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Abstract

A central stability notion for exchange economies with discrete resources is core: no coalition
credibly objects the allocation by suggesting an alternative allotment that is better for its members
and can be implemented by its members alone (that is, no coalition blocks the allocation). But, core
is in general empty. We propose a novel stability notion for this context. We consider an environ-
ment where agents foresee that a Pareto inefficient allocation is not plausible since it is blocked by
all agents, and therefore, starting from the endowment, they engage in a process of Pareto improv-
ing updates. But, only some Pareto improvements are stable: a (weak) Pareto improvement over an
assignment is a stable improvement if it weakly blocks any other Pareto improvement. A stable set
is a set of assignments such that (i) (external stability) no assignment outside this set is a stable im-
provement over some assignment in the set, (ii) no strict subset of it is externally stable. The (stable
improvement) frontier of the stable set is the set of assignments in the stable set, which do not ad-
mit a stable improvement. Our main result characterizes the frontier of the stable set by the set of
outcomes of the well-known Top Trading Cycles solution.
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1 Introduction

In an exchange economy of discrete resources with private endowments, each agent is endowed
with an indivisible good (an object), and monetary transfers are not allowed. A central concept
for these economies is stability, which captures resilience of an assignment against coalitional
deviations. Awell-known such property is core: an assignment is in the core if there is no coalition
such that each agent in it prefers reallocating their endowments among themselves (by leaving
the economy) over the assignment, that is, if no coalition blocks the assignment. Unfortunately,
core is in general empty.1 We propose a novel concept for stability. A (weak) Pareto improvement
over an assignment is a stable improvement if it weakly blocks any other Pareto improvement. A
stable set is a set of assignments such that (i) (external stability) no assignment out of this set is
a stable improvement over some assignment in the set, and (ii) no strict subset of it is externally
stable. The (stable improvement) frontier of the stable set is the set of assignments in the stable set,
which do not admit a stable improvement. We show that the frontier of the stable set characterizes
the set of outcomes of the well-known Top Trading Cycles (𝑇𝑇𝐶 ) solution.

The central notion in our approach is stable improvement : Agents have a farsighted view on pos-
sible outcomes. First, they foresee that a Pareto inefficient outcome is not possible since such an
outcome will be blocked by all agents. Thus, a plausible allocation is necessarily an outcome of a
process of Pareto improvements. Second, agents deem a Pareto improving blocking of an initial
assignment as stable (we call it a stable improvement) if itweakly blocks any otherPareto improve-
ment over the initial assignment.2 Thus, a stable improvement is justified in the sense that any
potential objection to it (bymeans of an alternative improvement) is counter-objected by at least
one group of agents (that is, there exists at least one coalition whichweakly blocks the alternative
improvement).

This approach to stability is essentially a sequential process of blockings via stable improvements.
Thus, while certain Pareto efficient assignments survive this process as an outcome of a sequence
of stable improvements, certain otherPareto efficient assignments do not. Specifically, the frontier
of the stable set characterizes the set of outcomes of the𝑇𝑇𝐶 solution (Theorem 2). This provides
a theoretical foundation for why the𝑇𝑇𝐶 solution excludes certain Pareto efficient assignments,
from the perspective of stability. We next provide an example to illustrate the concept of stable
improvement and to distinguish the Pareto efficient outcomes, which are obtained through a se-
quence of stable improvements, from other Pareto efficient outcomes.

1Core is non-empty only under a very specific structure of the exchange economy (see Section 2 for a discussion of this
structure).

2Weak blocking is when each agent in the blocking coalition is weakly better off.
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An illustrative example: Let {𝑖1, 𝑖2, 𝑖3, 𝑖4} be the set of agents and {𝑜1, 𝑜2, 𝑜3, 𝑜4} the set of objects.
We consider the exchange economywhere for each 𝑘 , object 𝑜𝑘 is the endowment of agent 𝑖𝑘 . Let
us denote this endowment profile by 𝑒 . The preference profile 𝑅 is as in the following table in the
form of ranking such that the agent is indifferent between the objects in a given set:

𝑅𝑖1 𝑅𝑖2 𝑅𝑖3 𝑅𝑖4

𝑜2 {𝑜1, 𝑜3} 𝑜2 𝑜2
{𝑜3, 𝑜4} 𝑜2 𝑜1 𝑜4
𝑜1 𝑜3

Let us denote an assignment by a tuple` = (`(𝑖1), `(𝑖2), `(𝑖3), `(𝑖4))where`(𝑖 ) denotes the object
assigned to 𝑖 . First, note that the core of this economy is empty. Also, there are threePareto efficient
assignments: `1 = (𝑜2, 𝑜3, 𝑜1, 𝑜4), `2 = (𝑜3, 𝑜1, 𝑜2, 𝑜4), and `3 = (𝑜4, 𝑜3, 𝑜1, 𝑜2). Both `1 and `2 are
such that the endowments of agents 𝑖1, 𝑖2 and 𝑖3 are assigned to these agents and 𝑖4 remains unas-
signed. Suppose first agents 𝑖1 and 𝑖2 Pareto improve 𝑒 via ¯̀1 = (𝑜2, 𝑜1, 𝑜3, 𝑜4). Since agents 𝑖1 and 𝑖2
are assignedoneof their best objects, theyweakly block anyotherPareto improvement over 𝑒 (that
is, each of themweakly prefers ¯̀1 over any such assignment). Thus, agents 𝑖1 and 𝑖2 form a coali-
tion and via ¯̀1, they counter-object to any other Pareto improvement over 𝑒 . Thus, ¯̀1 is a stable
improvement. Moreover, `1 is the only Pareto improvement over ¯̀1 and thus, a stable improve-
ment. Since, assuming the welfare levels conceded under ¯̀1, there is no objection to `1, it is a
stable improvement as well. Thus, `1 is achieved by a process of stable improvements. Similarly,
the assignment ¯̀2 = (𝑜1, 𝑜3, 𝑜2, 𝑜4) is a stable improvement over 𝑒 , and `2 is a stable improvement
over ¯̀2. Thus, this is another sequence of stable improvements. Let us now consider `3. There are
two Pareto improvements over 𝑒 , where 𝑖4 is assigned 𝑜2:`3 and ¯̀3 = (𝑜4, 𝑜1, 𝑜3, 𝑜2). Assignment ¯̀3
is not a stable improvement over 𝑒 since it does notweakly block ¯̀1, another Pareto improvement
over 𝑒 . (On the other hand, ¯̀3 weakly blocks ¯̀2.) Also, `3 is not a stable improvement over 𝑒 since
it does notweakly block `1 and ¯̀1 (nor`2 and ¯̀2), which are bothPareto improvements over 𝑒 . In-
terestingly,`3 is a stable improvement over ¯̀3 since it is the onlyPareto improvement over ¯̀3. But,
since ¯̀3 is not a stable improvement over 𝑒 (actually, not a stable improvement over any assign-
ment), `3 cannot be obtained as a sequence of stable improvements. Moreover, while `1 and `2

are the outcomes of the𝑇𝑇𝐶 , `3 cannot be obtained by the𝑇𝑇𝐶 through any cycle selection rule
(see Section 4 for the detailed description of the𝑇𝑇𝐶 .) In Figure 1, we show each stable improve-
ment by a red arrow. The blue arrows represent Pareto improvements which are not stable. Also,
the black arrows and crossed black arrows represent weakly blocking and no weak blocking, re-
spectively. (For expositional convenience, we include only the relevant arrows of improvements
and blockings.)
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Figure 1: Stable improvements

This example also demonstrates that the structure of welfare-improving blockings embedded in
the concept of the stable set is essential.3 If we assign agents 𝑖1 and 𝑖2 to each other’s endowments,
then we obtain ¯̀1, which is not Pareto efficient. In this case, efficiency improvement is possible
by “expanding” this coalition to include 𝑖3 through the assignment `1 (𝑖1 and 𝑖2 remains indiffer-
ent and 𝑖3 is better off). Note that `1 is blocked by ¯̀2, but it does not counter-block this blocking,
since agent 𝑖3 would strictly prefer ¯̀2 over `1. Thus, by allowing this coalition expansion, 𝑖1 be-
comes worse-off at ¯̀2, and 𝑖1 and 𝑖2 cannot restore their welfare they achieve through their initial
coalition.4 This contradicts agents’ farsighted view on coalition formation to improve welfare. To
prevent this, in the definition of stable improvement, we impose not to let 𝑖3 block `1 (the assign-
ment of the expanded coalition) by another assignment that would be incompatiblewith thewel-
fare under the initial coalition of 𝑖1 and 𝑖2. Thus, we restrict the assignments to those that Pareto
improve ¯̀1, and prevent 𝑖3 from reclaiming 𝑜2 after 𝑖1 and 𝑖2 form a coalition.

Overview of our results:Wepropose a novel concept of stability through an incremental process
of stable improvements. Wedefinean externally stable set asa setof assignments (including theen-
dowment profile) such that no assignment outside this set is a stable improvement over some as-
signment in this set. A stable set is theminimally externally stable set, which is uniquely defined.5

Conceptually, our definition of external stability is in the same spirit with external stability of Von
Neumann-Morgenstern stable set (see the next section for a discussion). In the example above, as-

3In a setting with strict preferences, when agents are endowed with each other’s most preferred objects, stability would
imply that they are assigned each other’s endowments since otherwise, they would constitute a coalition such that it blocks
anyother assignment. This is also the reason forwhy theTTC solution characterizes the core in the strict preferencesdomain,
as it assigns the endowments of the agents in these “natural” coalitions among themselves. But, this simple structure does
not exist in larger domains.

4Also, note that allowing any blocking potentially implies a circular process of blockings.
5See Remark 3.
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signment ¯̀3 is not a stable improvement over no assignment, and also `3 is a stable improvement
only over ¯̀3. Thus, these assignments are considered not attainable through a sequence of stable
improvements and they are outside the stable set.

