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Abstract

The units of an object are to be distributed among a set of agents through reserve cate-

gories. For example, vaccines, ICU’s or other medical units are reserved for certain patients

based on their occupations, preexisting conditions and disadvantaged status, or school seats are

allocated to students through tiers based on the socioeconomic status to eliminate segregation.

A widespread mechanism is processing these categories in a precedence order. Since there are

multiple categories through which an agent can be assigned a unit, any choice of precedence

order has distributional consequences. To mitigate uneven treatment of agents, we consider

processing reserve categories simultaneously. We propose a procedure to enhance equity and

characterize the class of equitable random allocation rules.
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1 Introduction

The recent pandemic has highlighted the importance of well-designed rationing mechanisms when

resources are in short supply. How should we design and implement such mechanisms for the allo-

cation of vaccines, ventilators, ICU’s or other crucial medical units? A simple solution is a priority

system, which allocates units to patients with respect to a single order of priority. These systems

could fail to recognize certain ethical values and inherently embed discriminatory practices against

disadvantaged groups (Pathak, Sönmez, Ünver, and Yenmez, 2021). A more flexible alternative is a

reserve system, in which units are divided into multiple reserve categories with each having a distinct

priority order of patients depending on their characteristics. Typically, these categories are processed

in a precedence order. Since patients are in general beneficiaries of multiple categories, this procedure

too has distributional consequences. This problem persists in other reserve settings such as school

choice with affirmative action and immigration visa allocation. We consider a general reserve system

framework with processing reserve categories simultaneously rather than sequentially. We propose

and characterize random allocation rules to enhance equity by mitigating uneven treatment of agents

due to precedence orders.

For the class of rationing problems with reserves, certain properties are indispensable (see Section 3).

First, priorities of agents under categories should be respected (respecting priorities). Second, no

unit should be wasted (efficiency). Third, an agent should be assigned at least as the share of a unit

guaranteed to her by a single category at which she qualifies to receive a positive share (individual

rationality). We call a (random) allocation acceptable if it satisfies all these standard axioms. Our

first theorem is a characterization of the set of acceptable (random) allocation rules (Theorem 2).

The deterministic procedures within the acceptable ones imply uneven treatment of agents, which

implies randomization as a significant alternative. There are basically two standard notions of fairness

and equity in the randomization context. The first notion is a basic axiom of fairness, no justified-

envy : if an agent prefers being in the position of another agent, then there is a justification (based on

priorities) for assigning a higher utility to that other agent. The second notion is an axiom of equity,

egalitarianism, which requires equating agents’ utilities as much as possible (within the constraints of

acceptability) through the criterion of Lorenz dominance. We show that egalitarianism is impossible
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in the current context (see Theorem 3). We then introduce and formalize a new equity property,

sequential egalitarianism, which basically requires equating agents’ utilities procedurally (as much as

possible) throughout the simultaneous processing of reserves (Section 5.3). Interestingly, while an

egalitarian allocation, if it exists for a problem, does not even satisfy equal treatment of equals in

general, sequential egalitarianism is stronger than no justified-envy (Proposition 1). Thus, we argue

that sequential egalitarianism is the plausible equity criterion for the reserves setting.

Our second theorem is the characterization of the sequentially egalitarian rules, the Priority-Based

Rawlsian (PBR) (Theorem 4). The PBR rules constitute an intuitive class within the set of acceptable

rules. Basically, they are based on defining a guaranteed utility for each agent and then increasing

these utilities sequentially subject to the constraints of acceptability and also the Rawlsian principle

of prioritizing the most disadvantaged agents. We show how to design this procedure (Section 5.4)

with the help of ideas from graph theory (Appendix A).

We discuss relevant applications, rationing health care units, vaccines etc. (Section 6.1) and af-

firmative action in school choice (Section 6.2). We argue that the class of rules we propose could

help policymakers to mitigate the inequalities due to uneven treatment of agents in deterministic

allocation rules based on processing reserves sequentially.

Related Literature

Reserve systems with sequential processing has been proposed for affirmative action in school choice

(Kominers and Sönmez, 2016).1 When there are only two types of slots, reserve and open slots, both

increasing the reserve quota and raising the precedence order positions of open seats will (weakly)

increase the number of reserve-eligible students who are accepted (Dur, Kominers, Pathak, and Sön-

mez, 2018). For the case of multiple socioeconomic tiers along with the merit tier, the precedence

orders for maximizing the number of the most disadvantaged students assigned a seat are character-
1Affirmative action in school choice has been widely studied. Controlled choice models provide choice to parents

while maintaining the racial and ethnic balance at schools through type-specific reserves and quotas (Abdulkadiroğlu
and Sönmez, 2003; Ehlers, Hafalir, Yenmez, and Yıldırım, 2014), or through adjusted priorities under minority reserves
(Hafalir, Yenmez, and Yıldırım, 2013). A recent work studies how to minimize priority violations for a setting when
there is only one ordering of students and there are type-specific reserves and quotas. A particular choice rule, where
all applicants are first considered for units reserved for their own types, uniquely minimizes priority violations in this
class (Abdulkadiroğlu and Grigoryan, 2021).
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ized as follows: the slots of other tiers precede the merit slots which are succeeded by the slots of

the tier for the most disadvantaged students (Dur, Pathak, and Sönmez, 2020).

A model closer to the current setting is when a student is in general a beneficiary at multiple reserve

categories, the case of overlapping reserves, and the goal is to guarantee maximal compliance with

reservations (as many of the reserved positions as possible are to be allocated to the candidates from

target groups) (Sönmez and Yenmez, 2020). Equity under maximal compliance is studied in a similar

setting when random allocations are allowed (Doğan and Yılmaz, 2022).

Reserve systems have been also relevant in various other contexts: medical rationing (Pathak, Sön-

mez, Ünver, and Yenmez, 2021), the H-1B visa program (Pathak, Rees-Jones, and Sönmez, 2022),

university admissions in India (Sönmez and Yenmez, 2020; Aygün and Turhan, 2020a,b) and Brazil

(Aygün and Bo, 2021).

Another strand of literature, to which the current work belongs as well, is the approach of processing

reserves simultaneously. A recently proposed axiom in this setting is category neutrality : An alloca-

tion is category neutral if an agent who qualifies for multiple categories receives the same amount of

capacity from all of them (Delacrétaz, 2021). In the context of hard reserves (only the beneficiaries of

a given reserve category are eligible for the units under that category), every random allocation sat-

isfying efficiency, respecting priorities and category neutrality assigns to each agent the same amount

of probability of receiving a unit in aggregate, and a polynomial-time algorithm exists to compute

these allocations (Delacrétaz, 2021). The difference between our approach and this work can be

summarized as follows: while category neutrality requires that for an agent, the probability of being

assigned a unit is the same across all categories for which she is eligible, sequential egalitarianism

requires equating utilities across agents (procedurally and subject to the constraints of acceptability).

Clearly, these two axioms and ideas are not only independent but also fundamentally different.2

An alternative approach is to apply a Probabilistic Serial (PS) mechanism, the Rationing Eating (RE)

rule, to the current setting: Categories are treated as pseudo-agents and the agents as pseudo-items,

as if categories are ‘consuming’ agents. The pseudo-agents categories now have preferences over the

pseudo-items that are derived from the priorities of the corresponding categories. Then, the PS

2See the extended version of our work (Yılmaz, 2022) for an example clarifying the difference between the two
works.
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rule is implemented on this pseudo-market (Aziz, 2021). The RE rule retains the fairness property

(sd-envy-freeness) in this pseudo-market: category sd-envy-freeness. This work and the current one

are also substantially different: we do not reverse the roles of agents and categories. Thus, we cannot

apply the PS rule directly for the categories (pseudo-agents) over the agents (pseudo-items). This

leads to an analytical challenge: We should keep track of who can be assigned to units from which

categories at a given instance of the random allocation rule. We explain this technical challenge, and

propose a methodology for overcoming this difficulty (Section 4). More importantly, this fundamental

difference implies another important distinction between these works: while the RE rule is designed

to satisfy a property based on the comparison of categories in terms of the agents’ probabilities

assigned to units under these categories, our solution, the PBR rule (see Section 5.4), satisfies a

property based purely on agents’ welfare (see Definition 9 in Section 5).

The idea of egalitarianism and the principle of maximizing the minimum welfare are studied in several

other contexts of discrete allocation models.3 Recently, another such work analyzes the incentive

schemes designed for plasma donation (Kominers, Pathak, Sönmez, and Ünver, 2020). Plasma donors

are given priorities for prospective plasma therapies of their loved ones (pay-it-backward), and patients

receive priority access for plasma therapy in exchange for a pledge to donate her own plasma in the

near future (pay-it-forward).4 The authors also design a mechanism, plasma pooling procedure, which

guarantees an egalitarian distribution of plasma therapy by making non-prioritized patients’ welfare

as equal as possible across different blood types within efficiency constraint.5

2 Model

There is a set of agents I and a set of reserve categories C. For each c ∈ C, qc identical units

are reserved, and there is a weak priority order πc over I.6 The strict and indifference parts of πc
3See Bogolomania and Moulin (2004), Roth, Sönmez, and Ünver (2005) and Yılmaz (2011).
4A different health care setting where similar incentive schemes are analyzed is a kidney exchange model where

compatible pairs are incentivized to participate in kidney exchange by insuring their patients against future renal
failure via increased priority in the deceased-donor queue (Sönmez, Ünver, and Yenmez, 2020).

5This method is also based on graph theoretical ideas and in particular, on parametric flows (see also Katta and
Sethuraman (2006)).

6The contribution of our model is not the assumption of a general domain of priority orders. Even under strict
priority orders, the main analytical and conceptual challenges remain and our analysis is still a novel approach.
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are denoted by πPc and πIc , respectively. For each c, the set of agents in the k−th indifference class

of πc is Iπc(k) such that for k′ > k′′, i ∈ Iπc(k′) and j ∈ Iπc(k′′) imply j πPc i. The set of agents in

the first k indifference classes is denoted by UCSπc(k), thus, UCSπc(k) =
k⋃

k′=1

Iπc(k′).

A (rationing) problem is a tuple R = (I, C, (πc)c∈C, (qc)c∈C). Let R denote the set of all problems.

We consider a setting where units are assigned to agents probabilistically such that for each R ∈ R,

the probability with which an agent is assigned a unit is at most one and for each c ∈ C, at most qc

units are assigned to agents.

