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Abstract

The recentpandemichashighlighted the importanceofwell-designedmechanisms for rationing
identical medical units such as vaccines, ventilators, ICU’s or other crucial medical units when re-
sourcesare in short supply. Themajor concern is equity and randomization isoften inevitable. Thus,
an important question follows: How shouldwe design and implementmechanisms for an equitable
allocation of units? We consider a general framework of reserve systems: units are to be distributed
amonga set of agents through reserve categories, andcertain amounts of units are reserved for these
categories. We propose and characterize random allocation rules to mitigate uneven treatment of
agents.
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1 Introduction

The recentpandemichashighlighted the importanceofwell-designedmechanisms for rationing iden-
ticalmedical unitswhen resources are in short supply. Themajor concern is equity and randomization
is often inevitable. A recent such example is the implementation of a weighted lottery mechanism by
theDepartment of Health, Pennsylvania for the allocation ofmedications to treat COVID-19 (Pennsyl-
vania DH, 2020).1 Thus, an important question follows: How should we design and implement mech-
anisms for an equitable allocation of vaccines, ICU’s or other crucial medical units? For this problem,
we propose and characterize random allocation rules tomitigate uneven treatment of agents.

Ourmodel builds onageneral frameworkof reserve systems:2 Agents are grouped into reserve categories
depending on their occupations and characteristics (e.g. essential workers, disadvantaged communi-
ties, etc.) such that each category has its own priority ordering over agents,3 and for each category, a
certain amount of units is reserved. By a well-designed reserve system, policy makers can simultane-
ously prioritize certain groups like essential or health workers, by reserving higher amounts of units
for them, and prevent disadvantaged groups from being deprived of access. Thus, these are versa-
tile systems addressing equity concerns, and providing policy makers with great flexibility to achieve
different policy goals. But, there is a downside: since patients are in general beneficiaries of multi-
ple categories, when implemented via a precedence order of processing categories (which is themost
common practice), reserve systems have unintended distributional consequences (Pathak, Sönmez,
Ünver, and Yenmez, 2021).

Example 1. Suppose there are three agents, 𝑖 , 𝑗 and 𝑘 . Agents 𝑖 and 𝑗 are essential workers, and agents 𝑗
and 𝑘 are disadvantaged community members. For essential workers category, 𝑗 has a higher priority
than 𝑖 , and for disadvantaged community members category, 𝑗 has a higher priority than 𝑘 . There are
twounits in supply and the policymakers’ goal is to guarantee one unit for each of these categories (by re-
specting theirpriorities) viaa reserve system. If essentialworker category isprocessedfirst, then 𝑗 and𝑘 re-
ceive oneunit each, otherwise 𝑗 and 𝑖 receive oneunit each. Thus, any choice of precedence order achieves
the policy goal, but (unintentionally) favors one category over the other.

Our work is motivated by the uneven treatment of categories under reserve systems as demonstrated
in Example 1 (this type of unfairness is formalized in Section 6.2). Our goal is twofold: (i) to propose an
equity notion, which is formulated to prevent any category being favored purely due to the selection
of a precedence order, and (ii) to design a simultaneous (rather than sequential) processing of reserve

1Their guideline states that ‘all patients who meet clinical eligibility criteria should have a chance to receive treatment’.
See Section 2 for the details of their lottery procedure.

2This model is not limited to pandemic resource allocation, there are other real-life examples (discussed in the related
literature below, and in Section 8). We refer to ‘agents’ in general but whenever more convenient, we use the terminology of
‘patients’ (pandemic resource allocation) or ‘students’ (affirmative action in schools’ assignment of their seats).

3These orderings are over the set of all agents sincewe are interested in soft reserves to avoid inefficiency. Also, in real-life,
since the units are in very short supply, hard quota constraints are usually non-binding.
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categories, which complies with this notion.

For theclassof rationingproblemswith reserves, twopropertiesare indispensable (seeSection4). First,
priorities of agents under categories shouldbe respected (respectingpriorities). Second, nounit should
bewasted (efficiency). Wecall a (random)allocationacceptable if it satisfies these standardaxioms. Our
first theorem is a characterization of the set of acceptable (random) allocation rules (Theorem 2). The
insight is that each acceptable (random) allocation can be described as a sequential welfare improve-
ment process.

An acceptable deterministic allocation does not necessarily treat categories fairly (as Example 1 above
demonstrates) and thispoints to randomization. But, randomization isnot a significant alternativeun-
der strict priorities: Let C be the set of reserve categories. Suppose priorities are strict. Then, respecting
priorities implies that the number of agents, who are assigned a unit probabilistically, is at most |C|.
The rest would be either not assigned at all or assigned a unit deterministically. Thus, given that the
number of categories is a small number inmany real-life applications, there would be very little scope
in randomization and fairness.

We assume that priorities of categories are weak, and when priorities are weak, the scope of fairness
is big. We mentioned above the allocation of medications to treat COVID-19 by the Department of
Health, Pennsylvania (Pennsylvania DH, 2020). Their allocation mechanism relies on a model where
all beneficiaries of a reserve category have the same priority, and it is a lottery mechanism providing
patients with probabilistic access to units (actually, no patient is assigned deterministically (see Sec-
tion 2 for thedetails of this approach). Thus, randomization and fairness, the focus of the currentwork,
are relevant considerations and have a big scope in our model.

We analyze fairness and equity notions suitable for this context. Motivated by the uneven treatment
of categories (as in Example 1), we propose category-fairness: if there is no justification for treating a
category unfairly, that unfairness should be eliminated (Section 6.2). The second axiom is a standard
notion of equity, egalitarianism, which requires equating agents’ utilities as much as possible (within
the constraints of acceptability) through the criterion of Lorenz dominance. We show that egalitari-
anism is impossible in the current context (see Theorem 3). Moreover, interestingly, even if an egal-
itarian allocation exists for a problem, then it may not even satisfy equal treatment of equals. Then,
we formalize the notion of procedural fairness for the current setting. Recall that acceptable random
allocations are characterized by the class of welfare improvement processes (Theorem 2). A solution
in this class is procedurally fair if agents’ utilities are chosen in an egalitarian way throughout the se-
quential welfare improvement process (Section 6.3).4 Procedural fairness is formulated as an intuitive
property about the procedure, but this is not enough to justify it as a fairness axiom. Then, we analyze
its implications on the final outcome, and it turns out that there are strong normative justifications for

4This idea is utilized before: in the class of assignment problems, each efficient random allocation is equivalent to a step-
wise assignment of probabilities (a class of algorithms), and the procedurally fair one in this class is obtained by equating
agents’ probabilities at each step (see Section 6.3 for a detailed discussion).
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this property: Procedural fairness implies both category-fairness (Proposition 1) and equal treatment
of equals (Proposition 2). Thus, we argue that procedural fairness is a compelling fairness criterion.

Our second theorem is the characterization of the procedurally fair rules, the Priority-Based Rawlsian
(PBR) (Theorem 4). We prove this result with the help of ideas from graph theory (Appendix A). The
PBR rules constitute an intuitive class within the set of acceptable rules. Basically, they are based on
defining a guaranteed utility for each agent and then increasing these utilities sequentially subject to
the constraints of acceptability and also the Rawlsian principle of prioritizing themost disadvantaged
agents. We show how to design this procedure (Section 6.4). We discuss some relevant applications,
rationing health care units, vaccines etc. and affirmative action in school choice in Section 8.

Related Literature

Reserve systems with sequential processing has been proposed for affirmative action in school choice
(Kominers and Sönmez, 2016).5 When there are only two types of slots, reserve and open slots, both
increasing the reserve quota and raising the precedence order positions of open seats will (weakly) in-
crease the number of reserve-eligible studentswho are accepted (Dur, Kominers, Pathak, and Sönmez,
2018). For the case of multiple socioeconomic tiers along with the merit tier, the precedence orders
for maximizing the number of the most disadvantaged students assigned a seat are characterized as
follows: the slots of other tiers precede the merit slots which are succeeded by the slots of the tier for
themost disadvantaged students (Dur, Pathak, and Sönmez, 2020).

Amodel closer to the current setting iswhena student is in general abeneficiary atmultiple reserve cat-
egories, the case of overlapping reserves, and the goal is to guarantee maximal compliance with reser-
vations (asmany of the reserved positions as possible are to be allocated to the candidates from target
groups) (Sönmez and Yenmez, 2020).

Reserve systemshave been also relevant in various other contexts: medical rationing (Pathak, Sönmez,
Ünver, and Yenmez, 2021), the H-1B visa program (Pathak, Rees-Jones, and Sönmez, 2022), university
admissions in India (Sönmez and Yenmez, 2020; Aygün and Turhan, 2020a,b) and Brazil (Aygün and
Bo, 2021).

Another strand of literature, to which the current work belongs as well, is the approach of processing
reserves simultaneously. A recently proposed axiom in this setting is category neutrality: An allocation
is category neutral if an agent who qualifies for multiple categories receives the same amount of ca-
pacity from all of them (Delacrétaz, 2021). In the context of hard reserves (only the beneficiaries of a

5Affirmative action in school choice has been widely studied. Controlled choice models provide choice to parents while
maintaining the racial andethnicbalanceat schools through type-specific reserves andquotas (Abdulkadiroğlu andSönmez,
2003; Ehlers, Hafalir, Yenmez, and Yıldırım, 2014), or through adjusted priorities under minority reserves (Hafalir, Yenmez,
and Yıldırım, 2013). A recent work studies how tominimize priority violations for a settingwhen there is only one ordering of
students and there are type-specific reserves andquotas. A particular choice rule, where all applicants are first considered for
units reserved for their own types, uniquelyminimizes priority violations in this class (Abdulkadiroğlu andGrigoryan, 2021).
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given reserve category are eligible for the units under that category), every random allocation satisfy-
ing efficiency, respecting priorities and category neutrality assigns to each agent the same amount of
probability of receiving a unit in aggregate, and a polynomial-time algorithm exists to compute these
allocations (Delacrétaz, 2021). Thedifferencebetweenour approachand thiswork canbe summarized
as follows: while category neutrality requires that for an agent, the probability of being assigned a unit
is the same across all categories for which she is eligible, procedural fairness requires equating utilities
across agents (procedurally and subject to the constraints of acceptability). Clearly, these two axioms
and ideas are not only independent but also fundamentally different.

An alternative approach is to apply a Probabilistic Serial (PS) mechanism (Bogomolnaia and Moulin,
2001), the Rationing Eating (RE) rule, to the current setting: Categories are treated as pseudo-agents
and the agents as pseudo-items, as if categories are ‘consuming’ agents. The pseudo-agents categories
now have ‘preferences’ over the pseudo-items that are derived from the priorities of the correspond-
ing categories. Then, the PS rule is implemented on this pseudo-market (Aziz, 2021): beginning from
time zero, each pseudo-agent ‘eats’ at each time the best available pseudo-item with respect to their
‘preferences’ at the same rate until each pseudo-agent achieves the consumption level given as the
amount of units reserved for the corresponding category. The RE rule retains the fairness property
(sd-envy-freeness) in this pseudo-market: category sd-envy-freeness. Since we do treat categories as
pseudo-agents, this work and the current one are also fundamentally different. The following example
demonstrates this point.

Example2. Suppose thereare fouragents, 𝑖 , 𝑗 , 𝑘 and 𝑙 . Agents 𝑖 and 𝑗 are essentialworkers, andagents 𝑖 , 𝑘
and 𝑙 are disadvantaged communitymembers. The policymakers implement a reserve systemwhere one
unit is reserved for essential workers and two units are reserved for disadvantaged communitymembers.
For essential worker category, 𝑖 has a higher priority than 𝑗 , and for disadvantaged communitymember
category, 𝑘 has a higher priority than 𝑖 , and 𝑖 has a higher priority than 𝑙 . Suppose the 𝑃𝑆 mechanism
is implemented for this problemwhere the two categories are pseudo-agents, and the agents are pseudo-
items. The 𝑃𝑆 rule applies to this pseudo-market as follows: Pseudo-agent essential worker ‘consumes’
one unit of pseudo-item ‘𝑖 ’, andpseudo-agent disadvantaged communitymember ‘consumes’ one unit of
pseudo-item ‘𝑘 ’. Then, pseudo-agent disadvantaged communitymember has onemoreunit to ‘consume’
and ‘consumes’ pseudo-item 𝑙 . Thus, this approach gives the following allocation: from the essential
worker category, agent 𝑖 is assigned one unit, and from the disadvantaged communitymember category,
agents 𝑘 and 𝑙 are assigned one unit each. Note that this is the same allocationwhen the reserve system is
implementedwith the precedence order of essential worker category being processed first. Our approach
is substantially different. When agents 𝑖 and 𝑘 are assigned one unit each, the reserve requirement ismet:
one unit for the essential worker category, and two units for the disadvantaged communitymember cat-
egory. Also, one unit remains to be allocated. Our approach is to allocate this unit by considering equity
among agents rather than treating disadvantaged community member category as a pseudo-agent en-
titled to ‘consume’ it. We revisit this example in Section 6.3 to illustrate our approach.

5



Our fairness notions do not allow us to apply the PS rule directly for the categories (pseudo-agents)
over the agents (pseudo-items). Actually, our approach is the opposite: agents ‘consume’ categories
(not the other way around). This leads to an analytical challenge: We should keep track of who can be
assigned to units from which categories at a given instance of the random allocation rule. We explain
this technical challenge, and propose amethodology for overcoming this difficulty (Section 5).

The idea of egalitarianism and the principle of maximizing the minimum welfare are studied in sev-
eral other contexts of discrete allocation models.6 Recently, another such work analyzes the incentive
schemes designed for plasma donation (Kominers, Pathak, Sönmez, andÜnver, 2020). Plasma donors
are given priorities for prospective plasma therapies of their loved ones (pay-it-backward), and pa-
tients receive priority access for plasma therapy in exchange for a pledge to donate her own plasma in
the near future (pay-it-forward).7 The authors also design a mechanism, plasma pooling procedure,
which guarantees an egalitarian distribution of plasma therapy by making non-prioritized patients’
welfare as equal as possible across different blood types within efficiency constraint.8

2 Systems for rationing discretemedical units

Priority systems.Under priority systems, patients are rankedwith respect to a single priority ordering,
which is obtained bymeans of a scoring function incorporating a single principle9 or a set of multiple
principles.10 Priority systems are widely criticized mostly because they could leave certain groups of
patients with no or very little access to medical units. For example, the consequence of prioritizing
frontline healthcare workers could be that other groups systematically would be deprived access.

Reserve systems. Reserve systems are proposed to eliminate the shortcomings of the priority systems
due to a single priority ordering. Themain goal is to provide a fair access tomedical units across differ-
ent interest groups. Basically, all units are divided into reserve categories (disadvantaged communities,
essentialworkers etc.), where a certainnumber of units is reserved for each category and each category
has its own priority ordering of patients.

Reserve categories are usually processed in a precedence order in deterministic applications of these
systemsandpatients are, in general, eligible to receive amedical unit throughmultiple categories. This
has an important implication: sequential processing of categories has distributional consequences for

6See Bogolomania andMoulin (2004), Roth, Sönmez, and Ünver (2005) and Yılmaz (2011).
7A different health care setting where similar incentive schemes are analyzed is a kidney exchangemodel where compati-

ble pairs are incentivized toparticipate in kidney exchangeby insuring their patients against future renal failure via increased
priority in the deceased-donor queue (Sönmez, Ünver, and Yenmez, 2020).

8This method is also based on graph theoretical ideas and in particular, on parametric flows (see also Katta and Sethura-
man (2006)).

9An example is the 2015 New York State Ventilator Guideline: Eligible patients are ranked with respect to a regularly re-
evaluatedmortality risk (Zucker, Adler, Berens, Bleich, Brynner, Butler, et al., 2015)
10Sucha systemaggregates several ethical criteria toobtain a score for eachpatient anda single orderingof patients (White,

Katz, Luce, and Lo, 2009).
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patients (Pathak, Sönmez, Ünver, and Yenmez, 2021). This leads to considerations of lottery systems
for a fair division of medical units.

