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Bridging Communities

● Computer Vision, AI
◦ Image classification

◦ Video object segmentation and tracking

◦ Activity modeling/detection/recognition

◦ Video understanding

● Signal Processing
◦ Non-linear signal processing

◦ Learned image restoration, super-resolution

◦ Learned image/video compression

Image and video 
restoration, 
super-resolution

Image and video 
compression

Computer vision

Deep learning



Wiener deconvolution DNN deconvolution



Analysis of Artefacts

● Degradation Model𝑟 𝑛1, 𝑛2 = ℎ 𝑛1, 𝑛2 ∗∗ 𝑠 𝑛1, 𝑛2 + 𝑣 𝑛1, 𝑛2𝑅 𝑢1, 𝑢2 = 𝐻 𝑢1, 𝑢2 𝑆 𝑢1, 𝑢2 + 𝑉 𝑢1, 𝑢2
● Linear-shift invariant regularized restorationመ𝑆 𝑢1, 𝑢2 = 𝚽 𝑢1, 𝑢2 𝑅 𝑢1, 𝑢2= 𝚽 𝑢1, 𝑢2 𝐻 𝑢1, 𝑢2 𝑆 𝑢1, 𝑢2 + 𝑉 𝑢1, 𝑢2
Add and substract 𝑆 𝑢1, 𝑢2 to the right hand side:= 𝑆 𝑢1, 𝑢2 + 𝚽 𝑢1, 𝑢2 𝐻 𝑢1, 𝑢2 − 1 𝑆 𝑢1, 𝑢2 +𝚽 𝑢1, 𝑢2 𝑉 𝑢1, 𝑢2

Signal-dependent ringing artefacts

Enhanced noise

A.M. Tekalp and M. I. Sezan, ``Quantitative analysis of artifacts in linear space-invariant image 
restoration," Multidimensional Systems and Sign. Proc., vol. 1, pp. 143-177, June 1990.

Deviation from the inverse filter



PART 1

THEORETICAL

FOUNDATIONS



Adaptive Signal Processing
● An adaptive linear filter with time-varying weights w(i),  

input vector x(i), and desired output d(i), adjusts             
the weights to minimize the output error. 

● Minimizing the mean square error𝐸 𝑒(𝑖) 2 = σ𝑖=1𝑁 𝑒2(𝑖)
gives the Wiener solution in optimal prediction/filtering

● The LMS algorithm (Widrow-Hoff, 1960) minimizes  𝑒2 𝑖 with respect to w(i) at each time step.

𝑦(𝑖) = 𝑘=1𝑀 𝑤𝑘 𝑖 𝑥𝑘 𝑖 𝑖 = 1,⋯ ,𝑁
𝑒 𝑖 = 𝑑 𝑖 − 𝑦(𝑖)

Filter output:

Output error:



Neural Networks 101

Single neuron               Simple network (1 hidden layer)

● Activation Functions: A Neural Network without an 
activation function would simply be a linear regression 
model, which has limited capability.



Activation Functions
Activation function should be differentiable so as to perform to 
compute gradient of output error (loss function) with respect to 
unknown weights.

● Logistic function (sigmoid)
◦ Vanishing gradients

◦ Sigmoids saturate and kill gradients.

◦ Output is between 0 and 1, not 0-centered

● Hyperbolic tangent
◦ Output is 0-centered in between -1 to 1

◦ Vanishing gradients

𝑦(𝑥) = 11 + 𝑒−𝑥

𝑦(𝑥) = 𝑒2𝑥 − 1𝑒2𝑥 + 1



Activation Functions (cont’d)
● Rectified linear unit (RELU) 

◦ Avoids vanishing gradients problem

◦ Only used in hidden layers – in the output layer use softmax for 
classification problems and linear layer for regression problems

◦ Dead neuron problem – use Leaky RELU

● Scaled Exponential Linear Unit (SELU)

◦ The parameter 𝜆 > 1.

𝑦(𝑥) = max 0, 𝑥

𝑦(𝑥) = 𝜆 ቊ 𝑥 𝑥 > 0𝛼(𝑒𝑥 − 1) 𝑥 < 0
G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, Self-normalizing neural networks, 2017



●

Universal Approximation Theorem



Deep Image/Video Processing

●

f(.)
Label

or
Image



Deep Neural Networks

● Multi-layer perceptron (fully-connected)

● Convolutional networks

● Fat vs. Deep networks



Big Data and Deep Learning

Deep

Millions of labeled 
images



Applications of Deep Learning
● Classification problems
◦ DNN learns a mapping between images and labels (cats vs. dogs)

◦ ImageNet: 1,5 million images, 1,000 class labels

◦ Probability estimation – Softmax layer𝑝 𝑥𝑖 = 𝑒−𝑥𝑖σ𝑗=1𝐾 𝑒−𝑥𝑗 , 𝑖 = 1,⋯ , 𝐾
● Regression problems
◦ DNN learns a mapping between input and output images

◦ Image restoration, super-resolution, in-painting

● Image generation
◦ DNN learns a generative model 𝑝(𝑥|𝑧), where z is a latent variable. 

New images are generated by sampling from the pdf 𝑝(𝑥|𝑧)



Supervised Training
● Training data set
◦ Given input, output pairs 𝐱(𝑖), 𝐲(𝑖) , 𝑖 = 1,⋯ ,𝑁

● Optimization problem
◦ Loss functions

◦ Find 𝐰 to minimize 𝑖=1𝑁 𝐲(𝑖) − ෝ𝒚(𝐰, 𝐱(𝑖)) 2
● Solution
◦ Non-convex optimization by gradient descent

◦ Computation of gradients – back propagation



Back-propagation

● Network is initiated with random weights. 

