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Bridging Communities
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Deep learning

Computer Vision, Al
Image classification

Computer vision

Video object segmentation and tracking
Activity modeling/detection/recognition
Video understanding

Signal Processing

Non-linear signal processing
Learned image restoration, super-resolution
Learned image/video compression
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Wiener deconvolution

DNN deconvolution




Analysis of Artefacts

Degradation Model
r(ny,ny) = h(ny, ny) ** s(ny,ny) + v(ng, ny)
R(uq,up) = H(uq, uz)S(uq, up) + V(ug, uy)

Linear-shift invariant regularized restoration
S(ug, up) = ®(ug, uz)R(uy, uy)
= ®(uq, ux){H (g, up)S(ug, up) + V_(ug, uy)}
Add and substract S(u4, u,) to the right hand side:
= S(uq,up) + {®uy, ux)H(ug, uy) — 135(uy, up) + @ (uyg, up) V_>ug, uy)

Deviation from the inverse filter Enhanced noise
Signal-dependent ringing artefacts

A.M. Tekalp and M. I. Sezan, ~Quantitative analysis of artifacts in linear space-invariant image
restoration," Multidimensional Systems and Sign. Proc., vol. 1, pp. 143-177, June 1990.

HOH,
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PART 1

THEORETICAL
FOUNDATIONS
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Adaptive Signal Processing

An adaptive linear filter with time-varying weights w(i),
input vector x(i), and desired output d(i), adjusts
the weights to minimize the output error.

Filter output: .
M o
\_\‘
y(l) = z Wk(l) xk(l) l = 1, cee ,N 9 . _~ o
k=1 ot /
Output error: N ¢
e(i) = d(i) — (i) "4 L

Minimizing the mean square error
E{le(D]?} = XL, %)
gives the Wiener solution in optimal prediction/filtering

The LMS algorithm (Widrow-Hoff, 1960) minimizes

e (i) with respect to w(i) at each time step. 'ﬂ‘ e
UNIVERSITES



Neural Networks 101

- 5" Output Layer
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Single neuron Simple network (1 hidden layer)

Activation Functions: A Neural Network without an
activation function would simply be a linear regression
model, which has limited capability.
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Activation Functions

Activation function should be differentiable so as to perform to
- compute gradient of output error (loss function) with respect to

unknown weights. y(x) =

Logistic function (sigmoid)
Vanishing gradients
Sigmoids saturate and kill gradients.
Output is between O and 1, not O-centered

14+e*

e — 1
y(¥) =

Frprricll- iergrenl el e lai

Hyperbolic tangent

Output is O-centered in between -1to 1

Vanishing gradients




Activation Functions (cont'd)

Rectified linear unit (RELU)
y(x) =max{0,x} !+ !

Avoids vanishing gradients problem

Only used in hidden layers - in the output layer use softmax for
classification problems and linear layer for regression problems

Dead neuron problem - use Leaky RELU
Scaled Exponential Linear Unit (SELU)

X x>0
y(x):/l{a(ex—l) x <0

The parameter 1 > 1.
G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, Self-normalizing neural networks, 2017
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Universal Approximation Theorem

Universal Approximation Theorem: Given any continuous
function f(x), we can find a single- or multi-layer NN
whose output g(x) satisfies

lg(x) = f(x)| < e
for all inputs X and some desired accuracy € > 0.
Shallow and far nerworks
Difficult to train for complex tasks
Deep networks

maodel and learn very complex functons by a nesced compasition
f(x) = I: |: Af, {x];rﬁ of many simpler functions {each function

rcpr&i-enung a I:l-:rErJ
The theoretical foundation of learning end-to-end
image/video processing systems using NN rests on UAT.
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Deep Image/Video Processing

Image processing systems are functions
y = f(x)

Label
K — f() — ¥ or
Image

Classification and regression problems
Deep convolutional networks to learn f(.)

Video processing systems are time-varying

y(t) = f(x(0), 1)

Deep recurrent networks to learn f(.,t)

O ES s



Deep Neural Networks

Multi-layer perceptron (fully-connected)

-)rf[) NDeuUral networx

’ )
: :
. )

Convolutional networks
Fat vs. Deep networks



Deep
Neural Nets
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Applications of Deep Learning

Classification problems

DNN learns a mapping between images and labels (cats vs. dogs)
ImageNet: 1,5 million images, 1,000 class labels

Probability estimation - Softmax layer
e~ ,
p(xi) = 5_(:18—36']" [ = 1’...,K

Regression problems

DNN learns a mapping between input and output images
Image restoration, super-resolution, in-painting

Image generation

DNN learns a generative model p(x|z), where z is a latent variable.
New images are generated by sampling from the pdf p(x|z)

HOH,
UNIVERSITES



Supervised Training
Training data set

Given input, output pairs (x®,y®),i = 1,--,N
Optimization problem

Loss functions
Find w to minimize

N
Z(y(o — H(w, xD))?
=1

Solution

Non-convex optimization by gradient descent

Computation of gradients - back propagation

HOH,
UNIVERSITES



Back-propagation

Network is initiated with random weights.

Forward pass: Given input, the output error is
computed.

Backward pass: The gradient of the output
error function with respect to weights is
computed to update previous weights

Chain rule of differentiation

Different gradient descent procedures exist

D.E. Rumelhart, G.E. Hinton, RJ. Williams, Learning representation
by back-propagating errors, Nature, 323, pp. 533-536, 9 Oct. 1986.

