field of characteristic zero there is another natural complex, which is of
more geometric origin, and hence easier to relate to various definitions of categories
of mixed Tate motives, that computes the weight two motivic cohomology groups of
k.

LetA be an artinian local ring with residue field k. The Bloch groupB2(A) (denoted
by p(A) in [23]) is the free abelian group generated by the symbols [x], such that
x(1− x) ∈ A×, modulo the subgroup generated by elements of the form

[x]− [y] + [y/x]− [(1− x−1)/(1− y−1)] + [(1− x)/(1− y)],

for all x, y ∈ A× such that (1− x)(1− y)(1− x/y) ∈ A×. The map that sends [x] to
x ∧ (1− x) ∈ Λ2

ZA
× induces the two term complex γA(2) which sits in [1, 2] :

δA : B2(A)→ Λ2
ZA
×.(1.3.1)

γk(2) can be thought of as a more explicit version of Γk(2). In fact, there is a natural
map γk(2)Q → Γk(2)Q which is expected to be an isomorphism (Conj. 1.20, [10]),
and there is an exact sequence [23]:

0→ K3(k)
(2)
Q → B2(k)Q → (Λ2k×)Q → K2(k)Q → 0.

For n ≥ 2, we are interested in the complex γk[ε]n(2)Q, where δk[ε]n will be denoted
by δn. We show that it has the expected cohomology:

Theorem 1.3.1. For k a field of characteristic 0, there is an exact sequence:

0→ K3(k[ε]n)
(2)
Q −−−→ B2(k[ε]n)Q

δn−−−→ (Λ2k[ε]×n )Q −−−→ K2(k[ε]n)Q → 0.

For n = 2 this theorem gives an affirmative answer to Problem 2.3 in [11].
While proving the previous theorem we construct an additive dilogarithm map on

B2(k[ε]n) :

Theorem 1.3.2. For every n ≥ 2, there is a natural map

Li2,n : B2(k[ε]n)→ k⊕(n−1)

such that when composed with K3(k[ε]n, (ε))
(2) ↪→ B2(k[ε]n) it induces an isomor-

phism K3(k[ε]n, (ε))
(2) ' k⊕(n−1) of abelian groups.

The advantage of defining a dilogarithm map on B2(k[ε]n) is that this group is
closely related to the linear algebra-geometric complexes of mixed Tate motives.
More precisely, Li2,n immediately gives an analog of the volume map for a pair of
triangles over k[ε]n, as in [2]: all one needs to do is to take the image of the pair
of triangles in B2(k[ε]n) under the map in Proposition 3.7, [2] and then apply Li2,n.
In this context Theorem 1.3.1 and 1.3.2 imply that the class of a pair of triangles
in A2(k[εn])/A2(k) ([2]) is determined by its image in Λ2k[εn]×/Λ2k× and its image
under Li2,n. This is a precise analog of Sydler’s theorem on Hilbert’s 3rd problem
that the scissors congruence class of a three dimensional polyhedron is determined
by its volume and its Dehn invariant (§2.7, [9]). We do not, however, pursue this
application in the paper.
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1.4. In order to compare γk[ε]n(2)Q with the complex of Bloch and Esnault, we show
that the argument of Bloch and Esnault extends to define a complex TnQ(2)(k) :

TnB(k)→ k× ⊗ (ε · k[ε]n)

(for n = 2 this is the complex in 1.2). Letting γk[ε]n(2)Q = γk(2)Q ⊕ γk[ε]n(2)◦Q, we
note that the cohomology groups of γk[ε]n(2)◦Q and TnQ(2)(k) coincide. We define a
subcomplex γk[ε]n(2)′Q of γk[ε]n(2)◦Q that has the same cohomology groups and a direct
consequence of Theorem 1.2.1, Theorem 1.3.1, and Theorem 1.3.2 is that

Corollary 1.4.1. For k an algebraically closed field of characteristic 0, the complexes
TnQ(2)(k) and γk[ε]n(2)′Q are isomorphic.

1.5. The paper is organized as follows. In §2, we construct the additive dilogarithm,
Li2,n : B2(k[ε]n) → k⊕(n−1). Two results in §2 are useful in studying Li2,n. On the
one hand, Li2,n is explicitly described in Proposition 2.2.3 and Definition 2.2.4. On
the other hand, Li2,n has a conceptual description. Namely, the image of an element
in B2(k[ε]n) under Li2,n is obtained by lifting that element to an arbitrary element
in B2(k[ε]2n−1) then taking its image in Λ2k[ε]×2n−1 under the map in (1.3.1), and
finally choosing certain algebraic combinations of its coordinates in Λ2k[ε]×2n−1 as in
Proposition 2.1.2, 2.2.1 and 2.2.2. It is this flexibility in the choice of the lifting that
is used in the computations in §4.

In this paper, rather than working with K-theory we work with cyclic homology
most of the time. This is possible since K∗(k[ε]n) = K∗(k[ε]n, (ε)) ⊕ K∗(k) and by
the theorem of Goodwillie [12], HC∗−1(k[ε]n, (ε)) ' K∗(k[ε]n, (ε)), where HC denotes
cyclic homology with respect to Q. Note that since we are working with Q-coefficients,
K-theory is nothing other than the primitive part of the rational homology of GL
(Corollary 11.2.12, [16]).

From §3.1 to §3.6 we make Goodwillie’s theorem explicit, following [16], by giving
the description of a map from HC2(k[ε]n, (ε)) to H3(GL(k[ε]n),Q). Then in §3.7 and
§3.8, Suslin-Guin’s stability theorem and a construction of Bloch, Suslin, Goncharov
is used to construct a map H3(GL(k[ε]n),Q) → ker(δn). More details about §3 are
given in §3.1. This explicit description will be needed in §4.

In §4, we prove Theorem 1.3.2. This is done by first using the description of
HC2(k[ε]n, (ε)) given in [7] in §4.1.1, then constructing certain elements

αw ∈ HC2(k[ε]n, ε)
(1) for n+ 1 ≤ w ≤ 2n− 1,

and chasing the images of these elements under the maps described in §2 and §3.
The proof also shows that {αw}n+1≤w≤2n−1 form a basis for HC2(k[ε]n, ε)

(1).
In §5, using [23] and [14], and §4 we show that the infinitesimal part of ker(δ) is

canonically isomorphic to HC2(k[ε]n, (ε))
(1). From this Theorem 1.3.1 follows.

In §6, we first define a subcomplex γk[ε]n(2)′Q of γk[ε]n(2)Q. Then we extend the
construction of Bloch and Esnault to higher moduli and finally prove Corollary 1.4.1
which compares the two constructions.

Acknowledgements. The author warmly thanks Prof. S. Bloch for mathemati-
cal discussions and encouragement and IHES for its support during the summer of
2004 where part of this paper was written. Finally, he thanks James Borger for his
comments on the paper.
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Remarks. (i) We would like to mention the work of J. Park [20] where he gives an
additive Chow theoretic description of the additive dilogarithm of Bloch and Esnault
and the work of K. Rülling [21] where he proves that the complex of additive Chow
groups with modulus (not necessarily of 2) has the expected cohomology groups on
the level of zero cycles.

(ii) There are many problems that are left unanswered in this note. The most im-
portant of these is the construction of additive polylogarithms for higher weights. We
have made this construction, but proving that the complex has the right cohomology
groups is still unanswered at the time of writing. The question of what happens in
characteristic p; and the question of comparing our construction to the work of Park
and Rülling will be addressed in another paper.

2. additive dilogarithm

Notation 2.0.1. Let k be a field of characteristic zero. An abelian group A endowed
with a group homomorphism k× → Autab(A) is said to be a k×-abelian group; we
denote the action of λ ∈ k× on a ∈ A by λ × a. If f : A → k is an additive map
that satisfies f(λ× a) = λw · f(a) for all λ ∈ k× and a ∈ A then we say that f is of
k×-weight w.

If V is a k-module with a k×-action that is k-linear, i.e. defined by a homomorphism
k× → Autk−mod(V ) then we let V〈w〉 := {v ∈ V |λ× v = λw · v, for allλ ∈ k×}, be the
subspace of elements of V of weight w.

Let k[ε]m := k[ε]/(εm), Vm := k[ε]×m ⊗Z Q, and B2(k[ε]m) as in §1.3.
For an object A defined over k[ε]m we denote by A◦ its infinitesimal part, e.g.

B2(k[ε]m) = B2(k) ⊕ B2(k[ε]m)◦, k[ε]◦m = ε · k[ε]m, V
◦
m = 1 + ε · k[ε]m etc. When

the context requires it we, for example, write K∗(k[ε]m)◦ instead of K∗(k[ε]m, (ε)).
Finally, since in what follows the infinitesimal part A◦ of an object A is canonically
a direct summand of A, we never mention the natural maps A◦ → A and A → A◦,
and take other liberties of this kind.

Note that the exponential map gives an isomorphism k[ε]◦m ' V ◦m, which endows V ◦m
with a k-space structure. For λ ∈ k×, the k-algebra map that sends ε to λ·ε defines an
action of k× on k[ε]m and V ◦m. Denote the weight i subspace of V ◦m under this action by
Vm,〈i〉, i.e. Vm,〈i〉 = {v ∈ V ◦m|λ× v = λi · v, for allλ ∈ k×} = {exp(a · εi)|a ∈ k}. Then
V ◦m = ⊕1≤i≤m−1Vm,〈i〉. Since it simplifies the notation we also put Vm,〈0〉 := k× ⊗Q.

Let k[ε]××m ⊆ k[ε]m denote the set of exceptional units, i.e. those a ∈ k[ε]×m such
that 1− a ∈ k[ε]×.

Let δ : Q[k[ε]××m ] → Λ2Vm be the map that sends x ∈ k[ε]××m to x ∧ (1 − x). If
we want to emphasize that we are working over k[ε]m, we will use the notation δm
instead of δ. The map on B2(k[ε]m) induced by δm is denoted by the same letter (cf.
(1.3.1)).