● Forward pass: Given input, the output error is 
computed. 

● Backward pass: The gradient of the output 
error function with respect to weights is 
computed to update previous weights

● Chain rule of differentiation

● Different gradient descent procedures exist
D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representation 
by back-propagating errors, Nature, 323, pp. 533-536, 9 Oct. 1986.



Back-prop Example
● Forward pass:𝑛𝑒𝑡ℎ1 = 𝑤1 𝑖1 + 𝑤2 𝑖2 + 𝑏1𝑜𝑢𝑡ℎ1 = 11 + 𝑒−𝑛𝑒𝑡ℎ1𝑛𝑒𝑡ℎ2 = 𝑤3 𝑖1 + 𝑤4 𝑖2 + 𝑏1𝑜𝑢𝑡ℎ2 = 11 + 𝑒−𝑛𝑒𝑡ℎ2𝑛𝑒𝑡𝑜1 = 𝑤5 𝑜𝑢𝑡ℎ1 + 𝑤6 𝑜𝑢𝑡ℎ2 + 𝑏2𝑜𝑢𝑡𝑜1 = 11 + 𝑒−𝑛𝑒𝑡𝑜1𝑛𝑒𝑡𝑜2 = 𝑤7 𝑜𝑢𝑡ℎ1 + 𝑤8 𝑜𝑢𝑡ℎ2 + 𝑏2𝑜𝑢𝑡𝑜2 = 11 + 𝑒−𝑛𝑒𝑡𝑜2

𝑛𝑒𝑡ℎ1 = 0.3775𝑜𝑢𝑡ℎ1 = 0.593269992𝑛𝑒𝑡ℎ2 = 0.3925𝑜𝑢𝑡ℎ2 = 0.596884378𝑛𝑒𝑡𝑜1 = 1.105905967𝑜𝑢𝑡𝑜1 = 0.75136507𝑛𝑒𝑡𝑜2 = 1.2249207𝑜𝑢𝑡𝑜2 = 0.772928465
https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

w1=0.15

w2=0.2

w3=0.25

w6=0.45

w7=0.5

w5=0.4

w4=0.3 w8=0.55



Back-prop Example (cont’d)
● Backward pass:
◦ Output Layer

◦ Gradient-descent update

𝐸𝑡𝑜𝑡𝑎𝑙 = 12 0.01 − 𝑜𝑢𝑡𝑜1 2 + 12 0.99 − 𝑜𝑢𝑡𝑜2 2𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑤5 = 𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑜𝑢𝑡𝑜1 𝛿𝑜𝑢𝑡𝑜1𝛿𝑛𝑒𝑡𝑜1 𝛿𝑛𝑒𝑡𝑜1𝛿𝑤5𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑜𝑢𝑡𝑜1 = −(0.01 − 𝑜𝑢𝑡𝑜1)𝛿𝑜𝑢𝑡𝑜1𝛿𝑛𝑒𝑡𝑜1 = 𝑒−𝑛𝑒𝑡𝑜11+𝑒−𝑛𝑒𝑡𝑜1 2 = 11+𝑒−𝑛𝑒𝑡𝑜1 𝑒−𝑛𝑒𝑡𝑜11+𝑒−𝑛𝑒𝑡𝑜1 = 𝑜𝑢𝑡𝑜1(1- 𝑜𝑢𝑡𝑜1)𝛿𝑛𝑒𝑡𝑜1𝛿𝑤5 = 𝑜𝑢𝑡ℎ1
𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑤5 = (0.74136) (0.18681)(0.59326)

= 0.08216

𝑤5 = 𝑤5 + 𝛼 𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑤5

Compute𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑤6 , 
𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑤7 , 

𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑤8
similarly

𝑤6 = 𝑤6 + 𝛼 𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑤6 𝑤7 = 𝑤7 + 𝛼 𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑤7 𝑤8 = 𝑤8 + 𝛼 𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑤8



● Backward pass:
◦ Hidden Layer

◦ Gradient-descent update

𝐸𝑜1 = 12 0.01 − 𝑜𝑢𝑡𝑜1 2𝐸𝑜2 = 12 0.99 − 𝑜𝑢𝑡𝑜2 2

Back-prop Example (cont’d)

𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑤1 = (0.036)(0.241)(0.05) = 0.000438

𝑤1 = 𝑤1 + 𝛼 𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑤1

𝛿𝐸𝑜1𝛿𝑜𝑢𝑡ℎ1 = 𝛿𝐸𝑜1𝛿𝑛𝑒𝑡𝑜1 𝛿𝑛𝑒𝑡𝑜1𝛿𝑜𝑢𝑡ℎ1

𝛿𝑜𝑢𝑡ℎ1𝛿𝑛𝑒𝑡ℎ1 = 11+𝑒−𝑛𝑒𝑡ℎ1 𝑒−𝑛𝑒𝑡ℎ11+𝑒−𝑛𝑒𝑡ℎ1 = 𝑜𝑢𝑡ℎ1(1- 𝑜𝑢𝑡ℎ1)

𝛿𝑛𝑒𝑡ℎ1𝛿𝑤1 = 𝑖1
𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑤1 = 𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑜𝑢𝑡ℎ1 𝛿𝑜𝑢𝑡ℎ1𝛿𝑛𝑒𝑡ℎ1 𝛿𝑛𝑒𝑡ℎ1𝛿𝑤1
𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑜𝑢𝑡ℎ1 = 𝛿𝐸𝑜1𝛿𝑜𝑢𝑡ℎ1 + 𝛿𝐸𝑜2𝛿𝑜𝑢𝑡ℎ1