Lottery systems. TheDepartmentofHealth, Pennsylvaniahasbeen recently implementing aweighted
lottery mechanism for the allocation of medications to treat COVID-19 (Pennsylvania DH, 2020). As
outlined in the“PandemicGuidelines for the InterimPennsylvaniaCrisis StandardsofCare”, this frame-
work is designed such that “all patientswhomeet clinical eligibility criteria should have a chance to re-
ceive treatment”. In the preliminary step, the number of available courses of the COVID-19 therapy is
determinedand thenumber of eligible patients (forwhich thedrug is allotted) is estimated. By dividing
the first number by the second, the chances for each eligible “general community” patient to receive
the drug is determined. In the second step, patients’ characteristics relevant to theweighted lottery are
determined to adjust the general community chances found in the preliminary step (Table 1). Then, a

Group Chances to receive treatment

Disadvantaged community member (𝑐1) 1.25 x (general community chances)
Essential worker (𝑐2) 1.25 x (general community chances)
Death likely within 1 year (𝑐3) 0.5 x (general community chances)
Disadvantaged community member + Essen-
tial worker

1.5 x (general community chances)

Disadvantaged community member + death
likely within 1 year

0.75 x (general community chances)

Essential worker + death likely within 1 year 0.75 x (general community chances)

Table 1: Probabilities in the weighted lottery

lottery number between 1 and 100 is randomly selected for each eligible patient. If the lottery chances
for the patient is 𝑥 out of 100 and the patient’s randomly drawn lottery number is less than or equal
to 𝑥 , they should be offered the scarce drug. If the lottery number is greater than 𝑥 , then they should
not be offered the scarce drug.11

Our goal is to provide a general model for lottery systems. We introduce amethodology for processing
reserves simultaneously and probabilistically.12

11There are two issueswith thismechanism. First, the implementation of the lottery (i.e. single patient-single lottery) does
not imply a probability distribution. Second, since these probabilities are fixed anddonot depend on the number of patients
in each group, target ratios between the weights of each pair of patient groups (Table 1) are not feasible in general.
12While our solution is more general than aiming particular chances to receive treatment for interest groups, it can be

specifically applied to the case introduced by the Department of Health, Pennsylvania by correcting the infeasibility in their
mechanism (see Section 8).
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3 Model

There is a set of agents I and a set of reserve categories (or shortly, categories) C. For each 𝑐 ∈ C, 𝑞𝑐
identical units are reserved, and there is a weak priority order 𝜋𝑐 over I. The strict and indifference
parts of 𝜋𝑐 are denoted by 𝜋𝑃

𝑐 and 𝜋 𝐼
𝑐 , respectively. For each 𝑐 , the set of agents in the 𝑘−th indifference

class of 𝜋𝑐 is I𝜋𝑐 (𝑘 ) such that for 𝑘 ′ > 𝑘 ′′, 𝑖 ∈ I𝜋𝑐 (𝑘 ′) and 𝑗 ∈ I𝜋𝑐 (𝑘 ′′) imply 𝑗 𝜋𝑃
𝑐 𝑖 . The set of agents in

the first 𝑘 indifference classes is denoted by𝑈𝐶𝑆𝜋𝑐 (𝑘 ), thus,𝑈𝐶𝑆𝜋𝑐 (𝑘 ) =
𝑘⋃

𝑘 ′=1
I𝜋𝑐 (𝑘 ′).

A (rationing) problem is a tuple 𝑅 = (I,C, (𝜋𝑐 )𝑐 ∈C , (𝑞𝑐 )𝑐 ∈C). Let R denote the set of all problems. We
consider a setting where units are assigned to agents probabilistically such that for each 𝑅 ∈ R, the
probability with which an agent is assigned a unit is at most one and for each 𝑐 ∈ C, at most 𝑞𝑐 units
are assigned to agents.

Definition 1. Given a problem 𝑅 = (I,C, (𝜋𝑐 )𝑐 ∈C , (𝑞𝑐 )𝑐 ∈C), a random allocation is a stochastic |I | ×
|C| matrix 𝑍 where for each 𝑖 and 𝑐 , 𝑧𝑖𝑐 is the probability with which agent 𝑖 is assigned one unit from
category 𝑐 such that

i. for each 𝑖 ∈ I,∑𝑐 ∈C 𝑧𝑖𝑐 ≤ 1,
ii. for each 𝑐 ∈ C,∑𝑖 ∈I 𝑧𝑖𝑐 ≤ 𝑞𝑐 .

Let Z(𝑅) denote the set of all random allocations for a problem 𝑅 , and Z =
⋃

𝑅 ∈R Z(𝑅) the set of all
random allocations. A rule is a mapping 𝜑 : R → Z such that for each problem 𝑅 , 𝜑 (𝑅) ∈ Z(𝑅).

Since all units are identical, only the probability of receiving a unit is relevant for agents, not the spe-
cific categories through which they are (randomly) assigned a unit. Let 𝑅 = (I,C, (𝜋𝑐 )𝑐 ∈C , (𝑞𝑐 )𝑐 ∈C) be
a problem and 𝑍 ∈ Z(𝑅) a random allocation. The utility of agent 𝑖 is given by 𝑢𝑍 (𝑖 ) =

∑
𝑐 ∈C 𝑧𝑖𝑐 . The

vector𝑢𝑍 = (𝑢𝑍 (𝑖 ))𝑖 ∈I ∈ ℝ |I | is the utility profile. We also say that a utility profile𝑢 is generated by a
random allocation 𝑍 if 𝑢 = 𝑢𝑍 . Random allocations 𝑍 and 𝑍 ′ arewelfare equivalent if 𝑢𝑍 = 𝑢𝑍 ′. Simi-
larly, rules 𝜑 and 𝜑 ′ arewelfare equivalent if for each problem 𝑅 , random allocations 𝜑 (𝑅) and 𝜑 ′(𝑅)
arewelfare equivalent.

Remark 1. The theoretical contribution of ourmodel isnot the assumption ofweakpriority orders. Even
under strict priorities, all the analytical and conceptual challenges (handled in this work) remain. Nev-
ertheless, the assumption of weak priorities is crucial for the scope of fairness in most of the real-life ap-
plications, as we discussed in the Introduction.

4 Axioms

There are two indispensable requirements: (1) Resources should not be wasted (efficiency), and (2) an
agent can be assigned a unit under a category only if each agent with a strictly higher priority for that
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category is assigned a unit with probability one (respecting priorities).

The first axiom states that no unit should bewasted. If there are agents demanding a unit and that unit
is available, then it should not remain as unassigned.

Definition2. Foraproblem𝑅 = (I,C, (𝜋𝑐 )𝑐 ∈C , (𝑞𝑐 )𝑐 ∈C), a randomallocation𝑍 ∈ Z(𝑅) isnon-wasteful,
if for any 𝑐 ∈ C, ∑︁

𝑖 ∈I
𝑧𝑖𝑐 < 𝑞𝑐 =⇒ for each 𝑖 ∈ I,

∑︁
𝑐 ′∈C

𝑧𝑖𝑐 ′ = 1.

A rule 𝜑 is non-wasteful if for any problem 𝑅 , random allocation 𝜑 (𝑅) is non-wasteful.

The only case for a unit remaining (partially) unassigned under non-wastefulness is when each agent
is assigned a unit with probability one. For expositional simplicity, we exclude these cases: A problem
isnon-trivial, if it is not possible to assign each agent a unit. We assume that each problem inR isnon-
trivial.13 Clearly, non-wastefulness and non-triviality together imply that Condition (ii) of Definiton 1
holds with equality.

The second axiom is about priorities: an agent cannot be (probabilistically) assigned a unit from a
category if there is another agent with a strictly higher priority and a utility less than one.

Definition 3. For a problem𝑅 = (I,C, (𝜋𝑐 )𝑐 ∈C , (𝑞𝑐 )𝑐 ∈C), a randomallocation 𝑍 ∈ Z(𝑅) respects prior-
ities, if for any 𝑖 ∈ I, and 𝑐 ∈ C,

𝑖 𝜋𝑃
𝑐 𝑗 and𝑢𝑍 (𝑖 ) < 1 =⇒ 𝑧𝑗𝑐 = 0

A rule 𝜑 respects priorities if for any problem 𝑅 , random allocation 𝜑 (𝑅) respects priorities.

5 Acceptable random allocations

Our analysis throughout the paper is based on the simple idea of sequentially updating the probabili-
ties with which agents are assigned a unit. We refer to these probability vectors as reservation profiles
in general, generically denoted by 𝑣 = (𝑣𝑖 )𝑖 ∈I . Although the utility profile 𝑢𝑍 under a random allo-
cation 𝑍 and the reservation profile 𝑣 = (𝑣𝑖 )𝑖 ∈I are mathematically the same type of objects, there is
an important difference between them: While a utility profile represents agents’ utilities induced by a
random allocation, the interpretation of a reservation profile 𝑣 = (𝑣𝑖 )𝑖 ∈I is that agent 𝑖 is guaranteed a
utility level at least as much as 𝑣𝑖 , without any implication of a specific random allocation and agents’
utilities. A reservation profile 𝑣 is feasible if there exists a random allocation 𝑍 such that 𝑣 = 𝑢𝑍 .

We consider only the rules, which satisfy the axioms in Section 4. For any problem𝑅 , a random alloca-
tion 𝑍 ∈ Z(𝑅) is acceptable if it satisfiesnon-wastefulness and respects priorities. We denote the set of
13There is no loss of generality in assuming non-triviality: the definitions and results hold also for trivial problems.
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acceptable random allocations byZ𝑎 (𝑅). A rule 𝜑 is acceptable if for each problem 𝑅 , 𝜑 (𝑅) ∈ Z𝑎 (𝑅).

Wefirst characterizeacceptable rules. These rules arebasedonaprocedureof sequential improvement
of agents’ utilities by (probabilistically) assigning units simultaneously. This is a simple idea but its
design is surprisingly complicated for several reasons. Next, we analyze these challenges.

First, since agents can receive units from different categories, it is not clear which agents should have
access to a given category at a given instance of improving utilities.

Example 3. (Determination of agents’ access to categories)
Let I= {𝑖 , 𝑗 , 𝑘 } and C= {𝑐1, 𝑐2} such that one unit is reserved for each category. The priority orders for
categories are given below with each set in the table being an indifference class (in all the examples, we
use the same type of representation for a problem and we present only the first few indifference classes
that matter for the argument):

𝜋𝑐1 𝜋𝑐2

{𝑖 } {𝑖 , 𝑗 }
{𝑘 } {𝑘 }

A plausible argument is the following: Respecting priorities implies that a unit should be assigned to 𝑖
with probability one (since otherwise, 𝑘 is assigned a unit under 𝑐1 with a positive probability, violat-
ing priorities). Also, since 𝑗 has a higher priority than 𝑘 at 𝑐2, the remaining unit should be assigned
to 𝑗 , which is an acceptable allocation. On the other hand, for each _ ∈ [0, 12 ], the following random
allocation is also acceptable:

𝑍 =

𝑐1 𝑐2

𝑖 1
2 + _ 1

2 − _

𝑗 0 1
2 + _

𝑘 1
2 − _ 0

In Example 3, since the unit under 𝑐2 can also be (probabilistically) assigned to 𝑖 (along with the unit
under 𝑐1), there is room for the unit under 𝑐1 to be (probabilistically) assigned to 𝑘 . This demonstrates
the first difficulty: how should agents’ access to categories be defined in themost comprehensiveway?

Definition 4. Let 𝑣 = (𝑣𝑖 )𝑖 ∈I be a reservation profile. Agent 𝑖 is a claimant for category 𝑐 under 𝑣 if 𝑖 ∈
I𝜋𝑐 (𝑘 ) such that either 𝑘 = 1 or for each 𝑗 ∈ 𝑈𝐶𝑆𝜋𝑐 (𝑘 − 1), 𝑣𝑗 = 1. The set of claimants for category 𝑐
under 𝑣 is denoted by Γ𝑐 (𝑣 ).

Whenever the first 𝑘 − 1 indifference classes consist of only agents with reservation value one, all these
agents and the agents in the𝑘 th indifference class are claimants for the corresponding category.14 This
implies that these agents (claimants) can receive units from these categories.
14In Example 3, 𝑖 and 𝑘 are claimants for 𝑐1, while 𝑖 and 𝑗 are claimants for 𝑐2 (note that 𝑘 is not a claimant for 𝑐2).
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Second, there is an exception to this intuition: as the following example demonstrates, it is not always
the case that units under a category can be assigned to all of its claimants.

Example 4. (Claimants cannot always receive a positive share.)
Let I= {𝑖 , 𝑗 , 𝑘 } and C= {𝑐1, 𝑐2} such that one unit is reserved for each category. Consider the following
category priorities:

𝜋𝑐1 𝜋𝑐2

{𝑖 } {𝑗 }
{𝑘 } {𝑘 }

For the reservation profile 𝑣 = (𝑣𝑖 , 𝑣𝑗 , 𝑣𝑘 ) = (1, 1, 0), all agents are claimants for all categories. But, any
random allocation such that a unit is (probabilistically) assigned to 𝑘 does not respect priorities. Thus,
although 𝑘 is a claimant of both categories at the given reservation profile, at an acceptable allocation,
she cannot be assigned any unit from these categories.

InExample 4, respectingpriorities implies that agents 𝑖 and 𝑗 are assignedall units, oneunit each. Thus,
the units under 𝑐1 and 𝑐2 should be ‘exclusively reserved’ for agents 𝑖 and 𝑗 .

Let 𝑣 = (𝑣𝑖 )𝑖 ∈I be a reservation profile. For each 𝑖 with 𝑣𝑖 > 0, let𝐶 (𝑖 , 𝑣 ) denote the set of categories, for
which agent 𝑖 is a claimant under the reservation profile 𝑣 . Let𝐶 (𝐼 , 𝑣 ) = ⋃

𝑖 ∈𝐼
𝐶 (𝑖 , 𝑣 ).

Definition 5. Given a reservation profile 𝑣 = (𝑣𝑖 )𝑖 ∈I , if for a set of agents 𝐼 , we have
∑
𝑖 ∈𝐼

𝑣𝑖 =
∑

𝑐 ∈𝐶 (𝐼 ,𝑣 )
𝑞𝑐 ,

then theunits under the categories in𝐶 (𝐼 , 𝑣 ) (or shortly, the categories in𝐶 (𝐼 , 𝑣 )) are exclusively reserved
for 𝐼 .

For a given reservation profile, exclusively reserved categories correspond to binding feasibility con-
straints. The subtle point here is that under exclusively reserved categories for 𝐼 , while each agent in 𝐼

can be assigned probabilities from all the categories for which she is a claimant, not all the claimants
of these categories can receive units from them. Thus, a case of exclusively reserved categories is an
exception to the general idea that any claimant of a category should be able to receive units from that
category. Moreover, it turns out that, in the process of sequential improvement of agents’ reservation
values, (i) as long as there are no exclusively reserved categories, the reservation values of all claimants
canbe increased, and (ii) when a reservationprofile is achieved, forwhich there are exclusively reserved
categories, that reservation profile is feasible. This insight is given by the following characterization
theorem (see Appendix B for howwe utilize this important insight to prove the characterization of the
acceptable rules (Theorem 2)).

Theorem 1. (The Supply-Demand Theorem (Gale, 1957))15

Let𝑣 = (𝑣𝑖 )𝑖 ∈I be a reservation profile. There is a randomallocation 𝑍 such that (i) for each 𝑖 ∈ I,𝑢𝑧 (𝑖 ) ≥
15This is a generalization of Hall’s Set Representation Theorem (Hall, 1935), which holds only for integers.
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𝑣𝑖 , and (ii) 𝑧𝑖𝑐 > 0 implies 𝑖 ∈ Γ𝑐 (𝑣 ), if and only if, for each subset 𝐼 of agents∑︁
𝑖 ∈𝐼

𝑣𝑖 ≤
∑︁

𝑐 ∈𝐶 (𝐼 ,𝑣 )
𝑞𝑐 . (1)

Third, the approach of sequentially updating the reservation values requires keeping track of changes
in the setof claimants: while anagentmaynotbea claimant for a categoryat agiven reservationprofile,
as the agents’ reservation values possibly go up, shemight be a claimant for it at a different one.

Example 5. (Sequential improvement of agents’ access to categories)
Let I= {𝑖 , 𝑗 , 𝑘 ,𝑚} and C = {𝑐1, 𝑐2, 𝑐3} such that one unit is reserved for each category. Consider the fol-
lowing priorities:

𝜋𝑐1 𝜋𝑐2 𝜋𝑐3

{𝑖 , 𝑗 } {𝑘 } {𝑘 }
{𝑖 ,𝑚} {𝑗 ,𝑚}

Under the reservation profile 𝑣 = (𝑣𝑖 , 𝑣𝑗 , 𝑣𝑘 , 𝑣𝑚) = ( 12 ,
1
2 ,

1
2 , 0), agents 𝑖 ,𝑚 and 𝑗 ,𝑚 are not claimants

for 𝑐2 and 𝑐3, respectively, but under 𝑣 ′ = ( 12 ,
1
2 , 1, 0), they are. Thus, as agents’ probabilities at categories

increase sequentially, the set of claimants might change.

The fact that the set of claimants changeswith respect to the reservationprofile further complicates the
implementation of the simple idea of ‘improving agents’ utilities sequentially’. Note that in the last ex-
ample, under the reservationprofile𝑣 , category 𝑐1 is exclusively reserved for 𝑖 and 𝑗 . But,when the reser-
vation value of another agent (agent 𝑘 ) is increased to one (so that the reservation profile becomes 𝑣 ′),
there is no exclusively reserved category anymore: when 𝑖 ,𝑚 and 𝑗 ,𝑚 become claimants for 𝑐2 and 𝑐3,
respectively, the condition for exclusively reserved categories in Definition 5 does not hold.

We characterize the set of acceptable random allocations by a sequential allocation procedure: the
Priority-Based Sequential Welfare Improvement (PBSWI) solution, or in short sequential improve-
ment solution. The design relies on careful treatment of the difficulties discussed above. The idea is to
sequentially update agents’ access to categories through the criterion of being a claimant by keeping
track of instances such that there are exclusively reserved categories.

The PBSWI Class:

Step 0. Let the reservation profile be 𝑣0 = (𝑣0
𝑖
)𝑖 ∈I such that for each 𝑖 ∈ I, 𝑣0

𝑖
= 0.

For each 𝑛 ≥ 1 and the reservation profile 𝑣𝑛−1, the following steps are executed.

Step n.1 For each set of agents 𝐼 such that categories in𝐶 (𝐼 , 𝑣𝑛−1) are exclusively reserved for 𝐼 ,
i. for each 𝑖 ∈ 𝐼 , let 𝑣𝑛

𝑖
= 𝑣𝑛−1

𝑖
, and

ii. mark each category in the set𝐶 (𝐼 , 𝑣𝑛−1) as unavailable.