2.1. Construction of li2. In this section we collect the combinatorial arguments
in the construction of the additive dilogarithm over k[ε]n. The crucial step is the
statement that Sk(m,n)〈w〉 is one dimensional in Proposition 2.1.2. This implies that
if one thinks that the additive dilogarithm on k[ε]n should be constructed by first
lifting to k[ε]2n−1 then using δ then there is essentially one way to define it. That
this is the right definition is justified in the next section.
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Definition 2.1.1. Let n,m ∈ N such that 2 ≤ n ≤ m. Let

αm,n : Q[k[ε]××m ]→ Λ2Vm

denote the map that sends γ ∈ k[ε]××m to δ(γ)− δ(γ|n), where γ|n is the truncation
of γ to the sum of first n powers of ε, i.e. if γ = a0 + a1 · ε + · · · + am−1 · εm−1 then
γ|n = a0 + a1 · ε+ · · ·+ an−1 · εn−1.

Let V (m,n) denote

⊕ 0<i≤n−1
n≤j≤m−1

(
Vm,〈i〉 ⊗ Vm,〈j〉

)
⊆ Λ2Vm,

which we also consider as a quotient of Λ2Vm via the direct sum decomposition

Λ2Vm = ⊕0≤i<j<m

(
Vm,〈i〉 ⊗ Vm,〈j〉

)
⊕
(
⊕0≤i<m Λ2Vm,〈i〉

)
.(2.1.1)

Finally let Vk(m,n) denote the quotient

⊕ 0<i≤n−1
n≤j≤m−1

(
Vm,〈i〉 ⊗k Vm,〈j〉

)
of V (m,n), p(m,n) : Λ2Vm → Vk(m,n) the canonical projection, Sk(m,n), the k×-
abelian group Vk(m,n)/im(p(m,n)◦αm,n) and Sk(m,n)〈i〉 the image of Vk(m,n)〈i〉 in
Sk(m,n). This notation is justified by noting that Sk(m,n) has a natural k-module
structure induced from that of Vk(m,n) such that its weight i subspace is equal to
Sk(m,n)〈i〉 and Sk(m,n) = ⊕0<iSk(m,n)〈i〉.

For 0 < i < j < m let pi,j : Λ2Vm → Vm,〈i〉⊗Vm,〈j〉 denote the projection determined
by the decomposition (2.1.1). Then

li,j : Λ2Vm → k

is defined by letting for any α ∈ Λ2Vm, (log⊗ log)(pi,j(α)) = li,j(α) · (εi ⊗ εj) in
k[ε]m ⊗k k[ε]m.

Proposition 2.1.2. Let n,m,w ∈ N such that 2 ≤ n < w ≤ min(2n − 1,m). Then
Sk(m,n)〈w〉 is a one dimensional k-module. The unique linear functional

li2,(m,n),w : Sk(m,n)〈w〉 → k

such that li2,(m,n),w(exp(ε)⊗ exp(εw−1)) = 1 is given by

li2,(m,n),w =
∑

1≤j≤w−n

j · lj,w−j.

Proof. Let li2,(m,n),w denote the map from Λ2Vm to k given by the formula

li2,(m,n),w =
∑

1≤j≤w−n

j · lj,w−j.

We would like to see that li2,(m,n),w ◦ αm,n = 0. Fix x := s+ s(1− s)a1ε+ · · ·+ s(1−
s)am−1ε

m−1 ∈ k[ε]××m .
Let Am := {1, · · · ,m − 1} and let (Am)×α denote the cartesian product of Am

with itself α-times. Define p : (Am)×α → k by p(i1, · · · , iα) := ai1 · ai2 · · · aiα , and
w : (Am)×α → N by w(i1, · · · , iα) := i1 + i2 + · · · + iα. Note that even though p
depends on x, we suppress it from the notation. In order to simplify the notation let
A(α) := (Am)×α and B(α) := (Am)×α \ (An)×α.

7



If 1 ≤ α, β ≤ w let

C(α, β) := {(a, b)|a ∈ A(α), b ∈ B(β), such that w(a) + w(b) = w}.
Let the permutation group on α + β letters Sα+β act on A(α)× A(β) by permut-

ing the coordinates. On C(α, β) ⊆ A(α) × A(β) consider the following equivalence
relation. If (a, b), (c, d) ∈ C(α, β) then (a, b) and (c, d) are equivalent if there exists a
permutation σ ∈ Sα+β such that (a, b)σ = (c, d). Denote the equivalence class of (a, b)
by [(a, b)] and the set of all equivalence classes by S(α, β). Let p([a, b]) = p(a) · p(b).

Assume from now on that α + β ≤ w. Note that, since w ≤ 2n − 1 any element
(a, b) ∈ C(α, β) has a unique coordinate which is greater than or equal to n. De-
note this coordinate by e(a, b). Denote by (a, b)0 the element of C(α, β) obtained by
interchanging the last coordinate of (a, b) with the coordinate containing e(a, b).

Then we define a map
ι : C(α, β)→ C(β, α)

as follows. Let (a, b) ∈ C(α, β) then ι(a, b) ∈ C(β, α) is the element (a, b)0, where we
think of both C(α, β) and C(β, α) as subsets of A(α)× A(β) ' A(α + β) ' A(β)×
A(α). This passes to equivalence classes and gives a map S(α, β)→ S(β, α) that we
continue to denote by ι. Note that ι2 = 1, and if G ∈ S(α, β), then p(ι(G)) = p(G),
and ∑

(a,b)∈G

w(a) =
∑

(c,d)∈ι(G)

w(c).

Letting
z = a1ε+ a2ε

2 + · · ·+ am−1ε
m−1

we have
x = s(1 + (1− s)z) and 1− x = (1− s)(1− sz).

Computing in k[ε]m, this gives

log(x/s) = −
m−1∑
`=1

(s− 1)`z`

`
and log((1− x)/(1− s)) = −

m−1∑
`=1

s`z`

`
.

Since
zα =

∑
u∈A(α)

p(u)εw(u),

we have

log(x/s) = −
m−1∑
`=1

(s− 1)`

`

∑
u∈A(`)

p(u)εw(u)

and

log((1− x)/(1− s)) = −
m−1∑
`=1

s`

`

∑
u∈A(`)

p(u)εw(u).

Then li2,(m,n),w(αm,n(x))

=
∑

1≤α≤w
1≤β≤w

∑
a∈A(α)
b∈B(β)

w(a)+w(b)=w

w(a) · p(a) · p(b)

α · β
· ((s− 1)α · sβ − sα · (s− 1)β)
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=
∑

1≤α≤w
1≤β≤w

((s− 1)α · sβ − sα · (s− 1)β)
∑

G∈S(α,β)

(p(G)

α · β
) ∑
(a,b)∈G

w(a)

On the other hand
∑

G∈S(α,β)
(
p(G)
α·β

)∑
(a,b)∈Gw(a)

=
∑

G∈S(α,β)

(p(ι(G))

α · β
) ∑
(c,d)∈ι(G)

w(c) =
∑

G∈S(β,α)

(p(G)

β · α
) ∑
(a,b)∈G

w(a).

Therefore li2,(m,n),w(αm,n(x)) = 0, and we have a linear functional

li2,(m,n),w : Sk(m,n)〈w〉 → k.

By the definition of li2,(m,n),w it is clear that

li2,(m,n),w(exp(ε)⊗ exp(εw−1)) = 1.

In order to finish the proof we only need to show that the space of linear func-
tionals on Sk(m,n)〈w〉 is generated by li2,(m,n),w. Or equivalently that if l is a linear
combination of

{l2,w−2, l3,w−3 · · · , lw−n,n}
such that l(αm,n(x)) = 0, for all x ∈ k[ε]××m then l is zero. So let

l =
∑

2≤i≤w−n

ci · li,w−i

satisfy l(αm,n(x)) = 0, for all x ∈ k[ε]××m . Assume that l 6= 0 and let i0 be the smallest
integer i such that ci 6= 0. For all s ∈ k×× and a1, ai0−1, aw−i0 ∈ k we have

l(αm,n(s+ s(1− s) · a1 · ε+ s(1− s) · ai0−1 · εi0−1 + s(1− s) · aw−i0 · εw−i0)) = 0.

If we denote the left hand side of the above equation by l(s, a1, ai0−1, aw−i0), then we
have

ci0 ·
(s− 1)2s− s2(s− 1)

2
· (a1 · ai0−1 · aw−i0) = l(s, a1, ai0−1, aw−i0)− l(s, a1, 0, aw−i0)

= 0. Therefore ci0 = 0 contradicting the assumption. 2

2.2. Construction of Li. Using the construction in the previous section we show
that li2,(2n−1,n),w descends to a function on B2(k[ε]n), as defined in §1.3.

Proposition 2.2.1. For n+ 1 ≤ w ≤ 2n− 1, the map

li2,(2n−1,n),w ◦ δ : Q[k[ε]××2n−1]→ k

factors through the canonical projection Q[k[ε]××2n−1] → Q[k[ε]××n ]. We denote the in-
duced map from Q[k[ε]××n ] to k by Li2,n,w.

Proof. This follows from the fact that li2,(2n−1,n),w ◦α2n−1,n = 0 by the construction
in Proposition 2.1.2.

2

Proposition 2.2.2. The map Li2,n,w : Q[k[ε]××n ] → k factors through the canonical
projection Q[k[ε]××n ]→ B2(k[ε]n), we continue to denote the induced map by Li2,n,w.

9



Proof. We need to show that for x, y ∈ k[ε]××n , such that x/y ∈ k[ε]××n ,

Li2,n,w([x]− [y] + [y/x]− [(1− x−1)/(1− y−1)] + [(1− x)/(1− y)]) = 0.

If x̃ and ỹ are arbitrary liftings of x and y to k[ε]××2n−1 then Proposition 2.2.1 implies
that the left hand side of the last equation is equal to

(li2,(2n−1),w ◦ δ)([x̃]− [ỹ] + [ỹ/x̃]− [(1− x̃−1)/(1− ỹ−1)] + [(1− x̃)/(1− ỹ)]).

The proposition then follows from that

δ([x̃]− [ỹ] + [ỹ/x̃]− [(1− x̃−1)/(1− ỹ−1)] + [(1− x̃)/(1− ỹ)]) = 0.

2

If c = (c1, · · · , cr) ∈ Nr and x = s + s(1 − s)a1ε + · · · s(1 − s)an−1εn−1 ∈ k[ε]××n
then

p(x; c) := ac1 · ac2 · · · acr
and

w(c) := c1 + · · · cr.
Let

C(α) := {1, 2, · · · , n− 1}×α.

