
EUSIPCO 2018 Rome, Italy

DEEP LEARNING
for Image and Video Processing

A. Murat TEKALP

Ogün Kırmemiş
Koç University, İstanbul, Turkey

Warning: Some of the figures used in these slides may be copyrighted by others. These slides cannot be used

for commercial purposes. It is solely intended for non-commercial educational use.

EUSIPCO 2018 Rome, Italy

Contents
PART 1: Theoretical Foundations
- Basics

Neural Nets 101, Activation Functions
- Training a Neural Network

Back propagation, Optimization

Variance vs. Bias, Regularization, Data augmentation

- Architectures
Convolutional Networks, Normalization
Recurrent Networks
Auto-encoders
Generative Adversarial Networks

PART 2: Deep-Learned Image and Video Processing
- Frameworks

PyTorch, TensorFlow
- Inverse Problems (Denoising, Deblurring, Superresolution)

New Trends in Image Restoration (NTIRE - CVPR 2017, 2018)

- Image/Video Compression
Challenge on Learned Image Compression (CLIC - CVPR 2018)

Bridging Communities

● Computer Vision, AI
◦ Image classification

◦ Video object segmentation and tracking

◦ Activity modeling/detection/recognition

◦ Video understanding

● Signal Processing
◦ Non-linear signal processing

◦ Learned image restoration, super-resolution

◦ Learned image/video compression

Image and video
restoration,
super-resolution

Image and video
compression

Computer vision

Deep learning

Wiener deconvolution DNN deconvolution

Analysis of Artefacts

● Degradation Model𝑟 𝑛1, 𝑛2 = ℎ 𝑛1, 𝑛2 ∗∗ 𝑠 𝑛1, 𝑛2 + 𝑣 𝑛1, 𝑛2𝑅 𝑢1, 𝑢2 = 𝐻 𝑢1, 𝑢2 𝑆 𝑢1, 𝑢2 + 𝑉 𝑢1, 𝑢2
● Linear-shift invariant regularized restorationመ𝑆 𝑢1, 𝑢2 = 𝚽 𝑢1, 𝑢2 𝑅 𝑢1, 𝑢2= 𝚽 𝑢1, 𝑢2 𝐻 𝑢1, 𝑢2 𝑆 𝑢1, 𝑢2 + 𝑉 𝑢1, 𝑢2
Add and substract 𝑆 𝑢1, 𝑢2 to the right hand side:= 𝑆 𝑢1, 𝑢2 + 𝚽 𝑢1, 𝑢2 𝐻 𝑢1, 𝑢2 − 1 𝑆 𝑢1, 𝑢2 +𝚽 𝑢1, 𝑢2 𝑉 𝑢1, 𝑢2

Signal-dependent ringing artefacts

Enhanced noise

A.M. Tekalp and M. I. Sezan, ``Quantitative analysis of artifacts in linear space-invariant image
restoration," Multidimensional Systems and Sign. Proc., vol. 1, pp. 143-177, June 1990.

Deviation from the inverse filter

PART 1

THEORETICAL

FOUNDATIONS

Adaptive Signal Processing
● An adaptive linear filter with time-varying weights w(i),

input vector x(i), and desired output d(i), adjusts
the weights to minimize the output error.

● Minimizing the mean square error𝐸 𝑒(𝑖) 2 = σ𝑖=1𝑁 𝑒2(𝑖)
gives the Wiener solution in optimal prediction/filtering

● The LMS algorithm (Widrow-Hoff, 1960) minimizes 𝑒2 𝑖 with respect to w(i) at each time step.

𝑦(𝑖) = ෍𝑘=1𝑀 𝑤𝑘 𝑖 𝑥𝑘 𝑖 𝑖 = 1,⋯ ,𝑁
𝑒 𝑖 = 𝑑 𝑖 − 𝑦(𝑖)

Filter output:

Output error:

Neural Networks 101

Single neuron Simple network (1 hidden layer)

● Activation Functions: A Neural Network without an
activation function would simply be a linear regression
model, which has limited capability.

Activation Functions
Activation function should be differentiable so as to perform to
compute gradient of output error (loss function) with respect to
unknown weights.

● Logistic function (sigmoid)
◦ Vanishing gradients

◦ Sigmoids saturate and kill gradients.

◦ Output is between 0 and 1, not 0-centered

● Hyperbolic tangent
◦ Output is 0-centered in between -1 to 1

◦ Vanishing gradients

𝑦(𝑥) = 11 + 𝑒−𝑥

𝑦(𝑥) = 𝑒2𝑥 − 1𝑒2𝑥 + 1

Activation Functions (cont’d)
● Rectified linear unit (RELU)

◦ Avoids vanishing gradients problem

◦ Only used in hidden layers – in the output layer use softmax for
classification problems and linear layer for regression problems

◦ Dead neuron problem – use Leaky RELU

● Scaled Exponential Linear Unit (SELU)

◦ The parameter 𝜆 > 1.

𝑦(𝑥) = max 0, 𝑥

𝑦(𝑥) = 𝜆 ቊ 𝑥 𝑥 > 0𝛼(𝑒𝑥 − 1) 𝑥 < 0
G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, Self-normalizing neural networks, 2017

●

Universal Approximation Theorem

Deep Image/Video Processing

●

f(.)
Label

or
Image

Deep Neural Networks

● Multi-layer perceptron (fully-connected)

● Convolutional networks

● Fat vs. Deep networks

Big Data and Deep Learning

Deep

Millions of labeled
images

Applications of Deep Learning
● Classification problems
◦ DNN learns a mapping between images and labels (cats vs. dogs)

◦ ImageNet: 1,5 million images, 1,000 class labels

◦ Probability estimation – Softmax layer𝑝 𝑥𝑖 = 𝑒−𝑥𝑖σ𝑗=1𝐾 𝑒−𝑥𝑗 , 𝑖 = 1,⋯ , 𝐾
● Regression problems
◦ DNN learns a mapping between input and output images

◦ Image restoration, super-resolution, in-painting

● Image generation
◦ DNN learns a generative model 𝑝(𝑥|𝑧), where z is a latent variable.