12



Let 𝐴𝑛 denote the set of available categories.

Step n.2 If 𝐴𝑛 = ∅, then let 𝑍 ★ with𝑢𝑍★ = 𝑣𝑛−1 be the outcome. Otherwise, proceed to Step 𝑛.3.

Step n.3 (Welfare improvement) Select a feasible reservation profile𝑣𝑛 ≠ 𝑣𝑛−1 such that for each 𝑖 ,𝑣𝑛
𝑖
=

𝑣𝑛−1
𝑖

+ _𝑛
𝑖
where _𝑛

𝑖
∈ [0, 1], and for each 𝑖 ∉

⋃
𝑐 ∈ 𝐴𝑛

Γ𝑐 (𝑣𝑛−1), _𝑛𝑖 = 0.

The PBSWI selects a welfare improvement at each step, and it is a class of rules since each sequence
of these selections implies a different random allocation. To define a rule in the PBSWI class, it is suf-
ficient to specify the selection rule of welfare improvement at Step 𝑛.3. (We define such a rule in Sec-
tion 6.4.) For each problem 𝑅 = (I,C, (𝜋𝑐 )𝑐 ∈C , (𝑞𝑐 )𝑐 ∈C), let PBSWI (𝑅) denote the set of all random
allocations obtained by the class PBSWI .

Theorem 2. For a problem 𝑅 = (I,C, (𝜋𝑐 )𝑐 ∈C , (𝑞𝑐 )𝑐 ∈C), a random allocation 𝑍 is acceptable if and only
if 𝑍 ∈ PBSWI (𝑅).

Proof. See Appendix B �

This result provides an insight on how to describe an acceptable random allocation by means of a se-
quence of welfare improvement profiles. We use this insight later when we characterize the set of ‘eq-
uitable’ (see Section 6) allocations bymeans of allocation rules (see Section 6.4).

6 Enhancing equity

As we argue via Example 1 in the Introduction, equity in reserve systems is crucial. There are two pos-
sibly sensible formulations of equity in the current setting, which we formally analyze in the following
sections: (1) Agents’ utilities should be equalized as much as possible (egalitarianism). (2) Categories
should be treated fairly unless there is a justification for unfairness (category-fairness).

Our first observation is that an egalitarian rule does not exist in the current context (Theorem 3 in
Section 6.1). Moreover, even if an egalitarian random allocation exists for some problem, it may not
even treat equals as equal, themost fundamental principle of fairness (Section 6.1). Thus, egalitarian-
ism is not plausible in the current setting. We propose category-fairness, an axiom which requires fair
treatment of categories unless there is a justification for unfairness (Section 6.2). Then, we formulate
a different notion, procedural fairness (Section 6.3). This axiom is in the spirit of egalitarianism. Yet,
it is independent from it, and it is stronger than both category-fairness and equal treatment of equals
(Section 6.3). Finally, we characterize the rules satisfying procedural fairness in the class of acceptable
rules (Section 6.4).
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6.1 Egalitarianism

The standard formulation of egalitarian access to resources is ‘equating utilities as much as possible’
through theLorenzdominance criterion. For any vector𝑢 ∈ ℝ |I |, let𝑢★ be the vector obtainedupon re-
arranging thecoordinatesof𝑢 increasingly. Givenaproblem𝑅 = (I,C, (𝜋𝑐 )𝑐 ∈C , (𝑞𝑐 )𝑐 ∈C) and𝑍 , 𝑍 ′ ∈ Z(𝑅),
𝑍 Lorenz dominates 𝑍 ′ if

for each 𝑙 = 1, . . . , |I | :
𝑙∑︁

𝑚=1
((𝑢★

𝑍 )𝑚 − (𝑢★
𝑍 ′)𝑚) ≥ 0.

The question of defining equitable access is entangled with the indispensability of the axioms in Sec-
tion 4. Fortunately, it can easily be adapted to the current context.

Definition 6. A random allocation 𝑍 ∈ Z𝑎 (𝑅) is egalitarian if it is Lorenz dominant in the setZ𝑎 (𝑅).
A random allocation 𝑍 ∈ Z𝑎 (𝑅) is weakly egalitarian if it is not Lorenz dominated by another alloca-
tion in the setZ𝑎 (𝑅). A rule 𝜑 is (weakly) egalitarian if for any problem 𝑅 , random allocation 𝜑 (𝑅) is
(weakly) egalitarian.

There are two important issues regarding an egalitarian random allocation: First, it turns out that a
Lorenz dominant allocationmay not exist in the set of acceptable random allocations.16

Theorem 3. No rule is egalitarian.

Proof. See Appendix C. �

Second, even if an egalitarian random allocation exists for a problem, it does not necessarily ‘treat
equals as equal’, as the followingexampledemonstrates. (Clearly, this observationholds also forweakly
egalitarian allocations.)

Example 6. (A (weak) egalitarian random allocation does not necessarily ‘treat equals as equal’.)
Let I= {𝑖 , 𝑗 , 𝑖1, 𝑖2, 𝑗1, 𝑗2, 𝑘 , 𝑙 } and C= {𝑐1, 𝑐2} such that three units are reserved for each category. Consider
the following category priorities:

𝜋𝑐1 𝜋𝑐2

{𝑖 , 𝑗 } {𝑖 , 𝑗 }
{𝑖1, 𝑖2} {𝑗1, 𝑗2}
{𝑘 , 𝑙 } {𝑘 , 𝑙 }

First, note that agents 𝑖 and 𝑗 qualify for both categories and this implies a surplus for agents 𝑖1 and 𝑖2

under 𝑐1, and for 𝑗1 and 𝑗2 under 𝑐2. Thus, the claimsof these twogroups of agents over the surplus should
be treated equally. Second, it turns out that an egalitarian allocation does not treat equals equally. To
16The impossibility still holds even if we restrict the domain of priority orders (see Appendix C).
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see this, let us first characterize the set of egalitarian random allocations for the case where the initial
reservation profile is obtained by treating categories separately (see Footnote 14). Then, (i) agents 𝑖 and 𝑗

are assigned a unit each with probability one, (ii) agents 𝑖1, 𝑖2, 𝑗1 and 𝑗2 are assigned a unit each with
probability at least half. Thus, there are four units remaining with the constraint (ii). Non-wastefulness
and respecting priorities imply that there are three alternatives for these units:

1. 𝑖1, 𝑖2, 𝑗1, 𝑗2 (each with probability one)

2. 𝑖1, 𝑖2 (each with probability one) and 𝑗1, 𝑗2, 𝑘 , 𝑙 (𝑗1, 𝑗2 each with probability at least half)

3. 𝑗1, 𝑗2 (each with probability one) and 𝑖1, 𝑖2, 𝑘 , 𝑙 (𝑖1, 𝑖2 each with probability at least half)

The second and third alternatives provide access to a higher number of agents than the first alternative.
Thus, (it is straightforward to check that) an acceptable random allocation is egalitarian if and only if it
generates one of the following utility profiles:

𝑢 = (𝑢𝑖 , 𝑢 𝑗 , 𝑢𝑖1 , 𝑢𝑖2 , 𝑢 𝑗1 , 𝑢 𝑗2 , 𝑢𝑘 , 𝑢𝑙 ) = (1, 1, 1, 1, 12 ,
1
2 ,
1
2 ,
1
2 ),

𝑢 ′ = (𝑢 ′
𝑖 , 𝑢

′
𝑗 , 𝑢

′
𝑖1 , 𝑢

′
𝑖2 , 𝑢

′
𝑗1 , 𝑢

′
𝑗2 , 𝑢

′
𝑘 , 𝑢

′
𝑙 ) = (1, 1, 12 ,

1
2 , 1, 1,

1
2 ,
1
2 ).

But note that, each of them favors either agents 𝑖1 and 𝑖2 over agents 𝑗1 and 𝑗2, or vice versa. The reason is
simple: by granting, say agents 𝑖1 and 𝑖2, a unit each, the remaining two units can be (probabilistically)
allocated to agents 𝑗1, 𝑗2, 𝑘 and 𝑙 , instead of allocating four units equally among agents 𝑖1, 𝑖2, 𝑗1 and 𝑗2.
Thus, neither of them treats {𝑖1, 𝑖2} and {𝑗1, 𝑗2} equally, and we conclude that an egalitarian allocation
does not necessarily treat equals as equal.

6.2 Reserve systems under a baseline priority order: Category-fairness

Inmanyapplicationsof reserve systems, there is anall-inclusive categorywithabaselinepriority order.
The priority ordering of preferential treatment categories are derived by prioritizing their beneficiaries
over others and preserving their relative ranking in the baseline priority order. Typical examples of a
baseline priority order are (i) the merit category in school choice, the ranking for which is determined
by the merit scores of students, and (ii) the general community category in allocating medical units,
where all eligible patients are ordered based on estimated mortality risk measured by the SOFA score
(seeSection8 forbothof theseapplications).17 Note that in thesemodels, thebaselinepriority ordering
itself represents a category.

In this section, we assume, without loss of generality18 and for notational simplicity, a strict ordering
17See Section 2.1 in Pathak, Sönmez, Ünver, and Yenmez (2021) for examples of pandemic resource allocation and more

on themodel with a baseline priority order.
18The definitions in this section and the related result in the next section extend for weak priority orderings.
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of agents under the baseline priority order. For ease of convenience, we use the language of affirmative
action in schools’ seat assignment problem: there is amerit category, where all students are strictly or-
deredwith respect to theirmerit scores (examscores, composite scores, etc.), and there arepreferential
treatment categories (minorities, disadvantaged (or all) socioeconomic groups, etc.).

A rationingproblem𝑅 = (I,C∪{𝑐𝑀 },�, (𝑞𝑐 )𝑐 ∈C∪{𝑐𝑀 }, (𝐵𝑐 )𝑐 ∈C) is a reserveproblemwith abaselinepri-
ority order, where 𝑐𝑀 is themerit category,� is the strict (baseline) priority ordering viamerit scores,C
is the set of preferential treatment categories, and for each 𝑐 ∈ C, 𝐵𝑐 is the set of beneficiaries of 𝑐 .

We propose and formulate a compelling fairness notion: category-fairness. Category fairness essen-
tially requires that if there is no justification for uneven treatment of a category (besides respecting
priorities and non-wastefulness), then this unfairness should be eliminated.

We first define unfairness for the merit category. Let 𝑍 be an allocation. Let 𝑖𝑀 (𝑍 ) be the student who
has autility less thanone such that each student 𝑗 , whohas ahighermerit score than 𝑖𝑀 (𝑍 ), has autility
one.19 Now, suppose that for each such student 𝑗 , there exists a preferential treatment category 𝑐 such
that more than |𝑞𝑐 | of its beneficiaries are assigned a seat, among which there is at least one student
with a lower score than 𝑖𝑀 (𝑍 ). Then, we say that 𝑍 is unfair for the merit category. While 𝑖𝑀 (𝑍 ) is
either not assigned a seat at all or assignedwith probability less than one, for each relevant preferential
treatment category 𝑐 , there exists a beneficiary with utility one but with a lower score than 𝑖𝑀 (𝑍 ). This
is not justified by the reserve requirements sincemore than |𝑞𝑐 | of its beneficiaries are assigned a seat.

Definition 7. A random allocation 𝑍 is unfair for the merit category (𝑐𝑀 ) if for each 𝑗 such that 𝑗 �
𝑖𝑀 (𝑍 ), there exists 𝑐 ∈ C such that 𝑗 ∈ 𝐵𝑐 , and |{𝑖 ′ ∈ 𝐵𝑐 : 𝑢𝑍 (𝑖 ′) = 1}| > 𝑞𝑐 and the set {𝑖 ′ ∈ 𝐵𝑐 : 𝑢𝑍 (𝑖 ′) = 1}
contains at least one student with a lower merit score than 𝑖𝑀 (𝑍 ).

To illustrate the notion, we present the following example.

Example 7. (Unfairness for the merit category)
Let us consider a school’s seat assignment problem with affirmative action where I= {𝑖 , 𝑗 , 𝑘 , 𝑙 , 𝑖1, 𝑖2} is
the set of students and C= {𝑐𝑀 , 𝑐1, 𝑐2} is the set of categories such that two seats are reserved for 𝑐𝑀 (merit
category), two seats are reserved for socioeconomic category 𝑐1 and one seat is reserved for socioeconomic
category 𝑐2. Consider the following category priorities:

𝜋𝑐𝑀 𝜋𝑐1 𝜋𝑐2

{𝑗 } {𝑗 } {𝑘 }
{𝑘 } {𝑙 } {𝑖2}
{𝑙 } {𝑖1}
{𝑖 }

19Note that this student is uniquely well-defined. Also, there could be students with lower merit score than 𝑖 and assigned
to a seat with probability one.
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Let 𝑍 be the allocation where 𝑧𝑗𝑐𝑀 = 𝑧𝑘𝑐𝑀 = 𝑧𝑙𝑐1 = 𝑧𝑖1𝑐1 = 𝑧𝑖2𝑐2 = 1, and all other probabilities are zero.
Then, 𝑢𝑍 (𝑖 ) = 0 and 𝑢𝑍 (𝑗 ) = 𝑢𝑍 (𝑘 ) = 𝑢𝑍 (𝑙 ) = 𝑢𝑍 (𝑖1) = 𝑢𝑍 (𝑖2) = 1. Note that 𝑍 is unfair for 𝑐𝑀 .20 This
unfairness is not justified since there is another acceptable (random) allocation 𝑍 ′ obtained from 𝑍 with
the following probability transfers: 𝑧 ′

𝑖1𝑐1
= 𝑧𝑖1𝑐1 −_, 𝑧 ′

𝑗𝑐1
= 𝑧𝑗𝑐1 +_, 𝑧 ′𝑗𝑐𝑀 = 𝑧𝑗𝑐𝑀 −_, and 𝑧 ′

𝑖𝑐𝑀
= 𝑧𝑖𝑐𝑀 +_. Note

that this is essentially a utility transfer from 𝑖1 to 𝑖 , andmitigates the unfair treatment of 𝑐𝑀 .

Wenowdefineunfairness forapreferential treatment category. Let𝑍 bea randomallocation. Let 𝑖min(𝑍 )
be the student with the lowestmerit score, who is assigned a seat from themerit categorywith positive
probability. Let 𝑐 be a preferential treatment category such that each student, who is a beneficiary of 𝑐
and assigned a seat with positive probability, has a higher merit score than 𝑖min(𝑍 ). Then, we say 𝑍 is
unfair for 𝑐 . All the beneficiaries of 𝑐 , who are assigned a seat, have higher merit scores than 𝑖min(𝑍 )
and they should have been assigned a seat because of their merit anyways. Thus, the beneficiary of 𝑐 ,
who is not assigned a seat and has the highest score among such beneficiaries of 𝑐 objects to 𝑍 for this
unfulfilled preferential treatment of 𝑐 .

Definition 8. A random allocation 𝑍 is unfair for the preferential category 𝑐 ∈ C if for each 𝑗 ∈ 𝐵𝑐

with𝑢𝑍 (𝑗 ) > 0, 𝑗 � 𝑖min(𝑍 ).

We next revisit the structure in Example 1 to illustrate this notion.

Example 1 revisited. (Unfairness for a preferential treatment category) There are three student 𝑖 , 𝑗 ,
and 𝑘 . There are two categories, the merit category and the preferential treatment category 𝑐1. Stu-
dents 𝑗 and 𝑘 are beneficiaries of 𝑐1. One unit is reserved for each category. The priority orders are as
follows:

𝜋𝑐𝑀 𝜋𝑐1

{𝑗 } {𝑗 }
{𝑖 } {𝑘 }
{𝑘 }

Note that any acceptable allocation assigns student 𝑗 a seat with probability one. Let us consider the
allocation where 𝑖 is also assigned a seat with probability one. Now, 𝑖 is the student with the lowest
merit score, who is assigned a seat from the merit category with positive probability (with probability
one actually). The only preferential treatment category student who is assigned a seat is 𝑗 and she has
a higher score than 𝑖 . Thus, this allocation is unfair for 𝑐1.21

We next define category-fairness based on the notions of unfairness for the merit category and unfair-
ness for the preferential treatment categories.
20Also, note that this allocation is the outcome of the solution whenmerit category is processed first.
21Also, note that this allocation is the outcome of the solution when preferential treatment category 𝑐1 being processed

first.
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Definition9. Let𝑅 = (I,C∪{𝑐𝑀 },�, (𝑞𝑐 )𝑐 ∈C∪{𝑐𝑀 }, (𝐵𝑐 )𝑐 ∈C) bea reserveproblemunderabaselinepriority
order. A randomallocation 𝑍 ∈ Z(𝑅) satisfies category-fairness, if for each 𝑐 ∈ C∪{𝑐𝑀 }, it is not unfair
for 𝑐 . A rule 𝜑 satisfies category-fairness if for each problem 𝑅 , 𝜑 (𝑅) satisfies category-fairness.

The question is whether there always exists an acceptable random allocation, which satisfies category-
fairness.22 The existence is not clear particularly because eliminating unfairness for merit and pref-
erential treatment categories seem like conflicting tasks. Surprisingly, the answer is affirmative and
existence follows from Theorem 2 above, and Proposition 1 and Theorem 4 below.