Proposition 2.2.3. For n+ 1 ≤ w ≤ 2n− 1, we have

Li2,n,w([x]) =
∑

1≤α,β≤w

(s− 1)α · sβ − sα · (s− 1)β

α · β
∑

(a,b)∈C(α)×C(β)
w(a)≤w−n
w(a,b)=w

w(a) · p(x; (a, b)).

Proof. Direct computation. 2

Definition 2.2.4. The additive dilogarithm Li2,n : B2(k[ε]n)→ k⊕(n−1) is defined by

Li2,n := ⊕n+1≤w≤2n−1Li2,n,w.

3. The map from cyclic homology to the Bloch group

3.1. This section is based on Goodwillie’s theorem [12] and the construction of Bloch
[3], Suslin [23] and Goncharov [10] of a map from the K3 of a field to its Bloch group.
Our main reference for cyclic homology and Goodwillie’s theorem is [16]. In the
following all cyclic homology groups are relative to Q.

We will need the following to pass from cyclic homology to the rational homology
of GL:

Theorem 3.1.1. (Goodwillie, [12]; Theorem 11.3.1 [16]) If A is a Q-algebra and I
is a nilpotent ideal in A then there is a canonical isomorphism

HCn−1(A, I) ' Kn(A, I)Q,

for n ≥ 1.

Remark 3.1.2. This isomorphism is compatible with the λ-structures on both sides by

Theorem 1 in [7]. Hence, if HC∗(A, I)(i−1) and K∗(A, I)
(i)
Q denote the ki-eigenspace

for the k-th Adams operator (for any k) then the above isomorphism induces an

isomorphism HC∗−1(A, I)(i−1) ' K∗(A, I)
(i)
Q by the corollary in §1.3 [7].
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For a ring A, the Hurewicz map induces an isomorphism from ⊕n>0Kn(A)Q to the
primitive part PrimH∗(GL(A),Q), of the homology of GL (11.2.12 Corollary, [16]).
The map in Theorem 3.1.1 is constructed as the composition of a map from cyclic
homology to the primitive part of the homology of GL and then using the inverse
of the Hurewicz map. Since we will only need the map from cyclic homology to the
homology of GL, we next describe the steps in its construction, following [16].

In §3.2, cyclic homology of A is computed as the homology of the Connes’ complex.
The natural map from the Connes’ complex to the Chevalley-Eilenberg complex of
the Lie algebra gl is also described in §3.2. This map induces an isomorphism from
cyclic homology to the primitive homology of gl. In §3.3 homology of gl is replaced
with the sum of the homology of its nilpotent parts tσ(A, I). In §3.4, homology of
tσ(A, I) is replaced with that of the completion of its universal enveloping algebra
and in §3.5 the latter is replaced with the homology of the group algebra of Tσ(A, I),
via Malcev theory. We reach the group homology of GL(A) in §3.6.

This construction combined with Suslin-Guin’s stability theorem ([24], [14]) in-
duces a map

HCn−1(A, I)→ Hn(GLn(A),Q),(3.1.1)

when A is an artinian local algebra over Q and I is a proper ideal of A, in §3.7. We
will use this map for n = 3.

Finally we use a slight variation of the construction of Suslin-Goncharov in §3.8 to
get a map H3(GL3(A),Q)→ ker(δ).

The details can be found in §11.3 of [16] and the references therein. The main
result of this section is Proposition 3.8.9.

3.2. Map from cyclic homology to Lie algebra homology.

3.2.1. For A any associative Q-algebra the Connes’ complex Cλ
∗ (A) is defined as

follows. Let Z/nZ act on A⊗n by

1× (a1 ⊗ a2 ⊗ · · · ⊗ an) = (−1)n−1a2 ⊗ a3 ⊗ · · · ⊗ an ⊗ a1,

and let Cλ
n−1(A) denote the co-invariants of A⊗n under this action. Let b : Cλ

n(A)→
Cλ
n−1(A) be defined by

b(a0, a1, · · · , an) =
∑

0≤i≤n−1

(−1)i(a0, · · · , ai ·ai+1, · · · , an)+(−1)n(an ·a0, a1, · · · , an−1).

Then Cλ
∗ (A) is the complex:

· · · b−−−→ Cλ
n+1(A)

b−−−→ Cλ
n(A)

b−−−→ · · · −−−→ Cλ
0 (A) −−−→ 0,

and HC∗(A) = H∗(C
λ
∗ (A)) (Theorem 2.1.5, [16]): the cyclic homology relative to Q

can be computed as the homology of the Connes’ complex.

3.2.2. For g a Lie algebra over Q, the Chevalley-Eilenberg complex C∗(g,Q) of g
with coefficients in Q is defined by:

· · · d−−−→ Λng
d−−−→ Λn−1g −−−→ · · · d−−−→ g

d−−−→ Q −−−→ 0,
11



where d : Λng→ Λn−1g is given by

d(a1 ∧ a2 ∧ · · · ∧ an) =
∑

1≤i<j≤n

(−1)i+j−1[ai, aj] ∧ a1 ∧ · · · ∧ âi ∧ · · · ∧ âj ∧ · · · ∧ an.

The Lie algebra homology H∗(g,Q) of g with coefficients in Q is the homology of
the complex C∗(g,Q). The diagonal map g→ g⊕ g induces a map

∆ : C∗(g,Q)→ C∗(g,Q)⊗ C∗(g,Q)

which makes (C∗(g,Q), d) a DG-coalgebra. Let PrimH∗(g,Q) denote the primitive
elements in H∗(g,Q), i.e. those α such that ∆(α) = 1⊗ α + α⊗ 1.

Let gln(A) denote the Lie algebra of n×n matrices and gl(A) denote the direct limit
limn→∞ gln(A) with respect to the natural inclusions gln(A) ⊆ glm(A), for n ≤ m.
Then gl(Q) acts on C∗(gl(A),Q) by

[h, g1 ∧ · · · ∧ gn] :=
∑

1≤i≤n

g1 ∧ · · · ∧ [h, gi] ∧ · · · ∧ gn.

Let C∗(gl(A),Q)gl(Q) denote the complex of co-invariants with respect to this action
and let H∗(gl(A),Q)gl(Q) and PrimH∗(gl(A),Q)gl(Q) denote respectively the homology
and the primitive part of the homology of the complex C∗(gl(A),Q)gl(Q). Then the
theorem of Loday-Quillen-Tsygan says that:

Theorem 3.2.1. (Loday-Quillen-Tsygan, Theorem 10.2.4, [16]) If A is an algebra
over Q then there is a natural isomorphism

HC∗−1(A) ' PrimH∗(gl(A),Q)gl(Q) ' PrimH∗(gl(A),Q).

Explicitly the isomorphism

HC∗−1(A) ' PrimH∗(gl(A),Q)gl(Q)

above is induced by the chain map that sends the class of a1⊗a2⊗· · ·⊗an in Cλ
n−1(A)

to the class of a1e12 ∧ a2e23 ∧ · · · ∧ anen1 in Cn(gl(A),Q)gl(Q). Here eij denotes the
matrix all of whose entries are zero except the one in the i-th row and the j-th column
which is 1.

3.3. Volodin’s construction in the Lie algebra case. Assume that I is a nilpo-
tent ideal of A, and let HC∗(A, I) denote the cyclic homology of A relative to I,
the homology of the complex Cλ

∗ (A, I) which is the kernel of the natural surjection
Cλ
∗ (A)→ Cλ

∗ (A/I).
For any permutation σ ∈ Sn let tσ(A, I) denote the Lie subalgebra of gl(A)

given by tσ(A, I) := {(aij) ∈ gl(A) : aij ∈ I if σ(j) ≤ σ(i)}. Let x(A, I) :=∑
σ C∗(tσ(A, I),Q) denote the sum of the subcomplexes

C∗(tσ(A, I),Q) ⊆ C∗(gl(A),Q),

over all n and σ ∈ Sn and let H∗(gl(A, I),Q) denote the homology of x(A, I). Then
the map in Theorem 3.2.1 induces an isomorphism:

HC∗−1(A, I) ' Prim H∗(gl(A, I),Q) '
∑
σ

Prim H∗(tσ(A, I),Q),(3.3.1)

(Proposition 11.3.12, [16]).
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3.4. From the Lie algebra to the universal enveloping algebra. For a Lie
algebra g over Q let U(g) denote its universal enveloping algebra and Û(g) its com-
pletion with respect to its augmentation ideal. We will next express the homology of
g in terms of the homology of U(g).

Let B be an associative algebra over Q endowed with an augmentation map ε :
B → Q. Let C∗(B,Q) denote the complex:

· · · b−−−→ B⊗n
b−−−→ B⊗(n−1)

b−−−→ · · · b−−−→ Q −−−→ 0,

where b : B⊗n → B⊗(n−1) is the map that sends b1 ⊗ · · · ⊗ bn to

ε(b1) ·b2⊗· · ·⊗bn+
∑

1≤i≤n−1

(−1)ib1⊗· · ·⊗bi ·bi+1⊗· · ·⊗bn+(−1)nε(bn) ·b1⊗· · ·⊗bn−1.

and let H∗(B,Q) denote the homology of this complex.
Then the natural maps

H∗(tσ(A, I),Q) ' H∗(U(tσ(A, I)),Q) ' H∗(Û(tσ(A, I)),Q)(3.4.1)

are isomorphisms (Theorem 3.3.2, [16]). Here the first map is induced by the chain
map αas, ’as’ for anti-symmetrization, that sends t1 ∧ · · · ∧ tn to∑

τ∈Sn

sign(τ) · tτ(1) ⊗ · · · ⊗ tτ(n).