New images are generated by sampling from the pdf 𝑝(𝑥|𝑧)

Supervised Training
● Training data set
◦ Given input, output pairs 𝐱(𝑖), 𝐲(𝑖) , 𝑖 = 1,⋯ ,𝑁

● Optimization problem
◦ Loss functions

◦ Find 𝐰 to minimize ෍𝑖=1𝑁 𝐲(𝑖) − ෝ𝒚(𝐰, 𝐱(𝑖)) 2
● Solution
◦ Non-convex optimization by gradient descent

◦ Computation of gradients – back propagation

Back-propagation

● Network is initiated with random weights.

● Forward pass: Given input, the output error is
computed.

● Backward pass: The gradient of the output
error function with respect to weights is
computed to update previous weights

● Chain rule of differentiation

● Different gradient descent procedures exist
D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representation
by back-propagating errors, Nature, 323, pp. 533-536, 9 Oct. 1986.

Back-prop Example
● Forward pass:𝑛𝑒𝑡ℎ1 = 𝑤1 𝑖1 + 𝑤2 𝑖2 + 𝑏1𝑜𝑢𝑡ℎ1 = 11 + 𝑒−𝑛𝑒𝑡ℎ1𝑛𝑒𝑡ℎ2 = 𝑤3 𝑖1 + 𝑤4 𝑖2 + 𝑏1𝑜𝑢𝑡ℎ2 = 11 + 𝑒−𝑛𝑒𝑡ℎ2𝑛𝑒𝑡𝑜1 = 𝑤5 𝑜𝑢𝑡ℎ1 + 𝑤6 𝑜𝑢𝑡ℎ2 + 𝑏2𝑜𝑢𝑡𝑜1 = 11 + 𝑒−𝑛𝑒𝑡𝑜1𝑛𝑒𝑡𝑜2 = 𝑤7 𝑜𝑢𝑡ℎ1 + 𝑤8 𝑜𝑢𝑡ℎ2 + 𝑏2𝑜𝑢𝑡𝑜2 = 11 + 𝑒−𝑛𝑒𝑡𝑜2

𝑛𝑒𝑡ℎ1 = 0.3775𝑜𝑢𝑡ℎ1 = 0.593269992𝑛𝑒𝑡ℎ2 = 0.3925𝑜𝑢𝑡ℎ2 = 0.596884378𝑛𝑒𝑡𝑜1 = 1.105905967𝑜𝑢𝑡𝑜1 = 0.75136507𝑛𝑒𝑡𝑜2 = 1.2249207𝑜𝑢𝑡𝑜2 = 0.772928465
https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

w1=0.15

w2=0.2

w3=0.25

w6=0.45

w7=0.5

w5=0.4

w4=0.3 w8=0.55

Back-prop Example (cont’d)
● Backward pass:
◦ Output Layer

◦ Gradient-descent update

𝐸𝑡𝑜𝑡𝑎𝑙 = 12 0.01 − 𝑜𝑢𝑡𝑜1 2 + 12 0.99 − 𝑜𝑢𝑡𝑜2 2𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑤5 = 𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑜𝑢𝑡𝑜1 𝛿𝑜𝑢𝑡𝑜1𝛿𝑛𝑒𝑡𝑜1 𝛿𝑛𝑒𝑡𝑜1𝛿𝑤5𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑜𝑢𝑡𝑜1 = −(0.01 − 𝑜𝑢𝑡𝑜1)𝛿𝑜𝑢𝑡𝑜1𝛿𝑛𝑒𝑡𝑜1 = 𝑒−𝑛𝑒𝑡𝑜11+𝑒−𝑛𝑒𝑡𝑜1 2 = 11+𝑒−𝑛𝑒𝑡𝑜1 𝑒−𝑛𝑒𝑡𝑜11+𝑒−𝑛𝑒𝑡𝑜1 = 𝑜𝑢𝑡𝑜1(1- 𝑜𝑢𝑡𝑜1)𝛿𝑛𝑒𝑡𝑜1𝛿𝑤5 = 𝑜𝑢𝑡ℎ1
𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑤5 = (0.74136) (0.18681)(0.59326)

= 0.08216

𝑤5 = 𝑤5 + 𝛼 𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑤5

Compute𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑤6 ,
𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑤7 ,

𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑤8
similarly

𝑤6 = 𝑤6 + 𝛼 𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑤6 𝑤7 = 𝑤7 + 𝛼 𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑤7 𝑤8 = 𝑤8 + 𝛼 𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑤8

● Backward pass:
◦ Hidden Layer

◦ Gradient-descent update

𝐸𝑜1 = 12 0.01 − 𝑜𝑢𝑡𝑜1 2𝐸𝑜2 = 12 0.99 − 𝑜𝑢𝑡𝑜2 2

Back-prop Example (cont’d)

𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑤1 = (0.036)(0.241)(0.05) = 0.000438