Definition 1. Given a problem R = (I, C, (πc)c∈C, (qc)c∈C), a random allocation is a stochas-

tic |I| × |C| matrix Z where for each i and c, zic is the probability with which agent i is assigned one

unit from category c such that

i. for each i ∈ I,
∑

c∈C zic ≤ 1,

ii. for each c ∈ C,
∑

i∈I zic ≤ qc.

Let Z(R) denote the set of all random allocations for a problem R, and Z =
⋃
R∈RZ(R) the set of

all random allocations. A rule is a mapping ϕ : R → Z such that for each problem R, ϕ(R) ∈ Z(R).

Since all units are identical, only the probability of receiving a unit is relevant for agents, not the spe-

cific reserve categories through which they are (randomly) assigned a unit. LetR = (I, C, (πc)c∈C, (qc)c∈C)

be a problem and Z ∈ Z(R) a random allocation. The utility of agent i is given by uZ(i) =
∑

c∈C zic.

The vector uZ = (uZ(i))i∈I ∈ R|I| is the utility profile. We also say that a utility profile u is

generated by a random allocation Z if u = uZ . Random allocations Z and Z ′ are welfare equiv-

alent if uZ = uZ′ . Similarly, rules ϕ and ϕ′ are welfare equivalent if for each problem R, random

allocations ϕ(R) and ϕ′(R) are welfare equivalent.

Nevertheless, the assumption of weak priority orders adds another challenging analytical component to our work.
Also, weak priority orders become relevant for some of the applications we consider in Section 6.
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3 Axioms

There are three indispensable requirements: (1) Resources should not be wasted (efficiency), (2) each

agent’s utility should be at least as the utility guaranteed to them by a single category (individual

rationality), and (3) an agent can be assigned a unit under a category only if each agent with a strictly

higher priority for that category is assigned a unit with probability one (respecting priorities).

3.1 Efficiency

The first axiom states that no unit should be wasted. If there are agents demanding a unit and that

unit is available, then it should not remain as unassigned.

Definition 2. For a problem R = (I, C, (πc)c∈C, (qc)c∈C), a random allocation Z ∈ Z(R) is non-

wasteful, if for any c ∈ C,

∑
i∈I

zic < qc =⇒ for each i ∈ I,
∑
c′∈C

zic′ = 1.

A rule ϕ is non-wasteful if for any problem R, random allocation ϕ(R) is non-wasteful.

The only case for a unit remaining (partially) unassigned under non-wastefulness is when each agent

is assigned a unit with probability one. For expositional simplicity, we exclude these cases: A problem

is non-trivial, if it is not possible to assign each agent a unit. We assume that each problem in R

is non-trivial.7 Clearly, non-wastefulness and non-triviality together imply that Condition (ii) of

Definiton 1 holds with equality.

3.2 Individual rationality

Given a problem R = (I, C, (πc)c∈C, (qc)c∈C), let Rc = (I, {c}, πc, qc) denote the associated single-

category rationing problem. Let kc be such that there are sufficient number of units under
7There is no loss of generality in assuming non-triviality : the definitions and results hold also for trivial problems.
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category c for the agents in the first kc indifferent classes but not for the agents in the first kc + 1

indifference classes.

The priority rule ρ maps each single-category rationing problem Rc into an |I|-vector and for

each i ∈ I, it specifies the share of i at category c, denoted by ρi(Rc). The priority rule allocates

the units under category c sequentially by respecting the priority order πc: the first |Iπc(1)| units

are assigned to the agents in Iπc(1), the next |Iπc(2)| units are assigned to the agents in Iπc(2), so

on, until all units are assigned such that in Step kc + 1, the number of remaining units (if any),

that is, qc −
kc∑
k=1

|Iπc(k)|, is assigned to the agents in Iπc(kc + 1) with equal probability. Thus, each

agent in the first kc priority classes is assigned a unit with probability one; agents in the (kc + 1)−st

priority class share the remaining units8 equally among themselves and the remaining agents are not

assigned a positive share. The priority rule ρ is formally defined as follows:

ρi(R
c) =



1 if i ∈
kc⋃
k=1

Iπc(k)

qc−
kc∑
k=1

|Iπc (k)|

|Iπc (kc+1)| if i ∈ Iπc(kc + 1)

0 otherwise

We consider an agents’ share at category c given by the priority rule as their minimum utility.

Definition 3. For a problem R = (I, C, (πc)c∈C, (qc)c∈C), a random allocation Z ∈ Z(R) is indi-

vidually rational, if for any c, and i ∈ Iπc, uZ(i) ≥ ρi(R
c). A rule ϕ is individually rational if

for any problem R, random allocation ϕ(R) is individually rational.

Individiual rationality implies that the utility of agent i is greater than or equal to

max
c∈C

ρi(R
c). (1)

We call this value as the initial reservation value of agent i and denote it by v0
i . The initial

reservation profile is v0 = (v0
i )i∈I .

Remark 1. While it is natural to consider agents’ share at a single category as the least that they
8Note that the number of remaining units may be zero, in which case the agents in this class are not assigned a

positive share.
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should receive (and that is what we assume in our theoretical analysis in Sections 4 and 5), some

contexts may require defining these rights differently.9 Since, in this work, individual rationality is

relevant only for its implication on the initial reservation profile, our solutions and theorems hold for

any alternative definition of individual rationality.

Our analysis throughout the paper is based on the simple idea of sequentially updating the initial

reservation profile. Thus, we refer to reservation profiles in general, generically denoted by v =

(vi)i∈I . Although the utility profile uZ under a random allocation Z and the reservation profile v =

(vi)i∈I are mathematically the same type of objects, there is an important difference between them:

While a utility profile represents agents’ utilities induced by a random allocation, the interpretation

of a reservation profile v = (vi)i∈I is that agent i is guaranteed a utility level at least as much as vi,

without any implication of a specific random allocation and agents’ utilities. A reservation profile v

is feasible if there exists a random allocation Z such that v = uZ .

3.3 Respecting priorities

The third axiom is about priorities: an agent cannot be (probabilistically) assigned a unit from a

category if there is another agent with a strictly higher priority and a utility less than one.

Definition 4. For a problem R = (I, C, (πc)c∈C, (qc)c∈C), a random allocation Z ∈ Z(R) respects

priorities, if for any i ∈ I, and c ∈ C,

i πPc j and uZ(i) < 1 =⇒ zjc = 0

A rule ϕ respects priorities if for any problem R, random allocation ϕ(R) respects priorities.

4 Acceptable random allocations

We deem the axioms stated in Section 3 as indispensable and consider only the rules, which satisfy

these axioms: For any problem R, a random allocation Z ∈ Z(R) is acceptable if it satisfies
9See Section 6.1 for such a case.
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non-wastefulness, individually rationality and respects priorities. We denote the set of acceptable

random allocations by Za(R). A rule ϕ is acceptable if for each problem R, ϕ(R) ∈ Za(R).

Our main goal is (1) to formalize a sensible equity notion in the current context, and (2) to design

and characterize acceptable rule(s) satisfying this notion. Towards this goal, we first characterize

acceptable rules. These rules are based on a procedure of starting with the initial reservation profile,

and then improving (certain) agents’ utilities by (probabilistically) assigning units simultaneously.

This procedure is based on a simple idea but its design is not straightforward for mainly three

difficulties.

First, since agents can receive units from different categories, it is not clear which agents should have

access to a given category at a given instance of improving utilities.

Example 1. (Determination of agents’ access to reserve categories)

Let I= {i, j, k} and C= {c1, c2} such that one unit is reserved for each category. The priority orders

for categories are given below with each set in the table being a priority class (we use the same type

of representation for a problem in all the remaining examples):

πc1 πc2

{i} {i, j}

{k} {k}

Individual rationality implies that i is assigned one unit, and j is assigned at least half units. A

plausible argument is that since j has a higher priority than k, the remaining half units should be

assigned to j, which is an acceptable allocation. On the other hand, for each λ ∈ [0, 1
2
], the following

random allocation is also acceptable:

Z =

c1 c2

i 1
2

+ λ 1
2
− λ

j 0 1
2

+ λ

k 1
2
− λ 0

In Example 1, since the unit under c2 can also be (probabilistically) assigned to i (along with the
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unit under c1), there is room for the unit under c1 to be (probabilistically) assigned to k, and there

is no reason why k should be excluded from the list of candidates for c1. This simple example brings

about the solution of the first difficulty: in characterizing acceptable allocation rules, agents’ access

to categories should be set as broad as possible and restricted only by the axioms in Section 3.

Definition 5. Let v = (vi)i∈I be a reservation profile. Agent i is eligible for category c under v

if i ∈ Iπc(k) and for each i ∈ UCSπc(k− 1), vi = 1. The set of eligible agents for category c under v

is denoted by Γc(v).

Whenever the first k − 1 priority classes consist of only agents with reservation value one, all these

agents and the agents in the kth priority class are eligible for the corresponding reserve category.10

Second, there is an exception to eligibility : as the following example demonstrates, eligibility does

not always imply that units under a category can be assigned to all of its eligible agents.

Example 2. (Eligibility does not always imply a positive share.)

Let I= {i, j, k} and C= {c1, c2} such that one unit is reserved for each category. Consider the

following problem:
πc1 πc2

{i} {j}

{k} {k}

For the reservation profile v = (vi, vj, vk) = (1, 1, 0), all agents are eligible for all categories. But,

any random allocation such that a unit is (probabilistically) assigned to k does not respect priorities.

In Example 2, individual rationality implies that agents i and j are assigned all units, one unit each.

Thus, they should have ‘exclusive rights’ over the units under c1 and c2.

Let v = (vi)i∈I be a reservation profile. For each i with vi > 0, let C(i, v) denote the set of reserve

categories, for which agent i is eligible under the reservation profile v. Let C(I, v) =
⋃
i∈I
C(i, v).

Definition 6. Given a reservation profile v = (vi)i∈I, agents in I have exclusive rights over the

set of reserve categories C(I, v) if
∑
i∈I
vi =

∑
c∈C(I,v)

qc.

10In Example 1, i and k are eligible for c1, while i and j are eligible for c2 (note that k is not eligible for c2).
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For a given reservation profile, exclusive rights correspond to binding feasibility constraints for an

underlying random allocation. The following characterization theorem implies that exclusive rights

are the only exceptions to eligibility. We utilize this important insight to prove the characterization

of the acceptable rules (Theorem 2).

Theorem 1. (The Supply-Demand Theorem (Gale, 1957))11

Let v = (vi)i∈I be a reservation profile. There is a random allocation Z such that (i) for each i ∈

I, uz(i) ≥ vi, and (ii) zic > 0 implies i ∈ Γc(v), if and only if, for each subset I of agents

∑
i∈I

vi ≤
∑

c ∈ C(I,v)

qc. (2)

Third, the approach of sequentially updating the reservation values requires keeping track of changes

in eligibility : while an agent may not be eligible for a category at a given reservation profile, as the

agents’ reservation values possibly go up, she might be eligible for it at a different one.