3.5. Malčev theory. If σ ∈ Sn, let Tσ(A, I) ⊆ GL(A) denote the group {1+(aij) ∈
GLn(A)|aij ∈ I if σ(j) ≤ σ(i)}. For a discrete group G let U(G) denote group ring

of G over Q, and by Û(G) its completion with respect to the augmentation ideal.
Since Tσ(A, I) is a unipotent group with Lie algebra tσ(A, I), the natural maps:

H∗(Û(tσ(A, I),Q) = H∗(Û(Tσ(A, I),Q) ' H∗(U(Tσ(A, I)),Q).(3.5.1)

are isomorphisms (§11.3.13, [16]).
Combining (3.3.1), (3.4.1) and (3.5.1) we get a map

HC∗−1(A, I)→
∑
σ

H∗(U(Tσ(A, I)),Q)→ H∗(U(GL(A)),Q).(3.5.2)

3.6. Group homology. Let G be any (discrete) group and C∗(G,Q) the complex:

· · · d−−−→ Q[Gn+1]
d−−−→ Q[Gn]

d−−−→ · · · d−−−→ Q[G] −−−→ 0,

where Cn(G,Q) = Q[Gn+1] and the map d is the one that sends (g0, g1, · · · , gn) to∑
0≤i≤n

(−1)i(g0, · · · , ĝi, · · · , gn).

Let G act on this complex by multiplication on the left, i.e. g × (g0, · · · , gn) :=
(g · g0, · · · , g · gn) and H∗(G,Q) := H∗(C∗(G,Q)G), where the subscript G denotes
the space of co-invariants.

The natural map from C∗(U(G),Q) to C∗(G,Q) that sends g1 ⊗ g2 ⊗ · · · ⊗ gn to

(1, g1, g1 · g2, · · · , g1 · g2 · · · gn)
13



induces an isomorphism H∗(U(G),Q) → H∗(G,Q) (App. C.3, [16]). Applying this
to GL(A) and combining with (3.5.2) we obtain the map

HC∗−1(A, I)→ H∗(GL(A),Q).(3.6.1)

3.7. Suslin’s stability theorem. The generalization of Suslin’s stability theorem
[23] by Guin states:

Theorem 3.7.1. (Guin; §2, [14]) For any 1 ≤ n and any artinian local algebra A
over Q the map

Hn(GLn(A),Q)→ Hn(GL(A),Q)

induced by the inclusion GLn ↪→ GL is an isomorphism.

Therefore if A is an artinian local algebra over Q and I is a proper ideal then we
have a map

ρ1 : HCn−1(A, I)→ Hn(GLn(A),Q).

3.8. Bloch-Suslin map. Let A be an artinian local algebra over Q with residue
field k. In this section we describe the Bloch-Suslin map (§2.6, [10]):

ρ2 : H3(GL3(A),Q)→ ker(δA),

where δA : B2(A)Q → Λ2A×Q is the differential in the Bloch complex.

Definition 3.8.1. Let V be a finite free module over A and C̃m(V ) denote the Q-
vector space with basis consisting of m-tuples (x0, · · · , xm−1) of elements of V, that
are in general position, i.e. for any I ⊆ {0, 1, · · · ,m − 1}, with |I| ≤ rank(V ), the
set {xi|i ∈ I} can be extended to a basis of V. Let Cm(V ) denote the co-invariants
of this space under the natural action of GL(V ). Finally let C̃m(p) := C̃m(A⊕p) and
Cm(p) := Cm(A⊕p).

Remark 3.8.2. Similarly, let C̃m(P(V )) denote the Q-space with basis (v0, · · · , vm−1)
of m-tuples of points in P(V ) which are in general position, and d : C̃m+1(P(V )) →
C̃m(P(V )) be defined by

d(v0, · · · , vm) :=
∑

0≤i≤m

(−1)i(v0, · · · , v̂i, · · · , vm).

Let Cm(P(V )) denote the space of co-invariants of C̃m(P(V )) under the natural action
of GL(V ). Then by identifying [x] with (0, x, 1,∞) ∈ C4(P(A⊕2)) and by comparing
the dilogarithm relation in the definition of B2(A) to d(0, x, y, 1,∞) ∈ C4(P(A⊕2)),
one sees that

B2(A)Q = C4(P(A⊕2))/d(C5(P(A⊕2))).

If (x1, · · · , x4) is a 4-tuple of points in P1
A we will denote the corresponding element

in B2(A)Q by [x1, · · · , x4].

Note that since A is a local ring, a subset of V is in general position if its reduction
modulo the maximal ideal is in general position in the k-space V ⊗A k.

Let d : C̃m+1(p)→ C̃m(p) denote the map

d(x0, x1, · · · , xm) =
∑

0≤i≤m

(−1)i(x0, · · · , x̂i, · · · , xm)
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and let d′ : C̃m+1(p)→ C̃m(p) denote the map

d′(x0, x1, · · · , xm) =
∑

1≤i≤m

(−1)i(x0, · · · , x̂i, · · · , xm).

Let ε : C̃1(p)→ Q be the map that sends each term to the sum of its coefficients.

Lemma 3.8.3. The following complexes are acyclic.

· · · d−−−→ C̃2(p)
d−−−→ C̃1(p)

ε−−−→ Q −−−→ 0

· · · d′−−−→ C̃2(p)
d′−−−→ C̃1(p) −−−→ 0.

Proof. Let
∑

j∈J aj · (x0(j), · · · , xm−1(j)) be an m-cycle in the first or the second

complex. Since the reductions modulo the maximal ideal {x0(j), · · · , xm−1(j)} are
in general position in k⊕p and k is an infinite field, we can choose α ∈ A such that
all {x0(j), · · · , xm−1(j), α} are in general position. Note that if Wi for 1 ≤ i ≤ r are
proper subspaces of a vector space W over an infinite field then ∪1≤i≤rWi 6= W. We
have

(−1)md(
∑
j∈J

aj · (x0(j), · · · , xm−1(j), α)) =
∑
j∈J

aj · (x0(j), · · · , xm−1(j))

if m ≥ 2 and d
∑

j∈J aj · (x0(j), · · · , xm−1(j)) = 0 or if m = 1 and
∑

j∈J aj = 0.
Similarly,

(−1)md′(
∑
j∈J

aj · (x0(j), · · · , xm−1(j), α)) =
∑
j∈J

aj · (x0(j), · · · , xm−1(j))

if m ≥ 2 and d′
∑

j∈J aj · (x0(j), · · · , xm−1(j)) = 0 or if m = 1.
2

Define maps λ : C̃m(p)→ C̃m(p) by

λ(x0, · · · , xm−1) =
∑

0≤i≤m−1

sign(σ(m)i)(xσ(m)i(0), · · · , xσ(m)i(m−1)),

where σ(m) := (01 · · ·m− 1) is the standard m-cylic permutation.
Then λ ◦ d = d′ ◦ λ and we have a double complex

· · · d−−−→ C̃3(3)
d−−−→ C̃2(3)

λ

y λ

y
· · · d′−−−→ C̃3(3)

d′−−−→ C̃2(3)

Definition 3.8.4. Let D̃ be the complex associated to the double complex above.
That is D̃0 = C̃2(3), D̃i = C̃i+2(3) ⊕ C̃i+1(3) and the maps are given by (x, y) →
(d′(x) + λ(y),−d(y)).

Let ε : D̃0 → Q be the map that sends each term to the sum of its coefficients.
Then by Lemma 3.8.3 the complex

· · · −−−→ D̃1 −−−→ D̃0
ε−−−→ Q −−−→ 0
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is acyclic.
If we endow D̃ with its natural GL3(A) action and Q with the trivial action then

the complex above is an acyclic complex of GL3(A)-modules. Therefore we get a
canonical map

H3(GL3(A),Q)→ H3(D),(3.8.1)

where D := D̃GL3(A) is the complex of co-invariants of D̃.
Next we define a map from H3(D) to B2(A)Q. This will be a slight modification of

Goncharov’s map (§2.6, [10]).
We are interested in the following part

C6(3)
d−−−→ C5(3)

d−−−→ C4(3)

λ

y λ

y λ

y
C6(3)

d′−−−→ C5(3)
d′−−−→ C4(3)

of the double complex above.
We define a map φ from this double complex to the double complex

0 −−−→ 0 −−−→ 0y y y
0 −−−→ B2(A)Q −−−→ Λ2A×Q

.

In φ the only nontrivial map

(3.8.2)

C5(3)
d′−−−→ C4(3)y y

B2(A)Q
δ−−−→ Λ2A×Q

is a composition of the following two maps:
(i) The first map is:

C5(3)
d′−−−→ C4(3)

−p
y p

y
C4(2)

d−−−→ C3(2),

where p : Cm+1(3)→ Cm(2) is the map that sends (v0, v1, · · · , vm−1) to (ṽ1, · · · , ṽm−1).
Here ṽi denotes the image of vi in A⊕3/〈v0〉 and the term (ṽ1, · · · , ṽm−1) is identified
with an element of Cm(2) by choosing any isomorphism between A⊕3/〈v0〉 and A⊕2.

(ii) The second map is:

(3.8.3)

C4(2)
d−−−→ C3(2)

α

y β

y
B2(A)Q

δ−−−→ Λ2A×Q,
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where α is the map that sends (v0, v1, v2, v3) to [v0, v1, v2, v3], here vi denotes the
image of vi in P(A⊕2), and [v0, v1, v2, v3] denotes the image of (v0, v1, v2, v3) under
the map

C4(P(A⊕2))→ B2(A)Q,

as in Remark 3.8.2. And β is the map that sends (v0, v1, v2) to(v0 ∧ v1
v1 ∧ v2

)
∧
(v0 ∧ v2
v1 ∧ v2

)
.

The next three lemmas imply that the maps defined so far can be extended to a
map φ of the double complexes.

Lemma 3.8.5. The map

C6(3)
d′−−−→ C5(3)

−p−−−→ C4(2)
α−−−→ B2(A)Q,

is zero.

Proof. This follows from the fact that−p◦d′(v0, v1, v2, v3, v4, v5) = d(v1, v2, v3, v4, v5),
and that this maps to zero in B2(A)Q, by Remark 3.8.2. 2

Lemma 3.8.6. The map

C5(3)
λ−−−→ C5(3)

−p−−−→ C4(2)
α−−−→ B2(A)Q

is zero.

Proof. (c.f. Lemma 2.18, [10]) Let (v0, · · · , c4) ∈ C5(3). Then there is a conic Q
passing through the images of the five points v0, v1, v2, v3, v4 in the projective plane.
Choosing any isomorphism, we identify Q with P1

A. Let the images of vi be xi ∈ P1
A

under this isomorphism. The composition of the maps in the statement of the lemma
then maps (v0, · · · , v4) in C5(3) to

−
∑
0≤i≤4

[xi, xi+1, · · · , xi+3],

in B2(A)Q, where the indices are modulo 5.

