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Abstract

A central stability notion for allocation problems when there are private endowments is core:

no coalition should be able to block the allocation. But, for an exchange economy of discrete

resources, core can be empty. An alternative stability axiom is the bargaining set à la Aumann and

Maschler (1964): a blocking by a coalition is justified only if there is no counter-objection to it and

an allocation is in the bargaining set if there does not exist a justified blocking. Allowing for weak

preferences, we prove that any allocation obtained by the well-known Top Trading Cycles class is

in the bargaining set, but not all allocations in the bargaining set can be obtained by this class.
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1 Introduction

An exchange economy of discrete resources with private endowments is when each agent owns an in-

divisible good (an object) and these objects are to be allocated among agents via direct mechanisms

without monetary transfers. A central notion when there are private endowments is individual rational-

ity, which requires that the assignment should be such that no agent is worse off than her endowment.

Another important (stability) property of this problem is core: no coalition of agents should be able to

block the assignment; that is, they should not prefer reallocating their endowments among themselves

(and leaving the economy) over the assignment. But, core is in general empty in the weak preferences

domain. An alternative (and weaker) notion is the bargaining set by Aumann and Maschler (1964): a

blocking is justified only if there is no counter-objection to it and an allocation is in the bargaining set

if there does not exist a justified blocking. We prove that any allocation obtained by the well-known

Top Trading Cycles class is in the bargaining set, but not all allocations in the bargaining set can be

obtained by this class.

If preferences are strict, core is a singleton and it is the only solution which satisfies individual ratio-

nality, Pareto efficiency and strategy-proofness (Ma (1994), Sönmez (1999)). Also, core is equivalent to

the outcome of the well-known Top Trading Cycles (TTC) algorithm (Shapley and Scarf, 1974), which

works as follows: Each agent points to her most preferred available object (all objects are available

at the beginning) and each object points to its owner. Since all agents and objects point, there is at

least one cycle. The algorithm assigns to each agent in the cycle her most preferred available object

(that is, the object she points at) and removes her with her assigned object. This continues until no

one is left. The resulting mechanism is group strategy-proof and Pareto efficient (Roth, 1982). When

an agent may be endowed with multiple objects or no object, the top trading cycles rule is generalized

to the hierarchical change rule, which is characterized by Pareto efficiency, group strategy-proofness

and reallocation-proofness (Pápai, 2000). A more general trading mechanism is trading-cycles and it

is characterized by group strategy-proofness and Pareto efficiency (Pycia and Ünver, 2016).

While the extension of the TTC algorithm to the weak preferences domain is not trivial, such

extensions satisfying individual rationality, Pareto efficiency and strategy-proofness are shown to exist

(Jaramillo and Manjunath (2012), Alcalde-Unzu and Molis (2011), Saban and Sethuraman (2013)).

Strategy-proofness characterizes a subclass of these generalized TTC class satisfying Pareto efficiency
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(Saban and Sethuraman, 2013).

When the restrictive strict preferences assumption is removed, core can be empty (Shapley and

Scarf, 1974). Actually, core is non-empty only for a very special preference and endowment structure

(Quint and Wako, 2004). A weakening of core is weak core: blocking is allowed only if each agent

in the blocking coalition is strictly better off than the assignment. The extensions of the TTC (to

the weak preferences domain) are in the weak core. Our focus is on another notion, the bargaining

set, which incorporates an important consideration into the process of blocking an assignment: when

blocking, coalitions should consider possible counter-blockings of other coalitions. More precisely, an

assignment is in the bargaining set if blocking by a coalition implies that there is another coalition

blocking the assignment resulting from the initial blocking (Definition 2). This notion is formulated

by Aumann and Maschler (1964) and later analyzed for different economies. In the context of a

market game with a continuum of players, the bargaining set is equivalent to the set of Walrasian

allocations (Mas-Colell, 1989). For non-transferable utility games, the bargaining set is non-empty

under certain conditions (Vohra, 1991).1 For an exchange economy with differential information and a

continuum of traders, the bargaining set and the set of Radner competitive equilibrium allocations are

equivalent (Einy, Moreno, and Shitovitz, 2001). While the bargaining set notion in these works takes

into account only one step of counter-objection to a blocking coalition, the consideration of a chain of

counter-objections implies a more refined axiom (Dutt, Ray, Sengupta, and Vohra, 1989).

The idea of bargaining set also inspires some works on allocation of discrete resources in school

choice context in terms of relaxing stability notion, which is central to matching theory: if a student

has an objection to an allocation because she claims an empty slot at a school, then there will be

a counter-objection once she is assigned to that school since the priority of some other student will

be violated at that school. An outcome is in the bargaining set if and only if for each objection to

the outcome, there exists a counter-objection (Ehlers, Hafalir, Yenmez, and Yildirim, 2014).2 Some

other works refer to bargaining set in similar ways (see Ehlers (2010), Kesten (2010), Alcade and

Romero-Medina (2015)).

The paper is organized as follows: Section 2 introduces the model and the graph theoretical frame-
1There are slight differences in the formulation of the bargaining set defined by Aumann and Maschler (1964) and Mas-

Colell (1989). See Vohra (1991) for the differences between these two formulations and also other variants of the notion.
2Ehlers, Hafalir, Yenmez, and Yildirim (2014) refer to this property as constrained non-wastefulness in the school

choice context.
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work, on which the mechanisms and some of the proofs are built. Section 3.1 defines core and bargaining

set notions. We state our main result in Section 4. All proofs are in the Appendix.

2 Model

2.1 Assignment Problem

Let N be a set of agents and O a set of objects such that each agent is endowed with one object. An

assignment problem is when the objects in O are to be allocated to the agents in N in such a way that

each agent receives exactly one object. We fix O and N .

An endowment profile is a bijection e : N → O. We denote the set of endowments of a set

of agents N ′ ⊆ N by e(N ′). Each agent i has a complete and transitive preference relation Ri on O;

that is, we allow for indifferences. For each i, let Pi and Ii denote the strict and indifferences parts

of Ri, respectively. Let R = (Ri)i∈N be a preference profile. We denote an assignment problem (or a

market) by a pair (e,R).

An assignment µ is a bijection µ : N → O. An assignment µ is individually rational if

for each i ∈ N , µ(i) Ri e(i). An assignment µ is Pareto efficient if there does not exist another

assignment ν such that for each i ∈ N , ν(i) Ri µ(i) and for some j ∈ N , ν(j) Pj µ(j).