When/why is category-fairness relevant? Let us consider the model where each student belongs to
a preferential treatment category (e.g. when students are divided into socioeconomic tiers). For each
random allocation 𝑍 , since any student with a higher merit score than 𝑖𝑀 (𝑍 ) is a beneficiary of a pref-
erential treatment category, category-fairness imposes constraints on the utilities of the beneficiaries
of the associated preferential treatment categories, and is never vacuous. Thus, for an important class
of reserve systems, category-fairness is relevant for any randomallocation. For othermodels of reserve
systems, category-fairness is relatively weaker since a higher priority agent at a given category might
not be a beneficiary of another category. Motivated by this observation, we next propose a stronger
fairness axiom, which is relevant for any model of reserve system and non-vacuous for any random
allocation.

6.3 Procedural fairness

As we argued in Section 5, each acceptable random allocation can be described as the outcome of
a sequential (welfare) improvement solution (Theorem 2). This is a step-by-step ‘partial allocation’
procedure, where at each step, units become available only for certain agents (i.e. claimants in Defini-
tion 4), and can be allocated only to these agents. Since we allow for random allocations, at each step,
there are infinitely many feasible ‘partial allocations’ of available units to this uniquely defined set of
claimants. Thus, a natural equity concept requires claimants’ equitable access to their available units,
which is defined as equalizing agents’ utilities as much as possible.

Definition 10. A sequential improvement solution is procedurally fair if at each step, the selected reser-
vation profile Lorenz dominates any other feasible reservation profile that can be selected at that step.

Discussion of procedural fairness. If, at an instance of the sequential welfare improvement process,
each agent is the beneficiary of only one category, then intuitively, they should be assigned the avail-
able unit under that category (this is the case in Example 4). This is actually implied by procedural
22Category-fairness is easily satisfied if non-wastefulness or respecting priorities is not imposed: If non-wastefulness is not

imposed, then the allocation, where each agent receives each object with probability zero, is category-fair. If respecting pri-
orities is not imposed, then any allocation of equal share (all agents have the same utility) is category-fair. Also, as implied by
the last two examples, any solution via sequential processing of categories does not satisfy category-fairness.
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fairness. If, on the other hand, they are the beneficiaries of multiple categories, then, since they can
be assigned to a unit under multiple categories, there is a surplus (this is the case in all the examples
above, except Example 4). In this case, procedural fairness requires that this surplus is allocated to the
beneficiaries in an egalitarian way (in the sense of Lorenz dominance). It is conceptually the same no-
tion as ‘procedural equality’ underlying the Probabilistic Serial (𝑃𝑆) solution.23 The difference is that
in the current context, granting equal probabilities is not the right concept for equity: Since agents are
ranked differently under categories, typically, a different set of agents (claimants) is assigned proba-
bilities at each step. Thus, in general, agents have different levels of utilities at a given instance of the
process. To restore equity, procedural fairness takes the reservation profile in the previous step into ac-
count to obtain an equal allocation of available units in the sense of Lorenz dominance. Thus, at each
step, we replace ‘procedural equality’ with an assignment of probabilities which Lorenz dominates any
other feasible assignment. Nevertheless, conceptually, these two approaches are strongly similar.24

A fairquestion is the following: what is thepointof statingprocedural fairness for reserve systemsper se,
while there is no such explicit formulation of it in the context of assignment problems? In the assign-
ment problem context, procedural equality directly specifies the corresponding allocation rule. But,
in the current context, to specify the rules equivalent to procedural fairness is technically challenging
and far from being an obvious exercise. Our second theorem establishes this characterization of pro-
cedurally fair rules (see Theorem 4 below).25

Normative justification for procedural fairness. Procedural fairness provides agents with equitable
access to their available units throughout thewelfare improvement process,26 and clearly, it is a notion
about the procedure. But, this is not enough to justify it as a fairness property. Is there a normative
justification, without any reference to the procedure? Does procedural fairness imply a ‘fair’ outcome?
The answers are both affirmative. First, in the context of a baseline priority order, the outcome of a
procedurally fair solution always satisfies category-fairness.
23For the assignment problem, each (ordinally) efficient random allocation can be described by a member of the class

of simultaneous eating algorithms (Theorem 1 by Bogomolnaia andMoulin (2001)). By this result, it is natural to formulate
procedural equality within this class as assigning the same amount of probability for each agent (through aprofile of uniform
‘eating’ speeds among all possible ‘eating’ speed functions).
Our approach is exactly the same: Each acceptable randomallocation can be described by amember of the class of PBSWI

algorithms (Theorem 2), and we formulate procedural fairness as an equitable assignment of probabilities at each step
(among all possible assignments of probabilities).
24Also, although there is a procedural similarity (in terms of fairness) with the 𝑃𝑆 solution, the current context is very dif-

ferent, and the 𝑃𝑆 rule is not applicable here, basically because, as opposed to agents ranking the objects, here the object
categories rank the agents. We discuss this difference in the Related Literature in the Introduction.
25A technically similar exercise is the characterization of the Lorenz dominant allocation rule in the context of bilateral

matching under dichotomous preferences (see Theorem 1 by Bogolomania andMoulin (2004)).
26As we have shown in Section 6.1, an egalitarian random allocation may not exist. Also, when it exists, it does not imply

procedural fairness (see thefirst example inSection6.3of theonlineversion). On theotherhand, aprocedurally fair allocation
always exists (see Section 6.4). Thus, procedural fairness does not imply egalitarianism. Thus, egalitarianism and procedural
fairness are independent properties.
Interestingly, while (as mentioned in Section 6.1) egalitarianism does not imply even equal-treatments-of-equals, in the

domain of reserve systems under a baseline priority order, procedural fairness implies category-fairness (see Proposition 1
below), which is stronger than equal-treatments-of-equals.
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Proposition1. For the reserve systemsunderabaselinepriorityorder, procedural fairness implies category-
fairness.

Proof. See Appendix E. �

Second, procedural fairness implies equal treatment of equals. To formally define this notion, let 𝑅 =

(I,C, (𝜋𝑐 )𝑐 ∈C , (𝑞𝑐 )𝑐 ∈C) be a rationing problem, and 𝑐 , 𝑐 ′ ∈ C with 𝑞𝑐 = 𝑞𝑐 ′ be such that

1. there is a set of agents 𝐼 such that for each acceptable random allocation 𝑍 , units are assigned to
agents in 𝐼 only from 𝑐 and 𝑐 ′, and the units under 𝑐 and 𝑐 ′ are assigned only to agents in 𝐼 ,

2. for each 𝑘 ≥ 1, 𝑘 th indifference class of both 𝜋𝑐 and 𝜋𝑐 ′ contains the same number of agents, and

3. if 𝑖 is not in the 𝑘 th indifference class of both 𝜋𝑐 and𝜋𝑐 ′, then 𝑧𝑖𝑐 > 0 (𝑧𝑖𝑐 ′ > 0) for some acceptable
random allocation 𝑍 implies that 𝑧 ′

𝑖𝑐 ′ = 0 (𝑧 ′𝑖𝑐 = 0) for each acceptable random allocation 𝑍 ′.

We call 𝑐 and 𝑐 ′ as symmetric categories. These conditions are about two categories’ priority orders be-
ing symmetrical so that we can refer to ‘equals’ in this domain. Note that we could have defined sym-
metric categories as two categories with the same priority ordering and the same number of reserved
units. But, thiswouldbeavery restrictivedefinitionsof ‘equals’. Theconditions abovearemuchweaker
as a definition of ‘symmetric categories’.

Given symmetric categories 𝑐 and 𝑐 ′, agents 𝑖 and 𝑗 are equals if they are in the 𝑘 th indifference class
of 𝜋𝑐 and 𝜋𝑐 ′, respectively.27

Definition 11. A randomallocation 𝑍 satisfies equal treatment of equals if it generates the same utility
for equals 𝑖 and 𝑗 . A rule 𝜑 satisfies equal treatment of equals if for each problem𝑅 , 𝜑 (𝑅) satisfies equal
treatment of equals.

As in other models, equal treatment of equals is relevant only for the cases when there are equals. We
argue that having equals (by our definition) is quite likely, thus, the property has a scope in the current
context.28 Thus, consideration of symmetric categories is not vacuous and therefore, equal treatment
27This is similar to the assignment problem context where two agents are equals if they have the same exact preferences.

Here, the notion of equals is broader.
28The first condition is actually satisfied in many real-life applications where the same group of agents are beneficiaries

of at most two categories 𝑐 and 𝑐 ′. Clearly, this is always satisfied when there are only two categories in the problem (e.g.
SVI and non-SVI categories, or essential workers and disadvantaged community members), and mostly satisfied when the
number of categories is low. The second condition is clearly needed so that we can talk about equal agents. Also, note that
this is always satisfied when the priority orders are strict. Finally, the third condition is about creating symmetrical priority
orders under both 𝑐 and 𝑐 ′: either the rank of 𝑖 is the same under both priority orders, or if the ranks are not the same, then
they are very different such that, if shemight be assigned a unit from a category, then she cannot be assigned a unit from the
other category under no acceptable random allocation. The latter part of this condition holds in many real-life applications
where 𝑖 is the beneficiary of only one category: commonly, reserve units are in short supply, and therefore, an agent not being
a beneficiary of the other category implies that her being assigned a unit from that category is impossible, even under soft
reserves. Thus, in these model with beneficiaries, the third condition can also be formulated as follows: if an agent is the
beneficiary of two categories, then her rank is the same under both categories.
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of equals is relevant for many applications of reserve systems.

The following result provides the second normative justification for procedural fairness.

Proposition 2. For any rationing problem, procedural fairness implies equal treatment of equals.

Proof. See Appendix F. �

Before we state our second theorem, we revisit two examples to demonstrate the idea of procedural
fairness.

Example 2 revisited. Let I= {𝑖 , 𝑗 , 𝑘 , 𝑙 } and C= {𝑐1, 𝑐2} such that one unit is reserved 𝑐1 and two units
for 𝑐2. Consider the following category priorities:

𝜋𝑐1 𝜋𝑐2

{𝑖 } {𝑘 }
{𝑗 } {𝑖 }

{𝑙 }

Agents 𝑖 and 𝑘 are claimants for categories 𝑐1 and 𝑐2, respectively. Initially, there is one unit available
under 𝑐1 and twounits under 𝑐2. Clearly, the allocation such that agents 𝑖 and 𝑘 each receiving one unit
Lorenz dominates any other partial allocation at this step. In the second step, all agents are claimants:
agents 𝑖 , 𝑗 are claimants for 𝑐1 and agents 𝑖 , 𝑘 , 𝑙 are claimants for 𝑐2. Among all possible allocations,
the allocation such that agent 𝑗 and 𝑙 each receiving one unit with probability half Lorenz dominates
any other partial allocation. Thus, procedural fairness implies that agents 𝑖 , 𝑘 are assigned one unit
each, and agents 𝑗 , 𝑙 are assigned a unit each with probability half. Remember that in Example 2, we
showed that under the𝑃𝑆 rule, agent 𝑙 is assignedoneunit, whereas agent 𝑗 is assigned zeroprobability
of receiving a unit.29

Example 6 revisited. At the initial step, only 𝑖 and 𝑗 are claimants for 𝑐1 and 𝑐2. Procedural fairness
requires a Lorenz dominant partial allocation for this step, which implies that each is assigned one
unit. Now, agents 𝑖 , 𝑗 , 𝑖1, 𝑖2, 𝑗1 and 𝑗2 are claimants for 𝑐1 and 𝑐2. Again, the Lorenz dominant partial
allocation in this step is that each is assigned one unit. Thus, each agent in {𝑖 , 𝑗 , 𝑖1, 𝑖2, 𝑗1, 𝑗2} is assigned
one unit. Note that the idea of equal access to units at each step implies treating 𝑖1 (𝑖2) equally as 𝑗1 (𝑗2),
andprocedural fairness implies equal treatment of equals, whichwasnot the caseunder egalitarianism
as demonstrated in Example 6.
29Note that this is the same allocation obtained when the reserve system is implemented with the precedence order of 𝑐1

being processed first.
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6.4 The Priority-Based Rawlsian (PBR) rule

Our second goal is to incorporate equity (Section 6.3) into the acceptable class and characterize pro-
cedurally fair solutions. The design of our solution, the Priority-Based Rawlsian (PBR), relies on the
Rawlsian principle of maximizing the minimum welfare. Basically, the utilities of the most disadvan-
taged agents are increased continuously as long as the constraints embedded through claimants and
reservation profile are not binding. By Theorem 2, specifying this Rawlsian improvement process as
thewelfare improvement selection rule is sufficient to define the PBR.30

Step n.3 (Welfare improvement selection rule of the PBR)

The agents with the minimum reservation value are selected among agents, who are claimants for at
least one available category. Their reservation values are increased equally up to the minimum of the
following two, while other agents’ reservation values do not change:

• The reservation value of a non-selected agent, who is a claimant for at least one available cate-
gory.

• The level at which a set of categories is exclusively reserved for a subset of claimants for at least
one available category.

While this selection rule is intuitive, the difficulty is to analytically characterize the execution of its
steps. First, when agents are allowed to receive a unit (probabilistically) at some step of the PBSWI , in
general, they can receive it from multiple categories. Thus, the implication of increasing utilities on
feasibility is not clear. Second, at any step, there are multiple constraints due to (1) claimants (a set of
constraints on who can be assigned from which categories) and (2) the reservation profile of that step
(a set of constraints in the formof guaranteedprobabilities to agents). At somepoint, some constraints
becomebinding, and the challenge is to track these instances. Thus, weneed to analytically specify the
welfare improvement selection rule described above to complete the definition of the PBR.

Step n.3 (Welfare improvement selection rule of the PBR)

Agent 𝑖 ∈ ⋃
𝑐 ∈ 𝐴𝑛

Γ𝑐 (𝑣𝑛−1) is prioritized if, for each 𝑗 ∈ ⋃
𝑐 ∈ 𝐴𝑛

Γ𝑐 (𝑣𝑛−1), 𝑣𝑛−1𝑖
≤ 𝑣𝑛−1

𝑗
. Let 𝑣𝑛−1,1 be the

reservationvalueofprioritized agents. If all agents in ⋃
𝑐 ∈ 𝐴𝑛

Γ𝑐 (𝑣𝑛−1) areprioritized, then let𝑣𝑛−1,2 =

1, otherwise let𝑣𝑛−1,2 be the lowest reservationvalueamongnon-prioritized agents in ⋃
𝑐 ∈ 𝐴𝑛

Γ𝑐 (𝑣𝑛−1).

Let B𝑛 be the set of all subsets of
⋃

𝑐 ∈ 𝐴𝑛

Γ𝑐 (𝑣𝑛−1) with at least one prioritized agent. Let

_★𝑛 = min
𝐼 ∈B𝑛

∑
𝑐 ∈𝐶 (𝐼 ,𝑣𝑛−1)

𝑞𝑐 −
∑
𝑖 ∈𝐼

𝑣𝑛−1
𝑖

|{𝑖 ∈ 𝐼 : 𝑖 is prioritized}| .

30Each acceptable random allocation rule can be described via a welfare improvement selection rule in Step 𝑛.3 of
the PBSWI algorithm (see also the discussion in Section 5).
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For each 𝑖 ∈ ⋃
𝑐 ∈𝐴𝑛

Γ𝑐 (𝑣𝑛−1), let

𝑣𝑛𝑖 =

 min{𝑣𝑛−1,1 + _★𝑛 , 𝑣
𝑛−1,2} if 𝑖 is prioritized

𝑣𝑛−1
𝑖 otherwise

We are now ready to present our main theorem, which states that this specific improvement process
characterizes procedurally fair rules.

Theorem 4. A solution 𝜑 is procedurally fair if and only if 𝜑 is welfare-equivalent to the PBR.

Proof. See Section D. �

The proof of this characterization result relies highly on exploiting parametric networks and an exten-
sion of theMax-FlowMin-Cut Theorem (Ford and Fulkerson, 1956) (see Appendix A).

We next present an example to demonstrate how the PBR solution works.

Example 8. Let I= {𝑖 , 𝑗 , 𝑘 ,𝑚} and C= {𝑐1, 𝑐2, 𝑐3} such that one unit is reserved for each category. Con-
sider the following category priorities:

𝜋𝑐1 𝜋𝑐2 𝜋𝑐3

{𝑖 , 𝑗 , 𝑘 } {𝑚} {𝑚}
{𝑗 , 𝑘 } {𝑗 , 𝑘 }
{𝑖 } {𝑖 }

Step 1. Agents 𝑖 , 𝑗 and 𝑘 are claimants of 𝑐1 and agent𝑚 is a claimant of 𝑐2 and 𝑐3. Since the reservation
value is zero for each agent, (i) there are no exclusively reserved categories, and (ii) each agent is prior-
itized. The reservation value of each agent is increased up to _★1 = 1

3 , the level at which 𝑐1 is exclusively
reserved for agents 𝑖 , 𝑗 and 𝑘 . At this point, the reservation value is increased to 1

3 for each agent.

Step 2. Category 𝑐1 is not available, thus 𝐴2 = {𝑐2, 𝑐3}. Agent𝑚 is the only claimant of both 𝑐2 and 𝑐3,
and also the only prioritized agent at this step (note that by definition, 𝑣1,1 = 𝑣1𝑚 = 1

3 ). This implies that
all agents in

⋃
𝑐 ∈ 𝐴2

Γ𝑐 (𝑣1) are prioritized. Thus, we let 𝑣1,2 = 1. Since 𝑣1,1 = 1
3 and 𝑞𝑐1 + 𝑞𝑐2 = 2, and _★2 = 5

3 ,

we have that 𝑣2𝑚 = min{𝑣1,1 + _★2 , 1} = 1. Since, in the previous step, 𝑐1 is reserved for agents 𝑖 , 𝑗 , and 𝑘 ,
these agents’ reservation values do not change in Step 2.