HOH,
UNIVERSITES



Back-prop Example

Forward pass: AL o WL
: |
% w2=0.2 T W -
neth1=W1i1+W2i2+b1 ! -‘-‘-" 6945
, X
out — _.-i w3=025 ___ 4 wr=05
171 4 e—metn ARG, ¥ .1, T A ¥ 7, B
w4=0.3 " w8=055 J

nethz = W3 il + Wy iz + b1

1
OUlhz = 1 + e M"eth2 T3 mhy
net,; = wsoutyq + wg outp, + b, netpy = 0.3775
0 1 outy, = 0.593269992
Out — nethz == 03925
o1 7 1 4 e—netor outy, = 0.596884378
net,, = w- outy, + wg outy, + b, nety; = 1.105905967
) out,, = 0.75136507
out . = net,, = 1.2249207
0Z ™ 1 4 e—metor out,, = 0.772928465

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/ ﬁ-
UNIVERSITES:



Back-prop Example (cont'd)

Backward pass:

i ""..' i — -
Output Layer x Y
2 & -
1 2 1 2 i --.——. 'l_ N ] .I ||:
Eiotal = 5 (0.01 — out,q ) + > (0.99 — out,,) - :
8Etotal _ 5Etotal 50ut01 5n9t01
dWs dout,; onet,; Ows |
SEtotar (0.01 — out,y) % = (0.74136) (0.18681)(0.59326)
= —(0. — 5
Sout,, o1 =0.08216
Souty,; e Mtor 1 e~metor
Snetyy,  (1+e~Meto1)2  1t+e~Metol 14+e~Melor outoq (1- outor) Compute
8Etotal SEtotal OEtotal
6net01 = out Swg ° Swy; 7 Swg
dws nl similarly
Gradient-descent update
0E¢totar 0E¢totar 0E¢otal 0Etotal
= a = a w; =w; +a Wg = Wg +
W5 = ws + Swe We = We + e 7 7 Sw, Swg
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Back-prop Example (cont'd)

Backward pass: NN -
Hidden Layer ;

0Etotar  OEtotar Soutyy dnetp,

-_— -'. u 1
odw, douty, onetp; Owy Al T "a
onetyq
5 =1l B 5 F 5
Wy
Soutpy 1 e Methy ! |

dnetyq " 1+e M€th1 14 Melhy = Outhl(l' Outhl) 1 i
E,; ==(0.01 — out,,)

==
6Etotal — 6E01 + 6E02 ’ % )
Souty, Souty, dSouty, Eor = 5(0-99 — Outyy)
0Eoy _ 0E, Omety BErotat  (0,036)(0.241)(0.05) = 0.000438
1
douty,; Onet,; douty, Compute
6E01 — 6E01 50ut01 5net01 —w 8Etotal SEtotal OEtotal
Snet,; Sout,, Snet,;’ douty, > Swy ’ Swz ' Swy
. similarly
Gradient-descent update
E
5Etotal SEtotal 5Etotal _ 6 total
= w, =wy, +a w3 =w3z t+a Wy =W, +a
W1 W1 + W, 2 2 6W2 3 3 5W3 6W4
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Optimization Methods

Batch gradient descent
Stochastic gradient descent

Mini-batch gradient descent

Resource: Andrew Ng video https://www.youtube.com/watch?v=UfNU3Vhv5CA

HOH,
UNIVERSITES



Batch Gradient Descent

Given M pairs of training samples x( and y®
Compute the gradient of the cost function

M
1 . . 2
Etrain (w) = mz (y(l) - y(x(l); W))
i=1

w.r.t. to N weights for the entire training set to perform just one update.
Repeatforj=0,---,N — 1 {
M .
1 . . oy(xV, w)
— = @) — ¢(x® ’
“M zl (y & ,w)) ow;
i=

J
}

Wj = W;j

Batch gradient descent
can be very slow when M is large and is intractable for datasets that do
not fit in memory.
does not allow on-line model updates, i.e. with new samples on-the-fly.
is guaranteed to converge to the global minimum for convex error
surfaces and to a local minimum for non-convex surfaces.

HOH,
UNIVERSITES



Stochastic gradient descent (SGD)

SGD performs a parameter update for each training sample
pair x® and y®

(y(i) _ 9(x®, w))z

=

1
Eirain (w) = m
=1

For each epoch:

1. Randomly shuffle training data set
2. Repeatfori=0,---, M —1 {

forj=0,---,N—1 {
W] = W] — a (y(l) — S\’(X(l),W))
b3

SGD is much faster than batch gradient and can be used to learn online.

oy(x®, w)

SGD performs frequent updates with a high variance that cause the
objective function to fluctuate, which enables it to jump to new and

potentially better local minima.

HOH,
UNIVERSITES



Mini-batch gradient descent

Mini-batch gradient descent takes the best of both worlds and
performs an update for every mini-batch of K training examples.

Common mini-batch sizes range between K = 50 and K = 256,
but can vary for different applications.

It reduces the variance of the parameter updates, which can lead
to more stable convergence; and

It enables use of highly optimized matrix optimizations common
to state-of-the-art deep learning frameworks that make
computing the gradient w.r.t. a mini-batch very efficient.

Mini-batch gradient descent is typically the algorithm of choice
when training a neural network and the term SGD usually is
employed also when mini-batches are used.