2.2 Graph theoretical framework

Let G = (V,E) be a directed graph, where V is the set of vertices and E is the set of directed edges,

that is a family of ordered pairs from V . For each U ⊂ V , let δin(U) be the set of edges (u, v) ∈ E

such that u ∈ V \ U and v ∈ U (i.e. the set of edges entering U) and δout(U) be the set of

edges (u, v) ∈ E such that u ∈ U and v ∈ V \ U (i.e. the set of edges leaving U). If U is a

singleton, say U = {v}, then we use δin(v) (and δout(v)) instead of δin(U) (and δout(U)). A subgraph

of G is any directed graph G′ = (V ′, E′) with ∅ 6= V ′ ⊆ V and E′ ⊆ E and each edge in E′

consisting of vertices in V ′. For a set of vertices T ⊆ V , the subgraph of G induced by T is the

subgraph (T,E′) such that E′ = {(u, v) ∈ E : u, v ∈ T}. A sequence of vertices {v1, . . . vm} is a path

from v1 to vm if (i) m ≥ 1, (ii) v1, . . . , vm are distinct (except for possibly v1 = vm), and (iii) for

each k = 1, . . . , m − 1, (vk, vk+1) ∈ E. A cycle is a path {v1, . . . vm} if m ≥ 2 and v1 = vm.

A set of vertices T ⊆ V is strongly connected if the subgraph induced by T is such that for

4



any u, v ∈ T , there is a path from u to v. A minimal self-mapped set is a set of vertices S ⊆ V that

satisfies two conditions: (i) S = ∪
v∈S

δout(v) and (ii) @S′ with ∅ 6= S′ ⊂ S such that S′ = ∪
v∈S′

δout(v).3

The following remark is by Quint and Wako (2004).4

Remark 1 Let G = (V,E) be a directed graph. A set of vertices S ⊆ V is non-empty and strongly

connected such that δout(S) = ∅ if and only if S is a minimal self-mapped set.

Whenever convenient, we refer to this equivalence result and say that a set of vertices S is a minimal

self-mapped set if (i) for any two vertices in S, there is a path from one to the other, and (ii) there is

no path from any vertex u ∈ S to any vertex v 6∈ S. The next remark follows directly from Remark 1

and the Minimal Self-Mapped Set (MSMS) algorithm introduced by Quint and Wako (2004).

Remark 2 Let G = (V,E) be a directed graph. If for each v ∈ V , δout(v) 6= ∅, then a minimal

self-mapped set exists.

Let w : E → < be a function. We denote
∑

e∈F⊆E
w(e) by w(F ). A function f : E → < is called a

circulation if for each v ∈ V , f(δin(v)) = f(δout(v)). Let d, c : E → < with d ≤ c. A circulation f

respects d and c if for each edge e, c(e) ≥ f(e) ≥ d(e). A minimal self-mapped set S is covered

if there exists an integer-valued circulation f such that for each v ∈ S, f(e) = 1 for some edge e

entering v.

3 Stability

A central concept in exchange economies is stability. It prevents agents from forming coalitions and

reallocating their endowments among themselves so that they are better off than the proposed assign-

ment.

Let S be a group of agents. An assignment µ is strictly blocked by S if the agents in S can

reallocate their endowments in a way that makes each of them better off than at µ; that is, there

exists µ′ such that µ′(S) = e(S) and for each i ∈ S, µ′(i) Pi µ(i).5 An assignment µ is blocked

by S if the agents in S can reallocate their endowments in a way that makes no agent worse off
3Note that ∪

v∈S
δout(v) and δout(S) are different sets in general.

4It follows directly from Proposition 2.2 in Quint and Wako (2004).
5We assume that agents in S reallocate their endowments in an efficient way: there does not exist another

reallocation of these endowments such that no agent is worse off and at least one agent is better off than the original
reallocation.
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and at least one agent better off than at µ; that is, there exists µ′ such that µ′(S) = e(S) and for

each i ∈ S, µ′(i) Ri µ(i), and for some j ∈ S, µ′(j) Pj µ(j). An assignment µ is weakly blocked

by S if the agents in S can reallocate their endowments in a way that makes no agent worse off;

that is, there exists µ′ such that µ′(S) = e(S) and for each i ∈ S, µ′(i) Ri µ(i). For an assignment

problem (e,R), the weak core (denoted by WC(e,R)) is the set of assignments that are not strictly

blocked by any coalition. The core (denoted by C(e,R)) is the set of assignments that are not blocked

by any coalition.

While core is non-empty and a singleton set for the special case of strict preferences, it is empty

in general. Under weak preferences, core is non-empty only for a very special and restrictive structure

(Quint and Wako, 2004). On the other hand, weak core is always non-empty. The problem with weak

core is that it is “too” weak, as the following example demonstrates.

Example 1 Let N = {i1, i2, i3, i4, i5, i6} and O = {o1, o2, o3, o4, o5, o6} where e(ik) = ok. The prefer-

ences are given below with each set in the table being an indifference set:

Ri1 Ri2 Ri3 Ri4 Ri5 Ri6

{o2} {o3, o4} {o1} {o2, o6} {o6} {o5}

{o1} {o2} {o3} {o4} {o4} {o6}

{o5}

The assignment µ = (o2, o3, o1, o6, o4, o5) is in the weak core and the core is empty. One can argue

that agents i5 and i6 are endowed with each other’s unique best objects and thus, they should be able to

exchange their objects. Note that the coalition S = {i5, i6} weakly dominates µ. Also, any assignment,

at which agent i5 and i6 are assigned objects o6 and o5, respectively, is not weakly blocked by a coalition

including agent i5 or i6.

The intuition in Example 1 is a simple requirement for trade. This can be captured via the following

property which guarantees trades of the best objects between the owners.

Definition 1 An assignment µ satisfies top-trade property if for any cycle S = {a1, a2, ..., aK}

where e(ak) is agent ak−1’s single best object for k = 2, ...,K and e(a1) is agent aK ’s single best

object, µ(ak−1) = e(ak) for k = 2, ...,K and µ(aK) = e(a1).
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The crucial insight from Example 1 is that even this simple top-trade property (e.g. agents 5 and 6

in Example 1 can trade their best objects) is not implied by the weak core. This raises the following

question: is there any other stability concept that is weaker than core (weak enough to be non-empty)

and stronger than weak core (strong enough to imply the top-trade property)?

3.1 The bargaining set

An alternative stability concept is bargaining set : an assignment is in the bargaining set if any blocking

by a coalition S is deterred by a counter-objection of another coalition. This is clearly a weaker notion

than core: By definition, core does not allow any such deterrence (or counter-blocking). As any blocking

is possible, core is a strong axiom. On the other hand, in the bargaining set, as counter-blocking is

possible, blocking is more difficult and the axiom is weaker.