𝑤1 = 𝑤1 + 𝛼 𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑤1

𝛿𝐸𝑜1𝛿𝑜𝑢𝑡ℎ1 = 𝛿𝐸𝑜1𝛿𝑛𝑒𝑡𝑜1 𝛿𝑛𝑒𝑡𝑜1𝛿𝑜𝑢𝑡ℎ1

𝛿𝑜𝑢𝑡ℎ1𝛿𝑛𝑒𝑡ℎ1 = 11+𝑒−𝑛𝑒𝑡ℎ1 𝑒−𝑛𝑒𝑡ℎ11+𝑒−𝑛𝑒𝑡ℎ1 = 𝑜𝑢𝑡ℎ1(1- 𝑜𝑢𝑡ℎ1)

𝛿𝑛𝑒𝑡ℎ1𝛿𝑤1 = 𝑖1
𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑤1 = 𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑜𝑢𝑡ℎ1 𝛿𝑜𝑢𝑡ℎ1𝛿𝑛𝑒𝑡ℎ1 𝛿𝑛𝑒𝑡ℎ1𝛿𝑤1
𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑜𝑢𝑡ℎ1 = 𝛿𝐸𝑜1𝛿𝑜𝑢𝑡ℎ1 + 𝛿𝐸𝑜2𝛿𝑜𝑢𝑡ℎ1

𝛿𝐸𝑜1𝛿𝑛𝑒𝑡𝑜1 = 𝛿𝐸𝑜1𝛿𝑜𝑢𝑡𝑜1 𝛿𝑜𝑢𝑡𝑜1𝛿𝑛𝑒𝑡𝑜1 , 𝛿𝑛𝑒𝑡𝑜1𝛿𝑜𝑢𝑡ℎ1 = 𝑤5

o1

𝑤2 = 𝑤2 + 𝛼 𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑤2 𝑤3 = 𝑤3 + 𝛼 𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑤3 𝑤4 = 𝑤4 + 𝛼 𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑤4

Compute𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑤2 ,
𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑤3 ,

𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑤4
similarly

Optimization Methods

● Batch gradient descent

● Stochastic gradient descent

● Mini-batch gradient descent

Resource: Andrew Ng video https://www.youtube.com/watch?v=UfNU3Vhv5CA

Batch Gradient Descent
● Given 𝑀 pairs of training samples 𝐱(𝑖) and 𝐲(𝑖)
● Compute the gradient of the cost function𝐸𝑡𝑟𝑎𝑖𝑛 𝐰 = 12𝑀෍𝑖=1𝑀 𝐲(𝑖) − ො𝐲 𝐱(𝑖), 𝐰 2

w.r.t. to 𝑁 weights for the entire training set to perform just one update.Repeat for 𝑗 = 0,⋯ , 𝑁 − 1 {𝑤𝑗 ≔ 𝑤𝑗 − 𝛼 1𝑀෍𝑖=1𝑀 𝐲(𝑖) − ො𝐲 𝐱(𝑖), 𝐰 𝜕ො𝐲 𝐱(𝑖), 𝐰𝜕𝑤𝑗}
● Batch gradient descent
◦ can be very slow when 𝑀 is large and is intractable for datasets that do

not fit in memory.
◦ does not allow on-line model updates, i.e. with new samples on-the-fly.
◦ is guaranteed to converge to the global minimum for convex error

surfaces and to a local minimum for non-convex surfaces.

Stochastic gradient descent (SGD)
● SGD performs a parameter update for each training sample

pair 𝐱(𝑖) and 𝐲(𝑖)𝐸𝑡𝑟𝑎𝑖𝑛 𝐰 = 12𝑀෍𝑖=1𝑀 𝐲(𝑖) − ො𝐲 𝐱(𝑖), 𝐰 2
For each epoch:1. Randomly shuffle training data set2. Repeat for 𝑖 = 0,⋯ ,𝑀 − 1 {for 𝑗 = 0,⋯ ,𝑁 − 1 {𝑤𝑗 ≔ 𝑤𝑗 − 𝛼 𝐲(𝑖) − ො𝐲 𝐱(𝑖), 𝐰 𝜕ො𝐲 𝐱(𝑖), 𝐰𝜕𝑤𝑗} }

● SGD is much faster than batch gradient and can be used to learn online.

● SGD performs frequent updates with a high variance that cause the
objective function to fluctuate, which enables it to jump to new and
potentially better local minima.

Mini-batch gradient descent
● Mini-batch gradient descent takes the best of both worlds and

performs an update for every mini-batch of 𝐾 training examples.

● Common mini-batch sizes range between 𝐾 = 50 and 𝐾 = 256,
but can vary for different applications.

● It reduces the variance of the parameter updates, which can lead
to more stable convergence; and

● It enables use of highly optimized matrix optimizations common
to state-of-the-art deep learning frameworks that make
computing the gradient w.r.t. a mini-batch very efficient.

● Mini-batch gradient descent is typically the algorithm of choice
when training a neural network and the term SGD usually is
employed also when mini-batches are used.

Challenges
● SGD maintains a single learning rate (alpha) for all weight updates

and alpha does not change during training.

● A learning rate (step size) that is too small causes slow convergence,
while a learning rate that is too large causes the loss function to
fluctuate around the minimum or even to diverge.

● Adaptive optimizers adjust the learning rate for each weight during
training, e.g., reduce the learning rate according to a pre-defined
schedule or when the change in the objective between epochs falls
below a threshold.

● We must avoid getting trapped in suboptimal local minima and
saddle points, i.e. points where one dimension slopes up and
another slopes down. The saddle points are usually surrounded by
a plateau of the same error, which makes it hard for SGD to escape,
as the gradient is close to zero in all dimensions.