ﬁ ﬁvﬁﬁm



Challenges

SGD maintains a single learning rate (alpha) for all weight updates
and alpha does not change during training.

A learning rate (step size) that is too small causes slow convergence,
while a learning rate that is too large causes the loss function to
fluctuate around the minimum or even to diverge.

Adaptive optimizers adjust the learning rate for each weight during
training, e.g., reduce the learning rate according to a pre-defined
schedule or when the change in the objective between epochs falls
below a threshold.

We must avoid getting trapped in suboptimal local minima and
saddle points, i.e. points where one dimension slopes up and
another slopes down. The saddle points are usually surrounded by
a plateau of the same error, which makes it hard for SGD to escape,
as the gradient is close to zero in all dimensions.

O® ES e



Adaptive Optimizers

Momentum

Nesterov Accelarated Gradient (NAG)

AdaGrad
Adadelta
RMSProp
Adam
AdaMax
Nadam
AMSGrad

Adpurithm 1 Ciomersc Aackapiive Movhesd Sequy

lll|'|1. T 1.7 J [ : ._ 1 i I. b e |
|||| Do | e
=y

imil Tre

¢(.)and ¢(.) averaging functions
IT projection
t is the counter of mini-batches

Ex: Stochastic Grad Descent (SGD)

I N LF i ||'.||.I L]

S. Ruder, An overview of gradient descent optimization algorithms, arXiv, 15 June 2017.

HOH,
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Adaptive Optimizers (cont'd)

Adaptive Moment Estimation (Adam)

computes adaptive learning rates for each parameter

uses an exponentially decaying average of past gradients (first moment),
like Momentum and AdaGrad

Also uses an exponentially decaying average of past squared gradients
(second moment), like Adadelta and RMSprop.

AMSGrad

blpariihm I A%l 5dekan

Lnjimll: =) = F

red = | il s

Recommended
N anl 4 ih THFI

irti] Tosi

S.J. Reddi, S. Kale & S. Kumar, On the convergence of Adam and beyond, ICLR 2018.
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Bias vs. Variance

Small models typically have high bias (underfitting)

As the number of parameters in a model increases,
the complexity of the model rises and variance
(overfitting) becomes the primary concern while bias
falls steadily. Lo High

Y

ﬁ ﬁvﬁﬁm



Learning Capacity and Rate

Convergence -
Learning rate B o
Overfitting . -
Network size . T——
Amount of data e ——
Gap between training and test performance (generalization)
‘
I - ‘ " “'- I—_ —.'.-_f —e
| i ==
i . ,",'/
. _ ey !




Generalization Error

"resampling based measures such as cross-validation
should be preferred over theoretical measures such
as Akaike's Information Criteria"

Hold-out data split

5-fold cross-validation data split

Scott Fortmann-Roe, Accurately Measuring Model Prediction Error, 2012
http://scott.fortmann-roe.com/docs/MeasuringError.html ﬁ'



Regularization

To prevent over fitting
Weight-decay (L1 Decay, L2 decay)

Drop out
.'"r". "“ :
ﬁ -g" H "'i"". 4 .;- ;___,,.. 3 :‘“-_;
'.- g :-.J' .,J"_.

'f"i:'lh
%-_.f?;
"-.-. ':-"‘
£ K
g, !




Amount of Data

When there is not enough specific training data
Pre-training
on other generic datasets
Data augmentation
Random crop
Horizontal, vertical flip
Rotations

Create synthetic data using the degradation
(noise, blur, etc.) model

UNIVERSITES



Basics of Convolutional Layers

Convolution

Padding "

Stride (subsampling) _nt—f
Jump pixels HS

Example: No padding, stride=1

.\ ‘ ol ‘ \ N
5X5%3 60><60 0><6O u
X
. F:I'I'] i .'" 60X60X%X2

64X64 %3

S5X5X%3 60X60 60X60

Given an image x with dimensions N; X N, X #Channels, and two filters
h, and h, with dimensions H; X H, X #Channels. (Channels: R, G, B) &.
ﬁmn‘m



Pooling Layer

Subsampling
Max pooling
Single depth shoe
1124
T — max pool with 23 fers
516 7|8 mostdel 6 8
320110 Y
1234




Normalization Layer

Input Normalization: Normalizing inputs to mean zero and
variance 1 speeds up learning.

Weight Normalization proposes normalizing the filter weights.

Normalization of Output of Hidden Layers: Normalizing all
features in the hidden layers to mean zero and variance 1 also
speeds up learning.

Smoothing effect: More stable behavior of the gradients.

Regularization effect: Output of hidden layers are scaled by the
mean and variance computed on each mini-batch rather than
mean and variance using the entire data set. Similar to drop
out, this has the effect of adding some small noise to each
hidden layer’s activation.

Reference video:

https://www.coursera.org/learn/deep-neural-network/lecture/81o0Tm/why-does-batch-norm-work o
P g P y UNIVERSITES]



Types of Output Normalization

BatchNorm
LayerNorm (when the notion of a batch is problematic, e.g., RNN)
InstanceNorm (normalizes across the height and width)

GroupNorm (across a subset of the batch, e.g., in case of variable
batch size)

SwitchNorm learns different normalization operations for
different normalization layers in a DNN in an end-to-end manner.

Y. Wu and K. He, Group normalization, arXiv, 2018.
P. Luo, J. Ren and Z. Peng, Differentiable learning-to-normalize via switchable normalization, arXiv, 2018.
S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, How does batch normalization help optimization? arXiv, 2018.