Example 3. (Sequential improvement of agents’ access to reserve categories)

Let I= {i, j, k, l, i1, i2, i3, i4} and C = {c1, c2, c3, c4} such that for each c1 and c3, two units are

reserved, and for each c2 and c4, one unit is reserved. Consider the following problem:

πc1 πc2 πc3 πc4

{i, j, k} {i, k, i1} {l} {j, i2}

{i3, i4} {i3, i4} {i, j, i1} {i4}

For the initial reservation profile v0 = (v0
i , v

0
j , v

0
k, v

0
l , v

0
i1
, v0
i2
, v0
i3
, v0
i4

) = (2
3
, 2

3
, 2

3
, 1, 1

3
, 1

2
, 0, 0), agents i3

and i4 are not eligible for any category. On the other hand, for the profile v = (1, 1, 1, 1, 1, 1
2
, 0, 0),

agents i3 and i4 are eligible for c1 and c2.

We characterize the set of acceptable random allocations by a sequential allocation procedure: the

Priority-Based Sequential Welfare Improvement (PBSWI) Algorithm. The design relies

on careful treatment of the difficulties discussed above. The idea is to sequentially update agents’

access to reserve categories through the eligibility criterion by keeping track of exclusive rights.
11This is a generalization of Hall’s Set Representation Theorem (Hall, 1935), which holds only for integers.
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The PBSWI Class:

Step 0. Let the reservation profile be v0 = (v0
i )i∈I .12

For each n ≥ 1 and the reservation profile vn−1, the following steps are executed.

Step n.1 For each set of agents I with exclusive rights over C(I, vn−1),

i. for each i ∈ I, let vni = vn−1
i , and

ii. mark each reserve category in the set C(I, vn−1) as unavailable.

Let An denote the set of available reserve categories.

Step n.2 If An = ∅, then let Z? with uZ? = vn−1 be the outcome. Otherwise, proceed to Step n.3.

Step n.3 (Welfare improvement) Select a feasible reservation profile vn 6= vn−1 such that for each i, vni =

vn−1
i + λni where λni ∈ [0, 1], and for each i 6∈

⋃
c ∈ An

Γc(v
n−1), λni = 0.

The PBSWI selects a welfare improvement at each step, and it is a class of rules since each sequence

of these selections implies a different random allocation. To define a rule in the PBSWI class, it is

sufficient to specify the selection rule of welfare improvement at Step n.3. (We define such a rule

in Section 5.4.) For each problem R = (I, C, (πc)c∈C, (qc)c∈C), let PBSWI (R) denote the set of all

random allocations obtained by the class PBSWI .

Theorem 2. For a problem R = (I, C, (πc)c∈C, (qc)c∈C), a random allocation Z is acceptable if and

only if Z ∈ PBSWI (R).

Proof. See Appendix B

This result provides an insight on how to describe an acceptable random allocation by means of a

sequence of welfare improvement profiles. We use this insight later when we characterize the set of

‘equitable’ (see Section 5) allocations by means of a unique random allocation rule (see Section 5.4).
12By definition of reservation value, there exists a random allocation Z such that v0 is the utility profile under Z.
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5 Enhancing equity

Processing reserves sequentially implies uneven treatment of agents in general and two important

questions follow this observation: First, is eliminating uneven treatment of agents a plausible con-

sideration in the current context? Second, if so, how should it be formulated?

There are two possibly sensible ideas for the current setting. (1) Equity : Agents’ utilities are equalized

as much as possible through the criterion of Lorenz dominance (egalitarianism). (2) Fairness : If an

agent prefers being in the position of another agent, then there is a justification (based on priorities)

for assigning a higher utility to that other agent in that position (no justified-envy).

Our first observation is that an egalitarian rule does not exist in the current context (Theorem 3).

Moreover, if an egalitarian random allocation exists for some problem, it may not even treat equals as

equal, the most fundamental principle of fairness (Section 5.1). Thus, egalitarianism is not sensible in

the current setting. On the other hand, the sense of fairness is severely restricted by the constraints

of respecting priorities, and no justified-envy could be vacuous in some situations and quite weak

in general (Section 5.2). Given these negative findings, we formulate and propose a new notion,

sequential egalitarianism. This equity axiom is very much in the spirit of egalitarianism. Yet, it

is independent from it, and interestingly, it implies the core axiom of fairness, no justified-envy

(Section 5.3). Finally, we characterize the rules satisfying sequential egalitarianism in the class of

acceptable rules (Section 5.4).

5.1 Egalitarianism

While respecting priorities captures some sort of fairness by emphasizing priorities, an independent

attribute is equitable access to resources, the standard formulation of which is Lorenz dominance. For

any vector u ∈ R|I|, let u? be the vector obtained upon rearranging the coordinates of u increasingly.

Given a problem R = (I, C, (πc)c∈C, (qc)c∈C) and Z, Z ′ ∈ Z(R), Z Lorenz dominates Z ′ if

for each l = 1, . . . , |I| :
l∑

m=1

((u?Z)m − (u?Z′)m) ≥ 0.
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The question of defining equitable access is entangled with the indispensability of the axioms in

Section 3. Fortunately, it can easily be adapted to the current context in the form of ‘equating

utilities as much as possible’.

Definition 7. A random allocation Z ∈ Za(R) is egalitarian if it is Lorenz dominant in the

set Za(R). A random allocation Z ∈ Za(R) is weakly egalitarian if it is not Lorenz dominated

by another allocation in the set Za(R). A rule ϕ is (weakly) egalitarian if for any problem R,

random allocation ϕ(R) is (weakly) egalitarian.

There are two important issues regarding an egalitarian random allocation: First, it turns out that

a Lorenz dominant allocation may not exist in the set of acceptable random allocations.13

Theorem 3. No rule is egalitarian.

Proof. See Appendix C.

Second, even if an egalitarian random allocation exists for a problem, it does not necessarily ‘treat

equals as equal ’, as the following example demonstrates. (Clearly, this observation holds also for

weakly egalitarian allocations.)

Example 4. (An egalitarian random allocation does not necessarily ‘treat equals as equal’.)

Let I= {i, j, i1, i2, j1, j2, k, l} and C= {c1, c2} such that three units are reserved for each category.

Consider the following problem:
πc1 πc2

{i, j} {i, j}

{i1, i2} {j1, j2}

{k, l} {k, l}

Let us first characterize the set of egalitarian random allocations. By individual rationality, (i)

agents i and j are assigned a unit each with probability one, (ii) agents i1, i2, j1 and j2 are assigned a

unit each with probability at least half. Thus, there are four units remaining with the constraint (ii).

Non-wastefulness and respecting priorities imply that there are three alternatives for these units:
13The impossibility still holds even if we restrict the domain of priority orders (see Appendix C).
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1. i1, i2, j1, j2 (each with probability one)

2. i1, i2 (each with probability one) and j1, j2, k, l (j1, j2 each with probability at least half)

3. j1, j2 (each with probability one) and i1, i2, k, l (i1, i2 each with probability at least half)

The second and third alternatives provide access to a higher number of agents than the first alternative.

Thus, (it is straightforward to check that) an acceptable random allocation is egalitarian if and only

if it generates one of the following utility profiles:

u = (ui, uj, ui1 , ui2 , uj1 , uj2 , uk, ul) = (1, 1, 1, 1,
1

2
,
1

2
,
1

2
,
1

2
),

u′ = (u′i, u
′
j, u
′
i1
, u′i2 , u

′
j1
, u′j2 , u

′
k, u

′
l) = (1, 1,

1

2
,
1

2
, 1, 1,

1

2
,
1

2
).

While it is in general not easy to define ‘equals’ in the current context, in some situations, it is. In

Example 4, agents i and j qualify for both reserve categories and this implies a surplus for agents i1

and i2 under c1, and for j1 and j2 under c2. Thus, the claims of these two groups of agents over

the surplus should be treated equally. But, any egalitarian random allocation, as characterized in

Example 4, favours either agents i1 and i2 over agents j1 and j2, or vice versa. The reason is simple:

by granting, say agents i1 and i2, a unit each, the remaining two units can be (probabilistically)

allocated to agents j1, j2, k and l, instead of allocating four units equally among agents i1, i2, j1

and j2.

5.2 No justified-envy

Let R = (I, C, (πc)c∈C, (qc)c∈C) be a problem and Z ∈ Z(R). For each c, let kc(Z) be such that for

each i ∈ UCSπc(kc(Z)), uZ(i) = 1, and for some j ∈ Iπc(kc(Z) + 1), uZ(j) < 1.

Suppose there exists an agent i with uZ(i) < 1 and a reserve category c such that for each agent j

with a higher priority under c,

1. uZ(j) = 1, and
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2. there exists another category c′ such that j ∈ Uπc′ (kc′(Z)− 1).

Thus, Z assigns one unit to each agent, say j, with a higher priority than i under c, and also for

some c′, one unit to each agent in the next lower priority class of any such agent j. But then,

although agent i is in a similar situation, that is, she is in the next lower priority class under c, she

is assigned a lower utility than the agents under other categories. We argue that in this case, agent i

has justified-envy for these agents. The next axiom eliminates this type of envy.

Definition 8. For a problem R = (I, C, (πc)c∈C, (qc)c∈C), a random allocation Z ∈ Z(R) satisfies

no justified-envy, if for each c ∈ C,

UCSπc(k) ⊆
⋃

c′∈C\{c}

UCSπc′ (kc′(Z)− 1) =⇒ kc(Z) > k.

A rule ϕ satisfies no justified-envy if for any problem R, random allocation ϕ(R) satisfies no

justified-envy.

Given that any random allocation we consider respects priorities, no justified-envy excludes only

certain types of envy, while some other types of envy are not considered as justified due to the

restrictions by respecting priorities.14

5.3 Sequential egalitarianism

As we argued in Section 4, each acceptable random allocation can be described as a simple procedure

of sequential allocation of units to their eligible agents whenever these units become available. Our

approach to equity is to provide equal access to these units for eligible agents.

Definition 9. A random allocation rule in the class of the PBSWI is sequentially egalitarian if, at

each step, the selected reservation profile Lorenz dominates any other feasible reservation profile that

can be selected at that step.