Adaptive Optimizers

● Momentum

● Nesterov Accelarated Gradient (NAG)

● AdaGrad

● Adadelta

● RMSProp

● Adam

● AdaMax

● Nadam

● AMSGrad
S. Ruder, An overview of gradient descent optimization algorithms, arXiv, 15 June 2017.

 . and 𝜑(.) averaging functions

 projection

Ex: Stochastic Grad Descent (SGD)

𝑡 is the counter of mini-batches

Adaptive Optimizers (cont’d)
● Adaptive Moment Estimation (Adam)
◦ computes adaptive learning rates for each parameter

◦ uses an exponentially decaying average of past gradients (first moment),
like Momentum and AdaGrad

◦ Also uses an exponentially decaying average of past squared gradients
(second moment), like Adadelta and RMSprop.

● AMSGrad

S.J. Reddi, S. Kale & S. Kumar, On the convergence of Adam and beyond, ICLR 2018.

Recommended
:

Bias vs. Variance
● Small models typically have high bias (underfitting)

● As the number of parameters in a model increases,
the complexity of the model rises and variance
(overfitting) becomes the primary concern while bias
falls steadily.

Learning Capacity and Rate

● Convergence
● Learning rate

● Overfitting
◦ Network size

◦ Amount of data

◦ Gap between training and test performance (generalization)

Generalization Error
● "resampling based measures such as cross-validation

should be preferred over theoretical measures such
as Akaike's Information Criteria"

● Hold-out data split

● 5-fold cross-validation data split

Scott Fortmann-Roe, Accurately Measuring Model Prediction Error, 2012
http://scott.fortmann-roe.com/docs/MeasuringError.html

Regularization

● To prevent over fitting

◦ Weight-decay (L1 Decay, L2 decay)

◦ Drop out

Amount of Data

When there is not enough specific training data

● Pre-training

◦ on other generic datasets

● Data augmentation

◦ Random crop

◦ Horizontal, vertical flip

◦ Rotations

◦ Create synthetic data using the degradation
(noise, blur, etc.) model

Basics of Convolutional Layers

● Convolution

● Padding

● Stride (subsampling)

◦ Jump pixels 𝑝 = 𝑓−12 → 𝑟 = 𝑛
𝑟 = 𝑛 + 2𝑝 − 𝑓𝑠 + 1

64643

553

553

6060

6060

60602

6060

6060

ℎ1
𝑥 ℎ2

Example: No padding, stride=1

Given an image 𝑥 with dimensions 𝑁1 × 𝑁2 × #Channels, and two filters ℎ1 and ℎ2 with dimensions 𝐻1 × 𝐻2 × #Channels. (Channels: R, G, B)

Pooling Layer

● Subsampling

● Max pooling

:

Normalization Layer
● Input Normalization: Normalizing inputs to mean zero and

variance 1 speeds up learning.

● Weight Normalization proposes normalizing the filter weights.

● Normalization of Output of Hidden Layers: Normalizing all
features in the hidden layers to mean zero and variance 1 also
speeds up learning.

● Smoothing effect: More stable behavior of the gradients.

● Regularization effect: Output of hidden layers are scaled by the
mean and variance computed on each mini-batch rather than
mean and variance using the entire data set. Similar to drop
out, this has the effect of adding some small noise to each
hidden layer’s activation.

Reference video:
https://www.coursera.org/learn/deep-neural-network/lecture/81oTm/why-does-batch-norm-work

Types of Output Normalization
● BatchNorm

● LayerNorm (when the notion of a batch is problematic, e.g., RNN)

● InstanceNorm (normalizes across the height and width)

● GroupNorm (across a subset of the batch, e.g., in case of variable
batch size)

● SwitchNorm learns different normalization operations for
different normalization layers in a DNN in an end-to-end manner.

Y. Wu and K. He, Group normalization, arXiv, 2018.

P. Luo, J. Ren and Z. Peng, Differentiable learning-to-normalize via switchable normalization, arXiv, 2018.

S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, How does batch normalization help optimization? arXiv, 2018.

Popular Convolutional Networks

● cc

AlexNet (2012)

● cc

>16,000

VGG Net (2015)

● Proposed by Karen Simonyan and Andrew Zisserman of the University
of Oxford (England). (Very deep convolutional networks for large-scale
image recognition, ICLR 2015)

● 19 layer CNN that uses only 3x3 filters (as opposed to AlexNet’s
11x11 filters in the first layer) with stride and pad of 1, along with
2x2 maxpooling layers with stride 2.

● A cascade of two 3x3 conv layers has an effective receptive field of 5x5.
3 conv layers back to back have an effective receptive field of 7x7. This
simulates a larger filter while keeping the benefits of smaller filters with
less number of parameters. In addition, with two (three) conv layers,
we’re able to use two (three) ReLU layers instead of one.

● The number of filters doubles after each maxpool layer. This reinforces
shrinking spatial dimensions, but growing the depth of volume.

● Trained on 4 Nvidia Titan Black GPUs using Stochastic Gradient Descent
for two to three weeks.

Residual Networks (ResNet 2016)
● The information in the errors is lost due to underflow after about

20 layers. He et al. (Microsoft Research, Asia) realized that this

● ResNet with 152 layers broke the record for ILSVRC challenge and
reduced error rate to 3.57% from the previous 6.7% set by
GoogleNet.

● Note that after only the first 2 layers, the spatial size is reduced from
an input volume of 224x224 to 56x56.

● Authors claim that a naïve increase of layers in plain nets result in
higher training and test error.