O® ES e
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Popular Convolutional Networks

“AlexNet” “GoogleNet” “VGG Net™ “ResNet™

v . -
r— = 4
- - - -
-s.‘ — ad :;'_,
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i - - -
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o o N ——; -

-o-..o —— :" -
~ —— 3=
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- " - -
-— )
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AlexNet (2012)
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VGG Net (2015)

Proposed by Karen Simonyan and Andrew Zisserman of the University
of Oxford (England). (Very deep convolutional networks for large-scale
image recognition, ICLR 2015)

19 layer CNN that uses only 3x3 filters (as opposed to AlexNet’s
11x11 filters in the first layer) with stride and pad of 1, along with
2x2 maxpooling layers with stride 2.

A cascade of two 3x3 conv layers has an effective receptive field of 5x5.
3 conv layers back to back have an effective receptive field of 7x7. This
simulates a larger filter while keeping the benefits of smaller filters with
less number of parameters. In addition, with two (three) conv layers,
we're able to use two (three) ReLU layers instead of one.

The number of filters doubles after each maxpool layer. This reinforces
shrinking spatial dimensions, but growing the depth of volume.

Trained on 4 Nvidia Titan Black GPUs using Stochastic Gradient Descent
for two to three weeks.

UNIVERSITES



Residual Networks (ResNet 2016)

The information in the errors is lost due to underflow after about
20 layers. He et al. (Microsoft Research, Asia) realized that this

X

problem could be solved by e

adding a shortcut path from the x| Il ; ;
input to the output of layers, so | wegbelowr | [
each layer can be modeled ot . At

hi(x) = fi(x) +x I

ResNet with 152 layers broke the record for ILSVRC challenge and
reduced error rate to 3.57% from the previous 6.7% set by
GoogleNet.

Note that after only the first 2 layers, the spatial size is reduced from
an input volume of 224x224 to 56x56.

Authors claim that a naive increase of layers in plain nets result in
higher training and test error.
Trained on an 8 GPU machine for two to three weeks.

K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image Recognition.

HOH,
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Densely Connected Networks

DenseNet: create short paths from early layers to later layers
(connect all layers with matching feature-map sizes directly with
each other)

Unlike short-cuts in ResNet, DenseNet combines features by
concatenating them. Hence, the I'th layer has [ inputs, consisting
of feature-maps of all preceding convolutional blocks.

The feature-maps of I'th layer are passed on to
all L — I subsequent layers. This introduces =
L(L + 1)/2 connections in an L-layer DenseNet, ' ]/
instead of just L connections, as in the traditional

ConvNet architecture. r r

Transition layers between ‘dense blocks’ are used to change ‘ r
feature-map size by convolution and pooling.

. 7 TRE S . [ S—
= R i — | e || ]

*. | AR FEES - - = ik = . 1

:-. =i =il ol el I. ! ]

1 B |

| |

L

'11'- 421 - o owE oWl - | R
1Y & |

G. Huang, Z. Liu, L. van der Maaten, and K Q. Weinberger, Densely connected convolutional

networks, arXiv, Aug. 2017. KO
UNIVERSITESR



Upsampling: Transposed Convolution

This operator enlarges the input

tensor in height and width

dimensions.

Also known as fractionally strided

convolution or deconvolution - g o,

(although has nothing to do with it) @‘ &
**ll-

Useful for SR, Autoencoders, GANs
etc.

V. Dumoulin and F. Visin, A guide to convolution arithmetic for deep learning, arXiv, 2016

O® ES e



Upsampling: Pixelshuffler

Transposed convolution has many redundant operations
due to zeros. Pixelshuffler interpolates the tensor in the
same scale by increasing number of features leading to
ease of computation.

There is no need to upsample images at the input or in
the middle of the network. Instead we can do it at
the end, decreasing computational complexity.

W. Shi et al., Real-time single image and video super-resolution using an efficient sub-
pixel convolutional neural network, IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), June, 2016 ﬂ'



Processing Tasks

ong 1o ore N0 10 Maryy many % one mary 10 mary TNy %0 many

(a) (b) () (d) (e)

(a) fixed-sized input to fixed-sized output (e.g., ConvNet); (b) single input to
sequence output (e.g. captioning an image with multiple words); (c) sequence
input, single output (e.g. classify a sentence or video with a label) (d) sequence
input, sequence output (e.g., machine translation) (e) synced sequence input
and output (e.g., video processing)

Sequential processing of sequential or time series data

Andrej Karpathy, http://karpathy.github.io/2015/05/21/rnn-effectiveness/ .ﬂ. KOG
UNIVERSITESR



Recurrent Neural Networks
Dynamic (Temporal) Model

h,

W

X — ¥

h, = o(Wphe_; + Wy x¢)
Yt = whyht

h, h; L P
hy—> W — W > > W —¥V.

] T

LSTM Xq Xy Xy

G R U Unrolled recurrent neural network

J. Chung, C. Gulcehre, K.H. Cho, Y. Bengio, “Empirical evaluation of gated
recurrent neural networks on sequence modeling,” NIPS Workshop, 2014.