The units are allocated based on priorities, and as Theorem 2 demonstrates, at each step, there is a

set of eligible agents who are the candidate receivers of the remaining units. Sequential egalitarianism
14We provide the associated examples in the Appendix of the extended version of our work (Yılmaz, 2022).
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requires an equitable access of these units to these agents by equalizing their updated reservation

values as much as possible (through Lorenz dominance) among all possible acceptable reservation

profiles. That is, this principle requires applying the idea of egalitarianism sequentially.

To demonstrate the idea, let us revisit Example 4: At the initial step, only i and j are eligible for the

units under c1 and c2. Sequential egalitarianism requires that their reservation values are increased

equally, and each is assigned one unit. There are still four units available and agents i1, i2, j1 and j2

are now eligible. Again, their reservation values are increased equally, and we obtain an allocation

such that each is assigned one unit. Thus, each agent in {i, j, i1, i2, j1, j2} is assigned one unit. The

idea of equal access to units at each step implies treating agents j1 and j2 equally as i1 and i2, which

was not the case under egalitarianism as demonstrated in Example 4.15

This example also clarifies the logical relationship between the two notions. An egalitarian random

allocation may not exist, but when it exists it does not imply sequential egalitarianism. On the

other hand, a sequentially egalitarian allocation always exists (see Section 5.4). Thus, sequential

egalitarianism does not imply egalitarianism.

Remark 2. Egalitarianism and sequential egalitarianism are independent properties.

Interestingly, while (as discussed in Section 5.1) egalitarianism does not imply even treating equal

agents equally, sequential egalitarianism implies no justified-envy (the central fairness concept in the

current context).

Proposition 1. Sequential egalitarianism implies no justified-envy.

Proof. See Appendix E.

This logical relationship does not hold between egalitarianism and no justified-envy, and egalitarian-

ism does not imply no justified-envy :16 Let us reconsider Example 4. Let Z be an egalitarian random
15Sequential egalitarianism is not compatible with rules based on a precedence order of reserve categories, or a

priority ordering of agents (see the Appendix of the extended version of the current work (Yılmaz, 2022)).
16This observation intuitively follows from the insight in Example 4 and the fact treating equals equally is a weaker

notion than no justified-envy. Although it is straightforward to formally define equal treatment of equals in the current
context, we have not provided the definition for brevity. Thus, we need to argue for why egalitarianism does not imply
no justified-envy over an example.

18



allocation. Then, it generates the utility profile u in that example. Thus, kc1(Z) = 2 and kc1(Z) = 1.

For category c2, UCSπc2 (1) ⊆ UCSπc1 (kc1(Z)− 1) = UCSπc1 (1). But, since uZ(j1) < 1, kc1(Z) = 1.

Thus, agent j1 has justified-envy (similarly, agent j2 also has justified-envy). Thus, Z dos not satisfy

no justified-envy.

5.4 The Priority-Based Rawlsian (PBR) rule

Our goal is to incorporate equity (Section 5.3) into the acceptable class and characterize sequentially

egalitarian rules. The design of our solution, the Priority-Based Rawlsian (PBR) rule, relies

on the Rawlsian principle of maximizing the minimum welfare. Basically, the utilities of the most

disadvantaged agents are increased continuously as long as the constraints embedded in eligibility

and reservation profile are not binding. By Theorem 2, specifying this Rawlsian improvement process

as the welfare improvement selection rule is sufficient to define the PBR.17

Step n.3 (Welfare improvement selection rule of the PBR)

The agents with the minimum reservation value are selected among agents, who are eligible for at

least one available category. Their reservation values are increased equally up to the minimum of

the following two, while other agents’ reservation values do not change:

• The reservation value of a non-selected agent, who is eligible for at least one available category.

• The level at which a subset of agents eligible for at least one available category has exclusive

rights over the categories for which they are eligible.

While this selection rule is quite intuitive, the difficulty is to analytically characterize the execution

of its steps. First, when agents are allowed to receive a unit (probabilistically) at some step of

the PBSWI , in general, they can receive it from multiple categories. Thus, the implication of

increasing utilities on feasibility is not clear. Second, at any step, there are multiple constraints

due to (1) eligibility (a set of constraints on who can be assigned from which categories) and (2) the
17Each acceptable random allocation rule can be described via a welfare improvement selection rule in Step n.3 of

the PBSWI algorithm (see also the discussion in Section 4).

19



reservation profile of that step (a set of constraints in the form of guaranteed probabilities to agents).

At some point, some constraints become binding, and the challenge is to track these instances. Thus,

we need to analytically specify the welfare improvement selection rule described above to complete

the definition of the PBR.

Step n.3 (Welfare improvement selection rule of the PBR)

Agent i ∈
⋃

c ∈ An
Γc(v

n−1) is prioritized if, for each j ∈
⋃

c ∈ An
Γc(v

n−1), vn−1
i ≤ vn−1

j . Let vn−1,1

be the reservation value of prioritized agents. If all agents in
⋃

c ∈ An
Γc(v

n−1) are prioritized,

then let vn−1,2 = 1, otherwise let vn−1,2 be the lowest reservation value among non-prioritized

agents in
⋃

c ∈ An
Γc(v

n−1). Let Bn be the set of all subsets of
⋃

c ∈ An
Γc(v

n−1) with at least one

prioritized agent. Let

λ? = min
I∈Bn

∑
c ∈ C(I,vn−1)

qc −
∑
i∈I
vn−1
i

|{i ∈ I : i is prioritized}|
.

For each i ∈
⋃
c∈An

Γc(v
n−1), let

vni =

 min{vn−1,1 + λ?, vn−1,2} if i is prioritized

vn−1
i otherwise

We are now ready to present our main theorem, which states that this specific improvement process

characterizes sequentially egalitarian rules.

Theorem 4. A rule ϕ is sequentially egalitarian if and only if ϕ is welfare-equivalent to the PBR.

Proof. See Section D.

The proof of this characterization result relies highly on exploiting parametric networks and an

extension of the Max-Flow Min-Cut Theorem (Ford and Fulkerson, 1956) (see Appendix A).
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6 Applications

6.1 Rationing health care units

6.1.1 A weighted lottery policy

The Department of Health, Pennysylvania has been recently implementing a weighted lottery mech-

anism for the allocation of medications to treat COVID-19 (Pennsylvania DH, 2020). As outlined in

the “Pandemic Guidelines for the Interim Pennsylvania Crisis Standards of Care”, this framework is

designed such that “all patients who meet clinical eligibility criteria should have a chance to receive

treatment”. In the preliminary step, the number of available courses of the COVID-19 therapy is

determined and the number of eligible patients (for which the drug is allotted) is estimated. By

dividing the first number by the second, the chances for each eligible “general community” patient to

receive the drug is determined. In the second step, patients’ characteristics relevant to the weighted

lottery are determined to adjust the general community chances found in the preliminary step. These

adjustments are done according to the formula in Table 1. Finally, each patient enters into the lot-

tery constructed by the probability with which she receives treatment. Basically, a lottery number

between 1 and 100 is randomly selected for each eligible patient. If the lottery chances for the patient

is x out of 100 and the patient’s randomly drawn lottery number is less than or equal to x, they

should be offered the scarce drug. If the lottery number is greater than x, then they should not be

offered the scarce drug.

There are two issues with this mechanism. First, the implementation of the lottery (i.e. single

patient-single lottery) does not imply a probability distribution. Second, since these probabilities are

fixed and do not depend on the number of patients in each group, target ratios between the weights

of each pair of patient groups (Table 1) are not feasible in general.

The goal of creating meaningful access to patients by randomization is consistent with the motivation

of sequential egalitarianism and the PBR. By designing these categories (as specified in Table 1)

and the weak priority orders appropriately, we can apply the PBR rule (1) to create sequentially

egalitarian access for patients (Theorem 4), and (2) to remove analytical inconsistencies explained
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Group Chances to receive treatment

Disadvantaged community member (c1) 1.25 x (general community chances)
Essential worker (c2) 1.25 x (general community chances)
Death likely within 1 year (c3) 0.5 x (general community chances)
Disadvantaged community member + Essen-
tial worker

1.5 x (general community chances)

Disadvantaged community member + death
likely within 1 year

0.75 x (general community chances)

Essential worker + death likely within 1 year 0.75 x (general community chances)

Table 1: Probabilities in the weighted lottery

above. For an appropriate design of the reserve structure, this rule implies that each patient is

assigned a unit with a positive probability (as stated in the Pandemic Guideline above).

Alternatively, a different rule in the PBSWI class can be specified for this setting to achieve targeted

ratios between the weights in an analytically consistent way. First, reserve categories are modeled

with dichotomous indifference classes: for each category, the first indifference class is the set of all

patients belonging to that category and the second one is the rest of the patients. Since our model

allows for weak priority orders, this construction is clearly within our framework.

Second, targeted ratios between the weights are specified: The weights defined in Table 1 suggest

that (1) each disadvantaged community member who is an essential worker should have a higher

utility than each utility value obtained by the priority rule applied to these single-category problems,

(2) each disadvantaged community member or essential worker with death likely within one year

should have a lower (higher) utility than the utility value obtained by the priority rule applied

to disadvantaged community member or essential worker category (death likely within one year

category). A (weighted) average of the utilities applies to patients belonging to these multiple

categories. Thus, there is a target for relative utilities of patients belonging to two groups.18 Let uk

and uk,l represent the utility of a patient belonging to group ck only, and to groups ck and cl,

respectively. Given that u1 = u2 > u3, the target utility ratios are defined such that u1,2 = αu1

and u1,3 = u2,3 = w(u1, u3), where α > 1 and w(u1, u3) is a convex combination of u1 and u3.
18We assume that there is no patient belonging to all three groups (see Table 1).
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Step 0. Let C = {c1, c2, c3} be the patient groups (i.e. categories) in Table 1. For each c ∈ C, and for

each patient i belonging to group c, the weak order πc is constructed such that i ∈ Iπc(1). For

each patient group, a certain number of units is reserved such that qc1
|Iπc1 (1)| =

qc2
|Iπc2 (1)| >

qc3
|Iπc3 (1)| .

19

Step 1 For each patient i, let the initial reservation profile v0
i = min

c∈{c′:i∈Iπc′ (1)}
ρi(R

c).20

Step 2 The units are allocated by the PBSWI algorithm with the following welfare improvement

selection rule: If there are eligible patients for at least one available category, who belong to

two groups and have a reservation value lower than the targeted ratio, then these patients are

selected ; otherwise, all patients who are eligible for at least one available category are selected.

The reservation value of selected patients are increased equally up to the minimum of the

following two:

• The level at which a subset of patients eligible for at least one available reserve category

has exclusive rights over the categories for which they are eligible.

• The level at which the targeted ratio is achieved for a patient who had a reservation value

lower than the targeted ratio.