𝛿𝐸𝑜1𝛿𝑛𝑒𝑡𝑜1 = 𝛿𝐸𝑜1𝛿𝑜𝑢𝑡𝑜1 𝛿𝑜𝑢𝑡𝑜1𝛿𝑛𝑒𝑡𝑜1 , 𝛿𝑛𝑒𝑡𝑜1𝛿𝑜𝑢𝑡ℎ1 = 𝑤5

o1

𝑤2 = 𝑤2 + 𝛼 𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑤2 𝑤3 = 𝑤3 + 𝛼 𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑤3 𝑤4 = 𝑤4 + 𝛼 𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑤4

Compute𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑤2 , 
𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑤3 , 

𝛿𝐸𝑡𝑜𝑡𝑎𝑙𝛿𝑤4
similarly



Optimization Methods

● Batch gradient descent

● Stochastic gradient descent

● Mini-batch gradient descent

Resource:  Andrew Ng video    https://www.youtube.com/watch?v=UfNU3Vhv5CA



Batch Gradient Descent
● Given 𝑀 pairs of training samples 𝐱(𝑖) and 𝐲(𝑖)
● Compute the gradient of the cost function𝐸𝑡𝑟𝑎𝑖𝑛 𝐰 = 12𝑀𝑖=1𝑀 𝐲(𝑖) − ො𝐲 𝐱(𝑖), 𝐰 2

w.r.t. to 𝑁 weights for the entire training set to perform just one update.Repeat for 𝑗 = 0,⋯ , 𝑁 − 1 {𝑤𝑗 ≔ 𝑤𝑗 − 𝛼 1𝑀𝑖=1𝑀 𝐲(𝑖) − ො𝐲 𝐱(𝑖), 𝐰 𝜕ො𝐲 𝐱(𝑖), 𝐰𝜕𝑤𝑗}
● Batch gradient descent 
◦ can be very slow when 𝑀 is large and is intractable for datasets that do 

not fit in memory. 
◦ does not allow on-line model updates, i.e. with new samples on-the-fly. 
◦ is guaranteed to converge to the global minimum for convex error 

surfaces and to a local minimum for non-convex surfaces.



Stochastic gradient descent (SGD)
● SGD performs a parameter update for each training sample               

pair 𝐱(𝑖) and 𝐲(𝑖)𝐸𝑡𝑟𝑎𝑖𝑛 𝐰 = 12𝑀𝑖=1𝑀 𝐲(𝑖) − ො𝐲 𝐱(𝑖), 𝐰 2
For each epoch:1. Randomly shuffle training data set2. Repeat for 𝑖 = 0,⋯ ,𝑀 − 1 {for 𝑗 = 0,⋯ ,𝑁 − 1 {𝑤𝑗 ≔ 𝑤𝑗 − 𝛼 𝐲(𝑖) − ො𝐲 𝐱(𝑖), 𝐰 𝜕ො𝐲 𝐱(𝑖), 𝐰𝜕𝑤𝑗} }

● SGD is much faster than batch gradient and can be used to learn online. 

● SGD performs frequent updates with a high variance that cause the 
objective function to fluctuate, which enables it to jump to new and 
potentially better local minima.



Mini-batch gradient descent
● Mini-batch gradient descent takes the best of both worlds and 

performs an update for every mini-batch of 𝐾 training examples.

● Common mini-batch sizes range between 𝐾 = 50 and 𝐾 = 256, 
but can vary for different applications. 

● It reduces the variance of the parameter updates, which can lead 
to more stable convergence; and 

● It enables use of highly optimized matrix optimizations common 
to state-of-the-art deep learning frameworks that make 
computing the gradient w.r.t. a mini-batch very efficient. 

● Mini-batch gradient descent is typically the algorithm of choice 
when training a neural network and the term SGD usually is 
employed also when mini-batches are used. 



Challenges
● SGD maintains a single learning rate (alpha) for all weight updates 

and alpha does not change during training.

● A learning rate (step size) that is too small causes slow convergence, 
while a learning rate that is too large causes the loss function to 
fluctuate around the minimum or even to diverge.

● Adaptive optimizers adjust the learning rate for each weight during 
training, e.g., reduce the learning rate according to a pre-defined 
schedule or when the change in the objective between epochs falls 
below a threshold.

● We must avoid getting trapped in suboptimal local minima and 
saddle points, i.e. points where one dimension slopes up and 
another slopes down. The saddle points are usually surrounded by
a plateau of the same error, which makes it hard for SGD to escape, 
as the gradient is close to zero in all dimensions.



Adaptive Optimizers

● Momentum

● Nesterov Accelarated Gradient (NAG)

● AdaGrad

● Adadelta

● RMSProp

● Adam

● AdaMax

● Nadam

● AMSGrad
S. Ruder, An overview of gradient descent optimization algorithms, arXiv, 15 June 2017. 

 . and 𝜑(. ) averaging functions

 projection

Ex: Stochastic Grad Descent (SGD)

𝑡 is the counter of mini-batches



Adaptive Optimizers (cont’d)
● Adaptive Moment Estimation (Adam)
◦ computes adaptive learning rates for each parameter 

◦ uses an exponentially decaying average of past gradients (first moment), 
like Momentum and AdaGrad

◦ Also uses an exponentially decaying average of past squared gradients
(second moment), like Adadelta and RMSprop.

● AMSGrad

S.J. Reddi, S. Kale & S. Kumar, On the convergence of Adam and beyond, ICLR 2018.