Step 3. Since 𝑣2𝑚 = 1, by definition of claimant, agents 𝑗 and 𝑘 become claimants of 𝑐2 and 𝑐3. Thus, 𝑖 is a
claimant of 𝑐2, 𝑗 and 𝑘 are claimants of all categories and𝑚 is a claimant of both 𝑐2 and 𝑐3. Note that no
feasibility constraint is binding at these reservation values of claimants and this implies that no category
is exclusively reserved. Then, agents 𝑖 , 𝑗 , 𝑘 are prioritized, and note that since their reservation values are
not increased in Step 2, we have that 𝑣2

𝑖
= 𝑣2

𝑗
= 𝑣2

𝑘
= 1

3 . Then, it is easy to check that the set {𝑖 , 𝑗 , 𝑘 ,𝑚}
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minimizes the _-value of Step 3.3. Thus, _★3 =
𝑞𝑐1+𝑞𝑐2+𝑞𝑐3−1−(

1
3+

1
3+

1
3 )

3 = 1
3 . This means that the reservation

value of agents 𝑖 , 𝑗 and 𝑘 can be increased by 1
3 such that the reservation values become 𝑣

3
𝑖
= 𝑣3

𝑗
= 𝑣3

𝑘
= 2

3
and𝑣3𝑚 = 1. Note thatat this reservationprofile, all categories are exclusively reserved forall agents. Thus,
the solution of the PBR gives a random allocation with this utility profile. For example, the following
random allocation 𝑍 gives this utility profile: 𝑧𝑖𝑐1 = 2

3 , 𝑧𝑗𝑐1 = 𝑧𝑘𝑐1 = 1
6 , and 𝑧𝑚𝑐2 = 1

2 , 𝑧𝑗𝑐2 = 1
2 , and

𝑧𝑚𝑐3 =
1
2 , 𝑧𝑘𝑐3 =

1
2 . Note that𝑢𝑍 (𝑖 ) = 𝑢𝑍 (𝑗 ) = 𝑢𝑍 (𝑘 ) = 2

3 and𝑢𝑍 (𝑚) = 1.

Remark 2. The example above illustrates an important component of our solution concept: at a given
reservation profile, the reserve requirements might imply binding feasibility constraints (i.e. exclusively
reserved categories), but this does not imply that the reservation values of the agents, for whom a set of
categories is exclusively reserved, are final. As shown in the example, at the end of the first step, 𝑐1 is
exclusively reserved for agents 𝑖 , 𝑗 , and 𝑘 . But, later in the algorithm, at Step 3, when agents 𝑗 and 𝑘

become claimants of 𝑐2 and 𝑐3, the feasibility constraints become non-binding, therefore, there are no
exclusively reserved categories anymore. Then, the reservation value of not only agents 𝑗 and 𝑘 , but also
of agent 𝑖 can be increased in Step 3. This is an important feature of the PBR capturing the sense of equity
in procedural fairness.

7 Conclusion

The currentwork is an analysis of theproblemof rationing identical units. Ourmodel builds on reserve
systems: there are reserve categories with (weak) priority orders over their beneficiaries and certain
amount of units is reserved for each of them. This design is for creating (better) access for disadvan-
taged communities or essential/health workers (e.g. allocating medical units) or better distribution
of units among different socioeconomics groups (e.g. affirmative action in school choice). But, exist-
ing real-life mechanisms favor some categories over others. We propose a methodology of processing
reserve categories simultaneously, which facilitates fair treatment of categories. Thismethodology re-
lies on a simple idea of improving agents’ welfare by assigning them probabilities of receiving units in
such a way that priorities of categories are respected. We analyze the challenges about this idea, and
propose and characterize a class of allocation rules. We characterize (within this class) an allocation
rule by procedural fairness, which basically requires that the solution treats categories in an egalitarian
way throughout the steps of the welfare improvement process. This property about the procedure has
strong normative justifications: First, it implies fair treatment of categories (unless there is a justifica-
tion for unfairness due to priorities). Second, it satisfies equal treatment of equals. We argue, given
that, in real-life applications of reserve systems, categories haveweak priority orderings, these fairness
considerations (and thus our methodology) are relevant and have a scope.
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8 Applications

Aweighted lottery policy.We consider the lottery system implemented by the Department of Health,
Pennysylvania (Section 2). Their goal of ensuring access to all patients by randomization is consistent
with the motivation behind the PBR. By designing these categories (as specified in Table 1) and the
weakpriorityordersappropriately,wecanapply thePBR rule (1) toobtainaprocedurally fair allocation
(Theorem4), and (2) to remove analytical inconsistencies explained in Section 2 such that eachpatient
is assigned a unit with a positive probability (as stated in the Pandemic Guideline in Section 2).

Alternatively, a different rule in the PBSWI class can be specified for this setting to achieve the central
authority’s targeted ratios between the weights in Table 1 in an analytically consistent way. To achieve
this, first, reserve categories aremodeledwith dichotomous indifference classes: for each category, the
first indifference class is the set of all patients belonging to that category and the second one is the rest
of the patients. Since our model allows for weak priority orders, this construction is clearly within our
framework.

Second, targeted ratios between the weights are specified: The weights defined in Table 1 in Section 2
suggest that (1) each disadvantaged community member who is an essential worker should have a
higher utility than eachutility valueobtainedby thepriority rule applied to these single-categoryprob-
lems, (2) eachdisadvantaged communitymember or essentialworkerwithdeath likelywithinone year
should have a lower (higher) utility than the utility of a disadvantaged communitymember or essential
worker alone. A (weighted) average of the utilities applies to patients belonging to thesemultiple cate-
gories. Thus, there is a target for relative utilities of patients belonging to two groups.31 Let𝑢𝑘 and𝑢𝑘 ,𝑙

represent the utility of a patient belonging to group 𝑐𝑘 only, and to groups 𝑐𝑘 and 𝑐𝑙 , respectively. Given
that 𝑢1 = 𝑢2 > 𝑢3, the target utility ratios are defined such that 𝑢1,2 = 𝛼𝑢1 and 𝑢1,3 = 𝑢2,3 = 𝑤 (𝑢1, 𝑢3),
where 𝛼 > 1 and𝑤 (𝑢1, 𝑢3) is a convex combination of𝑢1 and𝑢3.

Step 0. Let𝐶 = {𝑐1, 𝑐2, 𝑐3} be the patient groups (i.e. categories) in Table 1. For each 𝑐 ∈ 𝐶 , and for each
patient 𝑖 belonging to group 𝑐 , the weak order 𝜋𝑐 is constructed such that 𝑖 ∈ I𝜋𝑐 (1). For each
patient group, a certain number of units is reserved such that 𝑞𝑐1

|I𝜋𝑐1 (1) |
=

𝑞𝑐2
|I𝜋𝑐2 (1) |

>
𝑞𝑐3

|I𝜋𝑐3 (1) |
.32

Step 1 For each patient 𝑖 , let the initial reservation profile 𝑣0
𝑖
= min

𝑐 ∈{𝑐 ′:𝑖 ∈I𝜋𝑐′ (1) }
𝑞𝑐

|I𝜋𝑐 (1) | .

Step 2 The units are allocated by the PBSWI algorithmwith the following welfare improvement selec-
tion rule: If there are claimants for at least one available category, who belong to two groups and
have a reservation value lower than the targeted ratio, then these patients are selected; otherwise,

31We assume that there is no patient belonging to all three groups (see Table 1).
32Since the units and the number of patients are integers, we can only impose 𝑞𝑐1

|I𝜋𝑐1 (1) |
≈ 𝑞𝑐2

|I𝜋𝑐2 (1) |
. But, for the ease of

notation, we assume that it is possible to reserve units such that this approximation holds with equality. Also, these numbers
of units reserved for each group can be determined with respect to some target ratio between𝑢1 and𝑢3.
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all patients who are claimants for at least one available category are selected. The reservation
value of selected patients are increased equally up to theminimum of the following two:

• The level at which a subset of claimants for at least one available reserve category has exclu-
sive rights over the categories for which they are claimant.

• The level at which the targeted ratio is achieved for a patient who had a reservation value
lower than the targeted ratio.

The above rule selects a randomallocationwith target utility ratioswithin the set of acceptable random
allocations, whenever it is feasible. Wedonot claim that our rule is the only one: there are otherways to
achieve target utility ratios for this very special case. Ourpoint here is that, byTheorem2, our approach
is robust in delivering the desired properties for different settings.

Soft reserves. Reserve systems33 are generally such that for each preferential treatment category 𝑐 ∈ C,
a beneficiary group is designated. A particular approach in this setting is hard reserves: A patient is
qualified to receive amedical unit from a category if and only if they are in the beneficiary group of that
category. Hard reserves are in general incompatible with efficiency (see Example 2 in Pathak, Sönmez,
Ünver, and Yenmez (2021)). A more flexible interpretation is a soft reserve system, where all agents are
qualified for all categories. In particular, a soft reserve system is obtained by applying the following to
each preferential treatment category 𝑐 : (1) If there is an unreserved category as well, 𝜋𝑐 is obtained by
rankingeachnon-beneficiarypatient strictlybelowthebeneficiary group andbypreserving the ranking
of theunreserved category. (2)Otherwise, all thenon-beneficiarypatients are rankedas an indifference
class just below the last beneficiary patient. While our model applies to both cases, the second case
necessarily implies weak priority orders, the generality of which is provided by our work.

Affirmative action in school choice. Affirmative action schemes are widespread in school admissions
around the world. Typically, a fraction of slots is reserved for disadvantaged students and the rest is
assigned based onmerit. A compelling example is Chicago’s place-based affirmative action at the K-12
level: Schools fill 40% of their slots with the applicants having the highest composite scores34 and the
remaining 60% by dividing the slots equally across four tiers based on the socioeconomic characteris-
tics. For each socioeconomic tier, beneficiary students are prioritized over others such that students
both inside andoutside the groupareorderedby composite score. For themerit tier, all students are or-
dered by composite score. Ourmodel fits this setting, and our results apply directly. One of the themes
in this affirmative action scheme is to eliminate explicit targetingof applicants bydifferentiating across
tiers, that is tier-blindness (Dur, Pathak, and Sönmez, 2020). Let C be the socioeconomic tiers and 𝑐𝑀

the merit tier. Also, any two socioeconomic tiers 𝑐 , 𝑐 ′ ∈ C, 𝑞𝑐 = 𝑞𝑐 ′. Also, for each 𝑐 ∈ C, we fix 𝜋𝑐 , and
33After the circulation of Pathak, Sönmez, Ünver, and Yenmez (2021) and the authors’ interaction with public health offi-

cials, the National Academies of Sciences, Engineering, and Medicine (NASEM) started to formulate recommendations on
the fair allocation of COVID-19 vaccines. Later, Tennessee, Massachusetts and New Hampshire announced their plans to
adopt a reserve system (Tennessee DH, 2020; Massachusetts DPH, 2020; NewHampshire DHHS, 2021).
34The composite score is the equally-weighted combination of the admission test score, the applicant’s 7th gradeGPA, and

the standardized test score.
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use < to represent the ordering of 𝑐𝑀 . Amerit-preserving bijection \ : C ∪ {𝑐𝑀 } → C ∪ {𝑐𝑀 } is a one-
to-one and onto function where \ (𝑐𝑀 ) = 𝑐𝑀 . A random allocation rule 𝜑 is tier-blind if for each set
of students I, for each set C ∪ {𝑐𝑀 } and for eachmerit-preserving bijection \ , the random allocations
𝑍 = 𝜑 (I,C ∪ {𝑐𝑀 }, (𝜋𝑐 )𝑐 ∈C , <, (𝑞𝑐 )𝑐 ∈C∪{𝑐𝑀 }) and 𝑍 ′ = 𝜑 (I,C ∪ {𝑐𝑀 }, (𝜋\ (𝑐 ) )𝑐 ∈C , <, (𝑞\ (𝑐 ) )𝑐 ∈C∪{𝑐𝑀 }) are
such that 𝑢𝑍 = 𝑢𝑍 ′. Tier-blindness implies that relabeling tiers does not change the probability with
which a student is assigned a seat. Since the PBR rule is based on the set of claimants at each step, and
that structure is independent from the tiers’ labels, the next observation follows immediately.

Observation 1. The PBR rule is tier-blind.
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Appendix A Maximumflow problem: Preliminaries

A directed graph, or digraph is a pair𝐺 = (𝑉 , 𝐴), consisting of a set of vertices𝑉 and a set of ordered
pairs of vertices, 𝐴, called arcs. For a set of vertices𝑉 ′ ⊆ 𝑉 , the set 𝛿out(𝑉 ′) is the set of all outgoing arcs;
that is, the arcs (𝑥, 𝑦 ) such that 𝑥 ∈ 𝑉 ′ and 𝑦 ∉ 𝑉 ′. Similarly, the set 𝛿 in(𝑉 ′) is the set of all incoming
arcs; that is, the arcs (𝑥, 𝑦 ) such that 𝑥 ∉ 𝑉 ′ and 𝑦 ∈ 𝑉 ′. Let 𝑙 , 𝑘 : 𝐴 → <+ be two functions, which
associate each arc 𝑎 = (𝑥, 𝑦 ) of𝐺 with non-negative real numbers 𝑙 (𝑥, 𝑦 ) and 𝑘 (𝑥, 𝑦 ) called the lower-
bound and capacity of the arc (𝑥, 𝑦 ), respectively, such that for each arc (𝑥, 𝑦 ), 𝑙 (𝑥, 𝑦 ) ≤ 𝑘 (𝑥, 𝑦 ). For a
set of arcs 𝐴 ′ ⊆ 𝐴, 𝑙 (𝐴 ′) = ∑

𝑎 ∈𝐴′ 𝑙 (𝑎) and 𝑘 (𝐴 ′) = ∑
𝑎 ∈𝐴′ 𝑘 (𝑎).

A network (𝑉 , 𝐴, 𝑙 , 𝑘 ) is a digraph with lower-bound and capacity functions. A supply-demand net-
work is a network (𝑉 , 𝐴, 𝑙 , 𝑘 ) with𝑉 =𝑉1 ∪𝑉2 ∪ {𝑠 , 𝑡 }, where𝑉1 and𝑉2 are the set of demand and supply
vertices, respectively, 𝑠 the source vertex, and 𝑡 the sink vertex such that there is an arc from the source
vertex into each demand vertex, an arc from each supply vertex into the sink vertex, and all the other
arcs are from demand vertices into supply vertices. (An arc from a demand vertex 𝑥 ∈ 𝑉1 into a supply
vertex 𝑦 ∈ 𝑉2 is interpreted that 𝑥 demands units from 𝑦 .)

A flow in a supply-demand network (𝑉 , 𝐴, 𝑙 , 𝑘 ) is a function 𝑓 : 𝐴 → <+, satisfying the following prop-
erties:

(𝑖 ) ∑
𝑥 𝑓 (𝑥, 𝑦 ) =

∑
𝑧 𝑓 (𝑦 , 𝑧) for each 𝑦 in𝑉1 ∪𝑉2 and,

(𝑖 𝑖 ) 𝑙 (𝑥, 𝑦 ) ≤ 𝑓 (𝑥, 𝑦 ) ≤ 𝑘 (𝑥, 𝑦 ) for each (𝑥, 𝑦 ) in 𝐴.

The value of 𝑓 , denoted by 𝑣 ( 𝑓 ) is defined as ∑𝑥 𝑓 (𝑠 , 𝑥). Given a supply-demand network (𝑉 , 𝐴, 𝑙 , 𝑘 ),
the maximum flow problem is to find the maximum value of flow. The solution for this problem is
characterized by the following theorem (Schrijver, 2003):

Theorem 5. Let (𝑉 , 𝐴, 𝑙 , 𝑘 ) be a supply-demand network such that there exists a flow 𝑓 . Then, themaxi-
mum value of a flow is equal to the minimum value of

𝑘 (𝛿 out(𝑉 ′)) − 𝑙 (𝛿 in(𝑉 ′))

taken over𝑉 ′ ⊆ 𝑉 with 𝑠 ∈ 𝑉 ′ and 𝑡 ∉𝑉 ′.35

35This theorem is an extension of the well-knownMax-flowMin-cut Theorem (Ford and Fulkerson, 1956).
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Appendix B Proof of Theorem 2

Weprove that (1) eachrandomallocationgivenby thePBSWI class isacceptable (Lemma1)and (2) each
acceptable random allocation 𝑍 can be obtained by a sequence of selections of reservation profiles in
the PBSWI (Lemma 3).

Lemma 1. Let 𝑅 = (I,C, (𝜋𝑐 )𝑐 ∈C , (𝑞𝑐 )𝑐 ∈C) be a problem. If a random allocation 𝑍 is an outcome of the
PBSWI (𝑅), then it is acceptable.

Proof. Let 𝑁 be the last step of the PBSWI . By definition of the PBSWI , the algorithm ends at the end
of Step𝑁 .2, and the reservation values are not updated at Step𝑁 . Thus, the outcome of the algorithm
is 𝑣𝑁−1. Let 𝑍 ★ be a random allocation such that𝑢𝑍★ = 𝑣𝑁−1.