The above rule selects a random allocation with target utility ratios within the set of acceptable

random allocations, whenever it is feasible. We do not claim that our rule is the only one: there

are other ways to achieve target utility ratios for this very special case. Our point here is that, by

Theorem 2, our approach is robust in delivering the desired properties for different settings.

6.1.2 Soft reserves

Reserve systems have been adopted in several settings with rationing of medical resources.21 These

systems are generally such that for each category c ∈ C, a beneficiary group is designated. When
19Since the units and the number of patients are integers, we can only impose qc1

|Iπc1 (1)|
≈ qc2
|Iπc2 (1)|

. But, for the ease
of notation, we assume that it is possible to reserve units such that this approximation holds with equality. Also, these
numbers of units reserved for each group can be determined with respect to some target ratio between u1 and u3.

20This specification of initial reservation profile is due to the fact that individual rationality in the current setting
implies that each patient should receive a share at least as the minimum of their shares given by the priority rule
applied to all category groups they belong to. Note that this is different than the individual rationality constraint
given by Equation 1 in Section 3.2. Also, see Remark 1 in Section 3.2 for the generalization of Definition 3.

21After the circulation of Pathak, Sönmez, Ünver, and Yenmez (2021) and the authors’ interaction with public
health officials, the National Academies of Sciences, Engineering, and Medicine (NASEM) started to formulate rec-
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the beneficiary group is exclusive and a strict subset of patients, the associated category is referred

to as a preferential treatment category. There is also an unreserved category such that its

beneficiary group is the set of all patients. A particular approach in this setting is hard reserves: A

patient is qualified to receive a medical unit from a category if and only if they are in the beneficiary

group of that category. Hard reserves are in general incompatible with efficiency (see Example 2 in

Pathak, Sönmez, Ünver, and Yenmez (2021)). A more flexible interpretation of reserve categories is

a soft reserve system, where all individuals are qualified for all categories, that is, for each c ∈ C,

all individuals are ranked under priority order πc. In particular, a soft reserve system is obtained

by applying the following to each preferential treatment category c: (1) If there is an unreserved

category as well, πc is obtained by ranking each non-beneficiary patient strictly below the beneficiary

group and by preserving the ranking of non-beneficiary patients under the unreserved category. (2) If

there does not exist an unreserved category, then all the non-beneficiary patients are ranked as an

indifference class just below the last beneficiary patient in the associated category. While our model

applies clearly to both cases, we emphasize that the second case necessarily implies a weak order of

priorities under reserve categories, the generality of which is provided by our work.

A plausible requirement for the soft reserves setting is to maximally allocate the reserves to target

beneficiaries: maximal in beneficiary (Pathak, Sönmez, Ünver, and Yenmez, 2021). It is straight-

forward to see that the PBR rule is not maximal in beneficiary : At each step, since the rule treats

all eligible patients equally and soft reserves setting is such that all patients are ranked under a

category and the set of eligible patients may contain both beneficiary and non-beneficiary patients,

it may not prioritize target beneficiaries over the others. Actually, instead of maximizing the number

of beneficiaries, the PBR rule maximizes (at each step of the PBR) the number of eligible patients

receiving treatment (see Remark 3 in Appendix D). We analyze equitable allocation rules within the

set of maximal in beneficiary allocations in a separate work (Doğan and Yılmaz, 2022).

ommendations on the fair allocation of COVID-19 vaccines. Later, Tennessee, Massachusetts and New Hampshire
announced their plans to adopt a reserve system (Tennessee DH, 2020; Massachusetts DPH, 2020; New Hampshire
DHHS, 2021).
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6.2 Affirmative action in school choice

Affirmative action schemes are widespread in school admissions around the world. Typically, a

fraction of slots is reserved for disadvantaged students and the rest is assigned based on merit. A

compelling example is Chicago’s place-based affirmative action at the K-12 level: Schools fill 40%

of their slots with the applicants having the highest composite scores22 and the remaining 60% of

slots by dividing the slots equally across four tiers based on the socioeconomic characteristics of

applicants’ neighborhoods. For each socioeconomic tier, students in that corresponding group are

prioritized over all other students such that students both inside and outside the group are ordered

by composite score. For the merit tier, all students are ordered by composite score. This setting fits

perfectly into our model, and our results apply directly.23

One of the themes in this affirmative action scheme is to eliminate explicit targeting of applicants

by differentiating across tiers, that is tier-blindness (Dur, Pathak, and Sönmez, 2020). Let T denote

the socioeconomic tiers and m the merit tier. Thus, C = T ∪ {m}. Also, any two socioeconomic

tiers t, t′ ∈ T , qt = qt′ . Also, for each c ∈ C, we fix πc. A merit-preserving bijection θ : C → C is

a one-to-one and onto function where θ(m) = m.

Definition 10. A random allocation rule ϕ is tier-blind if for each set of students I, for each set of

tiers C and for each merit-preserving bijection θ, the random allocations Z = ϕ(I, C, (πc)c∈C, (qc)c∈C)

and Z ′ = ϕ(I, C, (πθ(c))c∈C, (qθ(c))c∈C) are such that

uZ = uZ′ . (3)

Tier-blindness implies that relabeling tiers does not change the probability with which a student is

assigned a seat. Since the PBR rule is based on the set of eligible patients at each step, and that

structure is independent from the labels of the tiers, the following observation follows immediately.

Observation 1. The PBR rule is tier-blind.
22The composite score is the equally-weighted combination of the admission test score, the applicant’s 7th grade

GPA, and the standardized test score.
23Under the assumption that for each socioeconomic tier, the number of students in that tier is more than the sum

of all slots, this setting becomes a special case of our model since the students in socioeconomic tiers are mutually
exclusive. It is easy to show that the independence of egalitarianism and sequential egalitarianism prevails and the
PBR is not egalitarian, even for this special case.
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Appendix A Maximum flow problem: Preliminaries

A directed graph, or digraph is a pair G = (V,A), consisting of a set of vertices V and a set of

ordered pairs of vertices, A, called arcs. For a set of vertices V ′ ⊆ V , the set δout(V ′) is the set of

all outgoing arcs; that is, the arcs (x, y) such that x ∈ V ′ and y 6∈ V ′. Similarly, the set δin(V ′) is

the set of all incoming arcs; that is, the arcs (x, y) such that x 6∈ V ′ and y ∈ V ′. Let l, k : A → <+

be two functions, which associate each arc a = (x, y) of G with non-negative real numbers l(x, y)

and k(x, y) called the lower-bound and capacity of the arc (x, y), respectively, such that for each

arc (x, y), l(x, y) ≤ k(x, y). For a set of arcs A′ ⊆ A, l(A′) =
∑

a∈A′ l(a) and k(A′) =
∑

a∈A′ k(a).

A network (V,A, l, k) is a digraph with lower-bound and capacity functions. A supply-demand

network is a network (V,A, l, k) with V = V1 ∪ V2 ∪ {s, t}, where V1 and V2 are the set of demand

and supply vertices, respectively, s the source vertex, and t the sink vertex such that there is an

arc from the source vertex into each demand vertex, an arc from each supply vertex into the sink

vertex, and all the other arcs are from demand vertices into supply vertices. (An arc from a demand

vertex x ∈ V1 into a supply vertex y ∈ V2 is interpreted that x demands units from y.)

A flow in a supply-demand network (V,A, l, k) is a function f : A → <+, satisfying the following

properties:
(i)

∑
x f(x, y) =

∑
z f(y, z) for each y in V1 ∪ V2 and,

(ii) l(x, y) ≤ f(x, y) ≤ k(x, y) for each (x, y) in A.

The value of f, denoted by v(f) is defined as
∑

x f(s, x). Given a supply-demand network (V,A, l, k),

the maximum flow problem is to find the maximum value of flow. The solution for this problem

is characterized by the following theorem (Schrijver, 2003):

Theorem 5. Let (V,A, l, k) be a supply-demand network such that there exists a flow f . Then, the

maximum value of a flow is equal to the minimum value of

k(δout(V ′))− l(δin(V ′))

taken over V ′ ⊆ V with s ∈ V ′ and t 6∈ V ′.24

24This theorem is an extension of the well-known Max-flow Min-cut Theorem (Ford and Fulkerson, 1956).
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Appendix B Proof of Theorem 2

We prove that (1) each random allocation given by the PBSWI class is acceptable (Lemma 1) and

(2) each acceptable random allocation Z can be obtained by a sequence of selections of reservation

values in the PBSWI (Lemma 3).

Lemma 1. Let R = (I, C, (πc)c∈C, (qc)c∈C) be a problem. If a random allocation Z is an outcome of

the PBSWI (R), then it is acceptable.

Proof. Let N be the last step of the PBSWI . By definition of the PBSWI , the algorithm ends at

the end of Step N.2, and the reservation values are not updated at Step N . Thus, the outcome of

the algorithm is vN−1. Let Z? be a random allocation such that uZ? = vN−1.

Z? is non-wasteful. Suppose Z? is not non-wasteful. Then, by Definition 2, there exists a reserve

category c and an agent i, such that

∑
j∈I

z?jc < qc and vN−1
i = uZ?(i) =

∑
c′∈C

z?ic′ < 1. (4)

Since uZ?(i) < 1, by definition of Step N.2, Category c is unavailable at this step. Thus, there exists

a set of agents I with exclusive rights over the set C(I, vN−1) with c ∈ C(I, vN−1) (note that agent i

is not necessarily in the set Γc(v
N−1)) such that

∑
j∈I

vN−1
j =

∑
c′∈C(I,vN−1)

q′c (5)

By definition of the set C(I, vN−1), each j ∈ I with vN−1
j > 0 is not eligible for categories out

of C(I, vN−1). Thus, for each j ∈ I, vN−1
j =

∑
c′∈C(I,vN−1) z

?
jc′ . By rewriting Condition (5), we obtain

∑
c′∈C(I,vN−1)

qc′ =
∑
j∈I

∑
c′∈C(I,vN−1)

z?jc′ =
∑

c′∈C(I,vN−1)

∑
j∈I

z?jc′ (6)

Since, by definition of the PBSWI , Z? is a random allocation, by Property (ii) of a random allocation

27



(Definition 1), for each c′ ∈ C(I, vN−1),

∑
j∈I

z?jc′ ≤ qc′ . (7)

Thus, Conditions (6) and (7) together imply that the weak inequality in Condition (7) holds with

equality. By definition of a random allocation, this also implies that for each c′ ∈ C(I, vN−1),
∑

j∈I z
?
jc′ =

qc′ . Since c ∈ C(I, vN−1), this contradicts with (4).