Recommended
:



Bias vs. Variance
● Small models typically have high bias (underfitting)

● As the number of parameters in a model increases, 
the complexity of the model rises and variance
(overfitting) becomes the primary concern while bias
falls steadily.



Learning Capacity and Rate

● Convergence
● Learning rate

● Overfitting
◦ Network size

◦ Amount of data

◦ Gap between training and test performance (generalization)



Generalization Error
● "resampling based measures such as cross-validation 

should be preferred over theoretical measures such 
as Akaike's Information Criteria"

● Hold-out data split

● 5-fold cross-validation data split

Scott Fortmann-Roe, Accurately Measuring Model Prediction Error, 2012
http://scott.fortmann-roe.com/docs/MeasuringError.html



Regularization

● To prevent over fitting 

◦ Weight-decay (L1 Decay, L2 decay)

◦ Drop out



Amount of Data

When there is not enough specific training data

● Pre-training

◦ on other generic datasets

● Data augmentation

◦ Random crop

◦ Horizontal, vertical flip

◦ Rotations

◦ Create synthetic data using the degradation 
(noise, blur, etc.) model



Basics of Convolutional Layers

● Convolution

● Padding

● Stride (subsampling)

◦ Jump pixels 𝑝 = 𝑓−12 → 𝑟 = 𝑛
𝑟 = 𝑛 + 2𝑝 − 𝑓𝑠 + 1

64643

553

553

6060

6060

60602

6060

6060

ℎ1
𝑥 ℎ2

Example: No padding, stride=1

Given an image 𝑥 with dimensions 𝑁1 × 𝑁2 × #Channels, and two filters ℎ1 and ℎ2 with dimensions 𝐻1 × 𝐻2 × #Channels. (Channels: R, G, B)



Pooling Layer

● Subsampling

● Max pooling

: 



Normalization Layer
● Input Normalization: Normalizing inputs to mean zero and 

variance 1 speeds up learning.

● Weight Normalization proposes normalizing the filter weights.

● Normalization of Output of Hidden Layers: Normalizing all 
features in the hidden layers to mean zero and variance 1 also 
speeds up learning.

● Smoothing effect: More stable behavior of the gradients.

● Regularization effect: Output of hidden layers are scaled by the 
mean and variance computed on each mini-batch rather than 
mean and variance using the entire data set. Similar to drop 
out, this has the effect of adding some small noise to each 
hidden layer’s activation.

Reference video:
https://www.coursera.org/learn/deep-neural-network/lecture/81oTm/why-does-batch-norm-work



Types of Output Normalization
● BatchNorm

● LayerNorm (when the notion of a batch is problematic, e.g., RNN)

● InstanceNorm (normalizes across the height and width)

● GroupNorm (across a subset of the batch, e.g., in case of variable 
batch size)

● SwitchNorm learns different normalization operations for 
different normalization layers in a DNN in an end-to-end manner.

Y. Wu and K. He, Group normalization, arXiv, 2018.

P. Luo, J. Ren and Z. Peng, Differentiable learning-to-normalize via switchable normalization, arXiv, 2018.

S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, How does batch normalization help optimization? arXiv, 2018.



Popular Convolutional Networks

● cc



AlexNet (2012)

● cc

>16,000



VGG Net (2015)

● Proposed by Karen Simonyan and Andrew Zisserman of the University 
of Oxford (England).  (Very deep convolutional networks for large-scale 
image recognition, ICLR 2015)

● 19 layer CNN that uses only 3x3 filters (as opposed to AlexNet’s
11x11 filters in the first layer) with stride and pad of 1, along with
2x2 maxpooling layers with stride 2. 

● A cascade of two 3x3 conv layers has an effective receptive field of 5x5. 
3 conv layers back to back have an effective receptive field of 7x7. This 
simulates a larger filter while keeping the benefits of smaller filters with 
less number of parameters. In addition, with two (three) conv layers, 
we’re able to use two (three) ReLU layers instead of one.

● The number of filters doubles after each maxpool layer. This reinforces 
shrinking spatial dimensions, but growing the depth of volume.

● Trained on 4 Nvidia Titan Black GPUs using Stochastic Gradient Descent 
for two to three weeks.



Residual Networks (ResNet 2016)
● The information in the errors is lost due to underflow after about      

20 layers.  He et al. (Microsoft Research, Asia) realized that this

● ResNet with 152 layers broke the record for ILSVRC challenge and 
reduced error rate to 3.57% from the previous 6.7% set by 
GoogleNet.

● Note that after only the first 2 layers, the spatial size is reduced from 
an input volume of 224x224 to 56x56. 

● Authors claim that a naïve increase of layers in plain nets result in 
higher training and test error.

● Trained on an 8 GPU machine for two to three weeks. 
K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image Recognition.

problem could be solved by 
adding  a shortcut path from the 
input to the output of layers, so 
each layer can be modeled ℎ𝑖 𝑥 = 𝑓𝑖 𝑥 + 𝑥



Densely Connected Networks

G. Huang, Z. Liu, L. van der Maaten, and K Q. Weinberger, Densely connected convolutional 
networks, arXiv, Aug. 2017.

● DenseNet: create short paths from early layers to later layers
(connect all layers with matching feature-map sizes directly with 
each other)

● Unlike short-cuts in ResNet, DenseNet combines features by 
concatenating them. Hence, the 𝑙’th layer has 𝑙 inputs, consisting 
of feature-maps of all preceding convolutional blocks. 