An important remark at this point is that the process of stable improvements is different than
the process of top trading cycles of the𝑇𝑇𝐶 solution. The stable set is not equivalent to the set
of assignments obtained through the interim stages of top trading cycles of the𝑇𝑇𝐶 solution (see
Lemma 3 andRemark 5 in Appendix B).Moreover, the stable set can get exponentially larger com-
pared to the set of assignments that can be achieved in some interim stage of the TTC algorithm
(see Remark 6). While these two processes do not coincide, surprisingly, as our main theorem
states, they coincide at their frontiers: the (stable improvement) frontier of the stable set charac-
terizes the outcomes of the 𝑇𝑇𝐶 (Theorem 2). This result provides further justifications for the
well-known 𝑇𝑇𝐶 solution, specifically for its strong stability properties. A corollary to our main
theorem is that the core, whenever non-empty, is equivalent to the frontier of the stable set (Corol-
lary 2).

2 Literature

There are various concepts of stability in the context of allocationproblems for discrete resources.
We focus on core, bargaining set and Von Neumann-Morgenstern stable set.

Core. For an exchange economy with privately endowed discrete resources, core is a singleton
under strict preferences, and it is the outcome of the𝑇𝑇𝐶 solution (Shapley and Scarf, 1974). In
the strict preferences domain, the𝑇𝑇𝐶 works as follows: Each agent points to her most preferred
available object and each object points to its owner. Since all agents and objects point, there is at
least one cycle. Also, since preferences are strict no two cycle intersects. The algorithm selects a
cycle and assigns to each agent in the cycle hermost preferred available object (that is, the object
shepoints at) and removesherwithher assignedobject. Thealgorithmterminateswhenall agents
and objects are removed. The 𝑇𝑇𝐶 (therefore the core) solution is characterized by individual
rationality, Pareto efficiency and strategy-proofness (Ma (1994), Sönmez (1999)).

The𝑇𝑇𝐶 solution has a natural extension for the general preferences domain (Saban and Sethu-
raman, 2013). Also, there are various strategy-proof selections from this class (Jaramillo andMan-
junath (2012), Alcalde-Unzu and Molis (2011), Saban and Sethuraman (2013)). But, core is not
preserved and in general, it is empty in this domain. It is non-empty only under a very special and
restrictive structure of the exchange economy, called the top trading segmentation (TTS) (Quint

4



and Wako, 2004). This structure is as follows: Let each agent point to her best objects, and each
object points to her owner. A set of objects and agents with the following three properties exists:
(i) there is nopointing from this set to the outside of it, (ii) nonon-empty strict subset of it satisfies
property (i), and (iii) it is possible to assign each agent in this set to one of the objects she points
to in this set. Such a set is called a covered minimally self-mapped set (see Section 3.1 for formal
definitions). The agents and objects in this set are removed, and the remaining agents point to
their best objects among the remaining objects. This smaller economy also has a covered mini-
mally self-mapped set (note that for some agents in smaller economy, their best objectsmight not
be available anymore). Once the second covered minimally self-mapped set is removed, there is
another one in the remaining economy, and this continues until all agents are removed. Thus, an
economy has a TTS structure when the economy can be partitioned into a sequence of mutually
exclusive smaller economies (that is, into coveredminimally self-mapped sets) in the specific way
described.

Theorem 1. (Quint and Wako, 2004) The core is non-empty if and only if the economy has a TTS
structure.

The core, if non-empty, is such that each agent is assigned a best object in the covered minimally
self-mapped set she is in (Quint and Wako, 2004). The core is not necessarily single-valued, but
it is essentially single-valued: each agent is indifferent between any two assignments in the core.
These findings imply an immediate characterization result.

Corollary 1. In an exchange economywith a TTS structure, an assignment is in the core if and only
if it is an outcome of the TTC.

Bargaining set. An assignment is in the bargaining set if blocking by a coalition implies that
there is another coalition blocking the assignment resulting from the initial blocking (Aumann
andMaschler, 1964). In school choice, thisnotionprovides aweakeningof stability, the central ax-
iominmatching theory: if a student claimsanempty slot at a school and thus, shehasanobjection
to an allocation, then there will be a counter-objection once she is assigned to that school (since
the priority of some other student will be violated at that school). Amatching is in the bargaining
set if and only if for each objection to the matching, there exists a counter-objection (referred to
as constrained non-wastefulness (Ehlers, Hafalir, Yenmez, and Yildirim, 2014)).6 For an exchange
economy with discrete resources, each outcome of the𝑇𝑇𝐶 solution is in the bargaining set, but
not all assignments in the bargaining set can be obtained by the𝑇𝑇𝐶 (Yılmaz and Yılmaz, 2022).
In a market game with a continuum of players, the bargaining set characterizes Walrasian allo-
cations (Mas-Colell, 1989). For non-transferable utility games, the bargaining set is non-empty

6There are otherworks studying bargaining set in thematching context (Ehlers (2010), Kesten (2010), Alcade andRomero-
Medina (2017)).
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under certain conditions (Vohra, 1991).7 For an exchange economy with differential information
and a continuum of traders, the bargaining set characterizes the set of Radner competitive equi-
librium allocations (Einy, Moreno, and Shitovitz, 2001). While the bargaining set notion in these
works takes into account only one step of counter-objection to a blocking coalition, a more re-
fined axiom considers a chain of counter-objections (Dutta, Ray, Sengupta, and Vohra, 1989).

VonNeumann-Morgenstern stable set. A VonNeumann-Morgenstern stable set (or a set of stable
allocations) is a set of allocations such that (i) (internal stability) no coalition blocks any stable
allocation by suggesting another stable allocation; and (ii) (external stability) anyunstable alloca-
tion is blocked by a coalition by suggesting a stable allocation. Clearly, the core satisfies internal
stability but it may violate external stability. A set𝑉 ofmatchings is a VonNeumann-Morgenstern
stable set of a one-to-one matching problem only if 𝑉 is a maximal set satisfying the following
properties: (i) the core is a subset of𝑉 , (ii)𝑉 is a distributive lattice, and (iii) the set of unmatched
agents is the same for allmatchings in𝑉 (Ehlers, 2007). While core andVonNeumann-Morgenstern
stable set are myopic notions since only one step deviations are considered, the agents can also
be farsighted where coalitional objections can be countered by subsequent counter-objections.
A matching ` indirectly dominates `′ if ` replaces `′ in a sequence of matchings, such that at
each matching along the sequence, all deviators are strictly better off at ` than at `′ (Harsanyi
(1974), Chwe (1994)). The Von Neumann-Morgenstern farsighted stable set is obtained by replac-
ing the myopic notion of blocking in the definition of Von Neumann-Morgenstern stable set with
the farsighted notion of indirect dominance (Mauleon, Vannetelbosch, and Vergote, 2011). A set
of matchings is a Von Neumann-Morgenstern farsightedly stable set if and only if it is a singleton
subset of the core (Mauleon, Vannetelbosch, and Vergote, 2011).

Discussion of our notion of stable set. Stable set in the current work is similar to Von Neumann-
Morgenstern (farsightedly) stable set. In the Von Neumann-Morgenstern (farsightedly) stable set,
an assignment is excluded from this set and considered as an unlikely outcome since it is blocked
(indirectly dominated) by an assignment in the Von Neumann-Morgenstern (farsightedly) stable
set (external stability). Our concept of stable set relies on the same intuition with a different no-
tion of exclusion: if an assignment ` weakly Pareto improves another assignment `′ in the stable
set (implying that ` weakly blocks `′), but ` does not block all Pareto improvements over `′, we
consider ` as not resilient to other Pareto improving assignments, thus as not a stable improve-
ment. Thus, given a stable assignment, our notion tests the resilience of an assignment against
group deviations only via other Pareto improvements.

7There are slight differences in the formulation of the bargaining set defined by Aumann and Maschler (1964) and Mas-
Colell (1989). See Vohra (1991) for the differences between these two formulations and also other variants of the notion.
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The notion of stable set is also inspired by the insight of bargaining set : a stable improvement `
over`′, bydefinition, is a counter-objection tootherassignments, but, unlikebargaining set, these
counter-objections arenot toany other assignment, but only to certain assignments, that is, other
Pareto improvements over`′. In the example given in the introduction, assignment ¯̀1 has the fol-
lowing property: it blocks any otherPareto improving assignment over the endowment. One such
assignment is ¯̀2 and actually, ¯̀2 blocks ¯̀1. Thus, as in the bargaining set, ¯̀1 counter-blocks ¯̀2.
In other words, any stable improvement ` over an initial assignment `′ counter-blocks any other
stable improvement over`′, which blocks`. Thus, it belongs to the bargaining set when the set of
blockings are restricted to the set of other Pareto improvements.

3 Model

LetA be a set of agents andO a set of objects such that each agent is endowedwith one object. An
endowment profile is a bijection 𝑒 : A → O. We call each set of agents 𝐴 ⊆ A a coalition and
denote the set of endowments of coalition 𝐴 by 𝑒 (𝐴). Each agent 𝑖 has a complete and transitive
preference relation 𝑅𝑖 on O; that is, we allow for indifferences. For each 𝑖 , let 𝑃𝑖 and 𝐼𝑖 denote the
strict and indifferences parts of 𝑅𝑖 , respectively. Let 𝑅 = (𝑅𝑖 )𝑖 ∈A be a preference profile.

An assignment problem is allocating objects in O to agents inA in such away that each agent re-
ceives exactly one object. We fixA and O throughout the paper, and denote an assignment prob-
lem (or simply a problem) by a pair (𝑒 , 𝑅).

An assignment` is a bijection` : A → O. An assignment ` is individually rational if for each 𝑖 ∈
A,`(𝑖 ) 𝑅𝑖 𝑒 (𝑖 ). For each problem (𝑒 , 𝑅), we denote the set of all individually rational assignments
byM(𝑒 , 𝑅). Clearly, for each problem (𝑒 , 𝑅), 𝑒 ∈ M(𝑒 , 𝑅). Given an assignment ` ∈ M(𝑒 , 𝑅), the
updated endowment profile under `, denoted by 𝑒`, is the assignment `, that is, for each 𝑖 ∈
A, 𝑒` (𝑖 ) = `(𝑖 ).