𝑍 ★ is non-wasteful. Suppose 𝑍 ★ is not non-wasteful. Then, by Definition 2, there exists a category 𝑐
and an agent 𝑖 , such that ∑︁

𝑗 ∈I
𝑧★𝑗𝑐 < 𝑞𝑐 and 𝑣𝑁−1

𝑖 = 𝑢𝑍★ (𝑖 ) =
∑︁
𝑐 ′∈C

𝑧★𝑖𝑐 ′ < 1. (2)

Since 𝑢𝑍★ (𝑖 ) < 1, by definition of Step 𝑁 .2, Category 𝑐 is unavailable at this step. Thus, there exists a
set of agents 𝐼 such that categories in𝐶 (𝐼 , 𝑣𝑁−1) with 𝑐 ∈ 𝐶 (𝐼 , 𝑣𝑁−1) are exclusively reserved for 𝐼 (note
that agent 𝑖 is not necessarily in the set Γ𝑐 (𝑣𝑁−1)) and∑︁

𝑗 ∈𝐼
𝑣𝑁−1
𝑗 =

∑︁
𝑐 ′∈𝐶 (𝐼 ,𝑣𝑁−1)

𝑞 ′
𝑐 (3)

Bydefinitionof theset𝐶 (𝐼 , 𝑣𝑁−1), each 𝑗 ∈ 𝐼 with𝑣𝑁−1
𝑗

> 0 isnota claimant for categoriesoutof𝐶 (𝐼 , 𝑣𝑁−1).
Thus, for each 𝑗 ∈ 𝐼 , 𝑣𝑁−1

𝑗
=
∑

𝑐 ′∈𝐶 (𝐼 ,𝑣𝑁−1) 𝑧
★
𝑗𝑐 ′. By rewriting Condition (3), we obtain∑︁

𝑐 ′∈𝐶 (𝐼 ,𝑣𝑁−1)
𝑞𝑐 ′ =

∑︁
𝑗 ∈𝐼

∑︁
𝑐 ′∈𝐶 (𝐼 ,𝑣𝑁−1)

𝑧★𝑗𝑐 ′ =
∑︁

𝑐 ′∈𝐶 (𝐼 ,𝑣𝑁−1)

∑︁
𝑗 ∈𝐼

𝑧★𝑗𝑐 ′ (4)

Since, by definition of the PBSWI , 𝑍 ★ is a random allocation, by Property (ii) of a random allocation
(Definition 1), for each 𝑐 ′ ∈ 𝐶 (𝐼 , 𝑣𝑁−1), ∑︁

𝑗 ∈𝐼
𝑧★𝑗𝑐 ′ ≤ 𝑞𝑐 ′. (5)

Thus, Conditions (4) and (5) together imply that theweak inequality in Condition (5) holdswith equal-
ity. By definition of a random allocation, this also implies, for each 𝑐 ′ ∈ 𝐶 (𝐼 , 𝑣𝑁−1), ∑𝑗 ∈I 𝑧★

𝑗𝑐 ′ = 𝑞𝑐 ′.
Since 𝑐 ∈ 𝐶 (𝐼 , 𝑣𝑁−1), this contradicts with (2).
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𝑍 ★ respects priorities. Let 𝑖 ∈ I, and 𝑐 ∈ 𝐶 such that 𝑖 𝜋𝑃
𝑐 𝑗 and𝑢𝑍★ (𝑖 ) < 1. At Step𝑁 , since there exists

at least one agent with a utility less than one, by definition of Step𝑁 .2, Category 𝑐 must be unavailable
at the end of the algorithm. Since 𝑢𝑍★ (𝑖 ) < 1, and 𝑖 𝜋𝑃

𝑐 𝑗 , by definition of a claimant, agent 𝑗 is not a
claimant for 𝑐 . Moreover, by definition of a claimant, for each 𝑐 and each 𝑛 ≥ 1, Γ𝑐 (𝑣𝑛) ⊇ Γ𝑐 (𝑣𝑛−1). This
implies that 𝑗 has not been a claimant at any step before𝑁 . Thus, as 𝑍 ★ underlies 𝑣𝑁−1 and 𝑣𝑁−1

𝑗
is the

sum of agent 𝑗 ’s shares at categories for which she is a claimant, 𝑧★
𝑗𝑐
= 0. �

Lemma 2. Let 𝑣𝑛−1 be a reservation profile with an underlying random allocation 𝑍 𝑛−1. If categories in
𝐶 (𝐼1, 𝑣𝑛−1) and𝐶 (𝐼2, 𝑣𝑛−1) are exclusively reserved for 𝐼1 and 𝐼2, respectively, thencategories in𝐶 (𝐼1, 𝑣𝑛−1)∪
𝐶 (𝐼2, 𝑣𝑛−1) are exclusively reserved for 𝐼1 ∪ 𝐼2.

Proof. Let categories in 𝐶 (𝐼1, 𝑣𝑛−1) and 𝐶 (𝐼2, 𝑣𝑛−1) be exclusively reserved for 𝐼1 and 𝐼2, respectively.
There are two cases.

Case 1: 𝐶 (𝐼1, 𝑣𝑛−1) ∩𝐶 (𝐼2, 𝑣𝑛−1) = ∅.
By definition of a claimant, we have 𝐼1 ∩ 𝐼2 = ∅. By definition of exclusively reserved categories,

∑︁
𝑖 ∈𝐼1

𝑣𝑖 =
∑︁

𝑐 ∈𝐶 (𝐼1,𝑣𝑛−1)
𝑞𝑐 and

∑︁
𝑖 ∈𝐼2

𝑣𝑖 =
∑︁

𝑐 ∈𝐶 (𝐼2,𝑣𝑛−1)
𝑞𝑐 . (6)

Since 𝐼1 ∩ 𝐼2 = ∅, these two equalities together imply, ∑
𝑖 ∈𝐼1∪𝐼2

𝑣𝑖 =
∑

𝑐 ∈𝐶 (𝐼1∪𝐼2,𝑣𝑛−1)
𝑞𝑐 . Thus, categories

in𝐶 (𝐼1 ∪ 𝐼2, 𝑣𝑛−1) are exclusively reserved for 𝐼1 ∪ 𝐼2.

Case 2: 𝐶 (𝐼1, 𝑣𝑛−1) ∩ 𝐶 (𝐼2, 𝑣𝑛−1) ≠ ∅.
Suppose 𝐼1∩ 𝐼2 = ∅. (Note that equalities in (6) hold in this case aswell.) Clearly, ∑

𝑖 ∈𝐼1∪𝐼2
𝑣𝑖 =

∑
𝑖 ∈𝐼1

𝑣𝑖 +
∑
𝑖 ∈𝐼2

𝑣𝑖 .

Moreover, by definition of a claimant, 𝐶 (𝐼1 ∪ 𝐼2, 𝑣𝑛−1) = 𝐶 (𝐼1, 𝑣𝑛−1) ∪ 𝐶 (𝐼2, 𝑣𝑛−1). Since 𝐶 (𝐼1, 𝑣𝑛−1) ∩
𝐶 (𝐼2, 𝑣𝑛−1) ≠ ∅, this implies that ∑︁

𝑐 ∈𝐶 (𝐼1∪𝐼2,𝑣𝑛−1)
𝑞𝑐 <

∑︁
𝑐 ∈𝐶 (𝐼1,𝑣𝑛−1)

𝑞𝑐 +
∑︁

𝑐 ∈𝐶 (𝐼2,𝑣𝑛−1)
𝑞𝑐 .

This, together with equalities in (6), imply ∑︁
𝑐 ∈𝐶 (𝐼1∪𝐼2,𝑣𝑛−1)

𝑞𝑐 <
∑︁

𝑖 ∈𝐼1∪𝐼2
𝑣𝑖 .

Then, Condition 1 in Theorem 1 does not hold for 𝐼1 ∪ 𝐼2. Thus, by Theorem 1, there does not exist a
random allocation underlying 𝑣𝑛−1, a contradiction. Thus, 𝐼1 ∩ 𝐼2 ≠ ∅. Now consider the sets 𝐼1 ∪ 𝐼2
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and𝐶 (𝐼1 ∪ 𝐼2, 𝑣𝑛−1). Since there exists a random allocation 𝑍 𝑛−1 underlying 𝑣𝑛−1, by Theorem 1,∑︁
𝑐 ∈𝐶 (𝐼1∪𝐼2,𝑣𝑛−1)

𝑞𝑐 ≥
∑︁

𝑖 ∈𝐼1∪𝐼2
𝑣𝑖 . (7)

Suppose Inequality (7) is strict. First, note that

𝐶 (𝐼1 ∩ 𝐼2, 𝑣𝑛−1) ⊆ 𝐶 (𝐼1, 𝑣𝑛−1) ∩ 𝐶 (𝐼2, 𝑣𝑛−1). (8)

The inclusion is by definition of a claimant, and since different agents can be claimants for the same
category, these two sets do not necessarily coincide. We rewrite Inequality (7) as follows:∑︁

𝑐 ∈𝐶 (𝐼1,𝑣𝑛−1)\𝐶 (𝐼2,𝑣𝑛−1)
𝑞𝑐 +

∑︁
𝑐 ∈𝐶 (𝐼2,𝑣𝑛−1)\𝐶 (𝐼1,𝑣𝑛−1)

𝑞𝑐 +
∑︁

𝑐 ∈𝐶 (𝐼1,𝑣𝑛−1)∩𝐶 (𝐼2,𝑣𝑛−1)
𝑞𝑐 >

∑︁
𝑖 ∈𝐼1\𝐼2

𝑣𝑖 +
∑︁

𝑖 ∈𝐼2\𝐼1

𝑣𝑖 +
∑︁

𝑖 ∈𝐼1∩𝐼2
𝑣𝑖 .

Together with equalities in (6), this implies that∑︁
𝑐 ∈𝐶 (𝐼1,𝑣𝑛−1)∩𝐶 (𝐼2,𝑣𝑛−1)

𝑞𝑐 <
∑︁

𝑖 ∈𝐼1∩𝐼2
𝑣𝑖 . (9)

Inequality (9), together with Inclusion (8), implies∑︁
𝑐 ∈𝐶 (𝐼1∩𝐼2,𝑣𝑛−1)

𝑞𝑐 <
∑︁

𝑖 ∈𝐼1∩𝐼2
𝑣𝑖 . (10)

This violates Condition 1 in Theorem 1. Thus, by Theorem 1, there does not exist a random allocation
underlying𝑣𝑛−1, a contradiction. Thus, Inequality (7) cannot be strict. Thus, bydefinitionof exclusively
reserved categories, categories in𝐶 (𝐼1 ∪ 𝐼2, 𝑣𝑛−1) are exclusively reserved for 𝐼1 ∪ 𝐼2. �

Lemma 3. Each acceptable random allocation is an outcome of amember of the PBSWI class.

Proof. Let 𝑍 be an acceptable random allocation such that 𝑣 = 𝑢𝑍 . We prove by induction that there is
a sequence of reservation profiles𝑣𝑛 for 𝑛 = 1 to𝑁 , each obtained by awelfare improvement from𝑣𝑛−1

as defined by Step 𝑛.3 of the PBSWI , and 𝑣𝑁−1 = 𝑣 . Let 𝑛 ≥ 1. Our inductive hypothesis is that there
exists a random allocation 𝑍 𝑛−1 underlying 𝑣𝑛−1 where 𝑣𝑛−1 is obtained through a sequence of welfare
improvements and 𝑣 ≥ 𝑣𝑛−1. Since for each 𝑖 , 𝑣0

𝑖
= 0, initial step holds trivially. Suppose that 𝑣 ≠ 𝑣𝑛−1.

We prove that there exists a welfare improvement for some claimants to obtain a reservation profle 𝑣𝑛

from 𝑣𝑛−1 such that 𝑣 ≥ 𝑣𝑛 . This completes the proof.

Suppose𝐴𝑛 = ∅. Since each category 𝑐 is not available, there is a set of categories including 𝑐 , which are
exclusively reserved fora setof agents. Thus, there is acollectionof categories𝐶 (𝐼1, 𝑣𝑛−1), . . . ,𝐶 (𝐼𝑚 , 𝑣𝑛−1)
being exclusively reserved for sets of agents, 𝐼1, . . . , 𝐼𝑚 , respectively, such that C is the union of the sets
𝐶 (𝐼1, 𝑣𝑛−1), . . . ,𝐶 (𝐼𝑚 , 𝑣𝑛−1). By Lemma 2, categories in C are exclusively reserved for

𝑚⋃
𝑘=1

𝐼𝑘 . But then, all
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units are assigned to agents for whom categories are exclusively reserved under 𝑣𝑛−1. Thus, ∑
𝑖 ∈I

𝑣𝑛−1
𝑖

=∑
𝑐 ∈C

𝑞𝑐 . Since𝑣 ≥ 𝑣𝑛−1 and𝑣𝑖 > 𝑣𝑛−1
𝑖

for someagent 𝑖 , this implies that thereexists acategory𝑐 with ∑
𝑖 ∈I

𝑧𝑖𝑐 >

𝑞𝑐 . But, this violates Property (ii) of Definition 1 and contradicts 𝑍 being a random allocation.

Suppose 𝐴𝑛 ≠ ∅. Let 𝐼 be the subset of agents such that 𝑖 ∈ 𝐼 if and only if 𝑣𝑖 = 𝑣𝑛−1
𝑖

. We claim
that there exists a category 𝑐 ∈ 𝐴𝑛 such that Γ𝑐 (𝑣𝑛−1) \ 𝐼 ≠ ∅. Suppose, on the contrary, that for
each 𝑐 ′ ∈ 𝐴𝑛 , Γ𝑐 ′ (𝑣𝑛−1) ⊆ 𝐼 . Let 𝑐 be such a category. By non-triviality assumption (see Section 3),
it is not possible that for each 𝑗 ∈ I, 𝑣𝑛−1

𝑗
= 1. By definition of a claimant, this implies that there exists

an agent 𝑖 ∈ Γ𝑐 (𝑣𝑛−1) with 𝑣𝑛−1𝑖
= 𝑣𝑖 < 1. Also, each agent in the indifference class including agent 𝑖 is in

the set Γ𝑐 (𝑣𝑛−1). Since Γ𝑐 (𝑣𝑛−1) ⊆ 𝐼 , that is, for each 𝑗 ∈ Γ𝑐 (𝑣𝑛−1), 𝑣𝑛−1𝑗
= 𝑣𝑗 , this implies that there exists

an indifference class such that both 𝑣𝑛−1 and 𝑣 coincide for the agents in this and higher indifference
classes. Then, since𝑍 is acceptable, any agentwith a positive utility in a lower indifference class cannot
be assigned a unit from 𝑐 with a positive probability, which would violate priorities. Moreover, 𝑣𝑛−1 is
obtained through a sequence of steps of the PBSWI algorithm. Thus, for each category 𝑐 , there is an
integer 𝑘 (𝑐 ) such that each agent in the first 𝑘 (𝑐 ) indifference classes has a reservation value one and
there exists an agent in the next indifference class with a reservation value less than one under 𝑣𝑛−1.
Also, 𝑣 ≠ 𝑣𝑛−1 and 𝑣 ≥ 𝑣𝑛−1. Thus, since 𝑍 is acceptable, for some 𝑐 ∉ 𝐴𝑛 , it is possible to increase
the utility of an agent in Γ𝑐 (𝑣𝑛−1). But, by definition of exclusively reserved categories, for each 𝑐 ∉ 𝐴𝑛 ,
and 𝑖 ∈ Γ𝑐 (𝑣𝑛−1), and for each _ > 0, there does not exist a random allocation generating the utility
profile (𝑣𝑛−1−𝑖 , 𝑣𝑛−1

𝑖
+ _), which is a contradiction.

Thus, there exists a category 𝑐 ∈ 𝐴𝑛 such that Γ𝑐 (𝑣𝑛−1) \ 𝐼 ≠ ∅. By definition of a claimant, there exists
an agent 𝑖 ∈ Γ𝑐 (𝑣𝑛−1) \ 𝐼 such that𝑣𝑛−1𝑖

< 1 and_ > 0with𝑣𝑛
𝑖
= 𝑣𝑛−1

𝑖
+_ underlying a randomallocation.