The feature-maps of 𝑙’th layer are passed on to 
all 𝐿 − 𝑙 subsequent layers. This introduces𝐿(𝐿 + 1)/2 connections in an 𝐿-layer DenseNet, 
instead of just 𝐿 connections, as in the traditional
ConvNet architecture.

Transition layers between ‘dense blocks’ are used to change 
feature-map size by convolution and pooling.



Upsampling: Transposed Convolution

● This operator enlarges the input 
tensor in height and width 
dimensions.

● Also known as fractionally strided 
convolution or deconvolution 
(although has nothing to do with it)

● Useful for SR, Autoencoders, GANs 
etc.

V. Dumoulin and F. Visin, A guide to convolution arithmetic for deep learning, arXiv, 2016



Upsampling: Pixelshuffler
● Transposed convolution has many redundant operations 

due to zeros. Pixelshuffler interpolates the tensor in the 
same scale by increasing number of features leading to 
ease of computation.

● There is no need to upsample images at the input or in 
the middle of the network. Instead we can do it at           
the end, decreasing computational complexity.

W. Shi et al., Real-time single image and video super-resolution using an efficient sub-
pixel convolutional neural network, IEEE Conf. on Computer Vision and Pattern 
Recognition (CVPR), June, 2016



Processing Tasks

(a)                       (b)                              (c)                                     (d)                     (e)

(a) fixed-sized input to fixed-sized output (e.g., ConvNet); (b) single input to
sequence output (e.g. captioning an image with multiple words); (c) sequence
input, single output (e.g. classify a sentence or video with a label) (d) sequence
input, sequence output (e.g., machine translation) (e) synced sequence input
and output (e.g., video processing)

● Sequential processing of sequential or time series data

Andrej Karpathy, http://karpathy.github.io/2015/05/21/rnn-effectiveness/



Recurrent Neural Networks
● Dynamic (Temporal) Model

𝐡𝑡 = 𝜑 𝐖ℎℎ𝐡𝑡−1 +𝐖𝑥ℎ𝐱𝑡𝐲𝑡 = 𝐖ℎ𝑦𝐡𝑡
● LSTM
● GRU

W

W W … W

Unrolled recurrent neural network

J. Chung, C. Gulcehre, K.H. Cho, Y. Bengio, “Empirical evaluation of gated 
recurrent neural networks on sequence modeling,” NIPS Workshop, 2014.



Training RNN 
● Backpropagation-Through-Time
◦ Present a sequence of timesteps of input and output pairs to the network.

◦ Unroll the network then calculate and accumulate errors across each timestep.

◦ Roll-up the network and update weights.

◦ Repeat.

BPTT is computationally expensive as the number of timesteps increases.
If input sequences have thousands of timesteps, thousands of derivatives are 
required for a single weight update. This can cause weights to vanish or
explode (go to zero or overflow) and make learning slow.

● Truncated Backpropagation-Through-Time
◦ TBPTT(n,n): Updates are performed at the end of each sequence across all 

timesteps (standard BPTT).

◦ TBPTT(1,n): update after each timestep based on all timesteps seen so far.

◦ TBPTT(k1,k2), where k1<k2<n: Multiple updates are performed per sequence which 
can accelerate training.

◦ TBPTT(k1,k2), where k1=k2: A common configuration where a fixed number of 
timesteps are used for both forward and backward-pass timesteps (e.g. 10s to 100s).

https://machinelearningmastery.com/gentle-introduction-backpropagation-time/



Example: Character-level language model

● Four-character dictionary  {h,e,l,o}

● Single hidden layer with three nodes

Andrej Karpathy, http://karpathy.github.io/2015/05/21/rnn-effectiveness/

t=1 t=2 t=3 t=4



Autoencoders
● Auto-encoders create a latent or compressed representation of raw 

input data. They achieve dimensionality reduction; i.e., the vector 
serving as a hidden (latent) representation compresses the input into 
a small no of salient dimensions. 

● Auto-encoders can be paired with a decoder, which allows 
reconstruction of input data from its latent representation.

● Denoising auto-encoders (add noise to input)

● Sparse auto-encoders (sparse hidden representation(s))



Transfer Learning
● TL refers to ability to generalize a pre-trained DNN to 

conditions that are different from those during training.

● ConvNet as fixed feature extractor: Take a ConvNet pretrained 
on ImageNet, remove the last fully-connected layers, then 
treat the remaining layers as a fixed deep feature extractor for 
the new dataset.

● Fine-tuning the ConvNet: Fine-tuning the weights of a 
pretrained network by continuing the backpropagation for a 
new task using a smaller number of training images is usually 
much faster and easier than training a network from scratch 
with randomly initialized weights. It is possible to fine-tune all 
layers or keep some of the earlier layers fixed and only fine-
tune some higher-level portion of the network.

● Pre-trained Models: The Caffe library has a Model Zoo where 
people share their network weights

A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson,  “CNN features off-the-shelf:     An 
astounding baseline for recognition,” arXiv, 12 May 2014.

https://github.com/BVLC/caffe/wiki/Model-Zoo


Generative Adversarial Networks
● GAN is an architecture that poses the training process as 

a game between two networks, a generator network and      
a discriminator net, against each other (thus “adversarial”). 

● The generator learns to generate realistic reconstructed solutions 
(samples) while the discriminator learns to determine if these samples are 
original data or reconstructed solutions. 

● If we train both networks to equilibrium, then generated solution samples 
are indistinguishable from original data by a perfect discriminator. 

● Adversarial learning enables learning entirely from data as opposed to 
relying on an engineered objective function to guide the optimization.