Claim 3.8.7. In B2(A)Q we have [x1, x2, x3, x4] = sign(σ) · [xσ(1), xσ(2), xσ(3), xσ(4)]
for any σ ∈ S4.

Proof of the claim. Note that since we are working with Q-modules we have
[0, x, 1,∞] = −[0, x/(x−1), 1,∞], (Lemma 1.2, Lemma 1.5, [23]), hence [0, x, 1,∞] =
−[x, 0, 1,∞]; [0, x, 1,∞] = −[0, 1/x, 1,∞] (Lemma 1.2, [23]), hence [0, x, 1,∞] =
−[0, 1, x,∞]; and again since [0, x, 1,∞] = −[0, x/(x−1), 1,∞], we have [0, x, 1,∞] =
−[0, x,∞, 1].

Therefore the formula in the statement holds for the transpositions (12), (23), and
(34). Since these generate S4, the statement follows. 2

Finally, by the claim
∑

0≤i≤4[xi, xi+1, · · · , xi+3] =
∑

0≤i≤4(−1)i[x0, · · · , x̂i, · · · , x4]
and the right hand side is zero in B2(A)Q by Remark 3.8.2. 2

Lemma 3.8.8. The map

C4(3)
λ−−−→ C4(3)

p−−−→ C3(2)
β−−−→ Λ2A×Q

is zero.
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Proof. First note that β sends (v0, v1, v2) to(v0 ∧ v1
v1 ∧ v2

)
∧
(v0 ∧ v2
v1 ∧ v2

)
=
(`(v0 ∧ v1)
`(v1 ∧ v2)

)
∧
(`(v0 ∧ v2)
`(v1 ∧ v2)

)
,

where ` : detA(A⊕2)→ A is any surjective A-linear map. Therefore since we are look-
ing at configurations in general position the composition β ◦ p maps (y0, y1, y2, y3) ∈
C4(3) to (y0 ∧ y1 ∧ y2

y0 ∧ y2 ∧ y3

)
∧
(y0 ∧ y1 ∧ y3
y0 ∧ y2 ∧ y3

)
.

This implies the statement by direct computation.
2

Therefore φ is a map of double complexes which induces a map H3(D) → ker(δ)
of the homology of the associated complexes. Combining this with the map

H3(GL3(A),Q)→ H3(D)

in (3.8.1), we obtain a map

ρ2 : H3(GL3(A),Q)→ ker(δ).

Therefore applying §3.1-3.7 to (A, I) = (k[ε]n, (ε)) proves:

Proposition 3.8.9. The composition T := ρ2 ◦ ρ1 defines a natural map

T : HC2(k[ε]n, (ε))
(1) ↪→ HC2(k[ε]n, (ε))→ B2(k[ε]n)Q,

whose image lies in ker(δn).

4. Nonvanishing of Li2,n on HC2(k[ε]n, (ε))
(1)

4.1. This section shows that Li2,n is the correct map, as we show that it does not
vanish on HC2(k[ε]n, (ε))

(1). First we describe HC2(k[ε]n, (ε))
(1) and define some el-

ements αw in it on which we will evaluate the additive dilogarithm.

4.1.1. Note that HC∗(k[ε]n, (ε)) is a k×-abelian group, where λ ∈ k× acts as the map
induced by the k-algebra automorphism of k[ε]n that sends ε to λ · ε. This action is
compatible with the decomposition (Remark 3.1.2) of

HC2(k[ε]n, (ε)) = HC2(k[ε]n, (ε))
(1) ⊕HC2(k[ε]n, (ε))

(2)

(pp. 593-594, [7]) and

HC2(k[ε]n, (ε))
(1) = ⊕n+1≤w≤2n−1HC2(k[ε]n, (ε))

(1)
〈w〉,

where each summand is isomorphic to k (loc. cit.); and

HC2(k[ε]n, (ε))
(2) = ⊕1≤w≤n−1HC2(k[ε]n, (ε))

(2)
〈w〉,

where each summand is isomorphic to Ω2
k/Q (loc. cit.).
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4.1.2. Let χ : N→ N be defined by χ(n) = 0 if n is even, and χ(n) = 1 if n is odd.
For n+ 1 ≤ w ≤ 2n− 1, let

αw :=
∑

0≤j<(2n−1−w)/2

(εn−1−j, εw−n+j, ε) + (1/2) · χ(w) · (ε(w−1)/2, ε(w−1)/2, ε)

in Cλ
2 (k[ε]n). Since αw is a cycle, as can be checked by direct computation, with

k×-weight w, it defines an element αw ∈ HC2(k[ε]n, (ε))
(1)
〈w〉 by §4.1.1.

4.2. Computation of Li2,n on HC2.
Our aim in this section is to compute Li2,n(T (αw))(= Li2,n,w(T (αw))). This we will
do in several steps.

4.2.1. From gl3(k[ε]n) to gl2(k[ε]n).
We begin with the 2-chain (εa, εb, ε) ∈ Cλ

2 (k[ε]n) in the Connes’ complex, where
a + b ≥ n. By the map in §3.2, on the chain complex level, (εa, εb, ε) goes to βa,b :=
εae12 ∧ εbe23 ∧ εe31 ∈ C3(gl3(k[ε]n))gl3(Q). Therefore we need to compute the image of

βw :=
∑

0≤j<(2n−1−w)/2

βn−1−j,w−n+j + (1/2)χ(w)β(w−1)/2,(w−1)/2

in k. Let γa,b := εae12 ∧ εbe21 ∧ εe11, and

γw :=
∑

0≤j<(2n−1−w)/2

γn−1−j,w−n+j + (1/2)χ(w)γ(w−1)/2,(w−1)/2.

We defined T as the composition

HC2(k[ε]n, (ε))
(1) → PrimH3(gl(k[ε]n),Q)gl(Q) ' PrimH3(gl(k[ε]n),Q)

→ H3(gl(k[ε]n),Q)→ H3(GL(k[ε]n),Q)→ ker(δ).

Let T ′ : PrimH3(gl(k[ε]n),Q)gl(Q) → ker(δ) and T ′′ : H3(gl(k[ε]n),Q) → ker(δ) be
the obvious compositions.

The following lemma enables us to work in the homology of gl2(k[ε]n) rather than
that of gl3(k[ε]n) :

Lemma 4.2.1. We have (Li2,n,w ◦ T ′)(βw) = (Li2,n,w ◦ T ′)(γw).

Proof. First note that

d(e13 ∧ εae12 ∧ εbe21 ∧ εe31) = −βa,b + γa,b

−εae12 ∧ εbe21 ∧ εe33 − e13 ∧ εa+1e32 ∧ εbe21;

εae12∧εbe21∧εe33 is a cycle; and e13∧εa+1e32∧εbe21 is a boundary in C∗(gl(k[ε]n))gl(Q),
since this element corresponds to the element (1, εa+1, εb) in the Connes’ complex and
d(1, εa+1, εb, 1) = (1, εa+1, εb).

Therefore since βw is a cycle so is γw and to prove the lemma it suffices to show
that (Li2,n,w ◦ T ′)(εae12 ∧ εbe21 ∧ εe33) = 0, for a+ b ≥ n.

Note that since
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d(e12 ∧ εae11 ∧ εbe21 ∧ εe33) = −εae12 ∧ εbe21 ∧ εe33
+εae11 ∧ εbe11 ∧ εe33 − εae11 ∧ εbe22 ∧ εe33

it is sufficient to show that

(Li2,n,w ◦ T ′)(εae11 ∧ εbe11 ∧ εe33) = (Li2,n,w ◦ T ′′)(εae11 ∧ εbe11 ∧ εe33)

and

(Li2,n,w ◦ T ′)(εae11 ∧ εbe22 ∧ εe33) = (Li2,n,w ◦ T ′′)(εae11 ∧ εbe22 ∧ εe33)

are 0. The equalities above follow immediately from the fact that εae11 ∧ εbe11 ∧
εe33 and εae11 ∧ εbe22 ∧ εe33 are cycles not only in C∗(gl3(k[ε]n),Q)gl3(Q) but also in
C∗(gl3(k[ε]n),Q).

Recall that for x ∈ B2(k[ε]n), Li2,n,w(x) = (li2,(2n−1,n),w ◦ δ2n−1)(x̃) (Proposition
2.2.1 and 2.2.2), where x̃ ∈ B2(k[ε]2n−1) is any lift of x.

Let α̃ ∈ {εae11 ∧ εbe11 ∧ εe33, εae11 ∧ εbe22 ∧ εe33} ⊆ C3(gl(k[ε]2n−1),Q), and α the
reduction of α̃ to C3(gl(k[ε]n),Q). Then

Li2,n,w(T ′′(α)) = (li2,(2n−1,n),w ◦ δ2n−1)(T ′′(α̃)).

Here by T ′′, we denote the chain map, which maps C3(gl3(k[ε]2n−1),Q) toB2(k[ε]2n−1)Q
and C2(gl3(k[ε]2n−1),Q) to Λ2V2n−1, that induces T ′′. The map T ′′ depends on certain
choices (see the next paragraph).

Let us recall how T ′′(α̃) is defined in §3. First through the anti-symmetrization map
αas (§3.4) and the use of the exponential map (§3.5; §11.3.13 [16]), we get a chain map

C∗(gl3(k[ε]2n−1),Q)◦ → C∗(Û(GL3(k[ε]2n−1)),Q). In fact, it is immediately seen that
the image of α̃ under these maps lies inside the image of C∗(U(GL3(k[ε]2n−1)),Q) in

C∗(Û(GL3(k[ε]2n−1)),Q). From C∗(U(GL3(k[ε]2n−1)),Q) to C∗(GL3(k[ε]2n−1),Q) we
pass via the map described in §3.6. Bypassing the need for stabilization since we
are already in GL3, and using the fact that D̃ is an acyclic complex of GL3(k[ε]2n−1)
modules we get a (non-canonical) map from C∗(GL3(k[ε]2n−1),Q) to D̃. Finally taking
GL3(k[ε]2n−1) co-invariants we end up in the complex D and using the map of double
complexes (induced by (3.8.2)), we pass from D to the complex

γk[ε]2n−1(2)Q : B2(k[ε]2n−1)Q
δ2n−1−−−→ Λ2V2n−1.