Formulating the bargaining set notion in the current context requires careful consideration for three

reasons. First, in the definition of (weak) core, we did not need to refer to what happens to agents

and their assigned objects after blocking, mainly because blocking is a one-step process. Bargaining

set is different: it is a two-step process, blocking and counter-blocking, and it matters how we define

the assignment after blocking. We assume the least when an assignment is blocked: An assignment µ

can be considered as a set of cycles, where each agent in a cycle is assigned to the object she points to

in that cycle. When an assignment µ is blocked by a coalition S, we assume that (i) each agent in the

coalition S is assigned to the endowment of another agent in S, (ii) each agent in a cycle, which has

an empty intersection with S, is assigned to the same object which she is assigned under µ, and (iii)

every other agent is assigned to her endowment. Thus, a blocking coalition’s effect is only through the

cycles it intersects. Thus, if coalition S blocks µ via η, then assignment η satisfies (i)-(iii).

Second, since the intuition behind counter-blocking is counter-objection to a blocking coalition,

it cannot be defined by means of any arbitrary coalition. Clearly, a counter-blocking coalition has

a deterrence power only if it contains agents from the blocking coalition. The definition of counter-

blocking should embed at least this very minimal consistency requirement implicit in the very idea of

counter-objection.

Third, the idea behind the bargaining set is to reduce the amount of blockings by allowing only the

ones which are counter-blocked. But, if it is the case that for almost any assignment, any blocking is

counter-blocked, then the notion of bargaining set is not strong enough to eliminate certain blockings.
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The following result demonstrates that the restriction ‘any blocking by a coalition is counter-blocked

by another coalition’ may not lead to any other elimination of blockings than the weak core.

Proposition 1 There exists an assignment problem (e,R) and an assignment µ ∈ WC(e,R) such

that, whenever µ is blocked by a coalition S via η, η is blocked.

Proof. See Appendix A.

The problem with the stability notion that ‘any blocking by a coalition is counter-blocked by another

coalition’ is an impossibility due to indifferences in preferences: whenever blocking coalitions intersect,

and it is not possible to assign a best object to each agent in these coalitions, then each of these

coalitions is a potential counter-blocking coalition. Thus, since the only requirement in this notion is

the existence of a counter-blocking coalition, and the definition of blocking does not refer to the welfare

of the agents in this coalition after counter-blocking, it does not really restrict the set of assignments

from the stability point of view. Thus, the definition of counter-blocking cannot be the same as blocking

and additional conditions should be embedded.

We impose the most natural restriction on counter-blocking : at an assignment µ, whenever a

counter-blocking coalition forms against the blocking coalition, these agents counter-object to the

blocking coalition by claiming their welfare at µ. Let S block an assignment µ via η. A coali-

tion C(S) counter-blocks η if (i) S ∩ C(S) 6= ∅, (ii) C(S) blocks η via an assignment µ′ such

that for each i ∈ C(S), µ′(i) Ii µ(i).

Definition 2 An assignment µ is in the bargaining set if and only if

(i) it is not strictly blocked by any coalition, and

(ii) if S blocks µ via η, then there exists a coalition C(S) which counter-blocks η.

For an assignment problem (e,R), we denote the bargaining set by B(e,R).

Bargaining set is clearly stronger than weak core. Moreover, it implies the top-trade property (see

Example 1 and Definition 1).

Proposition 2 Each assignment in the bargaining set satisfies the top-trade property.

Proof. See Appendix B

Bargaining set is a plausible stability concept; it is non-empty valued (this follows as a corollary from

our main result, Theorem 2), stronger than weak core, and satisfies the top-trade property.
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4 The Top Trading Cycles (TTC) class and stability

The TTC class is a set of assignment rules as an extension of the well-known TTC mechanism defined

on the strict domain. Since agents have indifference classes, they point to multiple objects during the

execution of the TTC. Thus, the problem is to select a particular cycle among intersecting cycles. This

is the crux in defining a particular mechanism.

Let F be a selection rule: for each minimal self-mapped set that is not covered, F selects one of

the cycles in the minimal self-mapped sets. The TTC updates the endowment profile by assigning each

agent in the cycle to the object that she points to in the same cycle. Let e1 = e and for k ≥ 1, the

steps below are repeated until all agents and objects are removed.

The TTC Algorithm:

Step k. Let each agent point to her best objects among the remaining objects6 and each remaining

object points to its owner according to the endowment profile ek. Select a minimal self-mapped

set Tk in this digraph.

(k.1) If Tk is covered, then each agent in Tk is removed by assigning her one of the best objects

in Tk.

(k.2) Otherwise, select one of the cycles in the minimal self-mapped set using the selection rule F ,

and update the endowment profile in the cycle to obtain ek+1.

Each outcome of the TTC class is Pareto efficient and a member of the weak core (Jaramillo and

Manjunath (2012), Alcalde-Unzu and Molis (2011), Saban and Sethuraman (2013)).

For each problem (e,R), the set of outcomes for all selection rules is denoted by TTC(e,R). While

each outcome of the TTC is in the weak core, its relation to the core is very weak, mainly because

core is mostly empty. The core is non-empty only for a very special market structure, the top trading

segmentation (TTS) (Quint and Wako, 2004). The TTS structure is as follows: When each agent

points to her best objects, there is a covered minimal self-mapped set in the market. Once the agents

and endowments in this set is removed, and the remaining agents point to their best objects among

the remaining objects, this remaining market has another covered minimal self-mapped set (note that

for some agents in this remaining (smaller) market, their best objects might not be available anymore).
6At Step 1, the set of remaining objects is the set of all objects, O.
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Once the second covered minimal self-mapped set is also removed, there is another one in the remaining

market, and so on. Thus, a market has a TTS when the market can be partitioned into a sequence

of mutually exclusive smaller markets (that is, into covered minimal self-mapped sets) in the specific

way described. In this market, each ‘segment’ (a covered minimal self-mapped set) is ‘self-sufficient’ in

the sense that each agent can be assigned an object from that segment where such an object is a best

object in the remaining market once previous segments are removed. This is clearly a very restrictive

structure.

Theorem 1 (Quint and Wako, 2004) The core is non-empty if and only if the market has a TTS.

The core, if non-empty, is such that each agent is assigned a best object in the segment she is in (Quint

and Wako, 2004) and it is not necessarily single-valued: there could be multiple ways of assigning

agents to their best objects in their segments, but, by definition of the TTS, each such assignment

gives the same welfare level for each agent. Thus, each agent is indifferent between any two assignments

in the core. Thus, the core might not be single-valued, but it is essentially single-valued. These findings

imply an immediate characterization result.

Corollary 1 In a market with a TTS, an assignment is in the core if and only if it is an outcome of

the TTC.

4.1 Main result

Our main result is that any allocation obtained by some mechanism in the TTC class is in the bargaining

set, but not all allocations in the bargaining set can be obtained by some mechanism in the TTC class.