● Trained on an 8 GPU machine for two to three weeks.
K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image Recognition.

problem could be solved by
adding a shortcut path from the
input to the output of layers, so
each layer can be modeled ℎ𝑖 𝑥 = 𝑓𝑖 𝑥 + 𝑥

Densely Connected Networks

G. Huang, Z. Liu, L. van der Maaten, and K Q. Weinberger, Densely connected convolutional
networks, arXiv, Aug. 2017.

● DenseNet: create short paths from early layers to later layers
(connect all layers with matching feature-map sizes directly with
each other)

● Unlike short-cuts in ResNet, DenseNet combines features by
concatenating them. Hence, the 𝑙’th layer has 𝑙 inputs, consisting
of feature-maps of all preceding convolutional blocks.

The feature-maps of 𝑙’th layer are passed on to
all 𝐿 − 𝑙 subsequent layers. This introduces𝐿(𝐿 + 1)/2 connections in an 𝐿-layer DenseNet,
instead of just 𝐿 connections, as in the traditional
ConvNet architecture.

Transition layers between ‘dense blocks’ are used to change
feature-map size by convolution and pooling.

Upsampling: Transposed Convolution

● This operator enlarges the input
tensor in height and width
dimensions.

● Also known as fractionally strided
convolution or deconvolution
(although has nothing to do with it)

● Useful for SR, Autoencoders, GANs
etc.

V. Dumoulin and F. Visin, A guide to convolution arithmetic for deep learning, arXiv, 2016

Upsampling: Pixelshuffler
● Transposed convolution has many redundant operations

due to zeros. Pixelshuffler interpolates the tensor in the
same scale by increasing number of features leading to
ease of computation.

● There is no need to upsample images at the input or in
the middle of the network. Instead we can do it at
the end, decreasing computational complexity.

W. Shi et al., Real-time single image and video super-resolution using an efficient sub-
pixel convolutional neural network, IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), June, 2016

Processing Tasks

(a) (b) (c) (d) (e)

(a) fixed-sized input to fixed-sized output (e.g., ConvNet); (b) single input to
sequence output (e.g. captioning an image with multiple words); (c) sequence
input, single output (e.g. classify a sentence or video with a label) (d) sequence
input, sequence output (e.g., machine translation) (e) synced sequence input
and output (e.g., video processing)

● Sequential processing of sequential or time series data

Andrej Karpathy, http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Recurrent Neural Networks
● Dynamic (Temporal) Model

𝐡𝑡 = 𝜑 𝐖ℎℎ𝐡𝑡−1 +𝐖𝑥ℎ𝐱𝑡𝐲𝑡 = 𝐖ℎ𝑦𝐡𝑡
● LSTM
● GRU

W

W W … W

Unrolled recurrent neural network

J. Chung, C. Gulcehre, K.H. Cho, Y. Bengio, “Empirical evaluation of gated
recurrent neural networks on sequence modeling,” NIPS Workshop, 2014.

Training RNN
● Backpropagation-Through-Time
◦ Present a sequence of timesteps of input and output pairs to the network.

◦ Unroll the network then calculate and accumulate errors across each timestep.

◦ Roll-up the network and update weights.

◦ Repeat.

BPTT is computationally expensive as the number of timesteps increases.
If input sequences have thousands of timesteps, thousands of derivatives are
required for a single weight update. This can cause weights to vanish or
explode (go to zero or overflow) and make learning slow.

● Truncated Backpropagation-Through-Time
◦ TBPTT(n,n): Updates are performed at the end of each sequence across all

timesteps (standard BPTT).

◦ TBPTT(1,n): update after each timestep based on all timesteps seen so far.

◦ TBPTT(k1,k2), where k1<k2<n: Multiple updates are performed per sequence which
can accelerate training.

◦ TBPTT(k1,k2), where k1=k2: A common configuration where a fixed number of
timesteps are used for both forward and backward-pass timesteps (e.g. 10s to 100s).

https://machinelearningmastery.com/gentle-introduction-backpropagation-time/

Example: Character-level language model

● Four-character dictionary {h,e,l,o}

● Single hidden layer with three nodes

Andrej Karpathy, http://karpathy.github.io/2015/05/21/rnn-effectiveness/

t=1 t=2 t=3 t=4

Autoencoders
● Auto-encoders create a latent or compressed representation of raw

input data. They achieve dimensionality reduction; i.e., the vector
serving as a hidden (latent) representation compresses the input into
a small no of salient dimensions.

● Auto-encoders can be paired with a decoder, which allows
reconstruction of input data from its latent representation.

● Denoising auto-encoders (add noise to input)

● Sparse auto-encoders (sparse hidden representation(s))

Transfer Learning
● TL refers to ability to generalize a pre-trained DNN to

conditions that are different from those during training.

● ConvNet as fixed feature extractor: Take a ConvNet pretrained
on ImageNet, remove the last fully-connected layers, then
treat the remaining layers as a fixed deep feature extractor for
the new dataset.

● Fine-tuning the ConvNet: Fine-tuning the weights of a
pretrained network by continuing the backpropagation for a
new task using a smaller number of training images is usually
much faster and easier than training a network from scratch
with randomly initialized weights. It is possible to fine-tune all
layers or keep some of the earlier layers fixed and only fine-
tune some higher-level portion of the network.

● Pre-trained Models: The Caffe library has a Model Zoo where
people share their network weights

A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “CNN features off-the-shelf: An
astounding baseline for recognition,” arXiv, 12 May 2014.

https://github.com/BVLC/caffe/wiki/Model-Zoo

Generative Adversarial Networks
● GAN is an architecture that poses the training process as

a game between two networks, a generator network and
a discriminator net, against each other (thus “adversarial”).