An assignment ` Pareto dominates `′, denoted by ` � `′, if for each 𝑖 ∈ A, `(𝑖 ) 𝑅𝑖 `
′(𝑖 ) and for

some 𝑗 ∈ A, `(𝑗 ) 𝑃𝑗 `′(𝑗 ). Also, ` is Pareto indifferent to `′, denoted by ` ∼ `′, if for each 𝑖 ∈
A, `(𝑖 ) 𝐼𝑖 `′(𝑖 ). Whenever ` � `′ or ` ∼ `′, we denote it by ` � `′. Also, ` strictly Pareto
dominates `′, if for each 𝑖 ∈ A, `(𝑖 ) 𝑃𝑖 `′(𝑖 ). An assignment ` is Pareto efficient if there does not
exist another assignment which Pareto dominates `. For each problem (𝑒 , 𝑅), we denote the set
of Pareto efficient assignments by E(𝑒 , 𝑅).
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3.1 Graph theoretical representation

The definitions and the notation in this section follow closely existing works by Quint and Wako
(2004) and Yılmaz and Yılmaz (2022). Let 𝐺 = (𝑉 , 𝐸 ) be a directed graph, where 𝑉 is the set of
vertices and 𝐸 is the set of directed edges, that is a family of ordered pairs from𝑉 . For each𝑈 ⊂ 𝑉 ,
let 𝛿 𝑖𝑛 (𝑈 ) be the set of edges (𝑢,𝑣 ) ∈ 𝐸 such that𝑢 ∈ 𝑉 \𝑈 and𝑣 ∈ 𝑈 (i.e. the set of edges entering
𝑈 ) and 𝛿𝑜𝑢𝑡 (𝑈 ) be the set of edges (𝑢,𝑣 ) ∈ 𝐸 such that 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑉 \𝑈 (i.e. the set of edges
leaving𝑈 ). If𝑈 is a singleton, say𝑈 = {𝑣 }, thenwe use 𝛿 𝑖𝑛 (𝑣 ) (and 𝛿𝑜𝑢𝑡 (𝑣 )) instead of 𝛿 𝑖𝑛 (𝑈 ) (and
𝛿𝑜𝑢𝑡 (𝑈 )). A subgraph of𝐺 is any directed graph𝐺 ′ = (𝑉 ′, 𝐸 ′) with ∅ ≠𝑉 ′ ⊆ 𝑉 and 𝐸 ′ ⊆ 𝐸 and each
edge in 𝐸 ′ consisting of vertices in𝑉 ′. For a set of vertices𝑇 ⊆ 𝑉 , the subgraph of𝐺 induced by𝑇
is the subgraph (𝑇 , 𝐸 ′) such that 𝐸 ′ = {(𝑢,𝑣 ) ∈ 𝐸 : 𝑢,𝑣 ∈ 𝑇 }. A sequence of vertices {𝑣1, . . . 𝑣𝑚} is a
path from 𝑣1 to 𝑣𝑚 if (i)𝑚 ≥ 1, (ii) 𝑣1, . . . , 𝑣𝑚 are distinct (except for possibly 𝑣1 = 𝑣𝑚), and (iii) for
each 𝑘 = 1, . . . , 𝑚 − 1, (𝑣𝑘 , 𝑣𝑘+1) ∈ 𝐸 . A cycle is a path {𝑣1, . . . 𝑣𝑚} is a cycle if𝑚 ≥ 2 and 𝑣1 = 𝑣𝑚 .

A set of vertices𝑇 ⊆ 𝑉 is strongly connected if the subgraph inducedby𝑇 is such that for any𝑢,𝑣 ∈
𝑇 , there is a path from𝑢 to𝑣 . A self-mapped set is a set of vertices 𝑆 ⊆ 𝑉 such that 𝑆 = ∪

𝑣 ∈𝑆
𝛿𝑜𝑢𝑡 (𝑣 )8.

Aminimally self-mapped set is a self-mapped set such that no strict and non-empty subset of it
self-mapped. The next observation follows from Proposition 2.2 by Quint andWako (2004).

Remark 1. Let 𝐺 = (𝑉 , 𝐸 ) be a directed graph. A set of vertices 𝑆 ⊆ 𝑉 is non-empty and strongly
connected such that 𝛿𝑜𝑢𝑡 (𝑆) = ∅ if and only if 𝑆 is a minimally self-mapped set.

Whenever convenient, we refer to this equivalence result and say that a set of vertices 𝑆 is amini-
mally self-mapped set if (i) for any two vertices in 𝑆 , there is a path from one to the other, and (ii)
there is no path from any vertex 𝑢 ∈ 𝑆 to any vertex 𝑣 ∉ 𝑆 . The following follows directly from
Remark 1 and theMSMS algorithm introduced by Quint andWako (2004).

Remark 2. Let 𝐺 = (𝑉 , 𝐸 ) be a directed graph. If for each 𝑣 ∈ 𝑉 , 𝛿𝑜𝑢𝑡 (𝑣 ) ≠ ∅, then a minimally
self-mapped set exists.

Let 𝑤 : 𝐸 → < be a function. We denote
∑

𝑒 ∈𝐹 ⊆𝐸
𝑤 (𝑒 ) by 𝑤 (𝐹 ). A function 𝑓 : 𝐸 → < is called a

circulation if for each 𝑣 ∈ 𝑉 , 𝑓 (𝛿 𝑖𝑛 (𝑣 )) = 𝑓 (𝛿𝑜𝑢𝑡 (𝑣 )). Let 𝑑, 𝑐 : 𝐸 → < with 𝑑 ≤ 𝑐 . A circulation 𝑓

respects d and c if for each edge 𝑒 , 𝑐 (𝑒 ) ≥ 𝑓 (𝑒 ) ≥ 𝑑 (𝑒 ). Aminimally self-mapped set 𝑆 is covered
if there exists an integer-valued circulation 𝑓 such that for each 𝑣 ∈ 𝑆 , 𝑓 (𝑒 ) = 1 for some edge 𝑒
entering 𝑣 .

8Note that ∪
𝑣 ∈𝑆

𝛿𝑜𝑢𝑡 (𝑣 ) and 𝛿𝑜𝑢𝑡 (𝑆) are different sets in general.
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4 The class of the Top Trading Cycles (TTC) rules

The 𝑇𝑇𝐶 class is a set of assignment rules as an extension of the well-known 𝑇𝑇𝐶 mechanism
defined on the strict domain. Agents have indifference classes and point to more than object.
Thus, the problem is to select a particular cycle amongmany intersecting cycles. This is the crux
in defining a particular mechanism.

Let𝐹 bea selection rule: for eachminimally self-mapped set that is not covered,𝐹 selects oneof the
cycles in theminimally self-mapped sets. The 𝑇𝑇𝐶 updates the endowment profile by assigning
each agent in the cycle to the object that she points to in the same cycle. Let 𝑒1 = 𝑒 and for 𝑛 ≥ 1,
the steps below are repeated until all agents and objects are removed.

The𝑇𝑇𝐶 Algorithm:

Step n. Leteachagentpoint toherbestobjectsamong the remainingobjects9 andeachremaining
object points to its owner according to the endowment profile 𝑒𝑛 . Select a minimally self-
mapped set 𝑇𝑛 in this digraph.

(n.1) If𝑇𝑛 is covered, then each agent in𝑇𝑛 is removed by assigning her one of the best objects
in𝑇𝑛 .

(n.2) Otherwise, select one of the cycles in theminimally self-mapped set using the selection
rule 𝐹 , and update the endowment profile in the cycle to obtain 𝑒𝑛+1.

For each problem (𝑒 , 𝑅), we denote the set of assignments that can be achieved with the𝑇𝑇𝐶 al-
gorithm by𝑇𝑇𝐶 (𝑒 , 𝑅)

5 Stable Set

A central concept in exchange economies is immunity to coalition formations where agents real-
locate their endowments among themselves such that they are better off than the proposed as-
signment.

Let (𝑒 , 𝑅) be a problem. A coalition 𝐴 ⊆ A weakly blocks an assignment ` with `′ if 𝑖 ∉ 𝐴 im-
plies `′(𝑖 ) = 𝑒 (𝑖 ), and for each 𝑖 ∈ 𝐴, `′(𝑖 ) 𝑅𝑖 `(𝑖 ). Also, coalition 𝐴 blocks ` with `′, if it weakly
blocks ` with `′ and for some 𝑗 ∈ 𝐴, `′(𝑗 ) 𝑃𝑗 `(𝑗 ). The core is the set of assignments that are not
blocked by any coalition. For each problem (𝑒 , 𝑅), we denote the core by C(𝑒 , 𝑅).

9At Step 1, the set of remaining objects is the set of all objects, O.
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Core is in general empty and we need a different approach for stability. Our notion is as follows:
Let `′ be an assignment and consider a (weak) Pareto improvement ` over `′. This (weak) Pareto
improvement is stable if and only if it weakly blocks any other Pareto improvement over `′. In
otherwords, any otherPareto improving alternative (or objection) to` is counter-objectedwith`

by some coalition.

Definition 1. An assignment ` is a stable improvement over `′ if ` � `′ and for each `∗ � `′, `
weakly blocks `∗.

We denote ` being a stable improvement over `′ by ` �𝑠 `′. We also write ` ∼𝑠 `′ if ` �𝑠 `′ and
` ∼ `′, and` �𝑠 `′ if` �𝑠 `′ and` � `′. We define the set of externally stable assignments𝑀 such
that no assignment inM(𝑒 , 𝑅) \ 𝑀 is a stable improvement over some assignment in𝑀 . Thus, for
each assignment `′ 𝑖𝑛 𝑀 , each (weak) Pareto improving assignment over `′ isweakly blocked by
another Pareto improving assignment over `′.

Definition 2. Let (𝑒 , 𝑅) be a problem. A set of assignments𝑀 ⊆ M(𝑒 , 𝑅) is externally stable if

(i) 𝑒 ∈ 𝑀 , and
(ii) `′ ∈ 𝑀 and ` �𝑠 `′ implies ` ∈ 𝑀 .

A stable set is an externally stable set such that no strict subset of it externally stable.