The intuition for this result is as follows: at each step of a mechanism in the TTC class, a set of agents

is picked so that the agents in this set are guaranteed a welfare level that is best after the removal of

agents in the previous step. Also, whenever endowment updates take place in the mechanism, possible

gains from trade are to be realized. Thus, when a coalition blocks an allocation produced by the TTC

class, it will make some agent, who is removed earlier or has an updated endowment, worse off. This

worse off agent will be able to construct a counter-blocking coalition.

Theorem 2 For each problem (e,R), TTC(e,R) ⊆ B(e,R). Moreover, there exists an assignment

problem such that the inclusion is strict.

Proof. See Appendices C and D.
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5 Conclusion

In the context of allocation problems with private endowments, when weak preferences are allowed,

we study stability concepts and their relationship to the well-known Top Trading Cycles class. In such

an environment, core, a central stability notion, can be empty. On the other hand, weak core, another

stability notion that is a weakening of core, does not possess desirable properties. We show that weak

core does no even satisfy top-trade property, a fundamental property for stability. Thus, we argue that

core is too strong (it can be empty) and weak core is too weak (it does not satisfy top-trade property).

As an alternative stability notion, we consider the bargaining set à la Aumann and Maschler (1964):

a blocking by a coalition is justified only if there is no counter-objection to it and an allocation is in

the bargaining set if there does not exist a justified blocking. We prove that any allocation obtained

by the Top Trading Cycles class is in the bargaining set, but not all allocations in the bargaining set

can be obtained by this class.
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Appendix A Proof of Proposition 1

Let N = {i1, i2, i3, i4} and O = {o1, o2, o3, o4} where e(ik) = ok. The preferences are given below with

each set in the table being an indifference set:

Ri1 Ri2 Ri3 Ri4

{o3, o4} {o1, o4} {o2} {o2}

{o2} {o3} {o1, o4} {o1, o3}

{o1} {o2} {o3} {o4}

The assignment µ = (o2, o1, o4, o3) is not strictly blocked by any coalition. Note that since i2 receives

a best object under µ, any strictly blocking coalition cannot contain i2. Since e(i2) is the unique best

object for agents i3 and i4, this implies that these agents cannot be in a strictly blocking coalition. We

claim that any blocking of µ is blocked. Let S block µ via η. Coalitions {i1, i2} and {i2, i3} cannot

block µ. We check the remaining coalitions.

Case 1: S = {i1, i2, i4}

The assignment η is (o4, o1, o3, o2) and it is blocked by S′ = {i1, i2, i3}.

Case 2: S = N

There are two candidates for η: (o3, o4, o2, o1) and (o3, o4, o1, o2). The former is blocked by {i1, i2, i4},

the latter by {i1, i2, i3}.

Case 3: S 6= {i1, i2, i4} and S 6= N

First note that, at µ, agents i1 and i2 are assigned each other’s endowments (the same for agents i3

and i4). Thus, by definition of blocking, at η, at least one of the agents in S is assigned her endowment.

Since the agents in the coalition {i1, i2, i4} can reallocate their endowments such that each receives a

best object, {i1, i2, i4} blocks η.

Appendix B Proof of Proposition 2

Lemma 1 Let (e,R) be an assignment problem and µ ∈ B(e,R). Let G be a graph where each object

points to its owner and each agent points to her best objects. If A is a covered minimal self-mapped set

in G, then µ allocates the objects in A to the agents in A such that each agent receives one of her best

objects.
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Proof. Suppose not. Then, since A is covered, agents in A, say S, block µ, say via η, under which

each agent in S receives a best object. Since µ ∈ B(e,R), there is a coalition C(S) which counter-

blocks η via µ′. By definition, C(S) ∩ S 6= ∅ and for each i ∈ C(S), µ′(i) Ii µ(i). Thus, each agent

in C(S) ∩ S receives a best object under both µ and η. Note that C(S) * S, since otherwise C(S)

cannot block η. Thus, there is an agent in C(S) ∩ S who receives, under η, an object owned by some

agent in C(S) \ S. But since S is a minimal self-mapped set, this object cannot be a best object for

this agent, contradicting with the fact that each agent in C(S) ∩ S receives a best object under η.

Since any cycle S = {a1, a2, ..., aK}, where e(ak) is agent ak−1’s single best object for k = 2, ...,K

and e(a1) is agent aK ’s single best object, is a minimal self-mapped set that is covered, by Lemma 1, µ

assigns each agent in S a best object from the endowment set of the agents in S. Since each agent has

a single best object, the top-trade property is satisfied.

Appendix C Each outcome of the TTC is in the bargaining set.

Let (e,R) be an assignment problem and let µ ∈ TTC(e,R). We need to show that µ satisfies the

conditions in Definition 2: (i) µ is not strictly blocked by any coalition, and (ii) if S blocks µ via η,

then there exists a coalition C(S) which counter-blocks η.

In the TTC algorithm, at each step k, a minimal self-mapped set Tk is chosen. This set may

be covered or not. If it is covered, then it is removed. If not, an endowment update takes place

among agents in a selected subset (cycle) of Tk, and there is no removal in this step.7 At the next

step, there may be a removal of a new covered minimal self-mapped set or there may be a further

endowment update with no removal. Thus, potentially, at some steps of the algorithm, there is no

removal of agents, while in others there is. We consider the endowment updates and removal of agents

in the following way: Let L0 be the set of agents who are removed before any endowment update

takes place. It is the union of a series of covered minimal self-mapped sets. If there is no removal

before any endowment update, L0 is empty. After each agent in L0 and their original endowments are

removed, there is a consecutive series of endowment updates, which is followed by a consecutive series

of removal of agents, which is followed by another consecutive series of endowment updates, and so on.8

7When a set of agents is removed, the objects they are assigned to are also removed. In the rest of the proof, when
we say a set of agents is removed, we mean that the objects they are assigned to are also removed.

8These updates and removals may be a single update or a single removal.
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For t = 1, 2, ...,M , let Ut be the set of agents whose endowments are updated in a series of updates

with no removal in between, and let Lt be the set of agents who are removed in a series of removals

with no updates in between. More precisely, Lt is the set of all agents who are removed after the

endowment updates of the agents in Ut and before the endowment updates of the agents in Ut+1 take

place. Ut is the set of all agents whose endowments are updated after each agent in Lt−1 is removed

and before each agent in Lt is removed. We set U0 = ∅.9

Also, define Vt to be the set of all non-removed agents whose endowments are updated sometime

before the agents in Lt are removed. Thus, for t = 1, 2, ...,M ,

Vt = (∪tτ=1Uτ ) \ (∪t−1τ=0Lτ )

By definition, U1 = V1. LM is the last set of agents who are removed after the last series of

endowment updates, UM . Note that

N = L0 ∪
M⋃
t=1

(Vt ∪ Lt)

By definition, for each t = 1, 2, ...,M , Ut 6= ∅ and Lt 6= ∅. Otherwise, if Ut = ∅, then Lt−1 and Lt+1 are

essentially equal to Lt−1, contradicting the definition of Lt. Likewise, Lt = ∅ contradicts the definition

of Ut. Thus, for each t = 1, 2, ...,M , Vt 6= ∅. Also, for each t = 1, ...,M , Ut ∩ Lt 6= ∅. Otherwise,

by definition, no agent in Lt has an endowment update after Lt−1 is removed. Thus, Lt is essentially

removed before the endowment update(s) of Ut, contradicting the definitions of Lt−1, Ut and Lt. Thus,

for each t = 1, ...,M , we have Vt ∩ Lt 6= ∅.