Since T ′′ is a map of complexes, δ2n−1(T
′′(α̃)) = T ′′(d(α̃)) = 0, as d(α̃) = 0 in

C∗(gl3(k[ε]2n−1),Q). This implies that Li2,n,w(T ′′(α)) = li2,(2n−1,n),w(δ2n−1(T
′′(α̃))) =

0 and finishes the proof of the lemma. 2

The next lemma will help us to reduce the computation to gl2 :

Lemma 4.2.2. The chain γw, as defined above, is a cycle in C3(gl2(k[ε]n),Q)gl2(Q)

and hence defines an element in H3(gl2(k[ε]n),Q)gl2(Q).

Proof. We already know that γw defines a cycle in C3(gl3(k[ε]n),Q)gl3(Q). Since
Ci(glm(k[ε]n),Q)glm(Q) = (Λiglm(k[ε]n))glm(Q) (§3.2.2) and

(Λiglm(k[ε]n))glm(Q) = (Λigli(k[ε]n))gli(Q),
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for m ≥ i, (Corollary 9.2.8 and (10.2.10.1), [16]), we have

d(γw) = 0 ∈ C2(gl3(k[ε]n),Q)gl3(Q) = C2(gl2(k[ε]n),Q)gl2(Q).

2

4.2.2. From C∗(gl2(k[ε]2n−1),Q)gl2(Q) to C∗(gl2(k[ε]2n−1),Q).

(i) In order to continue with the computation of Li2,n,w(T ′(γw)), we need to com-
pute the image of γw in C3(gl2(k[ε]n,Q). This would be a very long computation, in
fact we will see in this section that we can get away with much less. The following
proposition will be crucial for this.

Proposition 4.2.3. For any Q-algebra A, let gln(Q) act on gln(A) by its adjoint
action. Let C ′∗(gln(A),Q)gln(Q) be the subcomplex of C∗(gln(A),Q) on which gln(Q)
acts trivially. Then the canonical map

C ′∗(gln(A),Q)gln(Q) → C∗(gln(A),Q)→ C∗(gln(A),Q)gln(Q)

is an isomorphism and there is a canonical direct sum of complexes

C∗(gln(A),Q) = C ′∗(gln(A),Q)gln(Q) ⊕ L∗,(4.2.1)

with gln(Q)-action, such that L∗ is acyclic.

Proof. This is Proposition 10.1.8 in [16], taking for g = gln(A) and for h = gln(Q),
and noting the reductivity of gln(Q) (10.2.9, [16]). 2

To continue with the computation we need to compute the image γ′w of γw in
H3(gl2(k[ε]n),Q). Then we should lift γ′w to a chain γ̃′w in C ′3(gl2(k[ε]2n−1),Q)gl2(Q)

and continue just as in the last part of the proof of Lemma 4.2.1. Namely

Li2,n,w(T ′(γw)) = Li2,n,w(T ′′(γ̃′w)) = li2,(2n−1,n),w(δ2n−1(T
′′(γ̃′w)))

= li2,(2n−1,n),w(T ′′(d(γ̃′w))).

Let γ̃∗w be any chain in C3(gl2(k[ε]2n−1),Q) such that its image in C3(gl2(k[ε]n),Q)gl2(Q)

(under the canonical maps) is a cycle and lifts γw. Then the first component γ̃
∗(1)
w of

γ̃∗w under the decomposition in (4.2.1) is a lifting of the element γ′w, by Proposition

4.2.3. Therefore we can choose γ̃′w := γ̃
∗(1)
w , and to continue the computation we need

to compute
d(γ̃∗(1)w ) = d(γ̃∗w)(1).

For the rest of the computation, we will let γ̃∗w := γ̃w, where

γ̃w :=
∑

0≤j<(2n−1−w)/2

γ̃n−1−j,w−n+j + (1/2)χ(w)γ̃(w−1)/2,(w−1)/2,

and γ̃a,b := εae12 ∧ εbe21 ∧ εe11.
Combining the above we have

Li2,n,w(T ′(γw)) = li2,(2n−1,n),w(T ′′(d(γ̃w)(1)))(4.2.2)

(ii) Next we will compute d(γ̃a,b)
(1). For any Q-algebra A there is a canonical

isomorphism for i ≥ n :

Cn(gli(A),Q)gli(Q) = (Λngli(A))gli(Q) → (Q[Sn]⊗ A⊗n)Sn ,(4.2.3)
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where Sn acts on Q[Sn] by conjugation and on A⊗n by permuting the factors and
multiplying with sign (10.2.10.1, [16]).

Letting

Γx,y := xe12 ∧ ye21 + xe21 ∧ ye12 +
1

2
x(e22 − e11) ∧ y(e22 − e11),

for x, y ∈ A, we see by direct computation that Γx,y ∈ C ′2(gl2(A),Q)gl2(Q).
Under the map (4.2.3), Γx,y is sent to (3 · τ) ⊗ (x ⊗ y); x(e11 − e22) ∧ ye11 to

(1 · τ)⊗ (x⊗ y); xe21 ∧ ye12 to (1 · τ)⊗ (x⊗ y); and xe12 ∧ ye21 to (1 · τ)⊗ (x⊗ y),
where S2 = {id, τ}. Therefore, using Proposition 4.2.3, we have

(x(e11 − e22) ∧ ye11)(1) = (xe21 ∧ ye12)(1) = (xe12 ∧ ye21)(1) =
1

3
Γx,y.

Since

d(γ̃a,b) = εa+b(e11 − e22) ∧ εe11 − εbe21 ∧ εa+1e12 − εae12 ∧ εb+1e21,

we have

d(γ̃a,b)
(1) =

1

3
(Γεa+b,ε − Γεb,εa+1 − Γεa,εb+1).(4.2.4)

4.2.3. Fixing a choice for T ′′.

We need to fix a choice for the restriction of T ′′ to C∗(gl2(k[ε]2n−1),Q). In order
to do this, recalling the description in the last part of the proof of Lemma 4.2.1, we
need to fix the map from C∗(GL2(k[ε]2n−1),Q) → D̃ → D → γk[ε]2n−1(2)Q, in degree
2.

Fixing v1, v2, v3 any three vectors in k[ε]⊕22n−1 in general position, we define a map
that sends (g1, g2, g3) ∈ C2(GL2(k[ε]2n−1),Q) to

(w, g1v1, g2v2, g3v3)− (w, g1v1, g2v2, g2v3)− (w, g1v1, g1v2, g3v3) + (w, g1v1, g1v2, g2v3)

in C̃4(k[ε]⊕32n−1) = C̃4(3) ⊆ C̃4(3) ⊕ C̃3(3), where we view k[ε]⊕22n−1 = {(a1, a2, a3) ∈
k[ε]⊕32n−1|a3 = 0}, and we let w = (0, 0, 1). It is seen without difficulty that this map

can be extended to a map of complexes C∗(GL2(k[ε]2n−1),Q)→ D̃.
Composing with the remaining map given in (3.8.2) this gives a map that sends

(g1, g2, g3) to

β((g1v1, g2v2, g3v3)− (g1v1, g2v2, g2v3)− (g1v1, g1v2, g3v3) + (g1v1, g1v2, g2v3))

in Λ2V2n−1, where β is the map in (3.8.3). From now on we fix v1 := (1, 1), v2 := (0, 1)
and v3 := (1, 0) and denote the resulting map by T ′′.

4.2.4. Computing li2,(2n−1,n),w(T ′′(Γεp,εq)).

Because of (4.2.2) and (4.2.4) we realize that we need to compute

li2,(2n−1,n),w(T ′′(Γεp,εq)),

for p+ q = w. We will do this in a few steps.

Lemma 4.2.4. For i = 1, 2, and p+ q = w, with p, q ≥ 1 :

li2,(2n−1,n),w(T ′′(εpeii ∧ εqeii)) = 0.
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Proof. The element εpeii ∧ εqeii maps to

εpeii ⊗ εqeii − εqeii ⊗ εpeii ∈ C2(U(gl2(k[ε]2n−1)),Q).

Since εxeii = log(1− (1− exp(εxeii))) = −
∑

1≤k
(1−exp(εxeii))k

k
, for x ≥ 1, we see that

εpeii ⊗ εqeii is a Q-linear combination of terms of the form

exp(εseii)
u ⊗ exp(εteii)

v.

Let g1 := exp(εseii)
u and g2 := exp(εteii)

v then g1 ⊗ g2 maps to (1, g1, g1g2) which
maps to

(v1, g1v2, g1g2v3)− (v1, g1v2, g1v3)− (v1, v2, g1g2v3) + (v1, v2, g1v3).(4.2.5)

Since, depending on i, g1(v2) = v2 or g1(v3) = g1g2(v3) = v3, we see that the last
expression is 0. 2

Lemma 4.2.5. The value of li2,(2n−1,n),w on the image of the element εpeij ⊗ εqekl in
Λ2V2n−1, under the chain map that we fixed in §4.2.3, is 0, if p+ q 6= w, and p, q ≥ 1.

Proof. Note that by Proposition 2.1.2 to compute the value of li2,(2n−1,n),w on the
image of εpeij⊗εqekl in Λ2V2n−1, we first need to project that image to Sk(2n−1, n)〈w〉.
But for λ ∈ Q, replacing ε with λε multiplies εpeij ⊗ εqekl by λp+q, whereas the
projection of its image to Sk(2n − 1, n)〈w〉 gets multiplied by λw. Therefore this
projection is 0. Hence the statement in the lemma. 2

Lemma 4.2.6. For p+ q = w, and p, q ≥ 1 :

li2,(2n−1,n),w(T ′′(εpe22 ∧ εqe11)) = li2,(2n−1,n),w((1 + εq) ∧ (1 + εp)).