5.1 Discussion of the stable set

Thefirst point we should clarify is that our definition of blocking ismore restrictive than the stan-
dard notion: whenever a coalition𝐴 (weakly) blocks an assignment`′with`, we impose that each
agent 𝑖 ∉ 𝐴 is assigned to their endowment under `. We argue that this is the most natural re-
striction in the current context: Core as a stability notion requires that there are no coalitional
deviations. Thus, since blocking is considered as a one-time deviation without further blockings,
‘which objects are assigned to agents outside the blocking coalition’ is irrelevant. But, in our con-
text where there are sequential blockings, this is relevant and the least restrictive and natural as-
sumption is that agentsoutsideablocking coalitionareassigned to their endowments. The reason
is that whenever a coalition blocks an assignment, existing exchange cycles of endowments are
potentially broken, and these broken cycles necessarily imply that agents in these cycles, who are
outside the blocking coalition, are necessarily left with their endowments. An important point
here is that whenever an exchange cycle is not broken, our notion of (weak) blocking is not re-
strictive (see Example 1 in Appendix A). Moreover, this stronger (weak) blocking notion implies a
stronger notion of stable improvement, thus a stronger notion of stable set. We discuss and argue
for the implication of this strengthening in Section 6.
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The second point is about the justification of weak blocking in the definition of stable improve-
ment (rather than blocking ). The reason is straightforward: if, instead, we use blocking, the stable
set is essentially empty (contains only the endowment profile) in general (see Example 2 in Ap-
pendix A). Although there are other (weaker) versions of stable set (see Example 3 in Appendix A),
we argue for the current (stronger) version (Definition 2) in Section 6.

The thirdpoint is about the relationship between the stable set and core. The core can be defined
by the set of assignments that block any other assignments.10 If the problem did not involve any
caseswhere thenatural coalitionsmust be expanded, the stable set wouldnot take an incremental
form, and the stable efficient set would be the efficient stable improvements of the endowments.
In such a case, the definition would correspond to the set of assignments that block any other
assignment, whichwould correspond to the definition of the core. Therefore, the stable set can be
thought of as the incremental restrictions of the core to each expansion of coalitions.

Proposition 1. The core is non-empty if and only if there is an essentially-unique path of stable
improvements, that is, for each `1, `2 ∈ S(𝑒 , 𝑅), there exists stable improving sequences (`1

𝑘
)0≤𝑘 ≤𝑛

and (`2
𝑘
)0≤𝑘 ≤𝑚 such that `10 = `1, `20 = `2 and `1𝑛 = `2𝑚 .

Proof. See Appendix A. �

The fourth point is about the relationship between the stable set and bargaining set. For each
problem (𝑒 , 𝑅), let

𝐵 (𝑒 , 𝑅) = {` : ` weakly blocks any assignment `′ ∈ 𝑀 (𝑒 , 𝑅)}

to be the weaker version of the bargaining set that allows Pareto inefficient assignments to be in-
side the bargaining set if they can weakly block any of their Pareto improvements. For any set of
endowment profiles 𝐸 , let 𝐵 (𝐸,𝑅) denote the image of 𝐸 in 𝐵 in the usual sense. Let 𝐵2(𝑒 , 𝑅) de-
note 𝐵 (𝐵 (𝑒 , 𝑅), 𝑅) and let 𝐵𝑛 (𝑒 , 𝑅) = 𝐵 (𝐵𝑛−1(𝑒 , 𝑅), 𝑅) denote the 𝑛-times composition of 𝐵 with
itself, so that suppressing the preferences 𝑅 , we have 𝐵𝑛 (𝑒 ) = 𝐵 (𝐵 (𝐵 (..𝐵 (𝑒 )). Since for any (𝑒 , 𝑅),
we have 𝑒 ∈ 𝐵 (𝑒 , 𝑅), by a simple induction we see that 𝐵𝑛 (𝑒 , 𝑅) ⊂ 𝐵𝑛+1(𝑒 , 𝑅). Thus, lim𝐵𝑛 (𝑒 , 𝑅) is
defined an is equal to

⋃
𝐵𝑛 (𝑒 , 𝑅). Now we can further see the connection between our definition

of the stable set and the bargaining set :

Proposition 2. Let 𝐵∞(𝑒 , 𝑅) = lim𝐵𝑛 (𝑒 , 𝑅). Then, S(𝑒 , 𝑅) = 𝐵∞(𝑒 , 𝑅).

Proof. See Appendix A. �

10The formal statement would be somewhatmore nuanced and the definition of blocking would be slightly different, nev-
ertheless the intuition would be preserved.
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It is worth noting that the statement is not trivial, in the sense that it does not follow from the
definition (and also is not true in general) that ` �𝑠 `′ if and only ` ∈ 𝐵 (`′, 𝑅). Although both
definitions require that ` weakly blocks any assignment `∗ � `′, in the former case, the (weak)
blocking is done with the starting endowments 𝑒 , however in the latter case the (weak) blocking
must be done with the new endowments `′. Nevertheless, the statement does turn out to be true
if we further assume `′ ∈ S(𝑒 , 𝑅), which will be sufficient for our proof.

This observation follows from the definition of the stable set, and it gives us the connection be-
tween the stable set and the bargaining set : the stable set characterizes the bargaining set in each
expansion of coalitions. Thus, it can be viewed as the repeated application of the bargaining set.

6 Main result

The following observation states that there is a unique stable set.

Remark 3. For each problem (𝑒 , 𝑅), there exists a unique stable set.

Proof. Let (𝑒 , 𝑅) be a problem and 𝑆 a stable set for (𝑒 , 𝑅). Let 𝑆0(𝑒 , 𝑅) = {𝑒 } and for 𝑘 ≥ 1,
let 𝑆𝑘 (𝑒 , 𝑅) = {` : ` �𝑠 `′ for some `′ ∈ 𝑆𝑘−1(𝑒 , 𝑅)} be the set of all stable improvements over
each assignment in 𝑆𝑘−1(𝑒 , 𝑅). Let 𝑆∗(𝑒 , 𝑅) =

⋃∞
𝑘=0 𝑆𝑘 (𝑒 , 𝑅). Since 𝑒 ∈ 𝑆0, we have 𝑒 ∈ 𝑆∗(𝑒 , 𝑅).

If `′ ∈ 𝑆∗(𝑒 , 𝑅) and ` �𝑠 `′, then `′ ∈ 𝑆𝑘 (𝑒 , 𝑅) for some 𝑘 , and by definition, ` ∈ 𝑆𝑘+1(𝑒 , 𝑅). Then,
we have ` ∈ 𝑆∗(𝑒 , 𝑅). Thus, 𝑆∗(𝑒 , 𝑅) is externally stable. Since 𝑆 is stable, it is externally stable and
we have 𝑆0 = {𝑒 } ⊆ 𝑆 . By external stability of 𝑆 , 𝑆𝑘 ⊆ 𝑆 implies 𝑆𝑘+1 ⊆ 𝑆 . Then, for each 𝑘 , 𝑆𝑘 ⊆ 𝑆 .
Thus, 𝑆∗(𝑒 , 𝑅) ⊆ 𝑆 . Since 𝑆 is stable and 𝑆∗ ⊆ 𝑆 is externally stable, 𝑆 = 𝑆∗(𝑒 , 𝑅). We conclude that
there exists a unique stable set and it is given by 𝑆∗(𝑒 , 𝑅). �

For each problem (𝑒 , 𝑅), we denote the stable set by S(𝑒 , 𝑅). The stable improvement frontier of
the stable set, or simply the frontier of the stable set is the set of assignments in the stable set,
which do not admit a stable improvement. We denote the frontier of the stable set byS 𝑓 (𝑒 , 𝑅). Our
main theorem states that the frontier of the stable set characterizes the𝑇𝑇𝐶 .

Theorem 2. For each problem (𝑒 , 𝑅), S 𝑓 (𝑒 , 𝑅) = 𝑇𝑇𝐶 (𝑒 , 𝑅).

Proof. See Appendix B. �

As this result shows, the notion of stable set is strong enough to characterize the 𝑇𝑇𝐶 and weak
enough tobenon-empty. This is important, since as far as the𝑇𝑇𝐶 is concerned, the right stability
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notion has been an open question: First, core is empty (too strong). Second, bothweak core and
theweak bargaining set (see Yılmaz and Yılmaz (2022)) are weak enough to be non-empty but at
the same time, not strong enough to characterize the𝑇𝑇𝐶 (Yılmaz and Yılmaz, 2022). Moreover,
it turns out that strengthening of (weak) blocking (through a restriction on the agents outside the
deviating coalition) is not only natural and intuitive in the current context (see Section 5.1), but
also a key aspect in characterizing the𝑇𝑇𝐶 solution, along a stronger version of stable set11

Finally, the following corollary is a direct consequence of Theorem 2.

Corollary 2. For each problem (𝑒 , 𝑅), if C(𝑒 , 𝑅) ≠ ∅, then S 𝑓 (𝑒 , 𝑅) = C(𝑒 , 𝑅).

Note that the𝑇𝑇𝐶 is equivalent (under the strict preferences) to the core (the most intuitive sta-
bility notion). Thus, our notion is strong enough to reduce to the core in the strict domain and
weak enough to be non-empty even in the most general domain (as opposed to the core) and to
characterize the𝑇𝑇𝐶 .

11As we discuss in Section 5.1, this stronger version is through usingweak blocking rather than blocking in the definition
of stable improvement.
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Appendix A Alternative formulations of the stable set

Example 1. When is our definition of blocking not restrictive?

Suppose there are two intersecting trading cycles 𝐶1 and 𝐶2 such that it is not possible to assign all
agents in these cycles their best objects simultaneously, and a third cycle𝐶3, which does not intersect
with𝐶1 or𝐶2. Let `′ = 𝐶1 ◦𝐶3 and ` = 𝐶2 ◦𝐶3, the assignments obtained by executing the cycles𝐶1
and 𝐶3, and the cycles 𝐶2 and 𝐶3, respectively. Assignments `′ and ` reflect a conflict interest be-
tween coalitions 𝐶1 and 𝐶2, and we would expect them to block each other. Since the additional
restriction of our definition implies that agents outside the blocking coalition must be assigned to
their endowments, (i) blocking by the coalition 𝐶2 would imply `∗ = 𝐶2 (only the agents in 𝐶2 are
assigned to their best objects and the rest to their endowments), and (ii)𝐶2 cannot block `′ with `.
But, since all agents in 𝐶3 are indifferent between `′ and `, the coalition 𝐶1 ∪ 𝐶3 blocks `′ with `.
Thus, in such cases, our definition is not restrictive.