Lemma 2 Let for some t, i ∈ Ut and i /∈ Vt−1 ∪ Lt. Then, i is assigned to a best object among the

remaining objects after the agents in Lt−1 are removed.

Proof. Suppose an agent i’s endowment is updated for the first time before Lt and after Lt−1 are

removed, and agent i is not removed with Lt. Then, agent i is tentatively endowed (at the end of

updates in Ut) with a best object among the remaining objects after the removal of Lt−1. After step t,

at each step before the agent is assigned an object and removed, the agent always points to her best
9An agent’s endowment may be updated multiple times and one update may be before some Lt is removed and

another update may be after Lt is removed, provided that the agent is not removed with Lt or before.
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objects among the remaining objects. Thus, she is never tentatively endowed with an object that is

worse than her tentative endowment after the removal of Lt−1. Thus, she is assigned to a best object

among those remaining ones after Lt−1 is removed.

Lemma 3 Let for some t, i ∈ Ut. At the end of updates at t, let oj be the updated endowment of

agent i. Let agent j be the original owner of oj. If j is not removed at or before t, then she is assigned

to an object that is at least as good as a best object among the remaining objects after the agents in Lt−1

are removed.

Proof. Suppose i ∈ Ut for some t. At the end of updates at t, let agent i’s updated endowment be oj .

Let j be the original owner of oj . Suppose j is not removed at or before t. Thus, agent j has an

updated endowment during or before the updates at t. Suppose her first endowment update was at

some t′ ≤ t. Thus, j ∈ Ut′ and j /∈ Vt′−1 ∪ Lt′ . By Lemma 2, she is assigned to a best object among

those remaining ones after Lt′−1 is removed. Since t′ ≤ t, the object she is assigned to is at least as

good as a best object among the remaining objects after the agents in Lt−1 are removed.

Lemma 4 If S blocks µ, then S ∩ L0 = ∅.

Proof. Suppose S blocks µ via some η. First, we show S\L0 6= ∅. Suppose S ⊆ L0. Thus, each strictly

better off (under η than under µ) agent is also in L0. Since L0 consists of a series of covered minimal

self-mapped sets, each of which is removed in some step k in the TTC algorithm: L0 = ∪Kk=1Tk, where

each Tk is a covered minimal self-mapped set. Now, pick one of those strictly better off (under η than

under µ) agents in L0. She is removed at some step k′ > 1, and she is assigned, under η, to an object

that is removed in some earlier step k′′ < k′. Since there is no endowment update within these K

stages, some other agent, say agent j, who is removed at step k′′ is assigned, under η, to an object that

is outside the endowments of agents in ∪k′′k=1Tk. Agent j is in S and worse off under η than under µ.

This contradicts our supposition that S blocks µ via η. Thus, S \ L0 6= ∅. Now, suppose S ∩ L0 6= ∅.

Since S \ L0 6= ∅, an agent in S ∩ L0 is assigned, under η, to an object that is outside the original

endowments of all agents in L0. But, since L0 is a union of consecutive covered minimal self-mapped

sets, this agent is worse off under η than under µ. This contradicts our supposition that S blocks µ

via η. Thus, S ∩ L0 = ∅.

Proof of part (i) of Definition 2: We show that there is no S that strictly blocks µ. Suppose µ

is strictly blocked by some coalition S via η. Thus, each agent in S is assigned, under η, to some object
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that is strictly better than the object she is assigned to under µ. When S strictly blocks µ via η, it also

blocks µ via η. By Lemma 4, S∩L0 = ∅. There exits a k ≥ 1 such that S∩
⋃k−1
t=0 Lt = ∅ and S∩Lk 6= ∅.

Consider the following two exhaustive cases:

Case 1. No agent in
⋃k−1
t=0 Lt has an updated endowment (before Lk is removed) which is originally

endowed by some agent in S. Thus, the original endowments of agents in S ∩ Lk are not removed

before Lk is removed. Thus, each agent in S ∩ Lk is assigned, under µ, to a best object among the

remaining objects after
⋃k−1
t=0 Lt is removed, since S ∩Lk ⊆ Lk. Also, each agent in S ∩Lk is assigned,

under η, to an object which is an original endowment of some agent in S, since S is a coalition

and S ∩ Lk ⊆ S. By the supposition of this case, for an agent in S ∩ Lk original endowment of some

agent in S can be at most a best object among the remaining objects after
⋃k−1
t=0 Lt is removed. Thus,

for an agent i ∈ S ∩ Lk, it is not possible to have η(i) Pi µ(i).

Case 2. There is an agent in
⋃k−1
t=0 Lt who has an updated endowment (before Lk is removed)

which is originally endowed by some agent in S. Denote the set of such agents in S by Ŝ. Since the

coalition S creates a cycle via η, there is an agent i ∈ Ŝ, who is assigned, under η, to an object which is

the original endowment of some agent j ∈ S \ Ŝ. By the definition of Ŝ, agent j’s original endowment

is among the remaining objects after
⋃k−1
t=0 Lt is removed. Thus, agent i is assigned, under η, to an

object that cannot be strictly better than a best object among the remaining objects after
⋃k−1
t=0 Lt is

removed. By Lemma 3, each agent in Ŝ, thus agent i as well, is assigned, under µ, to an object that

is at least as good as a best object among the remaining objects after
⋃k−1
t=0 Lt is removed. Thus, for

agent i ∈ Ŝ ⊂ S, it is not possible to have η(i) Pi µ(i). �

Proof of part (ii) of Definition 2: Suppose µ does not satisfy part (ii) of Definition 2. Denote

this supposition with SUPP . Under SUPP , there exists an S which blocks µ via some η, for which

there is no C(S) that counter-blocks η.10 Thus, there is no C(S) such that C(S) blocks η via some µ′

such that (i) S ∩ C(S) 6= ∅, and (ii) for each i ∈ C(S), µ′(i) Ii µ(i). Under this supposition SUPP ,

we show

S ∩
M⋃
t=1

Vt ∪ Lt = ∅ (1)

10If there is no S that blocks µ, then (ii) is already satisfied. Thus, we assume that there is some S that blocks µ.
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through proof by induction. Lemma 4 (S ∩ L0 = ∅) and Equation 1 together imply

S ∩ [L0 ∪
M⋃
t=1

Vt ∪ Lt] = ∅

But since L0 ∪
⋃M
t=1 Vt ∪ Lt = N , this implies S ∩ N = ∅, which is a contradiction. Thus, this

contradiction implies that our supposition SUPP cannot be true, proving that µ satisfies part (ii) of

Definition 2.

