Stepwise Fair-Share Buffering for Gossip-Based

1

Peer-to-Peer Data Dissemination

Oznur Ozkasap, Mine Caglar, Emrah Cem, Emrah Ahi, and Emre Iskender

Abstract —We consider buffer management in support of large-scale gossip-based peer-to-peer data dissemination
protocols. Coupled with an efficient buffering mechanism, system-wide buffer usage can be optimized while providing
reliability and scalability in such protocols. We propose a novel approach, Stepwise Fair-share Buffering, that provides
uniform load distribution and reduces the overall buffer usage where every peer has a partial view of the system.
We report and discuss the comparative performance results with existing buffering approaches as well as random
buffering which serves as a benchmark. We present separate evaluations of bufferer selection and gossip-based data
dissemination. Reliability, content dissemination time, message delay, buffering delay, and minimum buffer requirements
are considered as the key metrics investigated through simulations. The performance of our approach in the case
of multiple senders, link failures with multiple bufferers, and scalability to larger networks are investigated. Several
power-law and hierarchical overlay topologies are considered. Analytical bounds for reliability of dissemination are also
provided.

Index Terms —Distributed systems; performance of systems; buffering; gossiping; epidemic; peer-to-peer; data dissem-
ination; reliability; scalability.

g

INTRODUCTION

been delivered to all (that is, the message be-

UFFER management is a significant compo-
B nent that supports reliability in large-scale
peer-to-peer (P2P) data dissemination proto-
cols. A key feature of such large-scale protocols
is the provision of all-or-none (that is, reliable)
data delivery to all peers that need the data.
In order to deal with problems such as failure
of the sender and possible request implosion
on the sender, other peers in the system buffer
the data that they receive. Buffering refers to
the approach of determining which data and
how each peer keeps in its memory. It is used
to offer data retransmissions when needed for
loss recovery. However, a protocol having all
peers buffer messages until the message has

o O. Ozkasap is with the Department of Computer Engineering,
Koc University, Istanbul, Turkey. E-mail:oozkasap@ku.edu.tr.

o M. Caglar is with the Department of Mathematics, Koc Univer-
sity, Istanbul, Turkey. E-mail:mcaglar@ku.edu.tr.

o E. Cem is with the Department of Computer Engineering, Koc
University.

e L. Ahi is with Risk Software Technologies, Inc., ITU Technopark,
Ayazaga, Istanbul.

o E. Iskender is with the Department of Computer Engineering, Koc
University.

comes stable) would not be scalable, since the
buffering load on each peer grows with the
system size. One reason is that the time to ac-
complish and detect message stability increases
as the system size scales up [1]. Thus, an
efficient mechanism for buffering is crucial to
maintain both reliability and scalability of data
dissemination protocols. Another benefit of ef-
ticient buffer management and having different
bufferers for data messages is to balance the
recovery overhead among peers. The available
approaches for buffer management concentrate
on several aspects of the problem such as flow
control [2], [3], reducing the memory usage [1],
[4], [5], providing message stability [6], [7], and
the replacement of buffer items [8], [9].

In this study, we couple the buffer man-
agement problem with a P2P gossip-based
(or epidemic) data dissemination method. For
large-scale P2P services, bio-inspired epidemic
protocols have considerable benefits as they
are robust against network failures, scalable
and provide probabilistic reliability guarantees.
Several distributed services such as failure de-
tection, data aggregation, resource discovery

and monitoring [10], and database replication
[11] utilize epidemic algorithms. A major aim
of our approach is to be able to choose bufferers
uniformly throughout the system so that the
load of buffering will be well balanced among
participating peers and the efficiency of content
dissemination will be improved as a result.

We propose a robust and distributed buffer-
ing scheme named stepwise fair-share buffering
and analyze its behavior by extending the pre-
liminary results reported in [13]. Our approach
needs only local information at each peer (that
is, one-hop neighboring peers on the overlay).
It is called stepwise, since it uses this local
knowledge to search for and then determine
bufferer(s) of a data message in a step-by-
step (or, hop-by-hop) manner. Our buffering
approach is referred as fair-share, since it is fair
among the peers in terms of distributing the
buffering load in a balanced way. This fairness
is accomplished with determining bufferers
uniformly throughout the system independent
of the overlay topology.

Our simulation results show that stepwise
fair-share buffering provides a uniform load
distribution. It reduces the memory usage since
only a small subset of the peers is chosen as
bufferers for each message. Furthermore, step-
wise fair-share buffering is applicable to large-
scale scenarios, provides reliable delivery and
is adaptable to dynamic join and leaves to the
system. We show that it is scalable, simple and
applicable to any kind of underlying network
topology where each peer has only a partial
view of the system. The performance of step-
wise fair-share buffering is investigated also
in the presence of link failures in which case
multiple bufferers are crucial for reliability. The
distribution of the bufferers among different
domains is examined.

In our scheme, the buffer size can be ad-
justed to achieve message stability with a high
probability. We derive an analytical model for
computing the reliability of dissemination as a
function of buffer sizes as well as the number of
bufferers. These results are based on a Markov
chain analysis and are evaluated numerically.
Comparison with the simulation shows that the
analytical approach yields a tight lower bound
for higher reliability values.

The paper is organized as follows. Section 2
reviews the related work in comparison to our
approach. In Section 3, we describe stepwise
fair-share buffering approach in detail. Section
4 explains the simulation settings and other
buffering approaches used for comparison. Sec-
tion 5 is devoted to the analysis of the buffering
approach only. Section 6 describes the analysis
of data dissemination integrated with various
buffering approaches. In Section 7, analytical
evaluation of our approach is given. Finally, the
concluding remarks are stated in Section 8.

2 RELATED WORK

The existing approaches for buffer manage-
ment are designed for various aspects of the
problem, namely, flow control, optimization of
the memory usage, providing message stability
and the replacement of buffer items. In this sec-
tion, we review the related work and compare
with our approach.

2.1 Network Flow Control

Flow control is an adaptive mechanism that
deals with varying resources such as CPU and
bandwidth in the end hosts. In the NAK based
retransmission control scheme given in [2], the
sender reduces its transmission rate whenever
it receives too many NAKSs from the receivers.
This mechanism helps to minimize the buffer
overflows at the receivers.

A different idea explored in [3] requires
every process to calculate the average buffer
capacity among all processes it communicates
with and transmit that information. When the
rate is too high with respect to the average, the
process reduces the rate locally. On the other
hand, a source node reduces the rate of in-
formation production according to the process
with the smallest buffer space.

2.2 Reducing the Memory Usage

The pioneering study [1] focuses on reducing
the memory requirement by buffering each
message only over a small set of members.
During reliable multicast data dissemination, a
member determines whether it should buffer
a message it receives using an approximation

of the membership information, and a hash
function based on its network address and the
identifier of the message. The hash function
is devised so that the bufferers are chosen
uniformly among the available peers. However,
when a new peer joins the system it cannot
become a bufferer, as dynamic redefinition of
the hash table is not considered.

In [12], a probabilistic buffering algorithm is
devised as a separate stage before epidemic
data dissemination. It aims to distribute the
load of buffering to the entire system and pro-
vides a fairly uniform distribution when each
peer has a partial view of the system. How-
ever, the uniformity is observed only when the
number of generated messages approaches the
total long-term buffer capacity of the system.
Stepwise fair-share buffering as well as the
hash-based [1], and probabilistic approach [12]
are all designed to reduce the memory usage
since only a small subset of the peers is chosen
as bufferers for each message. In contrast with
the hash-based approach, a new member can
become a bufferer in our buffering mechanism.