Z? is individually rational. By construction of the initial reservation profile v0, Z0 is individually ra-

tional. Since, at each step, utility increases non-negatively for each agent, for each n ≥ 1, vn ≥ vn−1.

Finally, for each 0 ≤ n ≤ N − 1, by definition of Step n.3, there exists an underlying random alloca-

tion Zn such that that uZn = vn. Thus, Z? = ZN−1 is individually rational.

Z? respects priorities. Let i ∈ I, and c ∈ C such that i πPc j and uZ?(i) < 1. At Step N , since

there exists at least one agent with a utility less than one, by definition of Step N.2, Category c

must be unavailable at the end of the algorithm. Since uZ?(i) < 1, and i πPc j, by definition

of eligibility, agent j is not eligible for c. Moreover, by definition of eligibility, for each c and

each n ≥ 1, Γc(v
n) ⊇ Γc(v

n−1). This implies that j has not been eligible at any step before N .

Thus, as Z? underlies vN−1 and vN−1
j is the sum of agent j’s shares at categories for which she is

eligible, z?jc = 0.

Lemma 2. Let vn−1 be a reservation profile with an underlying random allocation Zn−1. If I1 and I2

have exclusive rights over C(I1, v
n−1) and C(I2, v

n−1), respectively, then I1 ∪ I2 has exclusive rights

over C(I1, v
n−1) ∪ C(I2, v

n−1).

Proof. Let I1 and I2 have exclusive rights over C(I1, v
n−1) and C(I2, v

n−1), respectively. There are

two cases.

Case 1: C(I1, v
n−1) ∩ C(I2, v

n−1) = ∅.
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By definition of eligibility, we have I1 ∩ I2 = ∅. By definition of exclusive rights,

∑
i∈I1

vi =
∑

c∈C(I1,vn−1)

qc and
∑
i∈I2

vi =
∑

c∈C(I2,vn−1)

qc. (8)

Since I1∩I2 = ∅, these two equalities together imply,
∑

i∈I1∪I2
vi =

∑
c∈C(I1∪I2,vn−1)

qc. Thus, the set I1∪I2

has exclusive rights over the set of reserve categories C(I1 ∪ I2, v
n−1).

Case 2: C(I1, v
n−1) ∩ C(I2, v

n−1) 6= ∅.

Suppose I1 ∩ I2 = ∅. (Note that equalities in (8) hold in this case as well.) Clearly,
∑

i∈I1∪I2
vi =∑

i∈I1
vi +

∑
i∈I2

vi. Moreover, by definition of eligibility, C(I1 ∪ I2, v
n−1) = C(I1, v

n−1) ∪ C(I2, v
n−1).

Since C(I1, v
n−1) ∩ C(I2, v

n−1) 6= ∅, this implies that

∑
c∈C(I1∪I2,vn−1)

qc <
∑

c∈C(I1,vn−1)

qc +
∑

c∈C(I2,vn−1)

qc.

This, together with equalities in (8), imply

∑
c∈C(I1∪I2,vn−1)

qc <
∑

i∈I1∪I2

vi.

Then, Condition 2 in Theorem 1 does not hold for the set I1 ∪ I2. Thus, by Theorem 1, there does

not exist a random allocation underlying vn−1, which is a contradiction. Thus, we have I1 ∩ I2 6= ∅.

Now consider the sets I1 ∪ I2 and C(I1 ∪ I2, v
n−1). Since there exists a random allocation Zn−1

underlying vn−1, by Theorem 1,

∑
c∈C(I1∪I2,vn−1)

qc ≥
∑

i∈I1∪I2

vi. (9)

Suppose Inequality (9) is strict. First, note that

C(I1 ∩ I2, v
n−1) ⊆ C(I1, v

n−1) ∩ C(I2, v
n−1). (10)
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The inclusion follows from the definition of eligibility, and since different agents can be eligible for

the same reserve category, these two sets do not necessarily coincide. We can rewrite Inequality (9)

as follows:

∑
c∈C(I1,vn−1)\C(I2,vn−1)

qc+
∑

c∈C(I2,vn−1)\C(I1,vn−1)

qc+
∑

c∈C(I1,vn−1)∩C(I2,vn−1)

qc >
∑

i∈I1\I2

vi+
∑

i∈I2\I1

vi+
∑

i∈I1∩I2

vi.

Together with equalities in (8), this implies that

∑
c∈C(I1,vn−1)∩C(I2,vn−1)

qc <
∑

i∈I1∩I2

vi. (11)

Inequality (11), together with Inclusion (10), implies

∑
c∈C(I1∩I2,vn−1)

qc <
∑

i∈I1∩I2

vi. (12)

This violates Condition 2 in Theorem 1. Thus, by Theorem 1, there does not exist a random

allocation underlying vn−1, which is a contradiction. Thus, Inequality (9) cannot be strict. Thus,

by definition of exclusive rights, the set of agents I1 ∪ I2 has exclusive rights over the set of reserve

categories C(I1 ∪ I2, v
n−1).

Lemma 3. Each acceptable random allocation is obtained as an outcome by a member of the PBSWI

class.

Proof. Let Z be an acceptable random allocation and v = uZ . Since Z is acceptable (and thus

individually rational), v ≥ v0. First suppose v = v0. This is possible only if the units under each

category is allocated to that category’s highest ranked agents with respect to the priority rule ρ (see

Section 3.2) and each agent receives shares from at most one category. Since Z is non-wasteful, all

units are allocated and Z is the unique acceptable random allocation. Thus, this case is trivial.

We prove by induction that there is a sequence of reservation profiles vn for n = 1 to N , each

obtained by a welfare improvement from vn−1 as defined by Step n.3 of the PBSWI , and vN−1 = v.

Let n ≥ 1. Our inductive hypothesis is that there exists a random allocation Zn−1 underlying vn−1,

the reservation profile vn−1 is obtained through a sequence of welfare improvements and v ≥ vn−1.
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(We have already shown that the initial step holds since v ≥ v0.) Suppose that v 6= vn−1. We prove

that there exists a welfare improvement for some eligible agents to obtain a reservation profle vn

from vn−1 such that v ≥ vn. This completes the proof.

Suppose An = ∅. Since each reserve category c is not available, there is a set of agents having exclusive

rights over a set of categories including c. Thus, there is a collection of sets of agents, I1, . . . , Im

having exclusive rights over C(I1, v
n−1), . . . , C(Im, v

n−1), respectively, such that the union of the

sets C(I1, v
n−1), . . . , C(Im, v

n−1) is C. By Lemma 2,
m⋃
k=1

Ik has exclusive rights over C. But then, all

units are assigned to agents with exclusive rights under vn−1. Thus,
∑
i∈I

vn−1
i =

∑
c∈C

qc. Since v ≥ vn−1

and vi > vn−1
i for some agent i, this implies that there exists a reserve category c with

∑
i∈I

zic > qc.

But, this violates Property (ii) of Definition 1 and contradicts Z being a random allocation.

Suppose An 6= ∅. Let I be the subset of agents such that i ∈ I if and only if vi = vn−1
i . We claim

that there exists a reserve category c ∈ An such that Γc(v
n−1)\I 6= ∅. Suppose, on the contrary, that

for each c′ ∈ An, Γc′(v
n−1) ⊆ I. Let c be such a reserve category. By non-triviality assumption (see

Section 2), it is not possible that for each j ∈ I, vn−1
j = 1. By definition of eligibility, this implies

that there exists an agent i ∈ Γc(v
n−1) with vn−1

i = vi < 1. Also, each agent in the indifference class

including agent i is in the set Γc(v
n−1). Since Γc(v

n−1) ⊆ I, that is, for each j ∈ Γc(v
n−1), vn−1

j = vj,

this implies that there exists an indifference class such that both vn−1 and v coincide for the agents

in this and higher priority classes. Then, since Z is acceptable, any agent with a positive utility

in a lower priority class cannot be assigned a unit from c with a positive probability, which would

violate priorities. Moreover, vn−1 is obtained through a sequence of steps of the PBSWI algorithm.

Thus, for each reserve category c, there is an integer k(c) such that each agent in the first k(c)

priority classes has a reservation value one and there exists an agent in the next priority class with a

reservation value less than one under vn−1. Also, v 6= vn−1 and v ≥ vn−1. Thus, since Z is acceptable,

for some c 6∈ An, it is possible to increase the utility of an agent in Γc(v
n−1). But, by definition of

exclusive rights, for each c 6∈ An, and i ∈ Γc(v
n−1), and for each λ > 0, there does not exist a random

allocation generating the utility profile (vn−1
−i , v

n−1
i + λ), which is a contradiction.

Thus, there exists a reserve category c ∈ An such that Γc(v
n−1) \ I 6= ∅. By definition of eligibility,

there exists an agent i ∈ Γc(v
n−1) \ I such that vn−1

i < 1 and λ > 0 with vni = vn−1
i + λ underlying a
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random allocation. Thus, there is a welfare improvement to obtain vn from vn−1 such that v ≥ vn ≥

vn−1. This completes the inductive step.

Appendix C Proof of Theorem 3

Let C= {c1, c2, c3, c4, c5} each category with capacity one and I= {i, j, k, i1, i2, j1, j2, j3}. The (strict)

priority orders for categories are given below:

πc1 πc2 πc3 πc4 πc5

i i i i i

j j j j j

k k i1 i1 j1

j1 j2 i2 i2 i2

i1 j3 j1 j2 j3

j2 j1 k k k

j3 i1 j3 j1 j2

i2 i2 j2 j3 i1

Let R be the problem above and Z ∈ Za(R). Also, let

uZ = (uZ(i), uZ(j), uZ(k), uZ(i1), uZ(i2), uZ(j1), uZ(j2), uZ(j3))

By individual rationality, uZ(i) = 1, and by non-wastefulness and respecting priorities together,

uZ(j) = 1. Thus, there are three units remaining for agents k, i1, i2, j1, j2 and j3. Suppose

uZ(k), uZ(i1), uZ(j1) < 1. (13)

Then, by respecting priorities, only agents i, j, k are assigned positive probabilities for the units un-

der c1, c2, only agents i, j, i1 are assigned positive probabilities for the units under c3, c4, and only

agents i, j, j1 are assigned positive probabilities for the unit under c5. But, then agents receive in

total less than five units and this contradicts with non-wastefulness. Thus, at least one of the agents
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in {k, i1, j1} receives one unit under Z. By considering all possible cases, we obtain the set Za(R).

Case 1: uZ(k) = uZ(i1) = uZ(j1) = 1

There is only one utility profile satisfying this condition: agents i, j, k, i1 and j1 receive one unit

and the other agents are not assigned a unit with positive probability. It is straightforward to

check that there exists a random allocation, say Z1, generating this utility profile. Thus, uZ1 =

(1, 1, 1, 1, 0, 1, 0, 0).