Example 2. The stable set would be empty if we use blocking (instead of weak blocking) in the def-
inition of stable improvement.

By definition of a Pareto improvement, an assignment ` can not block another assignment `′, if `′

Pareto improves `. Thus, if an assignment ` � `′ is not Pareto efficient, it can not block all assign-
ments `∗ � `′, as there will be one such `∗ that Pareto improves `. Next, we refer to the example in
the Introduction: agents 𝑖1 and 𝑖2 are endowedwith eachother’smostpreferredobjects andcan trade
them to achieve ¯̀1 � 𝑒 . But, since `1 � ¯̀1, we would not deem ¯̀1 as a stable improvement over 𝑒 ,
if, instead of weak blocking, we use blocking in the definition of a stable improvement. Moreover,
even though `1 is Pareto efficient, it can not block `2, as agent 𝑖3 strictly prefers `2 over `1. Thus, `1
would not be a stable improvement over 𝑒 . By a symmetric argument, neither `2 nor ¯̀2 would be
stable improvements over 𝑒 . Thus, the stable set would consist only of 𝑒 and the efficiency frontier of
the stable set would be the empty set.

Example 3. Aweaker version of stable set.

Let us consider the following version of stable improvement: ` is a stable improvement over `′ if
and only if for each `∗ � `′ such that `∗ � `, ` blocks `∗. It is easy to see that our definition is
strictly stronger. If `∗ � ` and ` weakly blocks `∗, then there exists an agent 𝑖 , who strictly prefers `
over`∗. But, since both assignments are individually rational, we have`(𝑖 ) ≠ 𝑒 (𝑖 ). Thismeans that
agent 𝑖 is part of the weakly blocking coalition of `. Thus, ` blocks `∗. Thus, the blocking condition
in the definition can be rewritten as follows: “For each `∗ � `′with `∗ � `, ` blocks `∗ and for each
`∗ � ` � `′, ` weakly blocks `∗”. Thus, using weak blocking implies a stronger (and non-empty)
definition of stable improvement. Thus, we choose the compact version, and say “` weakly blocks

14



any assignment `∗ � `′”. Also, to let `∗ � ` instead of `∗ � `′ is without loss of generality, since for
each `∗ ∼ `′, we have ` � `′ ∼ `∗, thus, ` weakly blocks `∗.

ProofofProposition1. Suppose thecore isnon-empty. Then, byTheorem2,𝑇𝑇𝐶 (𝑒 , 𝑅) = S 𝑓 (𝑒 , 𝑅) =
C(𝑒 , 𝑅). Let `1, `2 ∈ S(𝑒 , 𝑅). By the structure of the stable set, there exist stable improving se-
quences (`1

𝑘
)0≤𝑘 ≤𝑛 and (`2

𝑘
)0≤𝑘 ≤𝑚 such that `1𝑛 ∈ S 𝑓 = C and `2𝑚 ∈ S 𝑓 = C. Since the core is

essentially unique, we have `1𝑛 ∼ `2𝑚 . Since the stable frontier is Pareto efficient, there exists no
`∗ � `2𝑚 . Thus, we have `1𝑛 �𝑠 `2𝑚 . Thus, letting `2𝑚+1 = `1𝑛 , we are done.

Similarly suppose the condition is satisfied. Let `1, `2 ∈ S 𝑓 (𝑒 , 𝑅). Then, since both assignments
are Pareto efficient, the stable improving sequences (`1

𝑘
)0≤𝑘 ≤𝑛 and (`2

𝑘
)0≤𝑘 ≤𝑚 must be such that

`1
𝑘
∼ `1

𝑘−1 and `2
𝑘
∼ `2

𝑘−1. Thus we have `1 ∼ `2. Thus the stable frontier is essentially unique.
Suppose at some point in the 𝑇𝑇𝐶 algorithm we have an uncovered minimally self-mapped set.
Then there exist two agents 𝑖 and 𝑗 such that they can not be assigned to the object they point to
in the graph, but each of them can be assigned to that object separately, depending on the cycle
selection rule. Let `1 be an assignment in which agent 𝑖 is assigned to his most preferred object
and let `2 be an assignment in which agent 𝑗 is assigned to his most preferred object. Then by
our previous observation, wemust have `1 � `2. But our main theorem implies that `2, `1 ∈ S 𝑓 ,
which contradict stable frontier being essentially unique. Thus, at each stepof the𝑇𝑇𝐶 algorithm,
wemust get a covered self-mapped set. This means the problem has a TTS structure, thus the core
is non-empty.

Proof of Proposition 2. We first show that for any `′ ∈ S(𝑒 , 𝑅), we have ` �𝑠 `′ if and only if ` ∈
𝐵 (`′, 𝑅). First assume` �𝑠 `′. Let`∗ � `′. Then for any agent 𝑖 ∈ A such that`(𝑖 ) ≠ 𝑒 (𝑖 ), we have
`(𝑖 ) 𝑅𝑖 `

∗(𝑖 ). We need to show for any 𝑖 ∈ A such that`(𝑖 ) ≠ `′(𝑖 ), we have`(𝑖 ) 𝑅𝑖 `
∗(𝑖 ). Let 𝑖 ∗ be

such an agent. If `(𝑖 ∗) ≠ 𝑒 (𝑖 ∗), then we are done by assumption ` �𝑠 `′. Suppose `(𝑖 ∗) = 𝑒 (𝑖 ∗) ≠
`′(𝑖 ∗). Then, by the argument in the proof of Lemma 6, we must have `(𝑖 ∗) 𝐼𝑖 `∗(𝑖 ∗) 𝐼𝑖 `′(𝑖 ∗), so
we conclude`(𝑖 ∗) 𝑅𝑖 `

∗(𝑖 ∗). Next assume that` ∈ 𝐵 (`′, 𝑅), let`∗ ∈ M(`′, 𝑅) so that`∗ � `′. Then
for any agent 𝑖 ∈ A such that `(𝑖 ) ≠ `′(𝑖 ), we have `(𝑖 ) 𝑅𝑖 `

∗(𝑖 ). We need to show for any 𝑖 ∈ A
such that `(𝑖 ) ≠ 𝑒 (𝑖 ), we have `(𝑖 ) 𝑅𝑖 `

∗(𝑖 ). Let 𝑖 ∗ be such an agent. If `(𝑖 ) ≠ `′(𝑖 ), then we are
doneby assumption. Suppose`(𝑖 ) = `′(𝑖 ) ≠ 𝑒 (𝑖 ). Again by the argument in the proof of Lemma6,
we have `(𝑖 ) = `′(𝑖 ) 𝑅𝑖 `

∗(𝑖 ). Which proves the statement.

Now that we have established for any `′ ∈ S(𝑒 , 𝑅), we have ` �𝑠 `′ if and only if ` ∈ 𝐵 (`′, 𝑅),
we will show 𝐵∞(𝑒 , 𝑅) = S(𝑒 , 𝑅) by referring to the construction of the stable set in the proof of
Remark 3. Notice that the set since

⋃
𝑆𝑘 (𝑒 , 𝑅) = S(𝑒 , 𝑅), we have𝑆𝑘 ⊂ S for each 𝑘 . Thus, if`′ ∈ 𝑆𝑘 ,

we have ` � `′ if and only if ` ∈ 𝐵 (`′, 𝑅). Thus, 𝑆𝑘+1 = {` : ` �𝑠 `′ for some `′ ∈ 𝑆𝑘 } = {` : ` ∈
𝐵 (`′, 𝑅) for some `′ ∈ 𝑆𝑘 } = 𝐵 (𝑆𝑘 , 𝑅). Let 𝐵0 := 𝑆0 = {𝑒 }. Then, 𝐵 (𝑒 , 𝑅) = 𝑆1(𝑒 , 𝑅). By a simple
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induction using the identity above, we obtain 𝐵𝑛 (𝑒 , 𝑅) = 𝑆𝑛 (𝑒 , 𝑅). Thus, 𝐵∞(𝑒 , 𝑅) =
⋃

𝐵𝑛 (𝑒 , 𝑅) =⋃
𝑆𝑛 (𝑒 , 𝑅) = S(𝑒 , 𝑅).

Appendix B Proof of Theorem 2

Let (𝑒 , 𝑅) be a problem. We fix (𝑒 , 𝑅) throughout the proof, and for ease of notation, we drop the
argument (𝑒 , 𝑅) whenever relevant.

Definition 3. An assignment ` is in the stable reach of another assignment `′ if there exists a se-
quence of assignments (`0 = `′, `1, ...`𝑛 = `) such that `𝑘 �𝑠 `𝑘−1 for any 1 ≤ 𝑘 ≤ 𝑛. We write
`′ →𝑆 ` if ` is in the stable reach of `′.

Remark 4. By construction of the set 𝑆∗(𝑒 , 𝑅) in the proof of Remark 3, an assignment ` is in the
stable set if and only if it is in the stable reach of 𝑒 , that is, S(𝑒 , 𝑅) = {` : 𝑒 →𝑆 `}.

By definition of the 𝑇𝑇𝐶 algorithm, at each step, a cycle 𝐶 is chosen and executed to obtain a
new updated endowment profile such that each agent in𝐶 is assigned the object that they point
to in 𝐶 . For convenience, for agent 𝑖 in 𝐶 , we denote the object that they point to by 𝐶 (𝑖 ). For a
cycle𝐶 , the cycle𝐶 −1 is such that 𝑥 points to 𝑦 in𝐶 if and only if 𝑦 points to 𝑥 in𝐶 −1. We say that a
cycle𝐶 is improving if for some agent 𝑖 in𝐶 ,𝐶 (𝑖 ) 𝑃𝑖 𝑒 (𝑖 ), and non-improving if for each agent 𝑖
in 𝐶 , 𝐶 (𝑖 ) 𝐼𝑖 𝑒 (𝑖 ). Also, an assignment which is obtained at Step 𝑛 of a member of the𝑇𝑇𝐶 class
by executing a sequence of cycles, say𝐶1,𝐶2, . . . ,𝐶𝑛 , is denoted by𝐶1 ◦𝐶2 ◦ .. ◦𝐶𝑛 . We refer to any
such assignment as a sub-TTCassignment and for eachproblem (𝑒 , 𝑅), denote the set of sub-TTC
assignments by 𝑆𝑇𝑇𝐶 (𝑒 , 𝑅), or by 𝑆𝑇𝑇𝐶 whenever convenient.