A multicast protocol that reduces buffer re-
quirements is Randomized Reliable Multicast
Protocol (RRMP) [4] which uses epidemic loss
recovery. In particular, RRMP offers efficient
loss recovery for large multicast groups. A data
message is kept in the long-term buffer for
a fixed amount of time. By distributing the
responsibility of loss recovery among all group
members, it aims to improve the efficiency and
robustness of tree-based protocols.

Structured P2P networks such as Chord [24],
CAN [25] and Tapestry [26] offer a manage-
ment on participating peers and published data
items. Chord is based on a ring, in Pastry and
Tapestry hypercube is used, Tornado uses a
tree structure. These systems name the partic-
ipating peers and available data items with a
distributed hash function. Chord [24] assigns
keys to nodes with consistent hashing. With a
high probability this function balances the load
imposed on peers namely all nodes receive
approximately the same amount of keys. Chord
peers store a small amount of data and re-
quire partial membership information. A node
resolves the hash function by communicating
with other nodes because the hash function is

distributed.

Another buffer management scheme which
reduces memory usage is [5] where the mem-
bers are organized into regions. In every region,
the nodes with the most reliable links are re-
sponsible for buffering the data.

2.3 Achieving Stability

A message is said to be stable when it is
delivered to all members of the group. There
are buffer management approaches which ex-
plicitly take stability into account. In [6], all
members periodically exchange messages to
inform each other about the messages they
have received. When a member becomes aware
of a message becoming stable, it safely discards
the message. So the system-wide buffer space is
reduced. A drawback is the high traffic caused
by frequent exchange of history messages.

Search Party [7] is another protocol in which
contribution of a timer helps to discard pack-
ets from the buffers. All the members discard
packets after a fixed amount of time to achieve
stability.

A heuristic buffer management method
based on both ACKs and NAKSs is proposed
in [5] to provide scalability and reliability. In
every group of receivers, there are one or more
members with higher error rates than the other
members. These nodes are the ones with the
least reliable and slowest links. The idea is
that if a message is correctly received by these
nodes, it has been probably received by all
other nodes. In that case, the repair nodes that
buffer the message can discard it.

Our protocol adjusts several parameters such
as the number of bufferers and the buffer size
to achieve stability with a high probability.

2.4 Replacement Policy for Buffer Items

Network Friendly Epidemic Multicast [8] com-
bines a standard epidemic protocol with a
novel buffering technique that combines dif-
ferent selection techniques for discarding mes-
sages in case of a buffer overflow. The used
selection strategies are random purging, age-
based purging and semantic purging. Random
purging refers to discarding an item from the
buffer randomly. Age-based purging is simply

discarding the oldest message and semantic
purging means that a message which has been
recognized as obsolete is discarded. Obsoles-
cence relation is determined by the application.
Least recently used (LRU) buffer replacement
scheme is considered in [9] for epidemic infor-
mation dissemination. In LRU scheme, a new
coming message is placed on the first position
and the message at the rear is discarded as in
our case. However, when a request arrives for
a message in the buffer, that message is placed
into the first place by moving the items in front
one position down. Hence, the least used item
stays at the rear of the stack possibly next to
be discarded. In our approach, a first-in-first-
out policy equivalent to age-based purging has
been implemented in the case of a buffer over-
flow. We have run simulations also with LRU
scheme and found no significant difference.

3 STEPWISE FAIR-SHARE BUFFERING

In this section, we describe the system model,
and explain details of stepwise fair-share
buffering. We also describe the gossip-based
data dissemination algorithm.

3.1 System Model

We consider a P2P application consisting of a
set of peers P = {p1,p2,...,pn} Where N is the
system size. Each peer p, € P has a unique
identifier. Peers are connected through an over-
lay reflecting the properties of the underlying
network topology. Each p; has only a partial
view of the system (its neighboring peers). This
is a quite plausible assumption considering a
large-scale distributed application scenario.
Each p; has a long-term buffer. When a
peer becomes a bufferer for a particular data
message, it keeps the message in its long-
term buffer. The long-term buffer is useful for
achieving reliability in data dissemination. We
use the term bufferer in the sense of long-term
bufferer of a message. A peer may also have
a short-term buffer which is useful during the
data dissemination stage. Note that short-term
buffers are not required for our approach to
work. Once a data message is received by a
peer during dissemination, it may be kept in

the short-term buffer until it is replaced by a
new message at a later time. For both short and
long-term buffers, FIFO replacement policy is
used.

3.2 Buffering Algorithms

We describe stepwise fair-share buffering ap-
proach in detail through its algorithms. Abbre-
viations used in the algorithms are listed in
Table 1.

The bufferer determination phase in stepwise
fair-share buffering is initiated by a data mes-
sage source (MS) towards its neighbors with
a buffering request message (BR). Every peer
maintains the number of data messages that its
neighbors have ever buffered in their long-term
buffers, which is collectively called neighbor
history (NH) information. This local informa-
tion is updated through our buffering mecha-
nism and used for determining the bufferers of
a data message.

Procedures for data generation at MS, NH
information update and forwarding BR are
given in Algorithm 1. When a data message is
generated at a MS, the MS first updates its NH.
Updating NH information at a peer is done
as follows. The peer sends NH request mes-
sage to its neighboring peers. Then, it collects
responses (LB-counts) from its neighbors, and
updates its NH information. A peer receiving
an NH request sends requester the count of
data messages it has buffered in its long-term
buffer (LB) so far which we call LB-count. The
MS, which updates its NH, then sets the TTL
value of BR for the data, and forwards the
BR. The TTL value attached to a BR indicates
the maximum number of times (that is, steps)
that the BR can be forwarded among peers.
Forwarding BR is done to the neighboring peer
with the minimum LB-count.

Handling a BR and accepting it are described
in Algorithm 2. When a peer receives a BR for
a data message for which it is not the MS, the
peer first decreases the BR’s TTL value. If the
TTL becomes zero, then the peer accepts the
buffering request. Accepting a BR is done as
follows. The peer first inspects its LB, and if
the LB is full then it removes the oldest data
in LB according to FIFO policy. After that, it

TABLE 1
Abbreviations used in algorithms

d data message

MS message source

NH neighbor history

TTL time-to-live

BR buffering request message

LB long-term buffer

LB-count | count of ds buffered in a peer’s LB so far

puts the data into its LB and increments its
LB-count. Then, the peer informs the MS of
data message that it has accepted the BR for
the data and become a bufferer for it. In the
other case (when the TTL value is greater than
zero), the peer first updates its NH information.
Then, it detects the peer among its neighbors
(including itself) that has the minimum LB-
count. If this is the peer itself, it accepts the
buffering request, otherwise it forwards the
BR (that is, sends it to the neighboring peer
with the minimum LB-count). In the case of a
tie among the minimum LB-counts, the peer
chooses one of the neighbors randomly. Thus,
the BR is propagated in steps from a peer to
another neighboring peer until a bufferer for
the data message is determined.