Case 2: uZ(k) = 1; uZ(i1), uZ(j1) < 1

Since agents i, j and k receive one unit each, there are two units to be assigned to the rest of the

agents. Since uZ(i1), uZ(j1) < 1, and Z respects priorities, either (1) these two units are to be as-

signed to agents i1, j1 and j2, or (2) j2 is assigned one unit and the remaining one unit is assigned to

agents i1 and j1, or (3) j2 and j3 are assigned one unit each. While there is no acceptable random

allocation generating the utility profile in (3), there are random allocations generating the utility

profiles in (1) and (2). Among all possible random allocations generating the utility profiles in (1),

random allocation, say Z2, such that uZ2 = (1, 1, 1, 2
3
, 0, 2

3
, 2

3
, 0) is Lorenz dominant. Among all

possible random allocations generating the utility profiles in (2), random allocation, say Z3, such

that uZ3 = (1, 1, 1, 1
2
, 0, 1

2
, 1, 0) is Lorenz dominant.

Case 3: uZ(k) = uZ(i1) = 1; uZ(j1) < 1

There is one unit remaining for agents j1, j2 and i2. Among all possible random allocations gener-

ating these utility profiles, random allocation, say Z4, such that uZ4 = (1, 1, 1, 1, 1
3
, 1

3
, 1

3
, 0) is Lorenz

dominant.

Case 4: uZ(k) = uZ(j1) = 1; uZ(i1) < 1

There is one unit remaining for agents i1, i2 and j2. Among all possible random allocations gener-

ating these utility profiles, random allocation, say Z5, such that uZ5 = (1, 1, 1, 1
3
, 1

3
, 1, 1

3
, 0) is Lorenz

dominant.
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Case 5: uZ(k) < 1; uZ(i1) = uZ(j1) = 1

There is one unit remaining for agents k and i2. Among all possible random allocations generating

these utility profiles, random allocation, say Z6, such that uZ6 = (1, 1, 1
2
, 1, 1

2
, 1, 0, 0) is Lorenz domi-

nant.

Case 6: uZ(k), uZ(i1) < 1; uZ(j1) = 1

There are two units remaining for agents k, i1 and i2. Among all possible random allocations gener-

ating these utility profiles, random allocation, say Z7, such that uZ7 = (1, 1, 2
3
, 2

3
, 2

3
, 1, 0, 0) is Lorenz

dominant.

Case 7: uZ(k), uZ(j1) < 1; uZ(i1) = 1

There are two units remaining for agents k, j1 and i2. Among all possible random allocations gener-

ating these utility profiles, random allocation, say Z8, such that uZ8 = (1, 1, 2
3
, 1, 2

3
, 2

3
, 0, 0) is Lorenz

dominant.

Since Lorenz domination is a transitive binary relation, it is enough to consider the random allo-

cations Z1 to Z8 and find the random allocation Lorenz dominating others. Note that (i) Z2, Z7

and Z8 are Lorenz indifferent, (ii) Z3 and Z6 are Lorenz indifferent, and (iii) Z4 and Z5 are Lorenz

indifferent. Thus, it is enough to compare Z1, Z2, Z3 and Z4. But, while Z2 Lorenz dominates Z1

and Z3, it does not Lorenz dominate Z4. Also, Z4 does not Lorenz dominate Z2. Thus, there does

not exist a Lorenz dominant random allocation in the set Za(R). Thus, there does not exist an

egalitarian random allocation for this problem, and no rule is egalitarian.
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Appendix D Proof of Theorem 4

Let N be the last step of the PBR algorithm and Z? be one of its outcomes. Thus, uZ? = vN−1. We

first show that the PBR is a rule in the PBSWI class (Lemma 4). This implies that Z? is acceptable.

Then, we prove that any sequentially egalitarian random allocation generates uZ? (Lemma 5), which

completes the proof of the theorem.

First, we show that for each reservation profile vn obtained at the end of Step n.3, there exists a

random allocation Zn such that vn = uZn (Lemma 4). Thus, the selection of the reservation values

at Step n.3 of the PBR complies with Step n.3 of the PBSWI .

Lemma 4. For each reservation profile vn obtained at the end of Step n.3, there exists a random

allocation Zn such that vn = uZn.

Proof. The algorithm starts with the initial reservation profile v0. Since this profile corresponds

to the outcomes of the priority rule applied to each category separately, it is straightforward to

obtain the underlying Z0. In particular, each i is entitled the probability share ρi(Rc) of one unit

at category c. If agent i is entitled at multiple categories, then we choose the category with the

highest probability share and assign a unit at that category with this highest probability. (If there

are multiple such categories, we choose one of them randomly.) Moreover, the probabilities assigned

to agents are not greater than one under Z0 (because the priority rule assigns probabilities less than

or equal to one, and in case there are multiple such probabilities for an agent, then the highest such

probability is chosen for her). For each category c, the priority rule ρ(Rc) allocates to agents no

more than qc units. Thus, Properties (i) and (ii) of a random allocation are satisfied (Definition 1),

and Z0 is a random allocation.

By induction, we show that given an underlying Zn−1 for vn−1, there exists a random allocation Zn for

the utility profile vn obtained at the end of Step n. For each set of agents I with exclusive rights, since

the reservation value of each such agent is the same as in the previous step, by inductive hypothesis,

there exists an assignment of probabilities of units at reserve categories in the set C(I, vn−1). Note

that, by Definition 6, all units under these reserve categories are assigned to these agents. Also, at

Step n, these agents are not eligible for any category out of the set C(I, vn−1). Thus, we can consider
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the set of available categories separately from the set of unavailable categories.

Let us consider the set An and
⋃
c∈An

Γc(v
n−1). By inductive hypothesis, there exists a random allo-

cation Zn−1 inducing the utility profile vn−1, in particular the reservation value vn−1
i for each i ∈⋃

c∈An
Γc(v

n−1).25 Thus, by Theorem 1, for each set of agents, the condition in Theorem 1 is satisfied

at the end of Step n − 1. Since for each agent i with exclusive rights, vni = vn−1
i , for any subset of

agents with exclusive rights, the condition in Theorem 1 is also satisfied at the end of Step n. Thus,

we need to check this condition only for the set of agents with no exclusive rights, that is for each

subset of
⋃
c∈An

Γc(v
n−1). By Step n.3, only prioritized agents’ reservation values are updated. Thus,

to complete the proof, it is enough to check the condition only for the subsets including prioritized

agents. Suppose there exists such a set of agents I violating the condition in Theorem 1 at the end

of Step n. Thus, ∑
i∈I

vni >
∑

c ∈ C(I,vn−1)

qc. (14)

By Step n.3, for a non-prioritized agent i, vni = vn−1
i and for a prioritized agent j,

vnj ≤ vn−1,1 + λ? = vn−1
j + λ?.

Let p be the number of prioritized agents in the set I. Thus, Inequality (14) can be rewritten as

∑
i∈I

vn−1
i + pλ? ≥

∑
i∈I

vni >
∑

c ∈ C(I,vn−1)

qc.

Thus,

λ? >

∑
c ∈ C(I,vn−1)

qc −
∑
i∈I
vn−1
i

p
.

Since p = |{i ∈ I : i is prioritized}| and I ∈ Bk, this inequality contradicts with the definition

of λ?. Thus, no subset of
⋃
c∈An

Γc(v
n−1) with at least one prioritized agent violates the condition in

Theorem 1. Thus, by Theorem 1, there exists a random allocation Zn for the reservation profile vn

25Note that there could be an agent i ∈
⋃

c∈An
Γc(v

n−1), who is eligible also for an unavailable reserve category. By

Step n.1, she does not have any exclusive rights and, the inductive hypothesis that there is a random allocation Zn−1
for the reservation profile vn−1 implies that she is assigned probabilities equivalent to vn−1i from reserve categories
in C(i, vn−1) ∩ An.
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obtained at Step n.3.

While the PBR increases only the welfare of prioritized patients, the next observation demonstrates

that eventually, the total reservation value of all eligible agents is maximized.

Remark 3. The PBR rule maximizes the total reservation value of eligible agents at each step.

The PBR increases the reservation value of only the prioritized agents up to a level such that either (i)

their reservation value reaches to the level of the lowest reservation value of non-prioritized agents, or

(ii) a set of agents have exclusive rights, or (iii) the reservation value of each eligible agent is equal to

one. The last one is possible only if all eligible agents are prioritized and each such agent’s reservation

value can be increased to one. Note that in this case, the total reservation value of eligible agents

is maximized. Suppose (i) holds. At the updated reservation profile, the set of eligible agents is the

same as the beginning of the step. Thus, at the next step, the reservation values of the prioritized

agents at the current step, and also of the eligible agents with the second-lowest reservation value at

the end of the current step are increased. Suppose (ii) holds. Then, all the units under the reserve

categories, for which there are now exclusive rights, are assigned to agents with these rights. Since

only the reservation values of the eligible agents are increased, all the remaining units under these

categories at the beginning of the current step are assigned to eligible agents. Moreover, since no

other eligible agent’s reservation value is updated to one, by definition of eligibility, there are no new

eligible agents at the beginning of the next step. Thus, under both (i) and (ii), the next step is such

that only a subset (if not all) of the current eligible agents’ reservation values are increased. By an

inductive argument, this ends at a step where all of these eligible agents have exclusive rights or

their reservation value becomes one. In the former case, all the units available for the current eligible

agents are assigned to these agents. In the latter case, each eligible agent has a reservation value

one. Thus, in both cases the total reservation value of eligible agents is maximized. Note that this

maximization holds in general in multiple steps. But, since these steps are such that there are no

new eligible agents, the welfare improvements for these eligible agents can be also defined as being

realized in only one step instead of multiple steps.

Lemma 5. A random allocation Z is sequentially egalitarian if and only if it is welfare equivalent

to Z?.
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Proof. Let Z be a sequentially egalitarian random allocation. We prove by induction that for each n ≥

0, and i ∈ I, uZ(i) ≥ vni . Since, by definition of the PBR algorithm, no agent’s reservation value can

be improved at the last step of the algorithm, this completes the proof.

Initial step: The initial reservation profile v0 is determined by the priority rule for each single-

category rationing problem (Section 3.2). Thus, individual rationality implies that, for each agent i ∈

I, their utility is at least v0
i . This implies that for each i ∈ I, uZ(i) ≥ v0

i .