● The generator learns to generate realistic reconstructed solutions
(samples) while the discriminator learns to determine if these samples are
original data or reconstructed solutions.

● If we train both networks to equilibrium, then generated solution samples
are indistinguishable from original data by a perfect discriminator.

● Adversarial learning enables learning entirely from data as opposed to
relying on an engineered objective function to guide the optimization.

Ian Goodfellow, NIPS 2016 Tutorial: Generative Adversarial Networks, arXiv.
https://www.analyticsvidhya.com/blog/2017/06/introductory-generative-adversarial-networks-gans/

GAN – Image generation
● Unsupervised: There are no ground truth labeled images, just sample images.
● Suppose we have a randomly-initialized image generator network that outputs

200 images, each from a different random code.
● We introduce a discriminator network (e.g., a standard CNN) to classify if an input

image is real or generated. We feed 200 generated images and 200 real
images into the discriminator and train it as a standard classifier to distinguish
real and fake images.

● We backpropagate mismatch error through both discriminator and generator to
find how we should change generator’s parameters to make 200 generated
samples slightly more confusing for the discriminator.

● Mathematically, we have a dataset of examples 𝑥1, … , 𝑥𝑛 as samples from a true
data distribution p(x). Images generated by our network also have a distribution ො𝑝𝜃 (𝑥) that is defined implicitly by taking points from a unit Gaussian distribution
and mapping them through a deterministic neural network — our generative
model that is a function of parameters θ. Tweaking these parameters will tweak
the generated distribution of images. Our goal then is to find parameters θ that
produce a distribution that closely matches the true data distribution (for
example, by having a small KL divergence loss).

● GANs generate data in fine, granular detail; images generated by VAEs tend to
be more blurred.

https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://en.wikipedia.org/wiki/Loss_function

DCGAN
● Introduces convolutional networks into GAN architecture

● Architecture guidelines for stable DCGAN
◦ Remove fully connected hidden layers for deeper architectures.
◦ Replace any pooling layers with strided convolutions (discriminator) and

fractional-strided convolutions (generator).
◦ Apply batchnorm in both the generator and the discriminator. Applying

batchnorm to all layers resulted in sample oscillation and model instability. This
was avoided by not applying it to the generator output layer and the
discriminator input layer.

◦ Use ReLU activation in generator for all layers, except for the output layer,
which uses Tanh.

◦ Use LeakyReLU activation in the discriminator for all layers in contrast to the
original GAN, which used maxout activation.

Ref.: A. Radford, L. Metz, S. Chintala, Unsupervised Representation Learning with Deep

Convolutional Generative Adversarial Networks, ICLR 2016.

network learns distribution of a class of images

Input: 100 random

numbers drawn from

uniform distribution

Tips for Training a GAN
● When training the discriminator, hold the generator

constant; and when training the generator, hold the
discriminator constant. Each should train against a static
adversary.

● Pretraining the discriminator before you start training the
generator will establish a clearer gradient.

● Each side can overpower the other.

◦ If the discriminator is too good, it will return values so close to 0
or 1 that the generator will struggle to read the gradient.

◦ If the generator is too good, it will exploit weaknesses in the
discriminator that lead to false negatives. This may be mitigated
by the nets’ respective learning rates.

● Difficult to tune hyperparameters.

● GANs take a long time to train.

PART 2

DEEP-LEARNED

IMAGE and VIDEO
PROCESSING

Frameworks

● Static Graph Methods:
◦ Tensorflow

◦ Theano

◦ Mxnet

◦ Caffe

● Dynamic Graph Methods:
◦ PyTorch

◦ Chainer

◦ Tensorflow-Eager

◦ DyNet

Static Graph

● A computational graph is
a directed graph where
the nodes correspond to
operations or variables.

● Static graphs are defined
first and then they are run.
(Define-and-Run) 𝐡𝑡 = 𝜑 𝐖ℎ𝐡𝑡−1 +𝐖𝑥𝐱𝑡

TensorFlow implementation

TensorFlow implementation

TensorFlow implementation

TensorFlow implementation

TensorFlow implementation

TensorFlow implementation

TensorFlow implementation

Dynamic Graph

● In contrast, dynamic graph methods create
the computational graph while running the
code.

● Writing conditional statements and loops are
natural.

PyTorch Implementation

https://pytorch.org/about/

Dynamic Graph (PyTorch)

https://pytorch.org/about/

Dynamic Graph (PyTorch)

https://pytorch.org/about/

Dynamic Graph (PyTorch)

https://pytorch.org/about/

Dynamic Graph (PyTorch)

https://pytorch.org/about/

Dynamic Graph (PyTorch)

https://pytorch.org/about/

Dynamic Graph (PyTorch)

https://pytorch.org/about/

Comparison of Static vs. Dynamic

Static

● Define and run.

● Special control flow
operations.

● Hard to debug.
Use special tools.

Dynamic

● Define by run.

● Control flow is
trivial.

● Easy to debug.
Use standard
debugging tools.