In what follows, we assume that S blocks µ via some assignment η. We now prove Equation 1 in a

series of lemmas, Lemma 5 through Lemma 9.

Lemma 5 Suppose S ∩
⋃t
τ=0 Vτ ∪ Lτ = ∅ and S ∩ (Vt+1 ∪ Lt+1) 6= ∅. If i ∈ S with η(i) Pi µ(i),

then i ∈ S \ (Vt+1 ∪ Lt+1).11

Proof. Pick an agent i ∈ S with η(i) Pi µ(i). First note that, each agent in Vt+1 is assigned,

under µ, to one of her best objects among the remaining objects after Lt is removed, by Lemma 2.

Thus, i /∈ Vt+1. Now, suppose i ∈ Lt+1. Note that each agent in Lt+1 is removed as part of a covered

minimal self-mapped set given the endowment profile after the updates in Vt+1. Since i ∈ Lt+1 and i

is strictly better off under η than under µ, she is assigned, under η, to an object which is removed as

part of a covered self-mapped set that is removed before she is removed. Thus, there is an agent, say j,

in a previously removed covered self-mapped set T , who is assigned, under η, to an object outside this

covered self-mapped set T . Agent j is in S and is worse off under η than under µ. This contradicts

with S blocks µ via η. Thus, i /∈ Lt+1. Thus, i ∈ S \ (Vt+1 ∪ Lt+1). Thus, each strictly better off

(under η than under µ) agent in S is in S \ (Vt+1 ∪ Lt+1).

Given an initial endowment profile e, an allocation µ essentially reallocates the original endowments

among the agents. This can be described as a collection of disjoint cycles, where each cycle has some

agents and only the original endowments of those agents in that cycle. Thus, a cycle is a swap of

original endowments of those agents in that cycle among those agents only.

For a given allocation µ, let {Cµ1 , C
µ
2 , ..., C

µ
Y } be the set of cycles that describe µ, where for

each y = 1, 2, ..., Y , µ(Cµy ) = e(Cµy ) and µ is obtained by carrying out all of these cycles. Note that

these cycles are disjoint. Also, each agent i ∈ N leaves the TTC algorithm as part of some cycle Cµy
11By Lemma 4, S ∩ L0 = ∅. Thus, if i ∈ S and η(i) Pi µ(i), then i ∈ S \ (V1 ∪ L1).
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where y ∈ {1, 2, ...Y }. This cycle Cµy may have some agent whose endowment has been updated, or may

have no agent with an updated endowment. We emphasize this distinction: If for some t, Cµy ∩Vt 6= ∅,

then, we call cycle Cµy a Cu-type cycle; otherwise, we call it a Cn-type cycle.12

When an assignment µ is blocked by a coalition S via some η, we assume that under η,

(i) each agent in the coalition S is assigned to the original endowment of another agent in S,

(ii) each agent in a cycle Cµy , with Cµy ∩ S = ∅, is assigned to the object she is assigned to under µ,

(iii) each agent in Cµy \ S, with Cµy ∩ S 6= ∅, is assigned to her original endowment. We say that a

cycle Cµy , with Cµy ∩ S 6= ∅ is broken by S via η, equivalently, S breaks Cµy via η.

Lemma 6 Suppose S ∩ (V1 ∪ L1) 6= ∅. Then, each agent in L1 \ S who belongs to some Cu-type cycle

and each agent in V1 \S is assigned, under η, to her original endowment. Each agent in L1 \S who is

in some Cn-type cycle is assigned, under η, to either her original endowment (if this cycle intersects

with S), or her assignment under µ (if this cycle does not intersect with S).

Proof. It cannot be the case that S ∩ (V1 ∪L1) ⊆ Cµy where Cµy ⊂ L1 is some Cn-type cycle. Suppose

otherwise. By Lemma 5, S \ (V1∪L1) 6= ∅. Thus, an agent in S ∩Cµy is assigned, under η, to an object

which is the original endowment of some agent outside of Cµy . But since cycle Cµy is a minimal self-

mapped set, this agent is worse off under η than under µ. Thus, S cannot block µ. Thus, S ∩ (V1 ∪L1)

has a nonempty intersection with some Cu-type cycle. Thus, S breaks a cycle which includes entire V1

via η. S also breaks each Cu-type cycle in L1, via η. Thus, each agent in L1 \ S who belongs to

some Cu-type cycle and each agent in V1 \ S is assigned, under η, to her original endowment.13

In terms of the intersection of the cycles, Cµy , with Lt and Vt, there is a crucial difference be-

tween t = 1 and t > 1: For t = 1, a Cu-type cycle that is broken by S via η cannot have a nonempty

intersection with L0. But for t > 1 and 0 < τ < t, a Cu-type cycle that is broken by S via η can have

a nonempty intersection with Vτ ∪ Lτ .

For Lemma 7 below, let {Cµ1 , C
µ
2 , ..., C

µ
Y } be the set of cycles that describe µ. Note that for any

agent i ∈ N , there is some Cµy such that i ∈ Cµy : any agent i belongs to one of the cycles that describe µ.

Lemma 7 Suppose S∩
⋃t
τ=0 Vτ ∪Lτ = ∅ and S∩ (Vt+1∪Lt+1) 6= ∅. Suppose for each z = 1, ..., Z, Cµyz

has a nonempty intersection with S ∩ (Vt+1 ∪Lt+1). Each agent in (∪Zz=1C
µ
yz) \S is assigned, under η,

12Note that a cycle of either type is not necessarily a subset of some Lt.
13The latter part of the argument in the lemma holds by the assumption on how η assigns objects to N \ S.
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to her original endowment.14

Proof. Since S breaks the cycles {Cµy1 , C
µ
y2 , ..., C

µ
yZ} via η, each agent in Cµyz \ S, with C

µ
yz ∩ S 6= ∅, is

assigned to her original endowment under η. Thus, the result follows.

We are now ready to prove Equation 1, S ∩
⋃M
t=1 Vt ∪Lt = ∅, through an induction argument: We

first show that Equation 1 holds for t = 1 (Lemma 8 below). Then, we assume that Equation 1 holds

for t, and we show that it also holds for t+ 1 (Lemma 9 below).