Algorithm 1 Data generation, neighbor history
update and forwarding buffering request

Generation of data msg d at MS:
- Update NH()

- set TTL of BR for d

- Forward BR()

Update NH():

- send NH request to my neighbors

- get LB-counts from neighbors

- set local NH information of neighbors

On receipt of NH request from peer q:
- send peer g my LB-count

Forward BR():
- send BR to neighboring peer with the min-
imum LB-count

5

Algorithm 2 Handling a buffering request mes-
sage, and accepting a buffering request

On receipt of BR for data msg d at a peer:
if I am not MS of d then
TTL=TTL—-1
if TTL == 0 then
Accept BR()
else
Update NH()
if my LB-count is the minimum among
my neighbors” LB-counts then
Accept BR()
else
Forward BR()
end if
end if
else
TTL=TTL+1
Forward BR()
end if

Accept BRO():
if my LB is full then

remove oldest data from LB
end if
put d into my LB
LB-count=LB-count+1
send my peer ID and d.ID to MS
(I am the bufferer of d)

A major benefit of our approach is that it
works with local information at each peer.
There are four types of control messages,
namely BR, Accept BR, NH request and NH
response as described above. The number of
hops that a BR can propagate is limited by
its TTL value. After a bufferer is determined
for a data message, identifiers of bufferer and
data are sent back to MS in an Accept BR
message. Note that, a BR can be piggybacked
on a data message as well. Once a bufferer is
found, the ID of the bufferer is then attached to
the data during epidemic dissemination. Con-
sidering that NH request/response messages
are exchanged with neighbors of a peer at most
once per buffering request, the signaling cost
associated with them is negligible. In fact, our
performance analysis results show the low cost

associated with finding bufferers, and also the
effect of TTL parameter.

3.3

We incorporate improvements to handle fast
buffering request rate and also to deal with
link/connection and peer failures. We con-
sider a fail-stop model for peers and receive-
omissions for message losses.

When a BR is received by a peer, it sends
NH request messages to its neighbors (that is,
its partial view members). Then, a certain time
passes until all responses are received by the
peer. Therefore, a key point in the mechanism is
to make adjustments when the rate of receiving
a BRis faster than the rate of updating the NH.
In this case, before the peer receives the re-
sponses from its neighbors, multiple buffering
requests accumulate in the buffering request
list of the peer. Then, the peer locally updates
its NH after processing each BR in the list.
This mechanism, for handling fast request rate,
balances the load in the case of faster reception
of buffering requests.

The improvement for handling fast request
rate is illustrated with a simple scenario in
Fig.1. In the network topology given in the
tigure, peer 1 has three neighbors. Peers 2, 3
and 4’s LB-counts are 2, 3 and 5 respectively
as indicated in Fig.1(a). Assume that until peer
1 receives the NH responses from its neigh-
bors, five messages accumulate in its buffering
request list. Then, it sends message 1 to peer
2 because it has the minimum LB-count and
increments peer 2’s LB-count. As a result, LB-
counts of peer 2 and 3 are equal to 3. After
that, peer 1 selects randomly peer 3 and sends
message 2 to it. Then, it sends message 3 to peer
2, message 4 to peer 3 and message 5 to peer
2 as shown in Fig.1(b). Consequently, every
peer receives 5 BRs and the load is distributed
evenly.

In the NH update process, every peer waits
for responses from its neighbors. However, if
there is a link or neighboring peer failure, the
peer could wait indefinitely for a response. In
order not to lead such a situation, a timeout
parameter is used. The timeout can be set to
a value greater than the maximum round-trip
time to the neighbors.

Improvements

Fig. 1. Handling fast request rate: a) 5 BRs ac-
cumulate at peerl, b) Load is distributed evenly
to neighbors

3.4 Epidemic Dissemination

A popular distribution model based on the the-
ory of epidemics is the anti-entropy [19]. In the
terminology of epidemiology, a peer holding
information or an update it is willing to share
is called infectious. A peer is called susceptible if
it has not yet received an update. In the anti-
entropy process, non-faulty peers are always
either susceptible or infectious. For spreading
data, our system uses a pull-based approach
in which spreading is triggered by susceptible
peers (by pulling data) when they are picked as
gossip destinations by infectious peers.

Actions performed at each peer for the pull
anti-entropy data dissemination is given in Al-
gorithm 3. At each gossip round, every peer
picks randomly fan-out number of peers from
its partial view (or, neighbors) and sends its
digest (containing the identifiers of recent data
it has received and identifiers of their buffer-
ers). In fact, each peer in the system performs
a state exchange periodically and concurrently
with the others.

On receiving a digest and comparing it with
its local data, the receiving peer determines
the data messages that it lacks. Then, it can
request them from the bufferers indicated in
the digest for retransmission, if the sending
peer has dropped the message from its short-
term buffer. If a bufferer has crashed or can-
not retransmit the message, the request can
be forwarded to another bufferer. We define
three events that can occur in a round at a
peer, namely digest receipt, request receipt and

retransmission receipt. Corresponding actions
for these events are given in the algorithm.

Algorithm 3 Pull Anti-entropy Gossiping

Algorithm executed periodically once per
gossip round at each peer p:
for fan-out number of randomly selected
peers g do
Send Digest (containing list of p’s recent
data IDs and data bufferers’ IDs) to g
end for

Event(Digest Receipt) from peer r:

Compare Digest of r with p’s local data

if » has a data d that p is missing then
Request d from r (or from a bufferer of d)

end if

Event(Request Receipt)
for data d from peer g:
Retransmit d to q (if d is in local buffer)

Event(Retransmission Receipt) for data d:
Update p’s local data with d

4 SIMULATION SETTINGS

We evaluate the performance of stepwise fair-
share buffering through simulations. The sim-
ulation software is implemented in Java where
a discrete time event based model is used.
We generate two types of topologies, namely
power-law and hierarchical, with equal mean
degree and mean link delay. In this section,
we describe the topology settings and give
an overview of the buffering approaches that
will be compared with the stepwise fair-share
buffering.

4.1 Topology Properties

Power-law and hierarchical network topolo-
gies are considered in this study as models of
the Internet overlays. Power-law graphs have
attracted great interest on the basis that the
Internet AS level graph exhibits a power-law
degree distribution [14]. On the other hand,
the hierarchical structure of the topology of

the Internet is reproduced by the transit-stub
model.

A power-law graph is one where the number
of nodes with degree k is proportional to k=
for some 3 > 1. We generate the power-law
topologies using the BRITE topology generator
together with the coordinates of the nodes on
the plane [15], [16]. We assign link delays using
the Euclidian distances as in [17]. The topology
is generated according to the Barabasi-Albert
model with incremental growth which is sug-
gested as one possible cause for the emergence
of a power-law degree distribution in the In-
ternet.

We use the gt-itm tool [18] for generating
transit-stub topologies and the corresponding
link delays. The transit-stub model is a hi-
erarchical approach which views the Internet
as a set of interconnected routing domains.
Each domain can be classified as either a stub
or transit domain. Stub domains correspond
to interconnected local area networks and the
transit domains model wide or metropolitan
area networks. A transit domain is composed
of backbone nodes which are well connected to
each other with high bandwidth links. Every
transit node is connected to one or more stub
domains.

We set the mean degree and mean link delay
the same in both topologies. However, their
degree and delay distributions are quite differ-
ent. The degree distribution is approximately
normal for the hierarchical topology, whereas it
is power-law for the power-law topology. For a
realization with 1000 nodes, about 9000 edges
and average link delay of 2.5 msecs, the delay
distributions are illustrated in Figs. 2 and 3. The
delay distributions inherit the characteristics of
the respective degree distributions.