Lemma 1. Let ` = 𝐶1 ◦ 𝐶2 ◦ .. ◦ 𝐶𝑛 ∈ 𝑆𝑇𝑇𝐶 and `′ be an assignment. Suppose that, for each
𝑖 ∈ ⋃𝑚 (<𝑛)

𝑘=1 𝐶𝑘 , we have `(𝑖 ) 𝐼𝑖 `′(𝑖 ). Then, for each agent 𝑖 ∈ 𝐶𝑚+1, `(𝑖 ) 𝑅𝑖 `
′(𝑖 ).

Proof. First, note that at Step𝑚+1, when agents in𝐶𝑚+1 are assigned to eachother’s endowments,
they are pointing to their most preferred object. Thus, if for an agent 𝑖 ∈ 𝐶𝑚+1, `′(𝑖 ) 𝑃𝑖 `(𝑖 ),
then that object belongs to some agent in𝐶𝑚 ′ where𝐶𝑚 ′ is part of a covered self-mapped set with
𝑚 ′ < 𝑚 + 1. But, for each agent 𝑗 ∈ 𝐶𝑚 ′, we have `(𝑗 ) 𝐼 𝑗 `′(𝑗 ). Thus, if agent 𝑖 receives an object
from𝐶𝑚 ′, thenanagent 𝑖 ′ ∈ 𝐶𝑚 ′ receives theendowmentof 𝑖 . Thus, at Step𝑚 ′, agent 𝑖 ′points toan
agent in𝐶𝑚+1. By definition of a self-mapped set, thismeans that agent 𝑖 is part of the self-mapped
set of agents in𝐶𝑚 ′. Thus, since that self-mapped set is covered, 𝑖 ∈ 𝐶𝑚+1 is removed together with
the agents in𝐶𝑚 ′, which is a contradiction. �

Corollary 3. Let ` = 𝐶1 ◦𝐶2 ◦ .. ◦𝐶𝑛 ∈ 𝑆𝑇𝑇𝐶 and `′ be an assignment such that `′ � `. Then, each
agent in

⋃𝑛
𝑘=1𝐶𝑘 is indifferent between ` and `′.
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Lemma 2. Let ` = 𝐶1 ◦𝐶2 ◦ .. ◦𝐶𝑛 ∈ 𝑆𝑇𝑇𝐶 and let `′ = 𝐶1 ◦𝐶2 ◦ .. ◦𝐶𝑛−1. Then we have ` �𝑠 `′.

Proof. By definition of the𝑇𝑇𝐶 algorithm, ` � `′. Let `∗ be an assignment such that `∗ � `′. By
Corollary 3, agents in

⋃𝑛−1
𝑘=1 𝐶𝑘 are indifferent between`∗,`′ and`, andbyLemma1, for eachagent

𝑖 ∈ 𝐶𝑛 , `(𝑖 ) 𝑅𝑖 `
∗(𝑖 ). Thus, for each agent 𝑖 ∈ ⋃

1≤𝑖 ≤𝑛 𝐶𝑖 , we have `(𝑖 ) 𝑅𝑖 `
∗(𝑖 ). Since 𝑖 ∉ ⋃

1≤𝑖 ≤𝑛 𝐶𝑖

implies `(𝑖 ) = 𝑒 (𝑖 ), ` weakly blocks `∗. Thus, we have ` �𝑠 `′. �

Lemma 3. For each problem (𝑒 , 𝑅), 𝑆𝑇𝑇𝐶 (𝑒 , 𝑅) ⊆ S(𝑒 , 𝑅).

Proof. Let (𝑒 , 𝑅) be a problem. Let` = 𝐶1◦𝐶2◦ ..◦𝐶𝑛 ∈ 𝑆𝑇𝑇𝐶 . Let`𝑘 = 𝐶1◦𝐶2◦ ..◦𝐶𝑘 and let`0 = 𝑒 .
Then by Lemma 2, we have `𝑘 �𝑠 `𝑘−1 for any 1 ≤ 𝑘 ≤ 𝑛. Thus, we have 𝑒 →𝑆 `. By Remark 4, we
have ` ∈ S(𝑒 , 𝑅). �

Remark 5. The inclusion in Lemma 3 is in general strict. There are problems for which the stable
set contains an assignment which cannot be obtained at some interim stage of any cycle selection
rule 𝐹 of the𝑇𝑇𝐶 algorithm.

Proof. LetA = {𝑖1, 𝑖2, 𝑖3, 𝑖4} and O = {𝑜1, 𝑜2, 𝑜3, 𝑜4}. We consider the following problem (𝑒 , 𝑅): Let
the endowment profile 𝑒 be such that for each 𝑘 , 𝑒 (𝑖𝑘 ) = 𝑜𝑘 . Let 𝑅 be the following preferences
profile:

𝑅𝑖1 𝑅𝑖2 𝑅𝑖3 𝑅𝑖4

𝑜2 𝑜1 𝑜2 𝑜3
𝑜1 𝑜2 𝑜4 𝑜4

𝑜3

For ease of notation, we denote an assignment ` as (`(𝑖1), `(𝑖2), `(𝑖3), `(𝑖4)). It is easy to see
thatM(𝑒 , 𝑅) = {𝑒 , (𝑜2, 𝑜1, 𝑜3, 𝑜4), (𝑜1, 𝑜2, 𝑜4, 𝑜3), (𝑜2, 𝑜1, 𝑜4, 𝑜3)}. The𝑇𝑇𝐶 algorithm chooses the cy-
cle where 𝑖1 and 𝑖2 pointing each other’s endowments, and since all preferences are strict, agents
{𝑖1, 𝑖2} and their endowments are removed. Then, the𝑇𝑇𝐶 chooses the cyclewhere 𝑖3 and 𝑖4 point-
ing each other’s endowments, and agents {𝑖3, 𝑖4} and their endowments are removed. Thus, we
have 𝑆𝑇𝑇𝐶 (𝑒 , 𝑅) = {𝑒 , (𝑜2, 𝑜1, 𝑜3, 𝑜4), (𝑜2, 𝑜1, 𝑜4, 𝑜3)} and 𝑇𝑇𝐶 (𝑒 , 𝑅) = C(𝑒 , 𝑅) = {(𝑜2, 𝑜1, 𝑜4, 𝑜3)}.
But, it is easy to see each individually rational assignment except 𝑒 is a stable improvement over 𝑒 .
Thus, we have S(𝑒 , 𝑅) = M(𝑒 , 𝑅). Thus, (𝑜1, 𝑜2, 𝑜4, 𝑜3) ∈ S(𝑒 , 𝑅) but (𝑜1, 𝑜2, 𝑜4, 𝑜3) ∉ 𝑆𝑇𝑇𝐶 (𝑒 , 𝑅).12

�

Remark 6. In general, the number of stable improvements can get arbitrarily large compared to
number of TTC improvements, and the stable set can get exponentially large compared to STTC.
12Note that, for this example, SE(𝑒 , 𝑅) = 𝑇𝑇𝐶 (𝑒 , 𝑅) = C(𝑒 , 𝑅) = {(𝑜2, 𝑜1, 𝑜4, 𝑜3)}, which is consistent with our main result

(Theorem 2).
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Proof. Wewill expand the example given above. LetA = {𝑖𝑘 : 𝑘 = 1, 2, ..., 2𝑛}. Let 𝑒 (𝑖𝑘 ) = 𝑜𝑘 , let the
preferences be

𝑅𝑖1 𝑅𝑖2 𝑅𝑖2𝑘+1 𝑅𝑖2𝑘+2

𝑜2 𝑜1 𝑜2𝑘 𝑜2𝑘+1
𝑜1 𝑜2 𝑜2𝑘+2 𝑜2𝑘+2

𝑜2𝑘+1

So that we expand the example above to 𝑛 pair of agents. Then the only TTC improvement over
𝑒 is still ` = (12), where as for any subset of 𝑃 = {(12), (34), ...((2𝑛 − 1)2𝑛)}, we have a stable
improvement over 𝑒 . So there are 2𝑛 elements in the stable set. However, TTC algorithm has 𝑛
manystepsand reaches𝑛manyassignments. Therefore,S(𝑒 , 𝑅) is potentially exponentially larger
then 𝑆𝑇𝑇𝐶 . �

Let`′ be an assignment. Let𝐺`′ denote the graphwhere each agent points to theirmost preferred
objects and each object points to its owner in 𝑒 ′ = `′, that is, each object 𝑜 points to agent 𝑖 such
that `′(𝑖 ) = 𝑜. Thus, for an (updated) endowment profile 𝑒 ′ = `′, the 𝑇𝑇𝐶 algorithm starts with
graph 𝐺`′. Let 𝑘 be the first step, at which an agent is assigned a strictly preferred object than
they own under `′. Thus, by definition of the 𝑇𝑇𝐶 algorithm, at each Step 𝑘 ′ ≤ 𝑘 − 1, a covered
set is removed where each agent in that covered set already points to their endowment, and no
welfare gain is obtained until Step 𝑘 . Let 𝐺 1

`′ denote the graph after these removals, that is, the
graph, where each object points to the agent whom it is assigned at the end of Step 𝑘 −1, and each
remaining agent points to their most preferred available objects.

Lemma 4. Let ` �𝑠 `′. Let𝑇 be a minimal self-mapped set in𝐺`′ and 𝑖 ∈ 𝑇 be an agent such that
`(𝑖 ) ≠ 𝑒 (𝑖 ). Then, in𝐺`′, agent 𝑖 points to object `(𝑖 ).