Example while loop

Tensorflow Pytorch

● Image Denoising

● Image Deblurring

● Single-image Super-resolution

● Image Inpainting

Deep-Learned
Solution of Inverse Problems

Inverse Problems

Deblurring

Classic Image Deblurring
●

●DIV2K dataset
(NTIRE 2017)

800 training,

100 test images
2K resolution

Deep Restoration/SISR Results

SRGAN
• Supervised training from noisy data

• SRResNET

C. Ledig, et al., “Photo-realistic single image super-resolution using a generative adversarial network,” arXiv,

13 April 2017

Image Deblurring using
SRResNet without upscale layer

• Supervised training from blurred+noisy data at the input
and the groundtruth image at the output

Modified from SRResNet

11x11 blurred + 40dB noise input

PSNR: 36.9666002257 dB, SSIM: 0.971302986145 – generator trained

96x96 patches, Minibatch size 16

Linear interpolated Deep SR

x4 SISR

Linear interpolated Deep SR

x4 SISR

SRGAN x4 Results - Evaluation
● PSNR

● SSIM

● MOS (Perceptual quality)

● How to stop training a GAN?

CVPR NTIRE 2017
(New Trends in Image Restoration and Enhancement)

Challenge on Single Image SR

● Two Tracks:

◦ Track 1: Bicubic Downsampling

◦ Track 2: Unknown Downsampling

● Three competitions

◦ Upsample by x2, x3, x4

● New dataset: DIV2K (DIVerse 2k resolution images)

◦ 800 training, 100 validation, 100 test images

R. Timofte, et al. NTIRE 2017 Challenge on Single Image Super-Resolution:Methods and Results,
IEEE Conf. On Computer Vision and Pattern Recognition (CVPR) Workshops, July, 2017

NTIRE 2017 Results

(*) the checked SNU_CVLab1 model achieved 29.09dB PSNR and 0.837 SSIM.

Note: SNU_CVLab1 obtained 32.64 dB on set 5, 28.94 dB on set14 and 27.74 dB on BSD100 datasets
compared to SRResNet which obtained 32.05 dB, 28.49 dB and 27.58 dB, respectively.

EDSR (SNU_CVLab1)
● Winner of both tracks for all subsampling factors

● Modified from SRResNet with new building blocks:

◦ Remove BN

◦ Constant multiplication at the end (xC) (for better training)

● B=36 ResBlocks, 256 feature maps, C=0.1 (affects learning rate)

B. Lim, et al., Enhanced deep residual networks for single image super-resolution*,
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) Workshop, July, 2017

*Source code and model available on Github

Unknown Degradation Model
● Learn degradation model using a NN from given (HR, LR) training data

● Data augmentation: Flip, rotate, etc. the original HR image, and
generate synthetic LR images from them by applying the learned
degradation model

MDSR (Multi-Scale EDSR)
(SNU_CVLab2)

● Single network for
all three factors

● Deeper -
80 ResBlocks

● Narrower -
64 feature maps

● No constant scaling

2nd place

*Source code and model available on Github

Stacked Residual-Refined Network
(HelloSR)

● Coarse-to-fine improvement

● Intermediate supervision

● LRFE-Net blocks consists of residual blocks

3rd place

CVPR NTIRE 2018
Challenge on Single Image SR

● Four Tracks:
◦ Classic bicubic downsampling (x8)

◦ Realistic mild adverse conditions (x4)

◦ Realistic difficult adverse conditions (x4)

◦ Realistic wild conditions (x4)

● Realistic conditions emulate the image acquisition
process from a digital camera.

● For Track 2 and 3 degradation model are the same
within respective tasks.

● Track 4 has different degradation models from one
image to another.

Challenge on SISR Results
(Bicubic x8)

Challenge on SISR Results
(Realistic x4)

Deep Back-Projection Network
● Winner of Track 1.

● Deep learning version of the well-known
Iterative Back-Projection Method

R.Timofte,etal.,NTIRE2018 challengeonsingle image superresolution:

Methodsandresults,CVPR2018.

Wide Activation and Weight
Normalization for Accurate Image SR

● WDSR: Winner of Track 2-3. Second in Track 4.

● Modified EDSR.

● Weight normalization enables higher learning
rates.

Comparison of Residual blocks in EDSR (left) and WDSR (right)

J. Yu, et al., Wide activation for efficient and accurate image superresolution, arXiv, 27 Aug. 2018.

WDSR (continued)

● Input image is upsampled with learned
parameters.

● Convolutional layer before pixelshuffler is
removed.

CVPR NTIRE 2018
Challenge on Image Dehazing

● First challenge on Image Dehazing

● 2 datasets for 2 tracks:

◦ I-Haze: Indoor dehazing (35 scenes for training, 5 for validation)

◦ O-Haze: Outdoor dehazing (45 scenes for training, 5 for validation)

Ground truth Hazy

C. Ancuti, et al., NTIRE 2018 challenge on image dehazing: Methods and results,

CVPR 2018.

Performance Evaluation
● Performance of restoration/SR methods vary over the test dataset

● Standard deviation of PSNR is in the same order as the PSNR

● PSNR depends on the frequency content of images in the dataset.

O. Kırmemiş and A.M. Tekalp, Effect of training and test datasets on image restoration
and super-resolution by deep learning, EUSIPCO 2018. (Tuesday 14:30)

ECCV 2018 Challenge on Perceptual
Image Restoration and Manipulation

● Definition of Perceptual Quality

● Three topics:

◦ Enhancement on Smartphnoes: Focuses on SR
and image enhancement in mobile devices. Metric
is accuracy per runtime. Also constraints on max.
model size and max. RAM consumption

◦ Super Resolution: Focuses on perceptual quality.
Perceptual quality is compared within predefined
regions according to thresholds on MSE.

◦ Spectral Reconstruction

The Perception-Distortion Tradeoff

● There exists a region in P-D plane which is unattainable.

● If the performance of an algorithm is along the blue
curve, it can be improved only in terms of distortion or
in terms of its perceptual quality, but not in both.