4.2 Other Buffering Approaches

There are two comparable approaches to step-
wise fair-share buffering developed in connec-
tion with epidemic data dissemination. These
are hash-based [1] and probabilistic approaches
[12]. As a third and baseline approach, we also
consider random buffering [20] which assumes
full membership information on the source
side. In this case, the bufferer selection occurs

2500

20007

1500¢

1000t

Number of links

500

1

0
0 10 20 30 40 50 60 70 80 90
Delay of a link

Fig. 2. The distribution of link delays (in x.1 ms)
for hierarchical topology

8000
6000
£
=
5
5 4000
Q
IS
>
Z
2000
i I ‘
0 50 100 150 200 250 300 350

Delay of a link

Fig. 3. The distribution of link delays (in x.1 ms)
for power-law topology

at once as well as it can be expected to be
uniform due to completely random selection of
the bufferers.

The hash-based approach proposed in [1]
focuses on reducing the buffer requirement
by buffering each message only over a small
set of members. All members are assumed to
have an approximation of full membership in
the form of a set of member addresses. Upon
receiving a data message through epidemic dis-
semination, a member can determine whether
it should buffer the data. For this purpose, it
uses its approximation of the entire member-
ship, and a hash function based on its network
address and the identifier of the data message.
A commonly used identifier for a data message
is [sourceaddress, sequencenumber]. The hash
function is devised so that the bufferers are

chosen uniformly among the members. Note
that a member can become a bufferer of a data
message only when it receives the data message
through gossiping eventually. Thus, there is
no immediate bufferer selection phase separate
from the data dissemination in contrast with
stepwise fair-share buffering.

A drawback of the hash-based approach is
that it requires members to have an approxima-
tion of the entire membership (in the form of a
set of member addresses) which is not practical
to achieve in large-scale systems. Furthermore,
since updates to the full membership infor-
mation are not considered in the case of dy-
namic peer arrivals, new peers cannot become
a bufferer. This may cause uneven buffering
of messages over the membership, and hence
unfairness in balancing the load of buffering
over members. In terms of signaling cost of the
approach, message exchanges among members
are needed to form an approximation of the full
membership. This information is required to
determine bufferers of data messages. Further-
more, all members should agree on the hash
function, and then use it locally to determine
for any data message which members are the
bufferers. There are no other control messages
specifically needed to determine bufferers.

Probabilistic buffering [12] provides a fairly
uniform distribution with partial views of
peers. For determining the bufferers of a data
message, the source sends buffering request
messages to randomly selected b peers in its
partial view. Parameter b is the number of
bufferers per message. For a data message, if
b > 1 then its bufferers are determined in
parallel. The buffer fullness ratio of a peer
(BF) is the ratio of the number of messages
that are stored in the peer’s buffer to its long-
term buffer capacity. When a peer receives a
buffering request message for a particular piece
of data, it accepts the request with probability
(1 - BF). Otherwise, it forwards the message to
a randomly selected peer from its partial view
with a probability equal to BF. If a member
receives a buffering request, the member writes
its ID to the buffering request and sends it to
a neighbor. The IDs of the last n forwarders
are included in the buffering request message.
Via this information, a bufferer request is not

resent to the last n forwarders and the TTL
mechanism is used more efficiently.

5 BUFFERING RESULTS

In this section, the simulation results for our
buffering approach are evaluated separately to
demonstrate its efficiency. In particular, uni-
formity of buffering load, its scalability, the
effect of TTL parameter and multiple senders
scenarios are investigated.

5.1 Uniformity of Buffering Load

We evaluate the performance of stepwise fair-
share buffering in terms of distributing the
buffering load. In the first group of experi-
ments, 1000-node power-law and hierarchical
topologies are used. Long-term buffer capacity
of the nodes is 10 messages, and 50,000 mes-
sages are disseminated from a single source
with rate of 20 msgs/sec. The total messages
disseminated in the system is greater than the
total long-term buffer capacity of all nodes.
The TTL value is set to 20. Each message is
buffered only by a single bufferer. In Fig. 4, the
buffering load of the nodes is given for vari-
ous dissemination percentages (20% to 100%)
in power-law and hierarchical topologies. It
is observed that stepwise fair-share buffering
provides uniformity over time which would
be helpful for reliable data dissemination. In
particular, it achieves a more uniform distribu-
tion with power-law topology in comparison to
hierarchical, for all dissemination percentages.
Likewise, the comparison for the reliable data
dissemination to the entire system for both
topologies is given in Fig. 5. In comparison
to random buffering, the uniformity of the
distribution of buffering load is significantly
better in the fair-share scheme as given in Fig.
6 for a power-law 1000-node network.

5.2 Scalability of Buffering Load

In this part, we investigate the performance
of stepwise fair-share buffering as the system
size scales up. We compare the buffering load
for both hierarchical and power-law topologies.
The size of the network is increased from 1000
to 10000 nodes. A total of 100,000 messages

70

7100%

80%

60%

Buffering load

|
~140%

1 20%

0 200 400 600 800
Node ID

1000

Fig. 4. Uniformity of the fair share scheme in
time for power-law (black dots) and hierarchical
(gray dots) topologies

100 : w
- Power law

el —— Hierarchical
2 8or 1
()
=
>
o
2]
(o))
n
£
S
@
£
2 20t

0 L L L L

0 200 400 600 800 1000

Node ID

Fig. 5. Comparison of buffering load distribu-
tion: hierarchical and power-law topologies

-
N
o

=
N
o

R

-
o
o

80f *

60

20! -+ Fair share
< Random full

Number of msgs bufferred

20¢

400 600 800
Node ID

0 200 1000
Fig. 6. Comparison of buffering load distribu-
tion in large scale: Fair-share and Random-full
approaches

130

- Fair share |
- Random full

=
N

2000 nodes

4000 nodes

Number of msgs bufferred

6000 nodes |

20,

O L L L L L
0 1000 2000 3000 4000 5000 6000
Node ID

Fig. 7. The buffering load versus peer id for
various group sizes in power-law topology

are generated from a single source with rate
of 20 msgs/sec. The average link delay is 2.5
msec. The short-term buffer size is set to 0, the
long-term bulffer size is taken to be 10, the TTL
parameter is 20 and the fan-out is 5.

The number of messages buffered by each
node for the power-law topology is given in
Fig. 7 up to system size 6000 for the sake of
visual clarity. The analogous result for hier-
archichal topology is similar and not shown
here. As the system size increases, each peer
buffers fewer messages. Clearly, this is due
to the increase in the total buffering capacity
of the network. The uniformity of fair-share
holds in all system sizes in both topologies as
opposed to random buffering shown for 1000
and 2000 only. The results for the larger sizes
with random buffering are similar and are not
graphed. What is more, the stepwise fair-share
algorithm leads to a more uniform distribution
in power-law topology consistently throughout
various network sizes compared to the hierar-
chical topology. This confirms the results of Fig.
5.

In Fig. 8, the mean number of messages
buffered per peer is shown up to group size
10000 for different approaches in power-law
topology. Since the mean values are very close,
the two line graphs coincide. However, the
standard deviations are different and the error
bars in the figure show two standard deviations
spread of the buffering load distribution among
all peers. The hash-based approach results are

10

120 . :
® Fair-share
E 100} + 0.62,20.2 - - -~ Random full |
=
>
o]

o 80f

0

IS

s 60f

= 0.34,14.2

@

Q

E 405 0.26, 10.0
]

c

§ 201 12,70 47621
=

6000 8000 10000

4000
Number of nodes

2000

Fig. 8. Mean number of messages buffered ver-
sus group size in power-law topology. The pair
of numbers denote the width of the error bars for
fair-share and random approaches, respectively

found to be similar to those of random buffer-
ing, but are not shown in the figure for the
sake of visual clarity. The hash-based approach
does not specifically aim at uniformity of the
buffering load. Originally, it is designed for
several bufferers. A parameter of the algorithm
guarantees at least one bufferer for each mes-
sage. For comparison purposes, we choose only
one of those randomly in our implementation.
Thus, the results of hash-based approach turn
out to be similar to those of random buffering.
The spread of the buffering load is much lower
for the Stepwise Fair-share algorithm. This is
true also for the hierarchical topology in view
of our simulations.