Thus, there is a welfare improvement to obtain 𝑣𝑛 from 𝑣𝑛−1 such that 𝑣 ≥ 𝑣𝑛 ≥ 𝑣𝑛−1. This completes
the inductive step. �
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Appendix C Proof of Theorem 3

Let C= {𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5} each category with capacity one and I= {𝑖 , 𝑗 , 𝑘 , 𝑖1, 𝑖2, 𝑗1, 𝑗2, 𝑗3}. Initial reserva-
tion value for each agent is zero. The (strict) priority orders for categories are given below:

𝜋𝑐1 𝜋𝑐2 𝜋𝑐3 𝜋𝑐4 𝜋𝑐5

𝑖 𝑖 𝑖 𝑖 𝑖

𝑗 𝑗 𝑗 𝑗 𝑗

𝑘 𝑘 𝑖1 𝑖1 𝑗1

𝑗1 𝑗2 𝑖2 𝑖2 𝑖2

𝑖1 𝑗3 𝑗1 𝑗2 𝑗3

𝑗2 𝑗1 𝑘 𝑘 𝑘

𝑗3 𝑖1 𝑗3 𝑗1 𝑗2

𝑖2 𝑖2 𝑗2 𝑗3 𝑖1

Let 𝑅 be the problem above and 𝑍 ∈ Z𝑎 (𝑅). Also, let

𝑢𝑍 = (𝑢𝑍 (𝑖 ), 𝑢𝑍 (𝑗 ), 𝑢𝑍 (𝑘 ), 𝑢𝑍 (𝑖1), 𝑢𝑍 (𝑖2), 𝑢𝑍 (𝑗1), 𝑢𝑍 (𝑗2), 𝑢𝑍 (𝑗3))

Respecting priorities implies, 𝑢𝑍 (𝑖 ) = 1, and by non-wastefulness and respecting priorities together,
𝑢𝑍 (𝑗 ) = 1. Thus, there are three units remaining for agents 𝑘 , 𝑖1, 𝑖2, 𝑗1, 𝑗2 and 𝑗3. Suppose

𝑢𝑍 (𝑘 ), 𝑢𝑍 (𝑖1), 𝑢𝑍 (𝑗1) < 1. (11)

Then, by respecting priorities, only agents 𝑖 , 𝑗 , 𝑘 are assigned positive probabilities for the units un-
der 𝑐1, 𝑐2, only agents 𝑖 , 𝑗 , 𝑖1 are assignedpositiveprobabilities for theunits under 𝑐3, 𝑐4, andonly agents
𝑖 , 𝑗 , 𝑗1 are assignedpositive probabilities for the unit under 𝑐5. But, then agents receive in total less than
five units and this contradicts with non-wastefulness. Thus, at least one of the agents in {𝑘 , 𝑖1, 𝑗1} re-
ceives one unit under 𝑍 . By considering all possible cases, we obtain the setZ𝑎 (𝑅).

Case 1: 𝑢𝑍 (𝑘 ) = 𝑢𝑍 (𝑖1) = 𝑢𝑍 (𝑗1) = 1
There is only one utility profile satisfying this condition: agents 𝑖 , 𝑗 , 𝑘 , 𝑖1 and 𝑗1 receive one unit and the
other agents are not assigned a unit with positive probability. It is straightforward to check that there
exists a random allocation, say 𝑍 1, generating this utility profile. Thus,𝑢𝑍 1 = (1, 1, 1, 1, 0, 1, 0, 0).

Case 2: 𝑢𝑍 (𝑘 ) = 1;𝑢𝑍 (𝑖1), 𝑢𝑍 (𝑗1) < 1
Since agents 𝑖 , 𝑗 and 𝑘 receive one unit each, there are two units to be assigned to the rest of the agents.
Since𝑢𝑍 (𝑖1), 𝑢𝑍 (𝑗1) < 1, and 𝑍 respects priorities, either (1) these two units are to be assigned to agents
𝑖1, 𝑗1 and 𝑗2, or (2) 𝑗2 is assigned one unit and the remaining one unit is assigned to agents 𝑖1 and 𝑗1,
or (3) 𝑗2 and 𝑗3 are assigned one unit each. While there is no acceptable random allocation generat-
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ing the utility profile in (3), there are random allocations generating the utility profiles in (1) and (2).
Among all possible random allocations generating the utility profiles in (1), random allocation, say 𝑍 2,
such that 𝑢𝑍 2 = (1, 1, 1, 23 , 0, 23 , 23 , 0) is Lorenz dominant. Among all possible random allocations gener-
ating the utility profiles in (2), random allocation, say 𝑍 3, such that 𝑢𝑍 3 = (1, 1, 1, 12 , 0, 12 , 1, 0) is Lorenz
dominant.

Case 3: 𝑢𝑍 (𝑘 ) = 𝑢𝑍 (𝑖1) = 1;𝑢𝑍 (𝑗1) < 1
There is one unit remaining for agents 𝑗1, 𝑗2 and 𝑖2. Among all possible random allocations generating
these utility profiles, randomallocation, say𝑍 4, such that𝑢𝑍 4 = (1, 1, 1, 1, 13 , 13 , 13 , 0) is Lorenz dominant.

Case 4: 𝑢𝑍 (𝑘 ) = 𝑢𝑍 (𝑗1) = 1;𝑢𝑍 (𝑖1) < 1
There is one unit remaining for agents 𝑖1, 𝑖2 and 𝑗2. Among all possible random allocations generating
these utility profiles, randomallocation, say𝑍 5, such that𝑢𝑍 5 = (1, 1, 1, 13 , 13 , 1, 13 , 0) is Lorenz dominant.

Case 5: 𝑢𝑍 (𝑘 ) < 1;𝑢𝑍 (𝑖1) = 𝑢𝑍 (𝑗1) = 1
There is one unit remaining for agents 𝑘 and 𝑖2. Among all possible random allocations generating
these utility profiles, randomallocation, say 𝑍 6, such that𝑢𝑍 6 = (1, 1, 12 , 1, 12 , 1, 0, 0) is Lorenz dominant.

Case 6: 𝑢𝑍 (𝑘 ), 𝑢𝑍 (𝑖1) < 1;𝑢𝑍 (𝑗1) = 1
There are twounits remaining for agents𝑘, 𝑖1 and 𝑖2. Amongall possible randomallocations generating
these utility profiles, randomallocation, say𝑍 7, such that𝑢𝑍 7 = (1, 1, 23 , 23 , 23 , 1, 0, 0) is Lorenz dominant.

Case 7: 𝑢𝑍 (𝑘 ), 𝑢𝑍 (𝑗1) < 1;𝑢𝑍 (𝑖1) = 1
There are twounits remaining for agents𝑘, 𝑗1 and 𝑖2. Amongall possible randomallocations generating
these utility profiles, randomallocation, say𝑍 8, such that𝑢𝑍 8 = (1, 1, 23 , 1, 23 , 23 , 0, 0) is Lorenz dominant.

Since Lorenz domination is a transitive binary relation, it is enough to consider the random alloca-
tions 𝑍 1 to 𝑍 8 and find the random allocation Lorenz dominating others. Note that (i) 𝑍 2, 𝑍 7 and 𝑍 8

are Lorenz indifferent, (ii) 𝑍 3 and 𝑍 6 are Lorenz indifferent, and (iii) 𝑍 4 and 𝑍 5 are Lorenz indifferent.
Thus, it is enough to compare 𝑍 1, 𝑍 2, 𝑍 3 and 𝑍 4. But, while 𝑍 2 Lorenz dominates 𝑍 1 and 𝑍 3, it does not
Lorenz dominate 𝑍 4. Also, 𝑍 4 does not Lorenz dominate 𝑍 2. Thus, there does not exist a Lorenz domi-
nant random allocation in the setZ𝑎 (𝑅). Thus, there does not exist an egalitarian random allocation
for this problem, and no rule is egalitarian.
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Appendix D Proof of Theorem 4

Let 𝑁 be the last step of the PBR algorithm and 𝑍 ★ be one of its outcomes. Thus, 𝑢𝑍★ = 𝑣𝑁−1. We first
show that the PBR is a rule in the PBSWI class (Lemma 4). This implies that 𝑍 ★ is acceptable. Then, to
complete the proof, we show that any procedurally fair random allocation generates𝑢𝑍★ (Lemma 5).

First, we show that for each reservation profile 𝑣𝑛 obtained at the end of Step 𝑛.3, there exists a random
allocation 𝑍 𝑛 such that 𝑣𝑛 = 𝑢𝑍 𝑛 (Lemma 4). Thus, the selection of the reservation values at Step 𝑛.3 of
the PBR complies with Step 𝑛.3 of the PBSWI .

Lemma 4. For each reservation profile 𝑣𝑛 obtained at the end of Step 𝑛.3, there exists a random alloca-
tion 𝑍 𝑛 such that 𝑣𝑛 = 𝑢𝑍 𝑛 .

Proof. The algorithm starts with the initial reservation value zero for each agent. By setting each prob-
ability as zero under 𝑍 0, this step is trivial.

By induction, we show that given an underlying 𝑍 𝑛−1 for 𝑣𝑛−1, there exists a random allocation 𝑍 𝑛 for
theutilityprofile𝑣𝑛 obtainedat theendof Step𝑛. For each set of agents 𝐼 , forwhich thereare exclusively
reserved categories, since the reservation value of each such agent is the same as in the previous step,
by inductive hypothesis, there exists an assignment of probabilities of units under categories in the
set𝐶 (𝐼 , 𝑣𝑛−1). Note that, by Definition 5, all units under these categories are assigned to these agents.
Also, at Step 𝑛, these agents are not claimants for any category out of the set 𝐶 (𝐼 , 𝑣𝑛−1). Thus, we can
consider the set of available categories separately from the set of unavailable categories.

Let us consider the set 𝐴𝑛 and
⋃

𝑐 ∈𝐴𝑛
Γ𝑐 (𝑣𝑛−1). By inductive hypothesis, there exists a random alloca-

tion 𝑍 𝑛−1 inducing 𝑣𝑛−1
𝑖

for each 𝑖 ∈ ⋃
𝑐 ∈𝐴𝑛

Γ𝑐 (𝑣𝑛−1).36 Thus, by Theorem 1, for each set of agents, the
condition in Theorem 1 is satisfied at the end of Step 𝑛 − 1. Since for each agent 𝑖 , for whom there are
exclusively reserved categories, 𝑣𝑛

𝑖
= 𝑣𝑛−1

𝑖
, for any subset of such agents, the condition in Theorem 1 is

also satisfied at the end of Step𝑛. Thus, we need to check this condition only for agents forwhom there
are no exclusively reserved categories. By Step 𝑛.3, only prioritized agents’ reservation values are up-
dated. Thus, to complete the proof, it is enough to check the condition only for the subsets including
prioritized agents. Suppose there exists such a set of agents 𝐼 violating the condition in Theorem 1 at
the end of Step 𝑛. Thus, ∑︁

𝑖 ∈𝐼
𝑣𝑛𝑖 >

∑︁
𝑐 ∈𝐶 (𝐼 ,𝑣𝑛−1)

𝑞𝑐 . (12)

36Note that there could be an agent 𝑖 ∈ ⋃
𝑐 ∈𝐴𝑛

Γ𝑐 (𝑣𝑛−1), who is a claimant also for an unavailable category. By Step 𝑛.1,

no category is exclusively reserved for her and, by the inductive hypothesis that there is a random allocation 𝑍 𝑛−1 for the
reservation profile 𝑣𝑛−1, she is assigned probabilities equivalent to 𝑣𝑛−1

𝑖
from categories in𝐶 (𝑖 , 𝑣𝑛−1) ∩ 𝐴𝑛 .
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By Step 𝑛.3, for a non-prioritized agent 𝑖 , 𝑣𝑛
𝑖
= 𝑣𝑛−1

𝑖
and for a prioritized agent 𝑗 ,

𝑣𝑛𝑗 ≤ 𝑣𝑛−1,1 + _★ = 𝑣𝑛−1𝑗 + _★.

Let 𝑝 be the number of prioritized agents in the set 𝐼 . Thus, Inequality (12) can be rewritten as∑︁
𝑖 ∈𝐼

𝑣𝑛−1𝑖 + 𝑝_★ ≥
∑︁
𝑖 ∈𝐼

𝑣𝑛𝑖 >
∑︁

𝑐 ∈𝐶 (𝐼 ,𝑣𝑛−1)
𝑞𝑐 .

Thus,

_★ >

∑
𝑐 ∈𝐶 (𝐼 ,𝑣𝑛−1)

𝑞𝑐 −
∑
𝑖 ∈𝐼

𝑣𝑛−1
𝑖

𝑝
.

Since 𝑝 = |{𝑖 ∈ 𝐼 : 𝑖 is prioritized}| and 𝐼 ∈ B𝑘 , this inequality contradicts with the definition of _★.
Thus, no subset of ⋃

𝑐 ∈𝐴𝑛
Γ𝑐 (𝑣𝑛−1) with at least one prioritized agent violates the condition in Theorem 1.

Thus, by Theorem 1, there is a random allocation 𝑍 𝑛 for the reservation profile 𝑣𝑛 obtained at Step 𝑛.3.
�

While the PBR increases only the welfare of prioritized patients, the next observation demonstrates
that eventually, the total reservation value of all claimants is maximized.

Remark 3. The PBR rule maximizes the total reservation value of claimants at each step.

The PBR increases the reservation value of only the prioritized agents up to a level such that either
(i) their reservation value reaches to the level of the lowest reservation value of non-prioritized agents,
or (ii) there are exclusively reserved categories for a set of agents, or (iii) the reservation value of each
claimant is equal to one. The last one is possible only if all claimants are prioritized and each such
agent’s reservation value can be increased to one. Note that in this case, the total reservation value of
claimants is maximized. Suppose (i) holds. At the updated reservation profile, the set of claimant is
the same as the beginning of the step. Thus, at the next step, the reservation values of the prioritized
agents of the current step, andalsoof the claimantswith the second-lowest reservationvalue at the end
of the current step are increased. Suppose (ii) holds. Then, all the units under the exclusively reserved
categories are assigned to agents for whom they are exclusively reserved. Since only the reservation
values of the claimant are increased, all the remaining units under these categories at the beginning
of the current step are assigned to claimants. Moreover, since no other claimant ’s reservation value is
updated to one, by definition of a claimant, there are no new claimants at the beginning of the next
step. Thus, under both (i) and (ii), the next step is such that only a subset (if not all) of the current
claimants’ reservation values are increased. By an inductive argument, this ends at a step where for
all of these claimants, there are exclusively reserved categories, or their reservation value becomes one.
In the former case, all the units available for the current claimants are assigned to these agents. In the
latter case, each claimant has a reservation value one. Thus, in both cases the total reservation value
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of claimants is maximized. Note that this maximization holds in general in multiple steps. But, since
there are no new claimants during these steps, the welfare improvements for these claimants can be
also defined as being realized in only one step.

Lemma 5. A random allocation 𝑍 is procedurally fair if and only if it is welfare equivalent to 𝑍 ★.

Proof. Let 𝑍 be a procedurally fair random allocation. We prove by induction that for each 𝑛 ≥ 0,
and 𝑖 ∈ I, 𝑢𝑍 (𝑖 ) ≥ 𝑣𝑛

𝑖
. Since, by definition of the PBR algorithm, no agent’s reservation value can be

improved at the last step of the algorithm, this completes the proof.

Initial step: Since for each agent 𝑖 ∈ I, 𝑣0
𝑖
= 0, and𝑢𝑍 (𝑖 ) ≥ 𝑣0

𝑖
, this step is trivial.

Inductive step: By inductive hypothesis, for each 𝑖 ∈ I, 𝑢𝑍 (𝑖 ) ≥ 𝑣𝑛−1
𝑖

. We show that for each 𝑖 ∈
I, 𝑢𝑍 (𝑖 ) ≥ 𝑣𝑛

𝑖
. At the beginning of Step 𝑛, if there is a set of agents 𝐼 , for whom there are exclusively

reserved categories, then they are assigned the units under the categories𝐶 (𝐼 , 𝑣𝑛−1), and by definition
of exclusively reserved categories, there are no units left under these categories, and these categories
are not available for other agents.

Let us now consider agents forwhom there are no exclusively reserved categories. For any subset of this
groupof agents, Condition1 inTheorem1 isnotbinding. Thus, theirwelfare canbe improved. Tomake
the reservation values as equal as possible among the set of claimants, we construct a supply-demand
network (see Figure 1) by setting𝑉 𝑛

1 =
⋃

𝑐 ∈𝐴𝑛
Γ𝑐 (𝑣𝑛−1) as the demand vertices and𝑉 𝑛

2 = 𝐴𝑛 as the supply

vertices.37 Agent 𝑖 ∈ 𝑉 𝑛
1 points to 𝑐 ∈ 𝑉 𝑛

2 if and only if 𝑖 ∈ Γ𝑐 (𝑣𝑛−1). For each of these arcs (𝑖 , 𝑐 ), 𝑙 (𝑖 , 𝑐 ) = 0
and 𝑘 (𝑖 , 𝑐 ) = ∞. For each prioritized agent 𝑖 ∈ ⋃

𝑐 ∈𝐴𝑛
Γ𝑐 (𝑣𝑛−1), arc (𝑠 , 𝑖 ) has lower bound 𝑙 (𝑠 , 𝑖 ) = 𝑣𝑛−1

𝑖
+ _

and capacity, 𝑘 (𝑠 , 𝑖 ) = 𝑣𝑛−1
𝑖

+ _. For each non-prioritized agent 𝑖 ∈ ⋃
𝑐 ∈𝐴𝑛

Γ𝑐 (𝑣𝑛−1), arc (𝑠 , 𝑖 ) has lower

bound 𝑙 (𝑠 , 𝑖 ) = 𝑣𝑛−1
𝑖

and capacity, 𝑘 (𝑠 , 𝑖 ) = 𝑣𝑛−1
𝑖

. Also, for each arc (𝑐 , 𝑡 ) from𝑉 𝑛−1
2 into 𝑡 , let 𝑙 (𝑐 , 𝑡 ) = 0

and 𝑘 (𝑐 , 𝑡 ) = 𝑞𝑐 .