Proof. The expression εpe22 ∧ εqe11 maps to

εpe22 ⊗ εqe11 − εqe11 ⊗ εpe22.(4.2.6)

The k×-weight w component of

εpeii ⊗ εqejj(4.2.7)

is the same as the k×-weight w component of

exp(εpeii)⊗ exp(εqejj)− exp(εpeii)⊗ 1− 1⊗ exp(εqejj).(4.2.8)

Therefore by Lemma 4.2.5, (4.2.7) and (4.2.8) have the same image. Note that terms
of the form 1⊗ g and g ⊗ 1 map to 0, because of the computation in (4.2.5). Hence
the left hand side of the expression in the statement of the lemma is equal to the
image of

exp(εpe22)⊗ exp(εqe11)− exp(εqe11)⊗ exp(εpe22).

Since exp(εqe11)v2 = v2, using the expression (4.2.5) we see that exp(εqe11)⊗exp(εpe22)
maps to 0. Again using (4.2.5) and the definition of β and li2,(2n−1,n),w we see that
exp(εpe22)⊗ exp(εqe11) maps to li2,(2n−1,n),w((1 + εq) ∧ (1 + εp)). 2

Lemma 4.2.7. For p+ q = w, and p, q ≥ 1 :

li2,(2n−1,n),w(T ′′(εpe12 ∧ εqe21)) = li2,(2n−1,n),w((1− εp) ∧ (1− εq)).
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Proof. Exactly as in the proof of Lemma 4.2.6, we see that the left hand side of
the expression in the statement of the lemma is equal to the image of

exp(εpe12)⊗ exp(εqe21)− exp(εqe21)⊗ exp(εpe12).

As exp(εqe21)(v2) = v2, we see, using (4.2.5), that exp(εqe21)⊗ exp(εpe12) maps to 0.
Finally using (4.2.5), and the definition of β and li2,(2n−1,n),w we see that

exp(εpe12)⊗ exp(εqe21)

maps to li2,(2n−1,n),w((1− εp) ∧ (1− εq)). 2

Lemma 4.2.8. For p+ q = w, and p, q ≥ 1 :

li2,(2n−1,n),w(T ′′(Γεp,εq)) = 3li2,(2n−1,n),w((1− εp) ∧ (1− εq)).

Proof. This follows from Lemma 4.2.4, Lemma 4.2.6, and Lemma 4.2.7, together
with the fact, which is immediate from the definition of li2,(2n−1,n),w, that

li2,(2n−1,n),w((1− εp) ∧ (1− εq)) = li2,(2n−1,n),w((1 + εp) ∧ (1 + εq)).

2

Let [| · |] denote the greatest integer function.

Theorem 4.2.9. With the notation as in §4.1.2, Li2,n(T (αw)) =

−([|2n− 1− w
2

|] + w − n+ 1 +
χ(w)

2
),

if w 6= 2n− 1; and −2n−1
2
, if w = 2n− 1.

Proof. Since Li2,n(T (αw)) = Li2,n,w(T ′(βw)), using Lemma 4.2.1, (4.2.2), (4.2.4)
we see that the left hand side of the expression in the statement of the theorem equals
to (1/3)li2,(2n−1,n),w ◦ T ′′ evaluated on∑

0≤j<(2n−1−w)/2

(Γεw−1,ε − Γεw−n+j ,εn−j − Γεn−1−j ,εw−n+j+1)

+
1

2
χ(w)(Γεw−1,ε − 2Γε(w−1)/2,ε(w+1)/2).

Using Lemma 4.2.8 and the definition of li2,(2n−1,n),w we see that:
(i) if w 6= 2n−1 : then the contribution from j = 0 is −(w−n+1); the contribution

from each of the terms where 0 < j is -1; and from the last term is −1
2
χ(w)

(ii) if w = 2n− 1 : there is only one contribution, coming from the last term, and
this is 1

2
χ(2n− 1)(−1− 2(n− 1)) = −1

2
(2n− 1). 2

4.3. Proof of Theorem 1.3.2. By Goodwillie’s theorem (Theorem 3.1.1), Remark

3.1.2, §4.1.1 and §4.1.2, all we need to show is that Li2,n,w : (k ')HC2(k[ε]n, (ε))
(1)
〈w〉 →

k is an isomorphism. We know that this map is nonzero by Theorem 4.2.9, and replac-
ing ε by λε has the effect of multiplication by λw, using the vector space structures
on both sides (Proposition 8.1, [15]). This immediately implies the theorem when k
is algebraically closed. In the general case, we just need to use Theorem 1.3.2 for k,
and the equivariance of Li2,n,w with respect to Gal(k/k) and take galois invariants
on both sides.
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5. The complex γk[ε]n(2)Q

5.1. To compute the kernel of δn in Theorem 1.3.1, we will need the following propo-
sition. Following Suslin’s notation, let Tm(A) ⊆ GLm(A) denote the subgroup of
diagonal matrices.

Proposition 5.1.1. The map ρ2 : H3(GL3(k[ε]n),Q)→ ker(δn), defined in §3.8, has
the property that

ρ2(H3(GL2(k[ε]n),Q) = ker(δn)

and

H3(T3(k[ε]n),Q) ⊆ ker(ρ2).

Proof. The first statement is proved in the case of fields in §2 of [23]. The same
proof works for k[ε]n, if in the first line of p. 222 in [23], we use Theorem 2.2.2 of
[14] to show that H∗(T2(k[ε]n),Q) = H∗(UT2(k[ε]n),Q), where UT2(A) denotes upper
triangular matrices in GL2(A) (this is denoted by B2(A) in [23]). We note that there
is a slight difference between the construction of our map ρ2 and the corresponding
map in [23]. Namely Suslin uses configurations in the projective space rather than
the affine space, but the resulting maps H3(GL3(k[ε]n),Q)→ ker(δn) are the same.

The proof of Proposition 3.1 in [23] works for k[ε]n as well, proving the second
statement. 2

Proposition 5.1.2. The map T : HC2(k[ε]n, (ε))
(1) → ker(δn)◦ (c.f. Notation

2.0.1), defined in Proposition 3.8.9, is surjective.

Proof. Because of Proposition 5.1.1, Theorem 3.1.1 and Remark 3.1.2, it suffices to

show that the image of K3(k[ε]n)
(2)
Q in H3(GL3(k[ε]n),Q)◦/H3(T3(k[ε]n),Q)◦, under

the composition of the maps

K3(k[ε]n)
(2)
Q → K3(k[ε]n)Q → H3(GL(k[ε]n),Q) ' H3(GL3(k[ε]n),Q)

→ H3(GL3(k[ε]n),Q)◦/H3(T3(k[ε]n),Q)◦

contains the image of H3(GL2(k[ε]n),Q) in H3(GL3(k[ε]n),Q)◦/H3(T3(k[ε]n),Q)◦.
For a graded vector space V, let ΛV, denote the graded symmetric algebra over V.

By the Milnor-Moore theorem H∗(GL(A),Q) ' Λ((K∗(A)Q)>0), (Corollary 11.2.12,
[16]); and the stability theorem H3(GL3(k[ε]n),Q) = H3(GL(k[ε]n),Q) (§2, [14]).
Combining these we obtain:

H3(GL3(k[ε]n),Q) = Λ3K1(k[ε]n)Q ⊕ (K1(k[ε]n)Q ⊗K2(k[ε]n)Q)⊕K3(k[ε]n)Q.

The first two components of the decomposition lie inside

H1(GL1(k[ε]n),Q)⊗H2(GL2(k[ε]n),Q) ⊆ H3(T3(k[ε]n),Q),

(by the proof of Lemma 4.2, [23]; [14]). Therefore it suffices to prove that the image

of K3(k[ε]n)
(2)
Q under the canonical projection

H3(GL3(k[ε]n),Q)→ PrimH3(GL3(k[ε]n),Q)→ (PrimH3(GL3(k[ε]n),Q))◦

contains the image of H3(GL2(k[ε]n),Q).
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By the construction of ρ1 in §3.2-3.7 and Remark 3.1.2 the last statement translates
to showing that the image im(H3(gl2(k[ε]n),Q)) of H3(gl2(k[ε]n),Q) in

(PrimH3(gl3(k[ε]n),Q))◦ = HC2(k[ε]n)◦ = HC2(k[ε]n)◦(1) ⊕HC2(k[ε]n)◦(2)

is contained in HC2(k[ε]n)◦(1).
First note that αw for n + 1 ≤ w ≤ 2n − 1 form a basis for HC2(k[ε]n)◦(1) by

Theorem 4.2.9 and §4.1.1. By Lemma 4.2.1, Lemma 4.2.2 and Proposition 4.2.3
and the discussion following it, the image of αw in H3(gl3(k[ε]n))◦ is equal to that
of an element γ′w ∈ H3(gl2(k[ε]n))◦. This implies immediately that HC2(k[ε]n)◦(1) ⊆
im(H3(gl2(k[ε]n),Q)).

On the other hand Theorem 10.3.4 and Theorem 4.6.8 in [16] and Remark 6.10 in
[17] imply that there is a natural map

(PrimH3(gl3(k[ε]n),Q))◦/im(H3(gl2(k[ε]n),Q))→ HC2(k[ε]n)◦(2)

which induces an automorphism of HC2(k[ε]n)◦(2) when precomposed with

HC2(k[ε]n)◦(2) → (PrimH3(gl3(k[ε]n),Q))◦/im(H3(gl2(k[ε]n),Q)).

These imply that im(H3(gl2(k[ε]n),Q)) = HC2(k[ε]n)◦(1) and hence the proposi-
tion.

2

The corollary below computes the infinitesimal part of the first cohomology of the
complex γk[ε]n(2)Q. Note that H1(γk[ε]n(2)Q)◦ = ker(δn)◦.

Corollary 5.1.3. The maps T : HC2(k[ε]n, (ε))
(1) → ker(δn)◦ and Li2,n : ker(δn)◦ →

k⊕n−1 are isomorphisms.

Proof. This follows immediately from the fact that T is surjective (Proposition
5.1.2) and that Li2,n ◦ T is an isomorphism (Theorem 1.3.2).

2

Proposition 5.1.4. There are natural isomorphisms

H2(γk[ε]n(2)Q)◦ ' HC1(k[ε]n)◦ = HC1(k[ε]n))◦(1) ' ⊕1≤i≤n−1Ω
1
k.