5.3 The Effect of TTL

For the stepwise fair-share algorithm to achieve
uniform buffering load, the buffering request
must be forwarded sufficiently many steps
over the network. The parameter that controls
the number of steps is TTL, which is therefore
crucial in the implementation. For a relatively
large network of size 4000, we analyze its effect
on the uniformity of the buffering load. The
long-term buffer size is set to 10, and 80,000
messages are sent from the source.

In Fig. 9, the buffering load of each node for
various TTL values are given for the power-
law topology. The load becomes more uniform

Power law topology

350

5 3000
g
% 2501 + +o+ ++ ++ ot
Ko
% 2001 + TTL15|]
£ s TTL20
5 150¢ < TTL25 |4
5 - TTL30
€ 100¢ - TTL10|]
>
z 50F xx X X X X X X X X X X~

0 I I I

0 1000 2000 3000 4000

Node Id

Fig. 9. The buffering load of each node for
various TTL values

as the TTL value increases. The standard devia-
tion of the load on the peers is plotted against
TTL values for both hierarchical and power-
law topologies in Fig. 10. The standard devia-
tion for hierarchical topology for TTL=10 is not
shown as it is about 100 which is much larger
than the other cases. Although the results for
hierarchical topology are similar for the be-
havior of TTL, there is a difference between
the topologies for optimizing this parameter.
The uniformity of the buffering load increases
significantly for TTL value 20 for power-law
topology as the standard deviation decreases
to about 1 or 2 messages for TTL=20,25,30.
On the other hand, such a low value of the
standard deviation is obtained only for TTL=30
in the case of hierarchical topology. The rea-
son for this is that different topologies have
different diameters. The diameter is effective
in the efficiency of the buffering request deliv-
ery to sufficiently far distances in the network
in connection to TTL. Also note that there is
connection to the whole topology, not just the
diameter, as the standard deviation is lower
for TTL=15 and much larger for TTL=10 in
the hierarchical topology. As a result, our fair-
share algorithm balances the buffering load
uniformly depending on the topology and the
adjustment of the TTL parameter.

5.4 Multiple Senders

In this section, we investigate the performance
of the stepwise fair-share algorithm in presence

11

20

——Power law
—<— Hierarchical

15

10

Standard deviation (no. of msgs)

O 1 1
10 15 20 25 30

TTL

Fig. 10. The standard deviation of buffering load
versus TTL values

of several senders. The power-law topology
is considered with 4000 peers. The long-term
buffer size is set to 15 and a total of 90000
messages are sent from all sources. The senders
are uniformly distributed over the network.
The single sender case is also included for
comparison.

We have seen that the buffering load is
quite uniform for a single sender. When the
number of senders increases, the variance of
the buffering load is expected to increase as
well. If the buffering algorithm proceeds in-
dependently for all sources, then the standard
deviation is expected to increase as the square
root of the number of sources. This follows
from the fact that the variance of the sum of the
buffers contributed from all sources is the sum
of the variances of the buffering load from each
source. Then, the variance would grow linearly
with the number of sources and the standard
deviation as the square root of it.

The stepwise fair-share buffering algorithm
is implemented in its original form also with
multiple senders. The results are shown in Fig.
11 where the number of senders is increased
from 1 to 50. For a single sender the standard
deviation is about 0.6. The standard deviation
would be 0.64/n if there were n senders behav-
ing independently in terms of buffering. Both
this curve and the standard deviation of the
buffering load in our simulations are plotted on
the same graph. The standard deviation with
fair-share increases slowly when compared to
the independent behavior case. The algorithm

—e—simulation

- -y =06y

Standard deviation (no. of msgs)

0 10 20 30 40 50
Number of sources

Fig. 11. The standard deviation of number of
messages buffered with multiple sources

proceeds as before by monitoring the neigh-
bor history information to achieve uniformity
regardless of the source of a received mes-
sage. The peers at the vicinity of a sender will
quickly exhaust their long-term buffers. The
request is propagated further in the graph at
each transmission as long as the TTL parameter
permits. However, the number of buffering
requests at a given time could be larger in some
nodes with multiple senders in comparison
to the single source case, depending on the
topology and the TTL parameter. This clearly
causes the standard deviation to increase, but
not as much as in the independent case. The
neighbor history check modulates the number
of messages buffered for each peer as up and
down, which keeps the covariances negative
over time and hence lower the total variance.

6 GOSSIP-BASED DISSEMINATION RE-
SULTS

In this section, evaluation of stepwise fair-
share buffering and its comparison with other
approaches are given in terms of data dissemi-
nation metrics, scalability and link failures. The
metrics investigated are reliability, content dis-
semination time, buffering delay and message
delay of the system. These metrics have shown
minimal variance through several independent
replications of the simulations. That is why we
report only the mean values.

12

6.1 Reliability

Reliability is defined as the ratio of the total
number of received messages by peers to the
total number of generated messages. Less than
full reliability means that some messages have
been discarded from all buffers before they are
delivered to some of the peers.

The simulations are done on the hierarchical
topologies of various sizes and the other para-
meters are kept the same. In these simulations,
short-term buffer size per node is zero, that is,
only the long-term buffer is used as the storage
for received messages. The message generation
rate is 100 msgs/sec and the gossip interval
is 200 msec. Simulation results show that the
minimum buffer requirement decreases as the
system size scales up from 500 to 2000 peers
as given in [13]. Since the number of nodes
increases, the rate of being bufferer per node
decreases and the waiting time of a message
in the buffer increases. Thus, smaller buffer
sizes begin to be sufficient for a message to
be delivered by all members if the size of
the network gets larger. The results in Fig. 12
indicate the reliability of the data dissemination
as a function of the long-term buffer size for
different system sizes N from 100 to 2000. The
minimum buffer sizes for full reliability can be
observed from this figure as well.

Reliability

1 2 3 4 5 6 7 8 9 10 11
Long-term buffer size

Fig. 12. Reliability as a function of long-term
buffer size

6.2 Dissemination Time

Content dissemination time is the time that passes
for dissemination of the content to all peers

from the start to end including the buffering
phase.

Stepwise fair-share scheme is compared
with the hash-based approach [1], probabilistic
buffering [12] as well as random buffering [20].
The dissemination times in a 1000 node hierar-
chical network scenario are given in Fig. 13. All
50,000 messages are generated from a single
source and the message generation rate is 20
msgs/sec so that all messages are generated in
2500 seconds. The gossip interval is set to 200
msec. In the random and hash-based buffering
methods, every peer has the full view of the
system. As inferred from Fig. 13, dissemination
times of stepwise fair-share and probabilistic
buffering are close to that of random buffering,
even though in the first two every peer has
only partial membership information on which
a buffering stage is based. In random buffering,
the bufferers are determined right away, among
all members, when a message is generated and
the message is directly sent to the bufferers.
Therefore, we infer that the buffering stage is
relatively fast in stepwise fair-share and prob-
abilistic buffering approaches on the average.
On the other hand, the hash-based approach
has a higher dissemination time. In this ap-
proach, a peer decides to be a bufferer for a
message when it receives the message through
gossiping eventually. The dissemination time is
larger probably due to quite delayed delivery
of some messages to some of the peers. There
is no significant difference between the prob-
abilistic buffering and fair-share Buffering in
terms of dissemination time. Basically, the last
message is sent out from the source at time 2500
sec, and is received by all nodes in the next few
gossip rounds for both approaches.