Wesetup thisnetworkasparametric in the followingway: For theprioritized agentsamongall claimants
underavailable categories, the parameter_ captures that their reservation values, andonly their reser-
vation values, at the relevant categories are improved equally and continuously as long as (a) the fea-
sibility conditions in Definition 1 are not violated38 and (b) there are no others joining the group of
prioritized agents.39

Since 𝑍 respects priorities, a unit under a category is not (probabilistically) assigned to an agent in an
indifference class of that category until theutility of each agent in thehigher indifference classes is one.
37The subscripts in𝑉 𝑛

1 and𝑉 𝑛
2 stand for describing them either as the demand or supply vertices, and the superscripts for

the number of the step of the algorithm.
38Part (a) is captured by the setting of arcs and their lower bounds and capacities: Condition (i) in Definition 1 by setting

the capacity of the arcs from the source to agents by one, and Condition (ii) by setting the capacity of each arc from 𝑐 to the
sink by the capacity 𝑞𝑐 .
39Whether an agent is prioritized or not depends on her relative reservation value at categories. Thus, as the agents’ reser-

vation values change, their status of being prioritized or non-prioritizedmight change as well.
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Figure 1:

Thus,whenprioritized agents’ reservationvalues are increasedvia_, the agents in thenext indifference
class cannotbeallowed tobeassignedunitsunder the samecategory. Also,while the reservationvalues
of prioritized agents ranked under a category are increased, the reservation values of other prioritized
agents ranked under other categories are also increased.

At the beginning of Step 𝑛.3, if it is possible to increase the reservation value of each claimant to one,
then by procedural fairness, each such agent’s value should be increased to one. By the argument for
Remark 3, the PBR rule achieves it, inmultiple consecutive steps in general. Suppose that it is not pos-
sible to increase the reservation value of each claimant to one. The idea is to use _ as a continuously
increasing parameter until a breakpoint where (a) or (b) described above will be violated if increased
further. Thus, thebreakpoint iswhen: (a)Condition1 inTheorem1becomesbindingor (b) the reserva-
tion value of a prioritized agent (note that the reservation value of these agents is theminimumamong
the claimants under available categories) becomes equivalent to the level of the reservation value of a
non-prioritized claimant. If the latter holds, then the reservation value of eachprioritized agent can be
increased to the level of the second-lowest reservation value among other claimants. Thus, by defini-
tion of Lorenz dominance, at 𝑍 , among the set of claimants, no agent’s utility is lower than this updated
reservation value. Moreover, since this value is lower than one, the set of claimants does not change.
The only change is that, at this reservation profile, the set of agents with theminimum level of reserva-
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tionvaluebecomes larger. Thisprocess of increasing the reservationvaluesof theprioritized continues
until either the breakpoint is given by (a) or each claimant ’s reservation value becomes one. If it is the
latter, the definition of Lorenz dominance implies clearly that each claimant ’s utility is one (since there
exists such an underlying random allocation), which coincides with the outcome of the PBR for the
claimants. Thus, the only case that remains is when the breakpoint is given by (a).

Suppose the breakpoint is given by (a). Since agents are claimants for multiple categories in general,
to check whether Condition 1 in Theorem 1 becomes binding as _ is increased, we need to consider
all subsets of agents. Also, at the beginning of each step when _ = 0, clearly the condition cannot be
binding for a subset of agents for whom there are no exclusively reserved categories.

The prioritized agents have the lowest level of reservation value among all claimants. Thus, to equate
reservation values, the parameter _ is increased continuously. Since Condition 1 in Theorem 1 is not
binding for no subset of agents, a flow exists for some values of _ > 0. The question is to find themaxi-
mum possible value for this parameter. Since the breakpoint is due to Condition 1 becoming binding,
there will not be a flow respecting the lower bounds of the arcs from 𝑠 to the demand vertices of prior-
itized agents, if the reservation values of prioritized agents are increased above this breakpoint level.
By Theorem 5, the value of this maximum flow is equal to theminimum value

𝑘 (𝛿out(𝑉 ′)) − 𝑙 (𝛿 in(𝑉 ′)) (13)

taken over 𝑉 ′ ⊆ 𝑉 with 𝑠 ∈ 𝑉 ′ and 𝑡 ∉ 𝑉 ′. Since the flow is always maximum, the set {𝑠 } gives this
minimum value. Moreover, at the breakpoint, there exists another set of vertices with the minimum
value of (13). We next find this bottleneck set of vertices𝑉 ′ = {𝑠 } ∪ 𝐼 ′ ∪ 𝐶 ′.

The set𝑉 ′ satisfies that each 𝑖 ∈ 𝐼 ′ points only to the categories in𝐶 ′ (because otherwise 𝑘 (𝛿out(𝑉 ′)) −
𝑙 (𝛿 in(𝑉 ′)) = ∞). Thus,𝐶 (𝐼 ′, 𝑣𝑛−1) ⊆ 𝐶 ′. Also, there cannot be a category 𝑐 such that 𝑐 ∈ 𝐶 ′ \ 𝐶 (𝐼 ′, 𝑣𝑛−1),
since then, by removing 𝑐 from the set𝑉 ′, the value of (13) is decreased by the amount 𝑞𝑐 due to the
capacity of the outgoing arc from 𝑐 to 𝑡 . Thus,𝐶 ′ = 𝐶 (𝐼 ′, 𝑣𝑛−1).40 Thus,

𝑘 (𝛿out(𝑉 ′)) − 𝑙 (𝛿 in(𝑉 ′)) =
∑︁

𝑖 ∈
( ⋃
𝑐∈𝐴𝑛

Γ𝑐 (𝑣𝑛−1
)
\𝐼 ′

𝑣𝑛−1𝑖 + _|{𝑖 ∉ 𝐼 ′ : 𝑖 is prioritized}| +
∑︁

𝑐 ∈𝐶 (𝐼 ′,𝑣𝑛−1)
𝑞𝑐 .

The first and second terms of the right-hand side in this equation is the total capacity of all the edges
from 𝑠 to the set of claimants excluding the set 𝐼 ′. Since {𝑠 }minimizes (13) as well, and only the reser-
40Also, categories in 𝐶 ′ cannot be pointed by an agent who is not in 𝐼 ′ and a claimant only for categories in 𝐶 ′ (because

otherwise, byadding suchanagent to the set 𝐼 ′, thevalue𝑘 (𝛿out (𝑉 ′∪{𝑖 }))−𝑙 (𝛿 in (𝑉 ′∪{𝑖 })) is lower than thevalue𝑘 (𝛿out (𝑉 ′))−
𝑙 (𝛿 in (𝑉 ′)). Note that any suchagent 𝑖 provides an incomingedge to𝑉 ′witha lower-boundzero, andanoutgoingedge from𝑉 ′

with a capacity 𝑣𝑛−1
𝑖

.
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vation values of prioritized agents are increased by _, we also have

𝑘 (𝛿out(𝑉 ′)) − 𝑙 (𝛿 in(𝑉 ′)) =
∑︁

𝑖 ∈ ⋃
𝑐∈𝐴𝑛

Γ𝑐 (𝑣𝑛−1)
𝑣𝑛−1𝑖 + _|{𝑖 ∈

⋃
𝑐 ∈𝐴𝑛

Γ𝑐 (𝑣𝑛−1) : 𝑖 is prioritized}|

This implies ∑︁
𝑖 ∈
( ⋃
𝑐∈𝐴𝑛

Γ𝑐 (𝑣𝑛−1)
)
\𝐼 ′

𝑣𝑛−1𝑖 +
∑︁

𝑐 ∈𝐶 (𝐼 ′,𝑣𝑛−1)
𝑞𝑐 =

∑︁
𝑖 ∈ ⋃

𝑐∈𝐴𝑛
Γ𝑐 (𝑣𝑛−1)

𝑣𝑛−1𝑖 + _|{𝑖 ∈ 𝐼 ′ : 𝑖 is prioritized}| (14)

Since Equality (14) is the necessary condition for𝑉 ′ to be a bottleneck set, the reservation values of the
prioritized agents can be increased by the minimum of _ satisfying (14). Note that this minimum _ is
equivalent to _★ defined in Step 𝑛.3 of the PBR. By definition of procedural fairness, at 𝑍 , the lowest
reservation value is maximized. Thus, since the reservation value of a prioritized agent, say 𝑖 , is the
lowest among all claimants, and it is feasible to increase their reservation value to𝑣𝑛−1

𝑖
+_★, their utility

must be greater than or equal to this value. Moreover, the PBR is such that, for each non-prioritized
agent, the reservation value does not change at Step 𝑛. Thus, for each claimant 𝑗 , the updated reser-
vation value is at least 𝑣𝑛−1

𝑗
+ _★. Thus,𝑢𝑍 (𝑗 ) ≥ 𝑣𝑛

𝑖
. This completes the proof.

�
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Appendix E Proof of Proposition 1

Let 𝑅 = (I,C ∪ {𝑐𝑀 },�, (𝑞𝑐 )𝑐 ∈C∪{𝑐𝑀 }, (𝐵𝑐 )𝑐 ∈C) be a reserve problem under a baseline priority order. We
show that the PBR rule satisfies category-fairness. The result then follows directly from Theorem 4.

Let 𝑍 be an allocation which is welfare-equivalent to the PBR outcome. Remember that 𝑖𝑀 (𝑍 ) is the
student who has a utility less than one such that each student 𝑗 with a higher merit score than 𝑖𝑀 (𝑍 )
has a utility one. Also, 𝑖min(𝑍 ) is student with the lowest merit score, who is assigned a seat from the
merit category with positive probability.

Since thePBR is in theclassofPBSWI , byTheorem2,𝑍 isacceptable. Thus, by respectingpriorities, each
studentwith a higher score than 𝑖min is assigned a seatwith probability one. This implies that 𝑖min(𝑍 ) <
𝑖𝑀 (𝑍 ).

We first show that 𝑍 is not unfair for the merit category. Suppose that each student 𝑗 with 𝑗 � 𝑖𝑀 (𝑍 )
is a beneficiary of a preferential category and there exists at least one other beneficiary of the same
category, who has a lowermerit score than 𝑗 and is assigned a seat with probability one. Now consider
the set {𝑗 : 𝑗 � 𝑖𝑀 (𝑍 )} and the last step of the PBR, say Step 𝑘 , at which the reservation value of a
student in this set, say 𝑗 ′, as a beneficiary of the preferential treatment category, say 𝑐 ′, is increased to
one. By construction of the priority ordering𝜋𝑐 ′, each studentwith a lowermerit score than 𝑗 ′ is ranked
below 𝑗 ′. Let 𝑗 ′′ be the beneficiary of 𝑐 ′ ranked just below 𝑗 ′. Note that by our supposition, 𝑢𝑍 (𝑗 ′′) =

1. Moreover, at the end of Step 𝑘 , the reservation value of 𝑗 ′′ is zero since (i) she is ranked below 𝑗

under both 𝑐𝑀 and 𝑐 ′, and (ii) by assumption, reserved seats under preferential treatment categories
are assignedonly to their beneficiaries, and this implies that 𝑗 ′ canbe assigned a seat only from 𝑐𝑀 or 𝑐 ′

(‡). Since each student with a higher score than 𝑗 ′ is assigned a seat with probability one at the end of
Step 𝑘 , 𝑗 ′′ is a claimant for 𝑐 ′. Also, since, by definition Step 𝑘 , each student in the set {𝑗 : 𝑗 � 𝑖𝑀 (𝑍 )} is
assigned a seat with probability one, 𝑖𝑀 (𝑍 ) is a claimant for 𝑐𝑀 . Now suppose that at the beginning of
Step 𝑘 + 1, there is a group of students 𝐼 ′ such that categories in𝐶 (𝐼 ′, 𝑣𝑘 ) are exclusively reserved for 𝐼 ′.

Case 1: The set 𝐼 ′ contains a beneficiary of 𝑐 ′ with a higher score than 𝑗 ′′. Since such a student is a
claimant for 𝑐 ′, by definition of exclusively reserved categories, 𝑐 ′ ∈ 𝐶 (𝐼 ′, 𝑣𝑘 ). Since, under 𝑍 , 𝑖 is the
studentwho is assigned a seatwith probability less thanone such that each studentwith a highermerit
score than 𝑖𝑀 (𝑍 ) is assigned a seat with probability one, the set of claimants for 𝑐𝑀 does not change
at any later step of the PBR. Also, for each preferential treatment category in 𝐶 (𝐼 ′, 𝑣𝑘 ) (including 𝑐 ′),
the set of claimants changes only when one their beneficiaries is assigned a seat with probability one
at a later step. Since each student is a beneficiary of at most two categories, a preferential treatment
category and 𝑐𝑀 , and the set of claimants of 𝑐𝑀 doesnot changeat a later step, this is notpossible. Thus,
under 𝑍 , all seats reserved for the categories in 𝐶 (𝐼 ′, 𝑣𝑘 ) are assigned to the students in 𝐼 ′. Since𝑣𝑘

𝑗 ′′ = 0
(‡),𝑢𝑍 (𝑗 ′′) = 0. This contradicts with𝑢𝑍 (𝑗 ′′) = 1.
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Case 2: The set 𝐼 ′ does not contain a beneficiary of 𝑐 ′ with a higher score than 𝑗 ′′. By definition of
exclusively reserved categories, 𝑐 ′ ∉ 𝐶 (𝐼 ′, 𝑣𝑘 ). Note that it must be 𝑐𝑀 ∉ 𝐶 (𝐼 ′, 𝑣𝑘 ), since otherwise, each
beneficiary of 𝑐 ′with a higher score than 𝑖𝑀 (𝑍 ) is assigned a seat from 𝑐 ′, and since by assumption, the
number of beneficiaries of 𝑐 ′with a higher score than 𝑗 ′′ is at least 𝑞𝑐 ′, this would imply that the first 𝑞𝑐 ′
beneficiaries of 𝑐 ′ belong to 𝐼 ′ and 𝑐 ′ ∈ 𝐶 (𝐼 ′, 𝑣𝑘 ). Since 𝑐𝑀 ∉ 𝐶 (𝐼 ′, 𝑣𝑘 ), at Step 𝑘 + 1, the reservation
values of 𝑖𝑀 (𝑍 ) and 𝑗 ′′ can be increased. But, this contradicts with𝑢𝑍 (𝑖𝑀 (𝑍 )) < 1 and𝑢𝑍 (𝑗 ′′) = 1 since
this is Lorenz dominated by another allocation at this step where their utilities are equivalent to each
other.

Finally, if there areno exclusively reserved categories at thebeginningof Step𝑘 +1, by applying the same
argument in Case 2 above, we conclude that 𝑢𝑍 (𝑖𝑀 (𝑍 )) < 1 and 𝑢𝑍 (𝑗 ′′) = 1 is a contradiction. Thus, 𝑍
is not unfair for 𝑐𝑀 .

Wenow show that for eachpreferential treatment category 𝑐 ,𝑍 is not unfair for 𝑐 . Let 𝑐 be apreferential
treatment category such that each student who is a beneficiary of 𝑐 and assigned a seat with positive
probability has a higher merit score than 𝑖min. Let 𝑘 ′ be the last step at which the reservation value
of 𝑖min(𝑍 ) is increased. By definition of the PBR, at Step 𝑘 ′, 𝑐𝑀 is available. Thus, if there are exclusively
reserved categories for 𝐼 ′ at this step, 𝐼 ′ does not contain any student with a higher score than 𝑖min(𝑍 ).
Thus, since this set contains all the beneficiaries of 𝑐 who are assigned a seat with probability one, 𝑐 is
also available. But then, since, by definition of thePBR, the reservation value chosen at this step Lorenz
dominates any other, the student with the highest merit score among all beneficiaries of 𝑐 with the
reservation value zero must be increased. But, this contradicts that each student who is a beneficiary
of 𝑐 and assigned a seat with positive probability has a higher merit score than 𝑖min(𝑍 ).
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Appendix F Proof of Proposition 2

Let 𝑅 = (I,C, (𝜋𝑐 )𝑐 ∈C , (𝑞𝑐 )𝑐 ∈C) be a rationing problem. We show that the PBR rule satisfies equal treat-
ment of equals. The result then followsdirectly fromTheorem4. Let𝑍 beanallocationwhich iswelfare-
equivalent to thePBR outcome. By thefirst conditionof symmetric categories, we canassume,without
loss of generality, that C = {𝑐 , 𝑐 ′}. Let us start with the first step of the PBR as the initial step of an in-
ductive argument. Each agent in the first indifference classes of both categories are prioritized. Thus,
by the second condition of symmetric categories, the reservation values of equals 𝑖 and 𝑗 are increased
by the same amount. Suppose the step ends with exclusively reserved categories for agents in the first
indifference classes. (Note that these indifference classes could have a non-empty intersection.) Since
categories are symmetric, it must be that all categories in C are exclusively reserved. Then, by the first
condition of symmetric categories, the algorithm terminates and since all probabilities are the same for
all these agents, equal treatment of equals follow immediately. Suppose now that the reservation val-
ues of all agents are increased to one. Again, all agents have the same reservation value and this implies
that and agent in the first indifference class of 𝑐 and another one in the first indifference class of 𝑐 ′ are
treated equally. Let us now consider Step 𝑛 as the inductive step. Since we assume that the argument
for the first step holds for all steps up to 𝑛 − 1, and the algorithm did not terminate before Step 𝑛, we
have that the agents in the 𝑛th indifference classes of 𝑐 and 𝑐 ′ are the claimants of 𝑐 and 𝑐 ′. Also, by the
third condition of symmetric categories, all these agents have not been claimants before. Thus, each of
them has a reservation value of zero at the beginning of Step 𝑛. Thus, the same argument in the initial
step applies for the current step as well. This concludes the proof.
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