Proof. Note that by the definition of Milnor K-theory (11.1.16, [16])

H2(γk[ε]n(2)Q) = KM
2 (k[ε]n).(5.1.1)

Since

KM
2 (k[ε]n) = K2(k[ε]n)(5.1.2)

(§4.2, [14]),

K2(k[ε]n)◦ = HC1(k[ε]n)◦ = Ω1
k[ε]n/(Ω

1
k + d(k[ε]n)) ' ⊕1≤i≤n−1Ω

1
k

(Proposition 2.1.14, [16]).
Finally that HC1(k[ε]n) = HC1(k[ε]n)(1) follows from Theorem 4.6.7 [16].

2
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5.2. Proof of Theorem 1.3.1. Over k this is the main theorem in [23]. However,
note that there the indecomposable quotient K3(k)ind,Q of K3(k)Q appears instead of

K3(k)
(2)
Q . To see that these two groups are canonically isomorphic see p. 207 in [18].

Therefore we only need to compute the cohomology of the infinitesimal part of the
complex γk[ε]n(2)Q. And this is done in Corollary 5.1.3 and (5.1.1) and (5.1.2).

6. Comparison with the additive dilogarithm of Bloch-Esnault

In this section we compare the complex γk[ε]n(2)◦Q to the complex TnQ(2)(k) of
Bloch-Esnault.

6.1. The reduced complex. In order to make the comparison we first define a
subcomplex of γk[ε]n(2)◦Q : let γk[ε]n(2)′Q be the subcomplex of γk[ε]n(2)◦Q whose degree
2 term is k× ⊗ V ◦n ⊆ (Λ2Vn)◦ and whose degree 1 term is the inverse image

δ−1n (k× ⊗ V ◦n ) ⊆ B2(k[ε]n)◦Q.

Denote this last group by B2(k[ε]n)′Q. Then we have

γk[ε]n(2)′Q : B2(k[ε]n)′Q → k× ⊗ V ◦n .

We will need the following lemma to compute the cohomology of this reduced
complex:

Lemma 6.1.1. The natural map (k×)⊗(i−1) ⊗ k[ε]×n → KM
i (k[ε]n) is a surjection.

Proof. By the definition of Milnor K-theory, it is clear that it suffices to prove the
lemma for i = 2. In this case the lemma follows from the isomorphism

K2(k[ε]n) ' K2(k)⊕
Ω1
k[ε]n

Ω1
k + d(k[ε]n)

,

(Theorem 3, [13]) and the observation that k× ⊗ k[ε]×n surjects onto the expression
on the right, under this isomorphism. Note that KM

2 (k[ε]n) = K2(k[ε]n) [14]. 2

Proposition 6.1.2. The inclusion γk[ε]n(2)′Q → γk[ε]n(2)◦Q is a quasi-isomorphism.

Proof. The only thing that needs a justification is the surjectivity of the induced
map on the degree 2 cohomology groups or equivalently the surjectivity of the com-
position

k×Q ⊗Q V
◦
n → (Λ2Vn)◦ → Ω1

k[ε]n/(Ω
1
k + d(k[ε]n)),

where the last map is the one in the proof of Proposition 5.1.4. But this is exactly
Lemma 6.1.1. 2

6.2. The construction of Bloch-Esnault with higher modulus. For the rest
of the section we assume that k is algebraically closed. In [5], Bloch and Esnault
construct the additive weight 2 complex with modulus 2, the proof of Bloch-Esnault
goes through to give a construction for all moduli n ≥ 2. We describe the properties
of this complex below. The proofs and the details of the construction can be found
in §2 of [5].
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Following the notation of [5], let R be the local ring of 0 in A1
k. The localization

(away from 0) sequence for the pair (k[t], (tn)), splits into the exact sequences:

K2(k[t], (tn))→ K2(R, (t
n))

∂−−−→ ⊕x∈k×K1(k)→ K1(k[t], (tn))→ 0

and

0→ K1(R, (t
n))

∂−−−→ ⊕x∈k×K0(k)→ K0(k[t], (tn))→ 0,

since K0(R, (t
n)) = 0; and the map K1(R, (t

n)) → ⊕x∈k×K0(k) is injective, as
K1(R, (t

n)) = 1+(tn) and the map is given by the divisor of the function (Appendix,
[18]). This description also gives a canonical identification

K0(k[t], (tn)) = (k[t]×n )◦.

Using the product structure on K-theory let

TnB2(k) := (K2(R, (t
n))/im(K1(k) ·K1(R, (t

n)))Q,

and let TnH
1
M(k, 2) be the image of K2(k[t], (tn))Q in TnB2(k). Then the above exact

sequences give the following exact sequence:

0→ TnH
1
M(k, 2)→ TnB2(k)→ k× ⊗ V ◦n → K1(k[t], (tn))Q → 0.(6.2.1)

We let

TnQ(2)(k) : TnB2(k)→ k× ⊗ V ◦n
denote the middle part of this sequence. This is the exact generalization of the
complex considered by Bloch and Esnault in [5] (the complex described in §1.2) to
higher moduli.

We will try to express the cohomology groups of TnQ(2)(k) in terms of the groups
K∗(k[t]n, (t))Q.

First note that the long exact sequence for the pair (k[t], (tn)), together with the
homotopy invariance of K-theory gives canonical isomorphisms

K∗+1(k[t]n, (t)) ' K∗(k[t], (tn)),

and therefore that there is a surjection

(
K3(k[t]n, (t))

K1(k) ·K2(k[t]n, (t))
)Q ' (

K2(k[t], (t))

K1(k) ·K1(k[t], (t))
)Q → TnH

1
M(k, 2).(6.2.2)

Lemma 6.2.1. There is a canonical surjection K3(k[t]n, (t))
(2)
Q → TnH

1
M(k, 2).

Proof. By p. 191, [18], K3(k[t]n)Q = K3(k[t]n)
(2)
Q ⊕ KM

3 (k[t]n)Q, and by Lemma

6.1.1, the image of K1(k)⊗K2(k[t]n) in K3(k[t]n) is KM
3 (k[t]n). Hence that (6.2.2) is

a surjection proves the lemma.
2

Let

ρ : TnB2(k) = (
K2(R, (t

n))

K1(k) ·K1(R, (tn))
)Q → (

K2(k[t]2n−1, (t
n))

K1(k) ·K1(k[t]2n−1, (tn))
)Q =: N

denote the map induced by reduction modulo (t2n−1). We will prove that ρ behaves
like an additive dilogarithm in this setting.
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Proposition 6.2.2. The composition K3(k[t]n, (t))
(2)
Q → TnH

1
M(k, 2) → N, induced

by the inclusion K3(k[t]n, (t))
(2)
Q → K3(k[t]n, (t))Q, (6.2.2), and ρ is an isomorphism.

Proof. This map is induced by the long exact sequence of the pair (k[t]2n−1, (t
n)) :

· · · → K3(k[t]n, (t))→ K2(k[t]2n−1, (t
n))→ K2(k[t]2n−1, (t))→ · · · .

By Goodwillie’s theorem, Remark 3.1.2 and §4.1.1, the map K3(k[t]2n−1, (t))
(2)
Q →

K3(k[t]n, (t))
(2)
Q is equivalent to a map k⊕(2n−2) → k⊕(n−1), where the k×-weights in

the source range in [2n,4n-3] whereas in the target they range in [n, 2n−1]. Therefore
this last map is zero and hence

K3(k[t]n, (t))
(2)
Q → K2(k[t]2n−1, (t

n))Q

is injective.
By Theorem 1.11 in [22], K2(k[t]2n−1, (t

n))Q ' k⊕(n−1) ⊕ (Ω1
k)
⊕(n−1), and K1(k) ⊗

K1(k[t]2n−1, (t
n))→ K2(k[t]2n−1, (t

n))Q has image exactly (Ω1
k)
⊕(n−1). This proves the

proposition
2

Corollary 6.2.3. There are canonical isomorphisms:

H1(TnQ(2)(k)) ' K3(k[t]n, (t))
(2)
Q ' HC2(k[t]n, (t))

(1),

H2(TnQ(2)(k)) ' K2(k[t]n, (t))Q ' HC1(k[t]n, (t)).

Proof. The first isomorphism is an immediate consequence of Lemma 6.2.1 and
Proposition 6.2.2, and the second one a consequence of the isomorphism

K2(k[t]n, (t)) ' K1(k[t], (tn)),

which follows from the long exact sequence for (k[t], (tn)) and the homotopy invariance
of K-theory.

2

6.3. Proof of Corollary 1.4.1. First we note that the degree 2 terms of TnQ(2)(k)
and γk[ε]n(2)′Q are both equal to k× ⊗ V ◦n and that the cohomology groups of the
two complexes are canonically isomorphic (Theorem 1.3.1, Proposition 6.2.2, and
Corollary 6.2.3). Moreover in both case the projection from k× ⊗ V ◦n to the degree 2
cohomology is induced by the composition

k× ⊗ V ◦n → KM
2 (k[ε]n)→ Ω1

k[ε]n/(Ω
1
k + d(k[ε]n))

(cf. proof of Lemma 6.1.1). Therefore the images of TnB2(k) and of B2(k[ε]n)′Q
in k× ⊗ V ◦n are the same. The exact sequence (6.2.1) and Proposition 6.2.2 give a
splitting of TnB2(k); and Theorem 1.3.1 and 1.3.2 give a splitting of B2(k[ε]n)′Q. This
proves the corollary.

We would like to emphasize that the isomorphism given in the statement of the
corollary uses the additive dilogarithm in both constructions and thus should not be
considered as natural.
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Norm. Sup. (4) 38 (2005), no. 1, 1-56.

[9] A. Goncharov. Volumes of hyperbolic manifolds and mixed Tate motives. Jour. Amer. Math.
Soc. 12 (1999), no. 2, 569-618.

[10] A. Goncharov.Geometry of configurations, polylogarithms, and motivic cohomology. Advances
in Math. 114 (1995) , 197-318.

[11] A. Goncharov. Euclidean scissor congruence groups and mixed Tate motives over dual numbers.
Math. Res. Letters 11, 771-784, 2004.

[12] T. Goodwillie. Relative algebraic K-theory and cyclic homology. Ann. of Math. (2) 124 (1986),
no. 2, 347-402.

[13] J. Graham. Continuous symbols on fields of formal power series. Algebraic K-theory vol. 2.
Lecture Notes in Math. v. 342, Springer, 474-486.
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