For topology comparison, Fig. 14 depicts
the content dissemination times for fair-share
buffering in the case of power-law and hierar-
chical networks. In consistent with the distrib-
ution of buffering load reported in the previous
section, fair-share buffering achieves a more
uniform distribution of dissemination times at
peers with power-law topology in comparison
to hierarchical.

13

2505

O Fair share
x Random full |
- - Hash 2, i: '
. | ——Probabilistic |, il |}
" oW \ ‘“th\“‘{ ,
A B LI
2503] 1 gt A SETT 4G

N
al
o
5

!
by

Raee g
b

A

Dissemination time (sec)
N
a
o
N

0 200 400 600 800
Node ID

Fig. 13. Comparison of content dissemination
times

2506 w w
— Hierarchical
2505+ - Power law |
£ 2504
=
2 2503 W
IS !
£ 2502
= M ‘ w]
o 1w, W l.mv . w W ﬁ f |
o L s I T L . K
£2501‘WrL e 0
‘._ Mm‘lﬂ\r_\ \. .T'.{...I...... od L. s - .
|
2500+
2499 : : : :
0 200 400 600 800 1000
Node ID

Fig. 14. Content dissemination times: power-
law and hierarchical topologies

6.3 Message delay and buffering delay

Message delay is the duration between the gen-
eration of the message from the data source and
the delivery of it by a receiver node. Buffering
delay is the time required to find a bufferer that
indicates the signaling cost associated with our
approach.

Comparison of the average message delays
on 1000-node hierarchical topologies is given
in Fig. 15. Stepwise fair-share and probabilistic
buffering approaches lead to slightly higher
average message delays per node, in compari-
son to hash-based and random buffering. This
is due to the fact that the former approaches
use additional time to determine the bufferer
of each data message disseminated. However,
when distributing a large content consisting of
thousands of messages, bufferer determination

=
N

[u

o
o)
:

Average message delay
o
(o]

04l % Probabilistic
3 Hash
0.2} o Fair share
——Random full
00 200 400 600 800 1000
Node ID

Fig. 15. Comparison of average message de-
lays

and message dissemination phases take place
concurrently, and total dissemination time for
the content is not affected adversely as dis-
cussed for the results of Fig. 13. We also con-
clude in the hash-based approach that the last
delivered messages that cause the dissemina-
tion time to be high in Fig. 13 must be quite
rare because the mean delay is relatively low
as shown in Fig. 15 for this approach. We have
also observed that uniform buffering load dis-
tribution of fair-share leads to a uniform long-
term buffering time distribution among nodes.
On the other hand, message delays and content
dissemination times vary from node to node as
shown in Figs. 13 and 15 due to the partial view
of each peer during data dissemination.

We further examine the average message
delay behavior of stepwise fair-share buffering
in the case of power-law topology for com-
parison with the hierarchical case. As shown
in Fig. 16, average message delays in power-
law networks are lower and follows a more
uniform distribution compared to hierarchical
networks.

We also investigate the signaling cost to
tind a bufferer for each data message in
our approach. In 1000-node network scenar-
ios, 50,000 messages are generated from a sin-
gle source and the message generation rate is
20 msgs/sec. We explicitly measure the time
required to find a bufferer (buffering delay)
in comparison to data message delay. Fig. 17
shows average buffering and message delays

14

- Hierarchical
- Power-law

Average message delay
=
= [62]

o
L, o
)
I

400 600 800
Node ID

0 200 1000

Fig. 16. Average message delays: power-law
and hierarchical topologies

Average message delay (mean:0.751s)
—— Average buffering delay (mean:0.042s)

08
0.6}

0.41

00 200 400 600 800 1000

Node ID

Fig. 17. Average buffering delay in comparison
with message delay in power-law topology

for all 50,000 messages disseminated to 1000
peers in a power-law topology. We measure av-
erage message delay over all peers as 0.751 sec,
and average buffering delay as 0.042 sec. Based
on these, percentage of buffering delay within
data message delay is 5.7% on average for
all peers. Similar results are also obtained for
hierarchical networks. These results indicate
the low cost associated with finding bufferers
in stepwise fair-share approach.

6.4 Scalability of Dissemination

We investigate data dissemination metrics for
the buffering approaches as the system size
scales up. The hierarchical topology of size
1000 to 10,000 nodes is used to compare with
the other buffering approaches. The number

of transit nodes and the stub domains is in-
creased with the system size while the average
number of stub nodes in each domain is 30. In
these simulations, the message generation rate
is 100 msgs/sec, gossip interval is 200 msec
and 5,000,000 messages are disseminated to
the whole network.

Fig. 18 shows the comparison of average
message delays for stepwise fair-share buffer-
ing with the other approaches as a function
of network size. Stepwise fair-share and prob-
abilistic buffering approaches result in higher
average message delays per node when com-
pared to hash-based and random buffering.
This is due to the fact that fair-share and prob-
abilistic buffering work with local neighbor
information (that is, each peer has only a partial
view of the system) and they use a bufferer se-
lection phase separate from data dissemination.
However, bufferer determination and data dis-
semination phases take place concurrently for
several data messages, and total dissemination
time for the content is not affected adversely as
depicted in Fig. 19 for all network sizes.

In Fig. 19, the lowest content dissemination
time occurs with the random approach which
serves as a baseline for comparison. In this ap-
proach, since the sender is assumed to have the
full membership knowledge, it immediately
selects bufferers at random among all peers. On
the other hand, there is no need to have full
membership information in stepwise fair-share
as well as probabilistic buffering at the expense
of only slightly higher average message delays.
Hash-based method leads to a higher dissem-
ination time since a peer becomes a bufferer
only when it receives the message through
gossiping eventually. In other words, there is
no immediate bufferer selection phase separate
from the data dissemination in contrast with
stepwise fair-share buffering. This may lead
to the set off in time due to dissemination of
the last fraction of the messages in hash-based
buffering. In all cases, the dissemination time
increases only logarithmicly with the system
size due to the epidemic dissemination algo-
rithm. The delay increases in the same fashion
also for power law topology.

Note that, stepwise fair-share buffering
works with local information at each peer. This

15

w

25

>
K] _o— : C
9] o
°
o 2f o 1
o) /7
m /
@ i
L5t/]
E |
S

1k
g Y —— Probabilistic
= —o—Fair share
Lost

’ ——Random full

—v—Hash

D00 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of nodes

Fig. 18. Average message delays as a function
of group size

makes it applicable to large-scale systems at
low cost. In contrast, hash-based and random
buffering need an approximation of the full
membership information that may be difficult
to achieve in dynamic peer arrivals and large-
scale systems due to the cost of maintaining
this information. In our simulation models for
hash-based and random buffering, we assume
that peers have the full view of the system, and
we also do not include the cost associated with
maintaining an approximation of the entire
membership.