Y. Blau and T. Michaeli. The Perception-Distortion Tradeoff. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2018.

Predicting Perceptual Quality

● Good PSNR does not guarantee better perceptual
quality.

● A no-reference IQA metric that predicts MOS to evaluate
the performance of SR algorithms
C. Ma, et al. Learning a no-reference quality metric for single-image
super-resolution. Comp. Vision and Image Understand (CVIU), 2017.

● Natural Image Quality Evaluator (NIQE)

A. Mittal, et al. Making a completely blind image quality analyzer.
IEEE Signal Processing Letters, vol. 20, no. 3, pp. 209-212, March 2013.

Perception-Distorton
Evaluation of SR algorithms

● The location of an algorithm on the P-D plane depends
on the distortion metric.

Deep-Learned
Image/Video Compression

● End-to-end Image Compression
◦ Auto-encoder

◦ Generative Compression

● Enhancing performance of standards-
based encoders
◦ HEIF (BPG) Encoder

◦ HEVC Encoder

End-to-end Image Compression

● Learned-transform

◦ Auto-encoders learn latent-space
representation of images

● Differentiable approximation to quantization

◦ Soft quantization

● Generative Codecs
◦ O. Rippel and L. Bourdev, “Real-time adaptive image compression,”

ICML 2017, arXiv, 16 May 2017.

◦ S. Santurkar, D. Budden, and N. Shavit, “Generative compression, ” arXiv,
June 2017.

Soft Quantization
● Hard quantization for d-bits:

◦ 𝑞 = 𝑄 𝑧 = 𝑧 × 2𝑑
● However this function yields zero gradients

except at decision boundaries. Therefore soft
quantization is employed in training phase.

● Soft quantization for d-bits:

◦ ǁ𝑧 = σ𝑖=02𝑑−1 exp(− 𝑧×2𝑑−𝑖)σ𝑗=02𝑑−1 exp(− 𝑧×2𝑑−𝑗) × 𝑖
E. Agustsson, et al. Soft-to-hard vector quantization for end-to-end learning
compressible representations. arXiv preprint arXiv:1704.00648, 2017

Enhancing Standard Codecs

● Deep networks learn free parameters of
state of the art standards-based encoders

◦ Block partitioning

◦ Mode selection

◦ Quantization parameter selection

◦ In-loop filter

● Pre-processing and/or post-processing

◦ Learned smoothing for pre-processing

◦ Artifact removal

CVPR-CLIC 2018
Challenge on Learned Image Compression

● Rules
◦ Compression rate of the whole test set must not

exceed 0.15 bpp (average).

◦ Participants are ranked according to

⚫ PSNR

⚫ Scores provided by human raters (MOS)

● Dataset
◦ New: 1633 training, 102 validation, 286 test images.

⚫ DatasetP (professional)

⚫ DatasetM (mobile)

CLIC 2018 Winners

● Best MOS (also best MS-SSIM)

◦ An Autoencoder-based Learned Image
Compressor: Description of Challenge
Proposal by NCTU

● Best PSNR

◦ CNN-Optimized Image Compression with
Uncertainty based Resource Allocation

● Fastest:

◦ xvc codec

CLIC 2018 Results

● Only submissions which are evaluated
for MOS scores are shown.

Fastest
● xvc – A conventional codec

◦ proprietary

◦ Block based

◦ Traditional approach for prediction, residual
representation

● Originally developed for video compression.

● No machine learning is involved.

J.Samuelsson, P. Hermansson, Image compression with xvc, IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR) Workshops, June, 2018

Best MOS and MS-SSIM

● Based on
autoencoder

● 4-bit
quantization

● Soft
quantization

● Importance
Network

D. Alexandre, et al., An autoencoder-based learned image compressor: Description of challenge
proposal by NCTU, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) Workshops,
June, 2018

𝑧 ∈ [0,1]

Importance Net
● Importance Net learns the important parts of

the representation so that the system
allocates more bits to complicated areas.

● It is made of residual blocks and another
quantizer to select the number of bits

Optimization - Loss Function

● Loss function is a weighted sum of rate and
distortion

◦ 𝐿 = λ × 𝐻 𝑖𝑚𝑝 + 𝐿𝑑
where

◦ 𝐿𝑑 = 𝑀𝑆𝐸2σ12 + 𝑀𝑆𝑆𝑆𝐼𝑀2σ22 + log(σ12) + log(σ22)
● Rate loss H(𝑖𝑚𝑝) is estimated by summing up all

values of the importance maps 𝑖𝑚𝑝
● σ1 and σ2 are learnable parameters

Best PSNR

● Based on the JEM platform (the HEVC codec)

● Contributions:

◦ CNN based in-loop filter (CNNIF) and

◦ CNN based mode coding (CNNMC)

Z. Chen, et al., CNN-optimized image compression with uncertainty based resource allocation,
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) Workshops, June, 2018

CNN based In-Loop Filter (CNNIF)

● In-loop filter consists of stacked Dense Residual
Units (DRU)

A Dense Residual Unit (DRU)

Learned Artifact Suppression
● Compression artifacts have structure that can be learned

● We use SELU activation instead of ReLU

● It is trained to remove artifacts introduced by BPG codec.

● Although we trained our network with a single QP (40),
it can improve images encoded by QP between 39 and 43.

O. Kirmemis, G. Bakar and A.M. Tekalp, Learned Compression artifact removal by deep residual
networks, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2018

EDSR Network

Each residual block

Questions ?

Lunch Break

home.ku.edu.tr/~mtekalp

