A Trilevel *r*-Interdiction Selective Multi-Depot Vehicle Routing Problem

Supplementary Material (B)

Iterative Marginal Cost Analysis

1-Node iMCA:

The marginal cost of a given customer i is defined as in Fig. A1 where k and l are the predecessor and successor of customer i, respectively. If i is not worth visiting, then it can be dropped from the route. In other words, customer i should be outsourced. Otherwise, the cost of visiting customer i turns out to be less than its outsourcing cost. Therefore, visiting customer i is desirable, and it should stay between customers k and l. The pseudo code of 1-Node iMCA is provided in Table A1. The pseudo code of 2-Node iMCA can be derived in a straightforward way from there.

Fig. A1. 1-Node Marginal Cost Analysis

2-Node iMCA:

The marginal cost of a given chain of two customers i and j is defined as in Fig. A2 where k and l are the predecessor and successor of customer i and customer j, respectively. If the chain of customers i and j is not worth visiting, then they can be dropped from the route. In other words, i and j should be outsourced. Otherwise, the cost of visiting this chain turns out to be less than its outsourcing cost. Therefore, visiting customers i and j is desirable, and they should stay as a chain between customers k and l.

Fig. A2. 2-Node Marginal Cost Analysis

Table A1. The pseudo code of 1-Node iMCA

Notation			
R:	Current set of routes.		
N_r :	Subset of customers on route	$r \in R$.	
MC_i :	Marginal cost of customer i		
Index[MC _[1]]:	$MC_{[1]}$: Index of customer with the highest marginal cost $MC_{[1]}$.		
<pre>succ(i), pred(i):</pre>	Successor and predecessor of customer i , respectively.		
1: For every route $r \in R$			
2: For every customer $i \in N_r$ on route r			
3: Set $MC_i = d_{ki} + d_{il} - d_{kl} - c^o q_i$; // Compute marginal cost of each customer on route $r \in \mathbb{R}$.			
4: End For			
5: Sort MC_i values in nondecreasing order and create a sorted stack S;			
6: While $(N_r > 0)$			
7: Retrieve $MC_{[1]} = Pop(S)$;		// Return and remove the highest marginal cost.	
8: If .	$MC_{[1]} < 0$	// Marginal cost of all customers are negative.	
9:	Break While loop;	// Stop the marginal cost analysis on the current route r .	
10: Else			
11:	Set $i_{[1]} = Index[MC_{[1]}];$	// Customer i with highest marginal cost.	
12:	2: Remove $i_{[1]}$ from the route $r \in R$; // Remove the customer with the most positive MC.		
13: Update the <i>MC</i> values of $succ(i_{1})$ and $pred(i_{1})$;			
14:	4: Restore the nondecreasing order of MC_i in the sorted stack S;		
15:	Update $r \in R$;		
16:	Update N_r ;		
17:	If $ N_r = 0$	// Route r does not visit any customers.	
18:	Discard route $r \in R$;		
19:	End If		
20: End If			
21: End While			
22: End For			