x10°

5.001F

v
‘W
—— Probabilistic

5r —6— Fair share
—— Random full
—v—Hash

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of nodes

Dissemination time

Fig. 19. Dissemination time as a function of
group size

6.5 Failure Cases and Multiple Bufferers

In this group of experiments, the performance
of epidemic dissemination with stepwise fair-

share buffering is investigated under conges-
tion and/or link failures in the network. In
either case, a data message may not reach its
destination and the nodes could simply request
a retransmission from the sender if the sin-
gle bufferer is not sufficient. Since this could
have an implosion effect at the sender, multiple
bufferers are used to ensure the recovery.
Certain link drop probabilities are assigned
for each message traversing the network to
simulate congestion and failures. We assume a
uniform link drop probability in the network.
Explicitly, any message traveling on a given
link has a chance of not being delivered to
the destination node with probability p. In the
results given in Figs. 20 and 21, a 1000 node
hierarchical network topology is used for mes-
sage dissemination and 50,000 messages are
disseminated from a single source. The short-
term buffer size of a peer is set to zero in order
to observe the long-term buffer performance.
The message generation rate is 100 msgs/sec
and the gossip interval is 200 msec. In the
tirst result given in Fig. 20, the link drop
probability of the network is increased from
0.01 to 0.05. Clearly, the minimum number of
bufferers increases as the link drop probability
increases. Fig. 21 gives the minimum buffer
size needed for reliable dissemination with the
number of bufferers b of a message set to 6. The
minimum buffer size is 5 messages if the drop
probability is 0.01 which is consistent with Fig.
20. On the other hand, this increases to 11 if
the drop probability goes up to 0.05. Note that
the minimum buffer size remained constant for
link drop probabilities 0.04 and 0.05. Although
this is somewhat misleading, the graph would
show an increase for larger drop probabilities.
Fig. 22 shows the comparative behavior of
the buffering approaches as the drop prob-
ability of the links increases. In these sim-
ulations, 500,000 messages are disseminated
to the network, network size is 1000 peers,
message generation rate is 100 message/sec,
gossip interval is 200 msec. Short-term buffer
size is 10, long-term buffer size is 20 and the
number of bufferers per message is 5 so that
a reliable dissemination is achieved for all the
scenarios. Fig. 22 shows that the dissemination
time increases as p increases and the different

16

R e
N W b
: :

11
10r

Minimum number of bufferers

0.02 0.04 0.05

0.03
Link drop probability

Fig. 20. Minimum number of bufferers for relia-
bility as a function of link drop probability

Minimum buffer size

0.04

01 0.02

0.03 0.05
Link drop probability

Fig. 21. Minimum buffer size needed for relia-
bility as a function of link drop probability

approaches behave analogously as in Fig. 19.
Likewise, we have observed that the average
message delay increases slightly as a function
of the link failure rate.

7 ANALYTICAL BOUND FOR RELIABIL -
ITY

If the buffering time of a message is longer
than its dissemination time, it can be safely
discarded. In a random environment, the prob-
ability of this event represents the reliability
of dissemination. In this section, a Markov
chain formulation is considered for finding the
distribution of the dissemination time. On the
basis of this, we find an analytical expression
for reliability for each buffer size and compare
it with simulations.

x 10

——Random full
—v—Hash
—o—Fair share
—— Probabilistic

5.001f

Dissemination time

0.02 0.04 006 008 01 012 014 0.16 018 0.2
Link drop probability

Fig. 22. Comparison of dissemination time as a
function of link drop probability

Let a denote the message generation rate of
the source node, A the rate of receiving a new
message to be buffered, n the number of nodes
in the system, B the size of the long-term buffer
of a node (namely the number of messages in
the long-term buffer when the buffer is full)
and 7T the time that passes for one message
to reach all the nodes. Our aim is to find the
minimum buffer size B that guarantees reliable
delivery of a message to all nodes. We can
approximate the expected time between two
buffer updates by 1. As a result, the average
waiting time of one message in the long-term
buffer of a node is W = £ when the buffer
is full as in the steady state. By virtue of the
results obtained in Section 3, it can be assumed
that the load of being a bufferer is distributed
uniformly to all » nodes. Thus, the rate of
being a bufferer A\ can be approximated as
2. Therefore, the average waiting time becomes

w=Pn
(07

1)

To provide perfectly reliable dissemination,
the waiting time of one message in the long-
term buffer of a node should be greater than
the time 7" that passes for one message to reach
all the nodes. That is, we must have " < W
in order to have a reliable dissemination. By
approximating the waiting time in the buffer as
a deterministic quantity given by its mean(1),
we consider P(T' < W) = P(T < 52). That is,

17

the cumulative distribution function (cdf) of T’
given by F(£2) = P(T < %) is computed and
we require this value to be close to 1 for high
reliability.

In order to find F, a Markov chain model is
used for epidemic dissemination of messages
as given in [21]. We use the push-based model
rather than pull as its analytical model can be
used for larger fan-out values as well. That is
why the simulations in this section are per-
formed with the push mechanism for compar-
ison purposes. In the pull model, an infectious
peer selects a susceptible peer randomly and
sends its digest message to a susceptible peer.
In the push model, the process is the reverse
namely a susceptible peer selects an infectious
peer randomly and sends its digest message to
the infectious peer. The qualitative behaviors
are the same, and hence the analysis of this
section is based on push approach for conve-
nience.

The states of the Markov chain (X; : t =
1,2,...) are defined as the number of infected
nodes for one fixed message in the system at
time ¢, taking integer values between 1 and
n. This is an absorbing Markov chain and the
absorbing state is equal to the total number of
nodes n. Therefore, we need to find the time
to absorption which is the time that passes for
the Markov chain to reach from an initial state
to an absorbing state. The cdf of the time to
absorption is given by

F(k) = o+ 1 — pQFe @)

where k denotes the time to absorption s, and
i denote the probability and the probability
(row) vector that the Markov chain starts at
the absorbing and transient states, respectively,
e is the vector consisting of all 1’s and @ is
the portion of the transition matrix P of X that
corresponds to the transient states [22].

In the push model, the probability that there
will be j infected nodes at the next stage when

there are k infectious peers at present is found
as [21], [23]:

n—=k
no= ()
(n—k—l ik n—k—1\\""’
N S AN A
! (n = 1) . (n - 1)
f f
for j = 1,2,...,n — k and fixed f where n —
1 is the number of nodes a peer sends gossip
to, excluding itself. Using P, we construct the
matrix Q). The cdf F of (2) is evaluated at k =
| 22| because k should be an integer and the
floor function |.] gives the correct lower bound
for reliability rather than the ceiling function
[.]. In our model, y is a unit vector as the chain

starts at state 1. Then, the following result is
obtained:

r=F (120) =1 10..0Q % 11

n—1
.| Bn
1Yt
7=1

Using this information the minimum buffer
size B needed for reliable dissemination is
computed for each level of reliability r.

The results obtained from the analytical
model are compared with the results obtained
from the simulation of stepwise fair-share
buffering scheme coupled with epidemic dis-
semination. Reliability is estimated from the
simulations as the ratio of the total number
of received messages by peers to the total
number of generated messages. There are 100
nodes in the system (n = 100) and the message
generation rate is 100 msgs/sec. The average
of 100 independent replications are reported as
the estimate of P(7 < W).