HOH,
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Training RNN

Backpropagation-Through-Time
Present a sequence of timesteps of input and output pairs to the network.
Unroll the network then calculate and accumulate errors across each timestep.
Roll-up the network and update weights.
Repeat.
BPTT is computationally expensive as the number of timesteps increases.
If input sequences have thousands of timesteps, thousands of derivatives are
required for a single weight update. This can cause weights to vanish or
explode (go to zero or overflow) and make learning slow.

Truncated Backpropagation-Through-Time
TBPTT(n,n): Updates are performed at the end of each sequence across all
timesteps (standard BPTT).
TBPTT(1,n): update after each timestep based on all timesteps seen so far.

TBPTT(k1,k2), where ki<k2<n: Multiple updates are performed per sequence which
can accelerate training.

TBPTT(k1,k2), where k1=k2: A coommon configuration where a fixed number of
timesteps are used for both forward and backward-pass timesteps (e.g. 10s to 100s).

https://machinelearningmastery.com/gentle-introduction-backpropagation-time O

UNIVERSITES



Example: Character-level language model

Four-character dictionary {h,e,l,0}

Single hidden layer with three nodes

WWOw! Chars

] l )
puaan . B 1 0.3 . !
s - 10 | +5.0 15 N1

| 5 ! | ] 23

W hy
| |
DA 10 01 | L03
| 1 - 03 - D51 - 0%
| 00 0 D3] n7
. . ’ L
) 0 0 0 |
outl 0 ! 0 0
o 0 ! !
0 0 0 | 0 |
et chan N »" 1 " b
t=1 t=2 t=3 t=4

Andrej Karpathy, http://karpathy.github.io/2015/05/21/ rnn—effectiv?ﬁ:/
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Autoencoders

Auto-encoders create a latent or compressed representation of raw
input data. They achieve dimensionality reduction; i.e., the vector
serving as a hidden (latent) representation compresses the input into
a small no of salient dimensions.

—~ Encoder Hs—‘; Decoder r—°

-" LB A" .
42 ot 381

Auto-encoders can be paired with a decoder, which allows
reconstruction of input data from its latent representation.

Denoising auto-encoders (add noise to input)
Sparse auto-encoders (sparse hidden representation(s))



Transfer Learning

TL refers to ability to generalize a pre-trained DNN to
conditions that are different from those during training.

ConvNet as fixed feature extractor: Take a ConvNet pretrained
on ImageNet, remove the last fully-connected layers, then
treat the remaining layers as a fixed deep feature extractor for
the new dataset.

Fine-tuning the ConvNet: Fine-tuning the weights of a
pretrained network by continuing the backpropagation for a
new task using a smaller number of training images is usually
much faster and easier than training a network from scratch
with randomly initialized weights. It is possible to fine-tune all
layers or keep some of the earlier layers fixed and only fine-
tune some higher-level portion of the network.

Pre-trained Models: The Caffe library has a Model Zoo where
people share their network weights

A.S. Razavian, H. Azizpour, |. Sullivan, and S. Carlsson, “CNN features off-the-shelf: An
astounding baseline for recognition,” arXiv, 12 May 2014.

HOH,
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https://github.com/BVLC/caffe/wiki/Model-Zoo

Generative Adversarial Networks

GAN is an architecture that poses the training process as
a game between two networks, a generator network and
a discriminator net, against each other (thus “adversarial”).

'I
SV Ll grmerated

The generator learns to generate realistic reconstructed solutions
(samples) while the discriminator learns to determine if these samples are
original data or reconstructed solutions.

If we train both networks to equilibrium, then generated solution samples
are indistinguishable from original data by a perfect discriminator.

Adversarial learning enables learning entirely from data as opposed to
relying on an engineered objective function to guide the optimization.

lan Goodfellow, NIPS 2016 Tutorial: Generative Adversarial Networks, arXiv.
https://www.analyticsvidhya.com/blog/2017/06/introductory-generative-adversarial-networks-gans/
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GAN - Image generation

Unsupervised: There are no ground truth labeled images, just sample images.
Suppose we have a randomly-initialized image generator network that outputs
200 images, each from a different random code.

We introduce a discriminator network (e.g., a standard CNN) to classify if an input
image is real or generated. We feed 200 generated images and 200 real
images into the discriminator and train it as a standard classifier to distinguish
real and fake images.

We backpropagate mismatch error through both discriminator and generator to
find how we should change generator’'s parameters to make 200 generated
samples slightly more confusing for the discriminator.

Mathematically, we have a dataset of examples x4, ..., x;, as samples from a true
data distribution p(x). Imnages generated by our network also have a distribution
Pe (x) that is defined implicitly by taking points from a unit Gaussian distribution
and mapping them through a deterministic neural network — our generative
model that is a function of parameters 6. Tweaking these parameters will tweak
the generated distribution of images. Our goal then is to find parameters 6 that
produce a distribution that closely matches the true data distribution (for
example, by having a small KL divergence loss).

GANs generate data in fine, granular detail; images generated by VAEs tend to
be more blurred.

HOH,
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https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://en.wikipedia.org/wiki/Loss_function

DCGAN

Introduces convolutional networks into GAN architecture

network learns distribution of a class of images

numbers drawn from

Input: 100 random . e
b w " 'L' | 1 !
uniform distribution . 1 -

™ 5

Architecture guidelines for stable DCGAN
Remove fully connected hidden layers for deeper architectures.
Replace any pooling layers with strided convolutions (discriminator) and
fractional-strided convolutions (generator).
Apply batchnorm in both the generator and the discriminator. Applying
batchnorm to all layers resulted in sample oscillation and model instability. This
was avoided by not applying it to the generator output layer and the
discriminator input layer.
Use ReLU activation in generator for all layers, except for the output layer,
which uses Tanh.
Use LeakyReLU activation in the discriminator for all layers in contrast to the
original GAN, which used maxout activation.