Proof. Since 𝑖 ∈ 𝑇 for someminimal self-mapped set 𝑇 , and by Remark 1,𝑇 is strongly connected,
there exists a cycle𝐶 ⊂ 𝑇 such that 𝑖 ∈ 𝐶 . Let

`∗(𝑗 ) =
{
𝐶 (𝑗 ) if 𝑗 ∈ 𝐶

`′(𝑗 ) if 𝑗 ∉ 𝐶 ,

where 𝐶 (𝑗 ) denotes the object 𝑗 points to in 𝐶 ⊂ 𝑇 . Since each agent points to their most pre-
ferred objects in𝐺`′, under `∗, each agent in𝐶 is assigned to one of their most preferred objects.
Thus, `∗ � `′. Suppose `∗ � `′. Then, since ` �𝑠 `′, and `∗ � `′, ` weakly blocks `∗. Then, since
`(𝑖 ) ≠ 𝑒 (𝑖 ), by definition ofweak blocking, `(𝑖 ) 𝑅𝑖 `

∗(𝑖 ). Suppose `∗ ∼ `′. Then, since ` �𝑠 `′, we
have `(𝑖 ) 𝑅𝑖 `

′(𝑖 ). Thus, `(𝑖 ) 𝑅𝑖 `
∗(𝑖 ).

Since`∗(𝑖 ) is amost preferred object of 𝑖 , this implies that,`(𝑖 ) is also amost preferred object of 𝑖 .
Thus, in𝐺`′, agent 𝑖 points to object `(𝑖 ). �
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Lemma 5. Let ` �𝑠 `′. Let𝑇 be a minimal self-mapped set in𝐺 1
`′. Let 𝑖 ∈ 𝑇 be an agent. If `(𝑖 ) ≠

𝑒 (𝑖 ), then 𝑖 points to object `(𝑖 ) in𝐺 1
`′.

Proof. Let 𝐶 ⊂ 𝑇 be an arbitrary cycle such that 𝑖 ∈ 𝐶 . Let `∗ be the assignment defined in
Lemma 4. Since ` �𝑠 `′, and `∗ � `′ (see the proof of Lemma 4), we have `(𝑖 ) 𝑅𝑖 `

∗(𝑖 ).

Suppose `(𝑖 ) 𝑃𝑖 `∗(𝑖 ). Then, since, in 𝐺 1
`′, agent 𝑖 points to one of their most preferred objects,

object`(𝑖 ) is removed before Step 𝑘 . Then, it is part of a coveredminimal self-mapped set at some
Step 𝑘 ′ ≤ 𝑘 − 1. But, by the same argument in Lemma 1, an agent in that covered minimal self-
mapped set must be assigned 𝑒 ′(𝑖 ) = `′(𝑖 ). This implies that 𝑖 is also part of that minimal self-
mapped set, and thus, removed at the same step. Since this contradicts with 𝑖 ∈ 𝐺 1

`′, we have
`(𝑖 ) 𝐼𝑖 `∗(𝑖 ). Since `∗(𝑖 ) is one of the most preferred object for 𝑖 in 𝐺 1

`′, `(𝑖 ) is also one of their
most preferred objects and 𝑖 points to `(𝑖 ) in𝐺 1

`′. �

Lemma 6. Let ` �𝑠 `′ and `′ ∈ S(𝑒 , 𝑅). Let𝑇 be a minimal self-mapped set in𝐺 1
`′. Let 𝑖 ∈ 𝑇 be an

agent. If `(𝑖 ) ≠ `′(𝑖 ), then 𝑖 points to object `(𝑖 ) in𝐺 1
`′.

Proof. If `(𝑖 ) ≠ 𝑒 (𝑖 ), the claim directly follows from Lemma 5. Suppose `(𝑖 ) = 𝑒 (𝑖 ) ≠ `′(𝑖 ).
Since both assignments are individually rational, we must have `(𝑖 ) = 𝑒 (𝑖 ) 𝐼𝑖 `′(𝑖 ). Since `′(𝑖 ) ∈
S(𝑒 , 𝑅), `′ �𝑠 `′′ for some `′′ ∈ S(𝑒 , 𝑅). Then, for each `∗ � `′, we have `∗ � `′′ and by definition
of a stable improvement, `′ weakly blocks `∗. Since `′(𝑖 ) ≠ 𝑒 (𝑖 ), this means `∗(𝑖 ) 𝐼𝑖 `

′(𝑖 ). Thus,
for each `∗ � `′, we have `(𝑖 ) 𝐼𝑖 `∗(𝑖 ) 𝐼𝑖 `′(𝑖 ), . Then, by constructing `∗ in the proof of Lemma 4,
we complete the proof. �

Lemma 7. Let ` �𝑠 `′ and `′ ∈ S(𝑒 , 𝑅). Let𝑇 be a minimal self-mapped set in𝐺 1
`′. Let 𝑖 ∈ 𝑇 be an

agent such that `(𝑖 ) ≠ `′(𝑖 ). Then, there exists a cycle 𝐶 ⊂ 𝑇 with 𝑖 ∈ 𝐶 such that `(𝑗 ) = 𝐶 (𝑗 ) for
any agent 𝑗 ∈ 𝐶 and objects in𝐶 points to their owners in `′. Thus,𝐶 is a top trading cycle in𝑇 .

Proof. By Lemma6, agent 𝑖 points to the object`(𝑖 ) in graph𝐺 1
`′. Then, since𝑇 is selfmapped and

𝑖 ∈ 𝑇 , owner of the object `(𝑖 ) in graph 𝐺 1
`′ is also in 𝑇 . Let this agent be 𝑗 , so that `′(𝑗 ) = `(𝑖 ).

Since object `′(𝑗 ) is assigned to 𝑖 under `, we have `′(𝑗 ) ≠ `(𝑗 ). Then owner of `(𝑗 ) in graph𝐺 1
`′

is also in𝑇 . Continuing this way, we can construct a cycle𝐶 ⊂ 𝑇 of agents and objects, such that
𝐶 (𝑜) = `′−1(𝑜) and𝐶 (𝑖 ) = `(𝑖 ). �

Lemma 8. Let (𝑒 , 𝑅) be a problem. Let𝑇 be a minimal self-mapped set in the graph𝐺 1
𝑒 . Let𝐶 ⊂ 𝑇

be a non-improving cycle in𝑇 . Then,𝑇 is also aminimal self-mapped set in𝐺 1
𝑒 after𝐶 is executed.

Proof. Since the cycle𝐶 is non-improving, each agent in the cycle points to its own object as well
as the object it is assigned under 𝐶 . Then, after 𝐶 is executed, it is easy to see that 𝐶 −1 is a cycle
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in the new graph. Then, let (𝑎1, 𝑎2, ...𝑎𝑛) be a path in𝑇 . If this path does not intersect agents in𝐶 ,
then it is also a path in 𝑇 ◦ 𝐶 . Suppose it intersects 𝐶 . Let 𝑎𝑘 and 𝑎𝑙 be the first and last agents
in𝐶 , respectively. Then, agents in (𝑎1, ...𝑎𝑘−1) ∪ (𝑎𝑙+1, 𝑎𝑙+2, ...𝑎𝑛) are not in𝐶 . Since both 𝑎𝑘 and 𝑎𝑙

are in𝐶 , and𝐶 −1 is a cycle in𝑇 , using𝐶 −1 we can construct a path from 𝑎𝑘 to 𝑎𝑙 consisting only of
agents in 𝐶 . Let this path be (𝑐1 = 𝑎𝑘 , 𝑐2, ...𝑐𝑚 = 𝑎𝑙 ). Then, since all of these agents are in 𝐶 , and
none of the agents in (𝑎1, ...𝑎𝑘−1) ∪ (𝑎𝑙+1, 𝑎𝑙+2, ...𝑎𝑛) are in𝐶 , the path (𝑎1, ...𝑎𝑘−1, 𝑐1 = 𝑎𝑘 , 𝑐2, ...𝑐𝑚 =

𝑎𝑙 , 𝑎𝑙+1, 𝑎𝑙+2, ...𝑎𝑛 is a path from 𝑎1 to 𝑎𝑛 , which does not intersect itself. Since the path was arbi-
trary, we conclude that𝑇 being strongly connected implies𝑇 ◦ 𝐶 being strongly connected. Since
executing the cycle 𝐶 ⊂ 𝑇 does not change 𝛿𝑜𝑢𝑡 (𝑇 ) = ∅, we also have 𝛿𝑜𝑢𝑡 (𝑇 ◦ 𝐶 ) = ∅. Then, by
Remark 1,𝑇 ◦𝐶 is also aminimal self-mapped set. �

Lemma 9. Let ` �𝑠 `′. Let𝑇 be a minimal self-mapped set in𝐺 1
`′ such that, for each agent 𝑖 ∈ 𝑇 ,

`(𝑖 ) = `′(𝑖 ). Let𝐶 ⊂ 𝑇 be a cycle. Then, ` ◦𝐶 �𝑠 `′ ◦𝐶 .

Proof. Let `∗ � `′ ◦ 𝐶 . Then, `∗ � `′. Thus, ` weakly blocks `∗. Let 𝑖 be an agent such that
(` ◦𝐶 ) (𝑖 ) ≠ 𝑒 (𝑖 ). If 𝑖 ∉ 𝐶 , then (` ◦𝐶 ) (𝑖 ) = `(𝑖 ) 𝑅𝑖 `

∗(𝑖 ) byweak blocking of `. If 𝑖 ∈ 𝐶 , then since
𝐶 is a top trading cycle, by the argument in Lemma1,wemust have (`◦𝐶 ) (𝑖 ) = 𝐶 (𝑖 ) 𝑅𝑖 `

∗(𝑖 ). Then
` ◦𝐶 weakly blocks `∗. Since ` � `′ implies ` ◦𝐶 � `′ ◦𝐶 , we conclude that ` ◦𝐶 �𝑠 `′ ◦ 𝑆 . �

Lemma 10. Let ` �𝑠 `′. Let𝑇 be a minimal self-mapped set in𝐺 1
`′. Let𝐶 ⊂ 𝑇 be a cycle such that

for each agent 𝑖 ∈ 𝐶 , `(𝑖 ) = 𝐶 (𝑖 ). Then, we have ` �𝑠 `′ ◦𝐶

Proof. Let `∗ � `′ ◦ 𝐶 . Then, `∗ � `′ as well. Then, since ` �𝑠 `′, ` weakly blocks `∗. For each
agent 𝑖 , if 𝑖 ∈ 𝐶 , we have `(𝑖 ) = (`′ ◦𝐶 ) (𝑖 ) = 𝐶 (𝑖 ), thus `(𝑖 ) 𝐼𝑖 `′(𝑖 ). If 𝑖 ∉ 𝐶 , then since ` � `′, we
have `(𝑖 ) 𝑅𝑖 `

′(𝑖 ). Thus, we have ` � `′ ◦𝐶 . Then, we conclude ` �𝑠 `′ ◦𝐶 . �

Lemma 11. If ` ∈ SE, then ` ∈ 𝑇𝑇𝐶 .