Ian Goodfellow, NIPS 2016 Tutorial: Generative Adversarial Networks, arXiv.
https://www.analyticsvidhya.com/blog/2017/06/introductory-generative-adversarial-networks-gans/



GAN – Image generation
● Unsupervised: There are no ground truth labeled images, just sample images.
● Suppose we have a randomly-initialized image generator network that outputs 

200 images, each from a different random code.
● We introduce a discriminator network (e.g., a standard CNN) to classify if an input 

image is real or generated. We feed 200 generated images and 200 real 
images into the discriminator and train it as a standard classifier to distinguish 
real and fake images. 

● We backpropagate mismatch error through both discriminator and generator to 
find how we should change generator’s parameters to make 200 generated 
samples slightly more confusing for the discriminator.

● Mathematically, we have a dataset of examples 𝑥1, … , 𝑥𝑛 as samples from a true 
data distribution p(x). Images generated by our network also have a distribution ො𝑝𝜃 (𝑥) that is defined implicitly by taking points from a unit Gaussian distribution
and mapping them through a deterministic neural network — our generative 
model that is a function of parameters θ. Tweaking these parameters will tweak 
the generated distribution of images. Our goal then is to find parameters θ that 
produce a distribution that closely matches the true data distribution (for 
example, by having a small KL divergence loss).

● GANs generate data in fine, granular detail; images generated by VAEs tend to 
be more blurred. 

https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://en.wikipedia.org/wiki/Loss_function


DCGAN
● Introduces convolutional networks into GAN architecture

● Architecture guidelines for stable DCGAN
◦ Remove fully connected hidden layers for deeper architectures.
◦ Replace any pooling layers with strided convolutions (discriminator) and 

fractional-strided convolutions (generator).
◦ Apply batchnorm in both the generator and the discriminator. Applying

batchnorm to all layers resulted in sample oscillation and model instability. This 
was avoided by not applying it to the generator output layer and the 
discriminator input layer.

◦ Use ReLU activation in generator for all layers, except for the output layer, 
which uses Tanh.

◦ Use LeakyReLU activation in the discriminator for all layers in contrast to the 
original GAN, which used maxout activation.

Ref.: A. Radford, L. Metz, S. Chintala, Unsupervised Representation Learning with Deep 

Convolutional Generative Adversarial Networks, ICLR 2016.

network learns distribution of a class of images 

Input: 100 random 

numbers drawn from 

uniform distribution



Tips for Training a GAN
● When training the discriminator, hold the generator

constant; and when training the generator, hold the 
discriminator constant. Each should train against a static 
adversary. 

● Pretraining the discriminator before you start training the 
generator will establish a clearer gradient.

● Each side can overpower the other. 

◦ If the discriminator is too good, it will return values so close to 0 
or 1 that the generator will struggle to read the gradient. 

◦ If the generator is too good, it will exploit weaknesses in the 
discriminator that lead to false negatives. This may be mitigated 
by the nets’ respective learning rates.

● Difficult to tune hyperparameters.

● GANs take a long time to train.  



PART 2

DEEP-LEARNED

IMAGE and VIDEO 
PROCESSING



Frameworks

● Static Graph Methods: 
◦ Tensorflow

◦ Theano

◦ Mxnet

◦ Caffe

● Dynamic Graph Methods: 
◦ PyTorch

◦ Chainer

◦ Tensorflow-Eager

◦ DyNet



Static Graph

● A computational graph is  
a directed graph where 
the nodes correspond to 
operations or variables.

● Static graphs are defined 
first and then they are run. 
(Define-and-Run) 𝐡𝑡 = 𝜑 𝐖ℎ𝐡𝑡−1 +𝐖𝑥𝐱𝑡



TensorFlow implementation



TensorFlow implementation



TensorFlow implementation



TensorFlow implementation



TensorFlow implementation



TensorFlow implementation



TensorFlow implementation



Dynamic Graph

● In contrast, dynamic graph methods create 
the computational graph while running the 
code. 

● Writing conditional statements and loops are 
natural. 



PyTorch Implementation

https://pytorch.org/about/



Dynamic Graph (PyTorch)

https://pytorch.org/about/



Dynamic Graph (PyTorch)

https://pytorch.org/about/



Dynamic Graph (PyTorch)

https://pytorch.org/about/



Dynamic Graph (PyTorch)

https://pytorch.org/about/



Dynamic Graph (PyTorch)

https://pytorch.org/about/



Dynamic Graph (PyTorch)

https://pytorch.org/about/



Comparison of Static vs. Dynamic

Static

● Define and run.

● Special control flow 
operations. 

● Hard to debug.   
Use special tools.

Dynamic

● Define by run.

● Control flow is 
trivial.

● Easy to debug.    
Use standard 
debugging tools.



Example while loop

Tensorflow Pytorch



● Image Denoising

● Image Deblurring

● Single-image Super-resolution

● Image Inpainting

Deep-Learned
Solution of Inverse Problems



Inverse Problems

Deblurring



Classic Image Deblurring
●



●DIV2K dataset
(NTIRE 2017)

800 training, 

100 test images
2K resolution

Deep Restoration/SISR Results



SRGAN
• Supervised training from noisy data

• SRResNET 

C. Ledig, et al., “Photo-realistic single image super-resolution using a generative adversarial network,” arXiv, 

13 April 2017



Image Deblurring using
SRResNet without upscale layer

• Supervised training from blurred+noisy data at the input 
and the groundtruth image at the output 

Modified from SRResNet



11x11 blurred +  40dB noise input

PSNR: 36.9666002257 dB, SSIM:  0.971302986145 – generator trained

96x96 patches,  Minibatch size 16



Linear interpolated         Deep SR

x4 SISR



Linear interpolated         Deep SR

x4 SISR



SRGAN x4 Results - Evaluation
● PSNR

● SSIM

● MOS (Perceptual quality)

● How to stop training a GAN?