Lemma 8 S ∩ (V1 ∪ L1) = ∅.

Proof. Suppose S ∩ (V1 ∪ L1) 6= ∅. We show that there is a coalition C(S), which counter-blocks η,

that is, C(S) blocks η via µ′ ∈MC(S)(µ) with S ∩ C(S) 6= ∅.

Let C(S) = V1 ∪L1. Define µ′ as follows: for each i ∈ L1, let µ′(i) = µ(i), and for each i ∈ V1 \L1,

let µ′(i) = uV1(i), where uV1(i) is the updated endowment of agent i at the end of all updates in V1.

Note that e(V1 ∪L1) = µ′(V1 ∪L1). Thus, C(S) = V1 ∪L1 is a coalition that assigns all of its original

endowments among its members. By our supposition, S ∩ C(S) 6= ∅. By definition of µ′, for each

agent i ∈ L1, µ′(i) Ii µ(i). For each agent i ∈ V1 \L1, the updated endowment uV1(i) = µ′(i), is one of

her best objects among the remaining objects after L0 is removed. By Lemma 2, each agent in V1 is

assigned, under µ, to one of her best objects among the remaining objects after L0 is removed. Thus,

for each agent i ∈ V1 \ L1, we have µ′(i) Ii µ(i). Thus, µ′ ∈MV1∪L1(µ).

We show that C(S) = V1 ∪ L1 blocks η via µ. By Lemma 5, if for an agent i, η(i) Pi µ(i),

then i ∈ S \ (V1 ∪ L1). Thus, no agent in C(S) = V1 ∪ L1 is strictly better off under η than under µ.

Since µ′ ∈MV1∪L1(µ), no agent in C(S) = V1∪L1 is strictly better off under η than under µ′. Now, to

show that C(S) = V1 ∪ L1 blocks η via µ, we show that there is at least one agent in C(S) = V1 ∪ L1

who is strictly better off under µ′ than under η. Such an agent can be only in (V1 ∪ L1) \ S. Thus,

consider the agents in (V1 ∪ L1) \ S. By Lemma 6, under η, each agent in V1 \ S is assigned to her

original endowment. Also, each agent in L1 \ (S ∪ V1) who belongs to some Cu-type cycle is assigned,

under η, to her original endowment. Each agent in L1 \ (S ∪V1) who belongs to some Cn-type cycle is

assigned, under η, to either her original endowment (if this cycle intersects with S), or her assignment
14Under η, each agent in Lt+1 who belongs to some Cu-type cycle and each agent in Vt+1 is assigned to her endowment.

Each agent in Lt+1 who belongs to some Cn-type cycle is assigned to her assignment under µ (if this cycle does not
intersect with S) or to her endowment (if this cycle intersects with S). The reasoning is similar to that of Lemma 6.
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under µ (if this cycle does not intersect with S).15 Thus, an agent in (V1∪L1)\S is assigned, under η,

either to her original endowment or to her assignment under µ. Suppose that each agent in (V1∪L1)\S

who is assigned to her original endowment under η is indifferent between her original endowment and

her assignment under µ.16 Thus, each agent in (V1 ∪L1) \S is indifferent between µ and η. Also, each

agent in S is weakly better off under η than under µ and one agent in S \ (V1∪L1) is strictly better off

under η than under µ. Also, no agent in N \(S∪V1∪L1) is worse off under η than under µ. Otherwise,

there is an agent j ∈ N \ (S ∪ V1 ∪ L1) who is worse off under η than under µ. Agent j a member of

some cycle Cµy (among the cycles that describe µ) that is broken by S.17 Since S breaks Cµy , Cµy ∩S 6= ∅.

Also, Cµy allocates its own original endowments among its members via µ, by the definition of cycles

that describe µ. Thus µ ∈ MCµy
(µ). Agent j is strictly better off under µ than under η. Since, each

agent in Cµy \ S is assigned, under η, to her original endowment, no agent in Cµy is worse off under µ

than under η. Thus, Cµy blocks η via µ ∈ MCµy
(µ) with Cµy ∩ S 6= ∅. Thus, Cµy counter-blocks η.

This contradicts our supposition SUPP . Thus, no agent in N \ (S ∪ V1 ∪ L1) is worse off under η

than under µ. Thus η Pareto dominates µ, which contradicts with TTC algorithm producing a Pareto

efficient allocation.18

Thus, there is an agent in (V1 ∪ L1) \ S, who is assigned to her original endowment under η

and her original endowment is worse than her assignment under µ. Thus, this agent is worse off

under η than under µ. Since µ′ ∈ MV1∪L1(µ), this agent is strictly better off under µ′ than under η.

Thus, C(S) = V1 ∪ L1 blocks η via µ′ ∈ MC(S)(µ) with S ∩ C(S) 6= ∅. Thus, C(S) = V1 ∪ L1

counter-blocks η. This contradicts with our supposition SUPP , proving S ∩ (V1 ∪ L1) = ∅.

Lemma 9 If for each τ ≤ t, S ∩ (Vτ ∪ Lτ ) = ∅, then S ∩ (Vt+1 ∪ Lt+1) = ∅.

Proof. Suppose for each τ ≤ t, S ∩ (Vτ ∪ Lτ ) = ∅ and S ∩ (Vt+1 ∪ Lt+1) 6= ∅. We show that

there is a C(S), which counter-blocks η. Suppose {Cµ1 , C
µ
2 , ..., C

µ
Y } is the set of cycles that describe µ.

Let {Cµy1 , C
µ
y2 , ..., C

µ
yZ} be the set of all cycles that have a nonempty intersection with S∩(Vt+1∪Lt+1).19

15An agent who is assigned, under η, to her assignment under µ, can only be in L1 \ (S ∪ V1) since each agent in V1 is
removed as part of a Cu-type cycle.

16Since TTC algorithm produces individually rational assignments, µ is also individually rational. Thus, e(i) Pi µ(i)
is not possible for any i.

17If Cµy is a cycle that is not broken by η, then each agent in Cµy is assigned to her assignment under µ. Thus, no such
agent is worse under η than under µ, which is a contradiction.