Ref.: A. Radford, L. Metz, S. Chintala, Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks, ICLR 2016.
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Tips for Training a GAN

When training the discriminator, hold the generator
constant; and when training the generator, hold the
discriminator constant. Each should train against a static
adversary.

Pretraining the discriminator before you start training the
generator will establish a clearer gradient.
Each side can overpower the other.

If the discriminator is too good, it will return values so close to O
or 1 that the generator will struggle to read the gradient.

If the generator is too good, it will exploit weaknesses in the
discriminator that lead to false negatives. This may be mitigated
by the nets’ respective learning rates.

Difficult to tune hyperparameters.

GANs take a long time to train.
s gl - —



PART 2

DEEP-LEARNED

IMAGE and VIDEO
PROCESSING
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Frameworks
Static Graph Methods:

Tensorflow
Theano
Mxnet
Caffe

Dynamic Graph Methods:

PyTorch

Chainer
Tensorflow-Eager
DyNet



Static Graph

A computational graph is
a directed graph where
the nodes correspond to
operations or variables.

Static graphs are defined
first and then they are run.
(Define-and-Run)



TensorFlow implementation

LA & W, 5



TensorFlow implementation
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TensorFlow implementation
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TensorFlow implementation




TensorFlow implementation




TensorFlow implementation
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TensorFlow implementation




Dynamic Graph

In contrast, dynamic graph methods create
the computational graph while running the

code.

Writing conditional statements and loops are
natural.



PyTorch Implementation

https://pytorch.org/about/



Dynamic Graph (PyTorch)
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Dynamic Graph (PyTorch)

https://pytorch.org/about/



Dynamic Graph (PyTorch)

https://pytorch.org/about/




Dynamic Graph (PyTorch)
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Dynamic Graph (PyTorch)
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Dynamic Graph (PyTorch)
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Comparison of Static vs. Dynamic

Static Dynamic
Define and run. Define by run.
Special control flow Control flow is
operations. trivial.

Hard to debug. Easy to debug.
Use special tools. Use standard
debugging tools.
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Example while loop

- Tensorflow Pytorch

mnd = lambda t1, t2: tf.less(rl,.td) ti = torch.tensort
Dody = Jlambda t1, t2: [ef.aad(cl, ), 2] 12 = torch.tensord
il = RF. natant ()

{

)
Ia bl : :-. n !.l'n‘ ) 'hlle ! ! < »
i &» T1 »

n = ti.while loop(cond, body, ftl, t21)

with tf.Ses310n{) as 2+
print(sesa. run{rexs))




Deep-Learned
Solution of Inverse Problems

Image Denoising
Image Deblurring
Single-image Super-resolution
Image Inpainting

ﬁ ﬁvﬁﬁm



Inverse Problems

Traditional Linear, Space-Invariant Image Degradation Model
y = DHXx + v
where V is noise, H is a convolution matrix with known blur
kernel and D is an cbservation matrix.
Image Denoising
- Dand H are the identity matrix

Image Deblurring
D is the identity matrix, H is known
Single Image Super-resolution (SI15R)
D is a down-sampling matrix , H is known
Image Inpainting
H is the identity matrix, [} has some missing entries.

Mew Trends in Image Restoration and Enhancement (NTIRE)
Example-based single image super-resolution challenge

O ES s



Classic Image Deblurring
Linear Space-Invariant (convolution)

Fourier Domain

HW{EH"',EI‘”E:I _ H. [e.'m.il.e}n.u} |
|H(e/®, glwz)|e 4 g
Space-Domain, lterative
Landweber
POCS

Linear Space-Varying (superposition)
Space-Domain lcerative, POCS

Blind Image Restoration — limited to linear

space-invariant mode|
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“ DIV2K dataset
(NTIRE 2017)

800 training,

100 test images
2K resolution




/f‘
l‘l:‘ | SRGAN

X \\H  Supervised training from noisy data

| * SRResNET
. Gensrafor Network B renstual hincks
wahida ) Taeiiat g . \ b dniute !
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C. Ledig, et al., “Photo-realistic single image super-resolution using a generative adversarial network,” arXiv,

13 April 2017 e IEE



Image Deblurring using
SRResNet without upscale layer

 Supervised training from blurred+noisy data at the input
and the groundtruth image at the output

Geanerator Netwark 8 resdudl Blocks

e

$SnSds 1 "SInBés!  AInbds)

—

SO Connechon

Modified from SRResNet




PSNR: 36.9666002257 dB, SSIM: 0.971302986145 - generator trained
96x96 patches, Minibatch size 16




Linear interpolated Deep SR
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Linear interpolated Deep SR
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SRGAN x4 Results - Evaluation

PSNR
SSIM
MOS (Perceptual quality)

5y b iwared  Beuhic SECNN SelFEaSH DROCY ESIYN SEHeas™Satl  SRGAN  HE
TR 5 3 Ta di i TTRL TR i s 50 .4l »
SNIN 0TS O3] AT (ENT2 RN DETE MY (LT2 |
RS | 28 | 7 157 LT i L L 1 AT LW i1
e