CVPR NTIRE 2017
(New Trends in Image Restoration and Enhancement)

Challenge on Single Image SR 

● Two Tracks:

◦ Track 1: Bicubic Downsampling

◦ Track 2: Unknown Downsampling

● Three competitions

◦ Upsample by x2, x3, x4

● New dataset: DIV2K (DIVerse 2k resolution images)

◦ 800 training, 100 validation, 100 test images

R. Timofte, et al. NTIRE 2017 Challenge on Single Image Super-Resolution:Methods and Results, 
IEEE Conf. On Computer Vision and Pattern Recognition (CVPR) Workshops, July, 2017



NTIRE 2017 Results

(*) the checked SNU_CVLab1 model achieved 29.09dB PSNR and 0.837 SSIM.

Note: SNU_CVLab1 obtained 32.64 dB on set 5, 28.94 dB on set14 and 27.74 dB on BSD100 datasets
compared to  SRResNet which obtained 32.05 dB, 28.49 dB and 27.58 dB, respectively.



EDSR (SNU_CVLab1)
● Winner of both tracks for all subsampling factors

● Modified from SRResNet with new building blocks: 

◦ Remove BN

◦ Constant multiplication at the end (xC)  (for better training)

● B=36 ResBlocks, 256 feature maps, C=0.1 (affects learning rate)

B. Lim, et al., Enhanced deep residual networks for single image super-resolution*,
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) Workshop, July, 2017 

*Source code and model available on Github



Unknown Degradation Model
● Learn degradation model  using a NN from given (HR, LR) training data

● Data augmentation: Flip, rotate, etc. the original HR image, and 
generate synthetic LR images from them by applying the learned 
degradation model



MDSR (Multi-Scale EDSR)            
(SNU_CVLab2)

● Single network for 
all three factors

● Deeper -
80 ResBlocks

● Narrower -
64 feature maps

● No constant scaling

2nd place

*Source code and model available on Github



Stacked Residual-Refined Network 
(HelloSR)

● Coarse-to-fine improvement

● Intermediate supervision

● LRFE-Net blocks consists of residual blocks

3rd place



CVPR NTIRE 2018 
Challenge on Single Image SR

● Four Tracks:
◦ Classic bicubic downsampling (x8)

◦ Realistic mild adverse conditions (x4)

◦ Realistic difficult adverse conditions (x4)

◦ Realistic wild conditions (x4)

● Realistic conditions emulate the image acquisition 
process from a digital camera. 

● For Track 2 and 3 degradation model are the same 
within respective tasks. 

● Track 4 has different degradation models from one 
image to another.



Challenge on SISR Results 
(Bicubic  x8)



Challenge on SISR Results 
(Realistic x4)



Deep Back-Projection Network
● Winner of Track 1.

● Deep learning version of the well-known 
Iterative Back-Projection Method

R.Timofte,etal.,NTIRE2018 challengeonsingle image superresolution:

Methodsandresults,CVPR2018.



Wide Activation and Weight 
Normalization for Accurate Image SR

● WDSR: Winner of Track 2-3. Second in Track 4.

● Modified EDSR. 

● Weight normalization enables higher learning 
rates.

Comparison of Residual blocks in EDSR (left) and WDSR (right)

J. Yu, et al., Wide activation for efficient and accurate image superresolution, arXiv, 27 Aug. 2018.



WDSR (continued)

● Input image is upsampled with learned 
parameters.

● Convolutional layer before pixelshuffler is 
removed.



CVPR NTIRE 2018 
Challenge on Image Dehazing

● First challenge on Image Dehazing

● 2 datasets for 2 tracks:

◦ I-Haze: Indoor dehazing (35 scenes for training, 5 for validation)

◦ O-Haze: Outdoor dehazing (45 scenes for training, 5 for validation)

Ground truth Hazy

C. Ancuti, et al., NTIRE 2018 challenge on image dehazing: Methods and results, 

CVPR 2018.



Performance Evaluation 
● Performance of restoration/SR methods vary over the test dataset

● Standard deviation of PSNR is in the same order as the PSNR

● PSNR depends on the frequency content of images in the dataset. 

O. Kırmemiş and A.M. Tekalp, Effect of training and test datasets on image restoration
and super-resolution by deep learning, EUSIPCO 2018.  (Tuesday 14:30)



ECCV 2018 Challenge on Perceptual 
Image Restoration and Manipulation

● Definition of Perceptual Quality

● Three topics:

◦ Enhancement on Smartphnoes: Focuses on SR 
and image enhancement in mobile devices. Metric 
is accuracy per runtime. Also constraints on max. 
model size and max. RAM consumption

◦ Super Resolution: Focuses on perceptual quality. 
Perceptual quality is compared within predefined 
regions according to thresholds on MSE.

◦ Spectral Reconstruction



The Perception-Distortion Tradeoff

● There exists a region in P-D plane which is unattainable. 

● If the performance of an algorithm is along the blue 
curve, it can be improved only in terms of distortion or 
in terms of its perceptual quality, but not in both.

Y. Blau and T. Michaeli. The Perception-Distortion Tradeoff. IEEE Conf. on Computer Vision and 
Pattern Recognition (CVPR), 2018.



Predicting Perceptual Quality

● Good PSNR does not guarantee better perceptual 
quality.