Proof. First, we define a partial order on 𝑆𝑇𝑇𝐶 . Let �𝑇𝑇𝐶 be such that (i) ` �𝑇𝑇𝐶 `′ if and only
` is obtained as a sub-TTC assignment for the problem (𝑒`′, 𝑅), and (ii) ` �𝑇𝑇𝐶 `′ if and only if
` �𝑇𝑇𝐶 `′ and ` � `′.

Let ` ∈ SE. Let S` := {`′ ∈ 𝑆𝑇𝑇𝐶 : `′ →𝑆 `}. Since, by Remark 4, 𝑒 →𝑆 `, we have 𝑒 ∈ S`, thus
S` ≠ ∅. Since S` ⊆ 𝑆𝑇𝑇𝐶 and S` ≠ ∅, there exist �𝑇𝑇𝐶 -maximal assignments in S`. Formally, there
exists `′ ∈ S` such that for each `′′ ∈ S`, we have `′′ �𝑇𝑇𝐶 `′. Let `′ be such an assignment.
Since `′ →𝑆 `, by definition of stable reach, we have sequence (`0 = `′, `1, `2, ...`𝑛 = `) with
`𝑘 �𝑠 `𝑘−1 for any 1 ≤ 𝑘 ≤ 𝑛.
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Suppose ` ∉ 𝑇𝑇𝐶 . If `′ is Pareto efficient, then `′ ∈ 𝑇𝑇𝐶 . But, since `′ →𝑆 `, this implies that,
for each agent 𝑖 , `(𝑖 ) 𝐼𝑖 `′(𝑖 ). By the argument in the proof of Lemma 1, for each covered self-
mapped set 𝑇 obtainedwith the TTC algorithm to reach`′, we have`(𝑇 ) = 𝑒 (𝑇 ) aswell. But, since
the TTC algorithm allows for each assignment to the agents when those agents are in some cov-
ered self-mapped set, we can assign each agent in 𝑖 ∈ 𝑇 to `(𝑖 ), and thus we can obtain ` with
the TTC algorithm as well. But since ` is Pareto efficient, this means ` ∈ 𝑇𝑇𝐶 , contradicting our
assumption. Thus, `′ is not Pareto efficient. Then, the graph 𝐺 1

`′ is non-empty, in particular, it
containsminimal self-mapped sets, which contain improving cycles. Clearly, for eachminimal
self-mapped set𝑇 in𝐺 1

`′, and each cycle𝐶 ⊆ 𝑇 , if𝐶 is an improving cycle, then `′ ◦𝐶 �𝑇𝑇𝐶 `′.

Let𝑇 be aminimal self-mapped set in𝐺 1
`′. Note that by definition of the graph𝐺 1

`′, there exists an
agent in𝑇 , say 𝑖 ′, pointing to an object preferred to their endowment. Suppose for each agent 𝑖 ∈
𝑇 , `(𝑖 ) 𝐼𝑖 `′(𝑖 ) (that is, no agent in 𝑇 is improved throughout the stable improvements to obtain
`). Then, since, by definition of a self-mapped set, the set𝑇 contains a cycle with 𝑖 ′, this implies
that there exist improvable agents at `, contradicting ` being Pareto efficient. Then, there exists
`𝑘1 such that for each agent 𝑖 ∈ 𝑇 , and for 𝑘 < 𝑘1, we have `𝑘 (𝑖 ) = `′(𝑖 ), but for some agent 𝑗 ∈ 𝑇 ,
we have `𝑘1 (𝑗 ) ≠ `𝑘1−1(𝑗 ) = `′(𝑗 ). Then, 𝑇 is aminimal self-mapped set in the graph𝐺 1

`𝑘1−1
. By

Lemma 7, there exists a top trading cycle 𝑆1 ⊂ 𝑇 with 𝑗 ∈ 𝑆1 such that, under `𝑘1 , each agent in 𝑆1

is assigned the object that they point to in cycle 𝑆1. Note that since 𝑆1 ⊆ 𝑇 and 𝑘1 is the first step
an agent in𝑇 is assigned, for each 𝑘 < 𝑘1, no agent in 𝑆1 is re-assigned at `𝑘 .

By Lemma 9, we have `𝑘 ◦ 𝑆1 �𝑠 `𝑘−1 ◦ 𝑆1, and by Lemma 10, we have `𝑘1 �𝑠 `𝑘1−1 ◦ 𝑆1. Thus we
can construct the sequence (`′ ◦𝑆1, `1 ◦𝑆1, ...`𝑘1−1 ◦𝑆1, `𝑘1 , `𝑘1+1, ...`𝑛 = `) of stable improvements
to `. Then `′ ◦ 𝑆1 →𝑆 `.

If 𝑆1 is an improving cycle, we have `′ ◦ 𝑆1 �𝑇𝑇𝐶 `′ and `′ ◦ 𝑆1 →𝑆 `, which contradicts that `′

is �𝑇𝑇𝐶 -maximal in S`. Then, 𝑆1 is a non-improving cycle. But, by Lemma 8,𝑇 is also aminimal
self-mapped set in 𝐺 1

`′◦𝑆1 . Then, applying the same reasoning, some agent in 𝑇 is re-assigned in
the sequence (`′ ◦ 𝑆1, `1 ◦ 𝑆1, ...`𝑘1−1 ◦ 𝑆1, `𝑘1 , `𝑘1+1, ...`𝑛 = `) as well. But, since 𝑘1 is the first
step at which some agent is assigned in the previous sequence, and agents in 𝑆1 hold the same
object throughout 𝑘1 > 𝑘 ≥ 1 in the new sequence, for each agent 𝑖 ∈ 𝑇 and 𝑘 < 𝑘1, we have
(`𝑘 ◦ 𝑆1) (𝑖 ) = (`′ ◦ 𝑆1) (𝑖 ). We again take the first assignment, say `′′, in this sequence at which
an agent, say 𝑗 , is assigned a different object than the previous assignment in this sequence. By
the above argument, for each 𝑖 ∈ 𝑇 , and each 𝑘 ≤ 𝑘1 − 1, (`𝑘 ◦ 𝑆1) (𝑖 ) = (`′ ◦ 𝑆1) (𝑖 ). Thus, `′′ ∈
{`𝑘1 , `𝑘1+1, ...`𝑛}. Then, `′′ = `𝑘2 for some 𝑘2 ∈ {𝑘1, 𝑘1 + 1, . . . , 𝑛}. Thus, 𝑘2 ≥ 𝑘1. Again by the
same reasoning, let 𝑆2 be the cycle in which agent 𝑗 is assigned. Then, we add this cycle to each
assignment in the sequence of stable improvements to obtain (`′ ◦ 𝑆1 ◦ 𝑆2, `1 ◦ 𝑆1 ◦ 𝑆2, ...`𝑘1−1 ◦
𝑆1 ◦ 𝑆2, `𝑘1 ◦ 𝑆2, `𝑘1+1 ◦ 𝑆2, ...`𝑘2−1 ◦ 𝑆2, `𝑘2 , ..., `𝑛 = `). Again, if 𝑆2 is an improving cycle, we have
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`′ ◦ 𝑆1 ◦ 𝑆2 �𝑇𝑇𝐶 `′ and `′ ◦ 𝑆1 ◦ 𝑆2 →𝑆 `, which contradicts that `′ is �𝑇𝑇𝐶 -maximal in S`.

Thus,𝑆2 is anon-improving cycle. But, byLemma8,𝑇 is alsoaminimal self-mapped set in𝐺 1
`′◦𝑆1◦𝑆2 ,

and it contains an improving cycle. We then continue with choosing 𝑆𝑘 ’s, and adding them to
`′
𝑘−1 = `′ ◦ 𝑆1 ◦ 𝑆2 ◦ ...𝑆𝑘−1 to construct `′

𝑘
. Notice if this procedure is finite, then wemust choose

an improving cycle 𝑆𝑘 at some point, which implies that `′
𝑘
�𝑇𝑇𝐶 `′ and `′

𝑘
→𝑆 `, contradicting

that `′ is �𝑇𝑇𝐶 -maximal in S`. Then, it suffices to show the process is finite. Since by the above
argument, for 𝑛 ≥ 1, we have 𝑘𝑛 ≤ 𝑘𝑛+1, it is enough to show that 𝑘𝑛 = 𝑘𝑛+1 for only finitely
many 𝑛 ≥ 1. Suppose that this is not the case. Then, there exists 𝑁 such that for 𝑛 ≥ 𝑁 , we have
𝑘𝑛 = 𝑘𝑛+1 = 𝑘 ∗. But, the number of agents for which (`𝑘𝑛 ◦ 𝑆1 ◦ 𝑆2 ◦ ...𝑆𝑛) (𝑖 ) ≠ `′

𝑛 (𝑖 ) strictly de-
creases. This contradicts with the number of agents being finite. Then, at some Step 𝑘 , we must
choose an improving cycle 𝑆𝑘 with`′

𝑘
�𝑇𝑇𝐶 `′. But, this contradicts that`′ is �𝑇𝑇𝐶 -maximal in S`.

Thus, ` ∈ 𝑇𝑇𝐶 . �

Let (𝑒 , 𝑅) be a problem. By Lemma 11, SE(𝑒 , 𝑅) ⊆ 𝑇𝑇𝐶 (𝑒 , 𝑅). Also, by Lemma 3, 𝑆𝑇𝑇𝐶 (𝑒 , 𝑅) ⊆
S(𝑒 , 𝑅). Then, 𝑆𝑇𝑇𝐶 (𝑒 , 𝑅) ∩ E(𝑒 , 𝑅) = 𝑇𝑇𝐶 (𝑒 , 𝑅) ⊆ S(𝑒 , 𝑅) ∩ E(𝑒 , 𝑅) = SE(𝑒 , 𝑅). Thus, SE(𝑒 , 𝑅) =
𝑇𝑇𝐶 (𝑒 , 𝑅).
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