Ut 2 tud 2.1 il |8 AN b ¥} 17, i L Mung

A | OTHN OCOTdRs G786 (LTOTE TR Y T Y LY ) T L i
S | 20 1A} 2 2B +. 54 84 L L | 372 457

usD1m

PRNE SO0 S04 bR JhED T3l P 2 TSR0 Mlh ox
5518 N T1y Ga7THNi (LT IRT T4 7440 & T iF il i
5 111 1.47 | K7 WY i3 41 ]! N 1.5 S

How to stop training a GAN?
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CVPR NTIRE 2017

(New Trends in Image Restoration and Enhancement)

Challenge on Single Image SR

Two Tracks:
Track 1: Bicubic Downsampling
Track 2: Unknown Downsampling

Three competitions
Upsample by x2, x3, x4

New dataset: DIV2K (DIVerse 2k resolution images)
800 training, 100 validation, 100 test images

R. Timofte, et al. NTIRE 2017 Challenge on Single Image Super-Resolution:Methods and Results,
IEEE Conf. On Computer Vision and Pattern Recognition (CVPR) Workshops, July, 2017
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NTIRE 2017 Results
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(*) the checked SNU_CVLab' model achieved 29.09dB PSNR and 0.837 SSIM.
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Note: SNU_CVLab1 obtained 32.64 dB on set 5, 28.94 dB on set14 and 27.74 dB on BSD100 datasets
compared to SRResNet which obtained 32.05 dB, 28.49 dB and 27.58 dB, respectively.
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EDSR (SNU_CVLab')

Winner of both tracks for all subsampling factors
Modified fromm SRResNet with new building blocks:
Remove BN
Constant multiplication at the end (xC
B=36 ResBlocks, 256 feature maps, C=0.1

(for better training)

)
(

affects learning rate)

B. Lim, et al., Enhanced deep residual networks for single image super-resolution™,
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) Workshop, July, 2017

*Source code and model available on Github E ﬁ




Unknown Degradation Model

Learn degradation model using a NN from given (HR, LR) training data

gt P A

—

Data augmentation: Flip, rotate, etc. the original HR image, and
generate synthetic LR images from them by applying the learned

degradation model
0 ﬁ-’nﬂ'ﬂ:ﬂ



MDSR (Multi-Scale EDSR)
(SN U_CVLabZ)

2nd place

Single network for
all three factors

Deeper -
80 ResBlocks

Narrower -
64 feature maps

ri- No constant scaling
" » Q,

() Sor mnionown dowsscaling (Track 2) & ﬁ
*Source code and model available on Github



Stacked Residual-Refined Network
(HelloSR)

3rd place

. — —
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Coarse-to-fine improvement
Intermediate supervision
LRFE-Net blocks consists of residual blocks
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CVPR NTIRE 2018
Challenge on Single Image SR

Four Tracks:

Classic bicubic downsampling (x8)

Realistic mild adverse conditions (x4)

Realistic difficult adverse conditions (x4)

Realistic wild conditions (x4)
Realistic conditions emulate the image acquisition
process from a digital camera.
For Track 2 and 3 degradation model are the same
within respective tasks.

Track 4 has different degradation models from one

image to another.
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Challenge on SISR Results
(Bicubic x8)
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Challenge on SISR Results

(Realistic x4)
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Deep Back-Projection Network

Winner of Track 1.

Deep learning version of the well-known
lterative Back-Projection Method

La» e
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R.Timofte,eral., NTIRE 2018 challenge on single image superresolution:

Methods and results, CVPR 2018. E mﬁm



Wide Activation and Weight
Normalization for Accurate Image SR

WDSR: Winner of Track 2-3. Second in Track 4.
Modified EDSR.

Weight normalization enables higher learning
rates.

Comparison of Residual blocks in EDSR (left) and WDSR (right)

J. Yu, et al., Wide activation for efficient and accurate image superresolution, arXiv, 27 Aug. 2018.
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WDSR (continued)

Input image is upsampled with learned
parameters.

Convolutional layer before pixelshuffler is
removed.

~<\;3 { ‘{ NesiGusl Body
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CVPR NTIRE 2018
Challenge on Image Dehazing

First challenge on Image Dehazing

2 datasets for 2 tracks:
|-Haze: Indoor dehazing (35 scenes for training, 5 for validation)
O-Haze: Outdoor dehazing (45 scenes for training, 5 for validation)

Ground truth Hazy

C. Ancuti, et al., NTIRE 2018 challenge on image dehazing: Methods and results,

CVPR 2018. E ﬁg



Performance Evaluation

Performance of restoration/SR methods vary over the test dataset
Standard deviation of PSNR is in the same order as the PSNR
PSNR depends on the frequency content of images in the dataset.
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O. Kirmemis and A.M. Tekalp, Effect of training and test datasets on image restoration
and super-resolution by deep learning, EUSIPCO 2018. (Tuesday 14:30) ﬁ'



ECCV 2018 Challenge on Perceptual
Image Restoration and Manipulation

Definition of Perceptual Quality

Three topics:

Enhancement on Smartphnoes: Focuses on SR
and image enhancement in mobile devices. Metric
is accuracy per runtime. Also constraints on max.
model size and max. RAM consumption

Super Resolution: Focuses on perceptual quality.
Perceptual quality is compared within predefined
regions according to thresholds on MSE.