Inductive step: By inductive hypothesis, for each i ∈ I, uZ(i) ≥ vn−1
i . We show that for each i ∈

I, uZ(i) ≥ vni . At the beginning of Step n, if there is a set of agents I with exclusive rights, then they

are assigned the units under the reserve categories C(I, vn−1), and by definition of exclusive rights,

there are no units left under these categories, and these categories are not available for other agents.

Let us now consider agents without exclusive rights. For any subset of this group of agents, Condi-

tion 2 in Theorem 1 is not binding. Thus, their welfare can be improved. To make the reservation

values as equal as possible among the set of eligible agents, we construct a supply-demand net-

work (see Figure 1) by setting V n
1 =

⋃
c∈An

Γc(v
n−1) as the demand vertices and V n

2 = An as the

supply vertices.26 Agent i ∈ V n
1 points to c ∈ V n

2 if and only if i ∈ Γc(v
n−1). For each of these

arcs (i, c), l(i, c) = 0 and k(i, c) = ∞. For each prioritized agent i ∈
⋃
c∈An

Γc(v
n−1), arc (s, i)

has lower bound l(s, i) = vn−1
i + λ and capacity, k(s, i) = vn−1

i + λ. For each non-prioritized

agent i ∈
⋃
c∈An

Γc(v
n−1), arc (s, i) has lower bound l(s, i) = vn−1

i and capacity, k(s, i) = vn−1
i . Also,

for each arc (c, t) from V n−1
2 into t, let l(c, t) = 0 and k(c, t) = qc.

We set up this network as parametric in the following way: For the prioritized agents among all eligible

agents under available reserve categories, the parameter λ captures that their reservation values, and

only their reservation values, at the relevant categories are improved equally and continuously as

long as (a) the feasibility conditions in Definition 1 are not violated27 and (b) there are no others

joining the group of prioritized agents.28

26The subscripts in V n1 and V n2 stand for describing them either as the demand or supply vertices, and the super-
scripts for the number of the step of the algorithm.

27Part (a) is captured by the setting of arcs and their lower bounds and capacities: Condition (i) in Definition 1 by
setting the capacity of the arcs from the source to agents by one, and Condition (ii) by setting the capacity of each
arc from c to the sink by the capacity qc.

28Whether an agent is prioritized or not depends on her relative reservation value at reserve categories. Thus, as
the agents’ reservation values change, their status of being prioritized or non-prioritized might change as well.
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Figure 1

Since Z respects priorities, a unit under a category is not (probabilistically) assigned to an agent in a

priority class of that category until the utility of each agent in the higher priority classes is one. Thus,

when prioritized agents’ reservation values are increased via λ, the agents in the next priority class

cannot be allowed to be assigned units under the same reserve category. Also, while the reservation

values of prioritized agents ranked under a reserve category are increased, the reservation values of

other prioritized agents ranked under other categories are also increased.

At the beginning of Step n.3, if it is possible to increase the reservation value of each eligible agent

to one, then by sequential egalitarianism, each such agent’s value should be increased to one. By the

argument for Remark 3, the PBR rule achieves it, in multiple consecutive steps in general. Suppose

that it is not possible to increase the reservation value of each eligible agent to one. The idea is to

use λ as a continuously increasing parameter until a breakpoint where Part (a) or (b) will be violated
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if increased further. Thus, there are two candidates for this breakpoint: Condition 2 in Theorem 1

becomes binding (a) or the reservation value of a prioritized agent (note that the reservation value of

these agents is the minimum among the eligible agents under available reserve categories) becomes

equivalent to the level of the reservation value of a non-prioritized and eligible agent (b). If the

latter holds, then the reservation value of each prioritized agent can be increased to the level of

of the second-lowest reservation value among other eligible agents. Thus, by definition of Lorenz

dominance, at Z, among the set of eligible agents, no agent’s utility is lower than this updated

reservation value. Moreover, since this value is lower than one, the set of eligible agents does not

change. The only change is that, at this reservation profile, the set of agents with the minimum level

of reservation value becomes larger. This process of increasing the reservation values of the prioritized

continues until either the breakpoint is given by (a) or each eligible agent’ reservation value becomes

one. If it is the latter, the definition of Lorenz dominance implies clearly that each eligible agent’s

utility is one (since there exists such an underlying random allocation), which coincides with the

outcome of the PBR for the eligible agents. Thus, the only case that remains is when the breakpoint

is given by (a).

Suppose the breakpoint is given by (a). Since agents are eligible for multiple categories in general,

to check whether Condition 2 in Theorem 1 becomes binding as λ is increased, we need to consider

all subsets of agents. Also, at the beginning of each step when λ = 0, clearly the condition cannot

be binding for a subset of agents without exclusive rights.

The prioritized agents have the lowest level of reservation value among all eligible agents. Thus, to

equate reservation values, the parameter λ is increased continuously. Since Condition 2 in Theorem 1

is not binding for no subset of agents, a flow exists for some values of λ > 0. The question is to

find the maximum possible value for this parameter. Since the breakpoint is due to Condition 2

becoming binding, there will not be a flow respecting the lower bounds of the arcs from s to the

demand vertices of prioritized agents, if the reservation values of prioritized agents are increased

above this breakpoint level. By Theorem 5, the value of this maximum flow is equal to the minimum

value

k(δout(V ′))− l(δin(V ′)) (15)

taken over V ′ ⊆ V with s ∈ V ′ and t 6∈ V ′. Since the flow is always maximum, the set {s} gives this
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minimum value. Moreover, as the breakpoint is reached, there exists another set of vertices with the

minimum value of (15). We need to find this bottleneck set of vertices V ′ = {s} ∪ I ′ ∪ C ′, which

prevent λ to be increased further.

The set V ′ satisfies that each i ∈ I ′ points only to the reserve categories in C ′ (because other-

wise k(δout(V ′))−l(δin(V ′)) =∞). Thus, C(I ′, vn−1) ⊆ C ′. Also, there cannot be a reserve category c

such that c ∈ C ′ \ C(I ′, vn−1), since then, by removing c from the set V ′, the value of (15) is decreased

by the amount qc due to the capacity of the outgoing arc from c to t. Thus, C ′ = C(I ′, vn−1).29 Thus,

k(δout(V ′))− l(δin(V ′)) =
∑

i∈
( ⋃
c∈An

Γc(vn−1
)
\I′

vn−1
i + λ|{i 6∈ I ′ : i is prioritized}|+

∑
c∈C(I′,vn−1)

qc.

The first and second terms of the right-hand side in this equation is the total capacity of all the edges

from s to the set of eligible agents excluding the set I ′. Since {s} minimizes (15) as well, and only

the reservation values of prioritized agents are increased by λ, we also have

k(δout(V ′))− l(δin(V ′)) =
∑

i∈
⋃

c∈An
Γc(vn−1)

vn−1
i + λ|{i ∈

⋃
c∈An

Γc(v
n−1) : i is prioritized}|

This implies

∑
i∈
( ⋃
c∈An

Γc(vn−1)
)
\I′

vn−1
i +

∑
c∈C(I′,vn−1)

qc =
∑

i∈
⋃

c∈An
Γc(vn−1)

vn−1
i + λ|{i ∈ I ′ : i is prioritized}| (16)

Since Equality (16) is the necessary condition for V ′ to be a bottleneck set, the reservation values of

the prioritized agents can be increased by the minimum of λ satisfying (16). Note that this minimum λ

is equivalent to λ? defined in Step n.3 of the PBR. By definition of sequential egalitarianism, at Z,

the lowest reservation value is maximized. Thus, since the reservation value of a prioritized agent,

say i, is the lowest among all eligible agents, and it is feasible to increase their reservation value

to vn−1
i + λ?, their utility must be greater than or equal to this value. Moreover, the PBR is such

29Also, reserve categories in C ′ cannot be pointed by an agent who is not in I ′ and eligible only for categories in C ′
(because otherwise, by adding such an agent to the set I ′, the value k(δout(V ′ ∪ {i}))− l(δin(V ′ ∪ {i})) is lower than
the value k(δout(V ′)) − l(δin(V ′)). Note that any such agent i provides an incoming edge to V ′ with a lower-bound
zero, and an outgoing edge from V ′ with a capacity vn−1i .
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that, for each non-prioritized agent, the reservation value does not change at Step n. Thus, for each

eligible agent j, the updated reservation value is at least vn−1
j +λ?. Thus, uZ(j) ≥ vni . This completes

the proof.

Appendix E Proof of Proposition 1

We first show that the PBR rule satisfies no justified-envy. The result then follows directly from

Theorem 4. Let c ∈ C and k > 0 such that

UCSπc(k) ⊆
⋃

c′∈C\{c}

UCSπc′ (kc′(Z
?)− 1).

Let C ′ ⊆ C \ {c} be the set of reserve categories such that for each c′ ∈ C ′, UCSπc′ (kc′(Z
?) − 1) ∩

UCSπc(k) 6= ∅ (†). Let n be the first step of the PBR such that for all agents in
⋃

c′∈C′
UCSπc′ (kc′(Z

?)−

1), reservation value is one. There are two cases:

Case 1: At Step n + 1, for some category c′ ∈ C ′, agents in Iπc′ (kc′(Z
?)) are eligible for c′. By (†),

this implies that each agent in Iπc(k+1) is eligible for c. By definition of kc′(Z?), at some step n′ > n,

for each i′ ∈ Iπc′ (kc′(Z
?)), vn′i′ = 1. By (†), this implies that for each agent j ∈ Iπc(k + 1), vn′j = 1.

Thus, kc(Z?) ≥ k + 1.

Case 2: At Step n + 1, for each category c′ ∈ C ′, no agent in Iπc′ (kc′(Z
?)) is eligible for c′. Since

the reservation value of each agent in
⋃

c′∈C′
UCSπc′ (kc′(Z

?)− 1) is one, by definition of eligibility, this

case is possible only if there is the exception of exclusive rights to eligibility. By (†) and definition of

exclusive rights, agents in Iπc(k+ 1) are not eligible for c. By definition of kc′(Z?), at a step n′′ > n,

for categories in C ′, all agents in Iπc′ (kc′(Z
?)) and for category c, all agents in Iπc(k + 1), become

eligible for their corresponding categories.30 But then, as, for some c′ ∈ C ′, the reservation value of

each agent in Iπc′ (kc′(Z
?)) reaches one (this has to be the case by definition of kc′(Z?)), by (†), the

reservation value of each agent in Iπc(k + 1) reaches one as well. Thus, kc(Z?) ≥ k + 1.

30Note that this happens when an agent in
⋃

c′∈C′
UCSπc′ (kc′(Z

?)−1) becomes eligible for a category out of C ′∪{c}.
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