18Pareto efficiency of TTC is shown in Saban and Sethuraman (2013).
19There exists at least one such cycle. This follows from the fact that each agent belongs to some cycle Cµy , which is

among the cycles that describe µ, and that S ∩ (Vt+1 ∪ Lt+1) 6= ∅.
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Let C(S) = ∪Zz=1C
µ
yz and µ′(i) = µ(i) for all i ∈ C(S). Note that e(C(S)) = µ′(C(S)). Also, we

have µ′ ∈MC(S)(µ) and C(S)∩S 6= ∅. By Lemma 7, each agent in C(S)\S is assigned, under η, to her

original endowment. Suppose each agent in C(S)\S is indifferent between her original endowment and

her assignment under µ. Thus, no agent in C(S) is worse off under η than under µ. Since S blocks µ

via η, each agent in S is weakly better off under η than under µ and one agent in S is strictly better off

under η than under µ. Also, no agent in N \ (S ∪C(S)) is worse off under η than under µ. Otherwise,

there is an agent j ∈ N \ (S ∪ C(S)) who is worse off under η than under µ. Agent j is a member

of some cycle Cµŷ that is broken by S.20 With a similar argument as in the proof of Lemma 8, Cµy

counter-blocks η. This contradicts our supposition SUPP . Thus, no agent in N \(S∪C(S)) is worse off

under η than under µ. Thus, η Pareto dominates µ, which contradicts with TTC algorithm producing

a Pareto efficient allocation. Thus, there is at least one agent in C(S) who is worse off under η than

under µ. Thus, C(S) = ∪Zz=1C
µ
yz blocks η via µ′ ∈MC(S)(µ) with S∩C(S) 6= ∅. Thus, C(S) = ∪Zz=1C

µ
yz

counter-blocks η. This contradicts with our supposition SUPP , proving S ∩ (Vt+1 ∪ Lt+1) = ∅.

Induction arguments proven in Lemma 8 and Lemma 9 together imply

S ∩
M⋃
t=1

Vt ∪ Lt = ∅

By Lemma 4, S ∩ L0 = ∅. Thus,

S ∩ [L0 ∪
M⋃
t=1

Vt ∪ Lt] = ∅

Since N = L0∪
⋃M
t=1(Vt∪Lt), we get S∩N = ∅, which is a contradiction. Thus, our initial supposition

SUPP does not hold. Thus, µ satisfies part (ii) of Definition 2. Thus, µ ∈ B(e,R). This proves that

for each assignment problem (e,R), TTC(e,R) ⊆ B(e,R). �

Appendix D TTC(e, R) ( B(e, R) for some (e, R).

To show that the inclusion in Theorem 2 is strict for some assignment problem, we construct an

assignment problem (e,R) such that B(e,R) ⊆ TTC(e,R) does not hold.

Let N = {i, j, k, l,m, i1, i2} and O = {x, y, z, a, b, e1, e2}.21 The preferences are given below with
20Cµŷ is among the cycles that describe µ, with ŷ /∈ {y1, ..., yZ}.
21For expositional convenience, we deviate from the notational convention we have used in previous tables and use a

mixed notation instead of e(ik) = ok for each agent ik.

21



each set in the table being an indifference set and a square box standing for the endowment of the

corresponding agent:

Ri Rj Rk Rl Rm Ri1 Ri2

{y, z} {e1} {e2} {b, x, z} {x} {x} {x}

x {a} {b} a b {e2} {e1}

y z e1 e2

We claim that the assignment µ (colored red in the table) is in the bargaining set. To prove this,

we use the graph in Figure 1, where each agent points to her best objects, each object points to its

owner, and solid edges represent best objects while dashed edges represent second-best objects except

endowments. Dashed edges also represent a crucial feature of µ: an edge is a dashed line if and only

if it starts with an agent such that she is assigned her second-best object and that object is not her

endowment.

i

y

j

e1

i1

x

z

k

b

e2

i2

l

a

m

Figure 1: Initial graph

Let S block µ. We now find all possible blocking coalitions S. Note that each agent is assigned

either her best or second-best object. Thus, any blocking coalition is a cycle in this figure including

either solid or dashed edges. By definition of blocking, any such cycle has the following properties: (1)

The cycle should contain at least one agent assigned to her second-best object at µ (in Figure 1, these

are the vertices starting at a dashed edge, thus, agents j, k, i1 and i2) such that she is the starting
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vertex of a solid edge in the cycle. (2) Any agent who is not starting a dashed edge in Figure 1 should

be starting a solid edge in the cycle. Next we find these cycles by checking four possible cases each

representing one of the agents in (1) being better off at the new assignment.

Blocking coalitions with agent j better off: {j, i1, i} and {j, i1, i2, i}.

Blocking coalitions with agent k better off: {k, i2, i}, {k, i2, i1, i}, {k, i2, i, j, l} and {k, i2, i1, i, j, l}.

Blocking coalitions with agent i1 better off: {i1, i, j}, {i1, i, j, l, k, i2} and {i1, i, k, i2}.

Blocking coalitions with agent i2 better off: {i2, i, k}, {i2, i, j, i1} and {i2, i, j, l, k}.

Since some coalitions are such that multiple agents are better off after blocking, clearly, some of the

above blocking coalitions above overlap. There are in total six blocking coalitions:

S1 = {i, j, i1}

S2 = {i, k, i2}

S3 = {i, j, i1, i2}

S4 = {i, k, i1, i2}

S5 = {i, j, k, l, i2}

S6 = {i, j, k, l, i1, i2}

The assignment µ is given by two trading cycles: {i1, i2} and {i, j, l, k,m}. By definition of the as-

signment after blocking, any agent who is not a member of a blocking coalition is assigned to her

endowment after blocking. For n = 1, . . . , 6, let Sn block µ via ηn. Moreover, by definition of counter-

blocking, each agent in the counter-blocking coalition is indifferent between the object she is assigned

after counter-blocking and the object she is assigned under µ. The assignments η1 and η3 are counter-

blocked by C1 = {i, k,m}. To see this, note that agents k and m are assigned their endowments

at both η1 and η3 after blocking by S1 and S3, respectively. Also, agent i is assigned a best object

both at µ and the assignment after agents {i, k,m} block η1 and η3. By the same argument, assign-

ments η2 and η4 are counter-blocked by C2 = {i, j, l}. Again, note that each agent in C2 is assigned

after counter-blocking an object indifferent to the one she is assigned under µ. Finally, assignments η5

and η6 are counter-blocked by C3 = {i, j, l,m}.

The assignment µ is such that whenever a coalition blocks it via an assignment, the latter is

counter-blocked by a another coalition. Thus, µ is in the bargaining set. To complete the proof we need

to show that µ is not an outcome of the TTC class for this problem. This can be seen from Figure 1.
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By definition of the TTC, a minimally self-mapped set is chosen at the first step, when agents point to

their best objects. Thus, in Figure 1, this is the subgraph of with only solid edges. The only minimally

self-mapped set in this subgraph consists of agents i, j, k, i1 and i2. It is not covered since object x is the

only best object for both agents i1 and i2. Thus, the TTC algorithm chooses a cycle in this minimally

self-mapped set to assign them their best objects. There are two such cycles: {i, j, i1} and {i, k, i2}.

But, each of these cycles contains at least one agent, who is assigned a worse object than the object

she points to. This implies that µ 6∈ TTC(e,R). This completes the proof.
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