Spectral Reconstruction
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The Perception-Distortion Tradeoff

There exists a region in P-D plane which is unattainable.

If the performance of an algorithm is along the blue
curve, it can be improved only in terms of distortion or
in terms of its perceptual quality, but not in both.

Y. Blau and T. Michaeli. The Perception-Distortion Tradeoff. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2018.

HOH,
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Predicting Perceptual Quality

Good PSNR does not guarantee better perceptual
quality.

A no-reference IQA metric that predicts MOS to evaluate

the performance of SR algorithms

C. Ma, et al. Learning a no-reference quality metric for single-image
super-resolution. Comp. Vision and Image Understand (CVIU), 2017.

Natural Image Quality Evaluator (NIQE)

A. Mittal, et al. Making a completely blind image quality analyzer.
IEEE Signal Processing Letters, vol. 20, no. 3, pp. 209-212, March 2013.

UNIVERSITES



Perception-Distorton
Evaluation of SR algorithms

The location of an algorithm on the P-D plane depends
on the distortion metric.



Deep-Learned
Image/Video Compression

End-to-end Image Compression
Auto-encoder
Generative Compression

Enhancing performance of standards-

based encoders

HEIF (BPG) Encoder
HEVC Encoder

ﬁ ﬁvﬁﬁm



End-to-end Image Compression

L earned-transform

Auto-encoders learn latent-space
representation of images

Differentiable approximation to quantization
Soft quantization

Generative Codecs

O. Rippel and L. Bourdev, “Real-time adaptive image compression,”
ICML 2017, arXiv, 16 May 2017.

S. Santurkar, D. Budden, and N. Shavit, “Generative compression, " arXiv,
June 2017.
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Soft Quantization

Hard quantization for d-bits:

q=0Q(z) = |z x 29
However this function yields zero gradients
except at decision boundaries. Therefore soft

quantization is employed in training phase.

Soft quantization for d-bits:

N 2d_q exp(— ||z><2d—i||)

d_
Yizo " exp(=[lzx22-j|)

E. Agustsson, et al. Soft-to-hard vector quantization for end-to-end learning

compressible representations. arXiv preprint arXiv:1704.00648, 2017
KOG
UNIVERSITES



Enhancing Standard Codecs

Deep networks learn free parameters of
state of the art standards-based encoders
Block partitioning
Mode selection
Quantization parameter selection
In-loop filter

Pre-processing and/or post-processing
Learned smoothing for pre-processing
Artifact removal

UNIVERSITES



CVPR-CLIC 2018

Challenge on Learned Image Compression

Rules

Compression rate of the whole test set must not
exceed 0.15 bpp (average).

Participants are ranked according to
PSNR
Scores provided by human raters (MOS)

Dataset

New: 1633 training, 102 validation, 286 test images.
DatasetP (professional)
DatasetM (mobile)

UNIVERSITES



CLIC 2018 Winners

Best MOS (also best MS-SSIM)

An Autoencoder-based Learned Image
Compressor: Description of Challenge
Proposal by NCTU

Best PSNR

CNN-Optimized Image Compression with
Uncertainty based Resource Allocation

Fastest:
XVC codec

ﬁ ﬁvﬁﬁm



CLIC 2018 Results

Only submissions which are evaluated
for MOS scores are shown.
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Fastest

xvc - A conventional codec
proprietary
Block based

Traditional approach for prediction, residual
representation

Originally developed for video compression.
No machine learning is involved.

J.Samuelsson, P. Hermansson, Image compression with xvc, IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR) Workshops, June, 2018

HOH,
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Best MOS and MS-SSIM

Based on
autoencoder
4-bit
qguantization

Soft
quantization

N Importance
T:S!] J-EE Network

.-
D. Alexandre, et al., An autoencoder-based learned image compressor: Description of challenge
proposal by NCTU, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) Workshops,

June, 2018 E ﬁ
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Importance Net

Importance Net learns the important parts of
the representation so that the system
allocates more bits to complicated areas.

It is made of residual blocks and another
quantizer to select the number of bits
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Optimization - Loss Function

Loss function is a weighted sum of rate and
distortion
L= AXH(mp) + L,

where

MSE = MSSSIM
La = 20% T 205
Rate loss H(imp) is estimated by summing up all

values of the importance maps imp
0, and o, are learnable parameters

+ log(o%) + log(c5)
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Best PSNR
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Based on the JEM platform(theHEVC codec)

Contributions:
CNN based in-loop filter (CNNIF) and
CNN based mode coding (CNNMC)

Z. Chen, et al., CNN-optimized image compression with uncertainty based resource allocation,
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) Workshops, June, 2018
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- CNN based In-Loop Filter (CNNIF)

“__  In-loop filter consists of stacked Dense Residual
Units (DRU)

- --————-—— -——————

A Dense Residual Unit (DRU)

T
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Learned Artifact Suppression

Compression artifacts have structure that can be learned

L 8sudcal Mok

) 1

5

e ¢ r o =i = =i =r E
[ ‘ ‘ Each residual block

EDSR Network

We use SELU activation instead of ReLU

It is trained to remove artifacts introduced by BPG codec.

Although we trained our network with a single QP (40),
it can improve images encoded by QP between 39 and 43.

O. Kirmemis, G. Bakar and A.M. Tekalp, Learned Compression artifact removal by deep residual
networks, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2018
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Questions ?

Lunch Break

home.ku.edu.tr/~mtekalp