● A no-reference IQA metric that predicts MOS to evaluate  
the performance of SR algorithms
C. Ma, et al. Learning a no-reference quality metric for single-image 
super-resolution. Comp. Vision and Image Understand (CVIU), 2017.

● Natural Image Quality Evaluator (NIQE)

A. Mittal, et al. Making a completely blind image quality analyzer.    
IEEE Signal Processing Letters, vol. 20, no. 3, pp. 209-212, March 2013.



Perception-Distorton 
Evaluation of SR algorithms

● The location of an algorithm on the P-D plane depends 
on the distortion metric.



Deep-Learned
Image/Video Compression

● End-to-end Image Compression
◦ Auto-encoder

◦ Generative Compression

● Enhancing performance of standards-
based encoders
◦ HEIF (BPG) Encoder

◦ HEVC Encoder



End-to-end Image Compression

● Learned-transform

◦ Auto-encoders learn latent-space 
representation of images 

● Differentiable approximation to quantization

◦ Soft quantization

● Generative Codecs
◦ O. Rippel and L. Bourdev, “Real-time adaptive image compression,” 

ICML 2017, arXiv, 16 May 2017.

◦ S. Santurkar, D. Budden, and N. Shavit, “Generative compression, ” arXiv, 
June 2017.



Soft Quantization
● Hard quantization for d-bits: 

◦ 𝑞 = 𝑄 𝑧 = 𝑧 × 2𝑑
● However this function yields zero gradients 

except at decision boundaries. Therefore soft 
quantization is employed in training phase.

● Soft quantization for d-bits:

◦ ǁ𝑧 = σ𝑖=02𝑑−1 exp(− 𝑧×2𝑑−𝑖 )σ𝑗=02𝑑−1 exp(− 𝑧×2𝑑−𝑗 ) × 𝑖
E. Agustsson, et al. Soft-to-hard vector quantization for end-to-end learning 
compressible representations. arXiv preprint arXiv:1704.00648, 2017



Enhancing Standard Codecs

● Deep networks learn free parameters of 
state of the art standards-based encoders

◦ Block partitioning

◦ Mode selection

◦ Quantization parameter selection

◦ In-loop filter

● Pre-processing and/or post-processing

◦ Learned smoothing for pre-processing

◦ Artifact removal



CVPR-CLIC 2018
Challenge on Learned Image Compression 

● Rules
◦ Compression rate of the whole test set must not 

exceed 0.15 bpp (average).

◦ Participants are ranked according to 

⚫ PSNR 

⚫ Scores provided by human raters (MOS)

● Dataset
◦ New: 1633 training, 102 validation, 286 test images.

⚫ DatasetP (professional)

⚫ DatasetM (mobile)



CLIC 2018 Winners

● Best MOS (also best MS-SSIM)

◦ An Autoencoder-based Learned Image 
Compressor: Description of Challenge 
Proposal by NCTU

● Best PSNR

◦ CNN-Optimized Image Compression with 
Uncertainty based Resource Allocation 

● Fastest:

◦ xvc codec 



CLIC 2018 Results

● Only submissions which are evaluated 
for MOS scores are shown.



Fastest 
● xvc – A conventional codec

◦ proprietary

◦ Block based 

◦ Traditional approach for prediction, residual 
representation

● Originally developed for  video compression.

● No machine learning is involved.

J.Samuelsson, P. Hermansson, Image compression with xvc, IEEE Conf. on 
Computer Vision and Pattern Recognition (CVPR) Workshops, June, 2018



Best MOS and MS-SSIM

● Based on 
autoencoder

● 4-bit 
quantization

● Soft 
quantization

● Importance 
Network

D. Alexandre, et al., An autoencoder-based learned image compressor: Description of challenge
proposal by NCTU, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) Workshops, 
June, 2018

𝑧 ∈ [0,1]



Importance Net
● Importance Net learns the important parts of 

the representation so that the system 
allocates more bits to complicated areas.

● It is made of residual blocks and another 
quantizer to select the number of bits



Optimization - Loss Function

● Loss function is a weighted sum of rate and 
distortion

◦ 𝐿 = λ × 𝐻 𝑖𝑚𝑝 + 𝐿𝑑
where

◦ 𝐿𝑑 = 𝑀𝑆𝐸2σ12 + 𝑀𝑆𝑆𝑆𝐼𝑀2σ22 + log(σ12) + log(σ22)
● Rate loss H(𝑖𝑚𝑝) is estimated by summing up all 

values of the importance maps 𝑖𝑚𝑝
● σ1 and σ2 are learnable parameters



Best PSNR

● Based on the JEM platform (the HEVC codec)

● Contributions: 

◦ CNN based in-loop filter (CNNIF) and 

◦ CNN based mode coding (CNNMC)

Z. Chen, et al., CNN-optimized image compression with uncertainty based resource allocation, 
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) Workshops, June, 2018



CNN based In-Loop Filter (CNNIF)

● In-loop filter consists of stacked Dense Residual 
Units (DRU)

A Dense Residual Unit (DRU)



Learned Artifact Suppression
● Compression artifacts have structure that can be learned

● We use SELU activation instead of ReLU

● It is trained to remove artifacts introduced by BPG codec.

● Although we trained our network with a single  QP (40),    
it can improve images encoded by QP between 39 and 43.

O. Kirmemis, G. Bakar and A.M. Tekalp, Learned Compression artifact removal by deep residual 
networks, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2018

EDSR Network

Each residual block



Questions ?

Lunch Break

home.ku.edu.tr/~mtekalp