In Fig. 23, the reliability of the scheme with
different buffer sizes in analytical and simula-
tion results is compared when the fan-out is
1. It can be inferred that the analytical values
give a lower bound for reliability. In other
words, the simulations achieve higher reliabil-
ity for a given buffer size. This may be due
to the discrepancy between the simulation ap-
proach and the analytical model. In the simu-
lations, there is partial view and the peers have
a limited short-term buffer. Some messages

18

o
@

o
|

Push
---- Simulation

o
L]

Prob(T < B*n/alfa)

o
w

e
L)

o1F £

1n 15
Buffer size

Fig. 23. Reliability versus buffer size for model
and simulation (f =1)

are obtained from the short-term buffers and
the others are recovered from the long-term
buffers. In the analytical model, the infection
is assumed to occur in a similar fashion when
a susceptible contacts with an infectious peer.
The missing information is identified and it is
assumed to be recovered from the infectious
peer which has an infinite size (short-term)
buffer. In terms of the required time, this is
no different from obtaining the message from
the long-term bufferer. However, the difference
with the analytical model is that it is based
on full knowledge of the system. Partial mem-
bership knowledge and digest exchange seem
to speed up the dissemination process in the
simulations. On the other hand, the analytical
results are very close to the simulation results
for the larger reliability values. Therefore, the
analytical model can be used for designing a
highly reliable system.

When the comparison is done with fan-out 3,
the results are similar to the f=1 case. However,
the reliability is achieved with a smaller buffer
size since increasing the fan-out fastens the epi-
demic spread. So, a message reaches all nodes
in a shorter time period and smaller buffer
size becomes enough in this case. In Fig.24, the
reliability computed by the analytical model is
compared for different fan-out parameters. As
expected, if fan-out increases, the same buffer
size provides more reliable dissemination.

1,
@ 0.8f
8
£ 06
\ 1
I -v- - =
%0.47 N v-fan—out=3
2 | ——fan-out=4
a ; - ©-fan-out=5
0.2r ;]
v
ole—e : :
0 5 10 15

Buffer size

Fig. 24. Reliability versus buffer size: analytical
results for different fan-out values

8 CONCLUSIONS

We have studied the buffer management prob-
lem in support of large-scale gossip-based peer-
to-peer data dissemination services. A robust
scheme named stepwise fair-share buffering
has been proposed, modeled and analyzed. It
achieves a uniform load of buffering through-
out the network with only partial knowledge of
peers about the system. It is simple and func-
tions independent of the underlying network
topology. Our approach reduces the memory
usage since only a small subset of the peers
is chosen as bufferers for each message. As a
result, the efficiency of content dissemination is
improved. Furthermore, it is applicable to large
scale scenarios, provides reliable delivery and
is adaptable to dynamic join and leaves to the
system.

Separate evaluations of bufferer selection
and gossip-based dissemination are presented
to demonstrate the buffering efficiency through
simulations. For the buffering analysis, unifor-
mity of the buffering load, its scalability, the
effect of TTL parameter and multiple senders
scenarios have been investigated. Furthermore,
the evaluation of our approach in compari-
son with other buffering schemes are given in
terms of data dissemination metrics, scalability
and link failures. The metrics investigated are
reliability, content dissemination time, buffer-
ing delay and message delay of the system.

Hash-based buffering scheme, probabilistic
scheme and a completely randomized ap-

19

proach with full membership information have
been used for comparison. Several power-law
and hierarchical overlay topologies were con-
sidered. We have found that stepwise fair-
share buffering performs well and is scalable
for large networks also in the case of failures
in the links. The buffer sizes and number of
bufferers have been determined to guarantee
reliable delivery.

Analytical results for reliability of epidemic
dissemination as a function of buffer sizes and
the number of bufferers have been derived.
These results are based on a Markov chain
analysis and are evaluated numerically. Com-
parison with simulations of stepwise fair-share
scheme shows that the analytical model pro-
vides a good lower bound for reliability. For
high level of reliability values, the bounds are
very close to the simulation results.

As future work, one can include link fail-
ures in the underlying network topology to
the analytical model. The minimum number of
bufferers required for reliability would be of
interest. On the other hand, identifying the true
overlay topologies more precisely would be of
interest. It has been shown recently in [27] that
Gnutella network exhibits the clustering and
short path lengths of a small world network
rather than power-law scaling. Finally, trace-
driven data could be used instead of synthetic
topologies which can be overly simplified.

ACKNOWLEDGMENTS

Research of the first author is supported by
TUBITAK (The Scientific and Technical Re-
search Council of Turkey) under CAREER
Award Grant 104E064.

REFERENCES

11 O. Ozkasap, R. van Renesse, K. P.Birman and Z. Xiao,
Efficient Buffering in Reliable Multicast Protocols, Proc. of
the First Int’l Workshop on Networked Group Communication
(NGC’ 99), Pisa, Italy, Nov. 1999, pp. 188-203.

[2] K. Yamamoto, Y. Sawa, M. Yamamoto and H. Ikeda, Per-
formance Evaluation of ACK-Based and NAK-Based Flow
Control Mechanisms for Reliable Multicast Communica-
tion, IEICE Trans. on Comm., vol. E84-B, no. 8, Aug. 2001,
pp. 2313-2316K.

[3] L. Rodrigues, S. Handurukande, J. Orlando, R. Guerraoui
and A. M.Kermarrec, Adaptive gossip-based broadcast,
IEEE International Conference on Dependable Systems and
Networks (DSN), 2003.

[4] Z.Xiao, K. PBirman and R. van Renesse, Optimizing Buffer
Management for Reliable Multicast, Proc. of the Int’l Conf.
on Dependable Systems and Networks (DSN’02), Washington,
D.C.

J. FParis and J. Baek, A Heuristic Buffer Management and

Retransmission Control Scheme for Tree-Based Reliable

Multicast, ETRI Journal, Volume 27, Number 1, February

2005 K.

G. Rhee and I. Rhee, Message Stability Detection for Re-

liable Multicast, Proc. of the 19th IEEE Conf. on Computer

Comm. (INFOCOM 2000), New York, USA, Mar. 2000, pp.

814-823.

M. Costello and S. McCanne, M. Yamamoto and H. Ikeda,

Search Party: Using Randomcast for Reliable Multicast

with Local Recovery, Proc. of the 18th IEEE Conf. on Com-

puter Comm. (INFOCOM ’99), New York, USA, Mar. 1999,

pp. 1256-1264.

J. Pereira, L. Rodrigues, M. Monteiro, R. Oliviera and

A. M.Kermarrec, Network Friendly Epidemic Multicast,

IEEE International Symposium on Reliable Distributed Systems,

2003.

C. Lindemann and O. Waldhorst, Modelling Epidemic

Information Dissemination on Mobile Devices with Finite

Buffers, SIGMETRICS, 2005.

[10] R. van Renesse, K. P.Birman and W. Vogels, Astrolabe: A
Robust and Scalable Technology for Distributed Systems
Monitoring, Management, and Data Mining, ACM Trans.
Computer Systems, vol. 21, no. 2, 2003, pp. 164-206.

[11] A.]J. Demers, et al.,, Epidemic Algorithms for Replicated
Database Maintenance, Proc. 6th Ann. ACM Symp. Principles
of Distributed Computing, ACM Press, 1987, pp. 1-12.

[12] E. Ahi, M. Caglar and O. Ozkasap, Stepwise Probabilistic
Buffering, International Conference on Bio Inspired Models
of Network, Information and Computing Systems (Bionetics),
December 11-13, 2006, Cavalese, Italy.

[13] E. Ahi, M. Caglar and O. Ozkasap, Stepwise Fair-Share
Buffering underneath Bio-inspired P2P Data Dissemina-
tion, 6th International Symposium on Parallel and Distributed
Computing, July 2007, Hagenberg, Austria.

[14] M. Faloutsos, P. Faloutsos and C. Faloutsos. On power-
law relationships of the Internet topology, Proc. ACM SIG-
COMM, 1999.

[15] A. Medina,

9]

A. Lakhina, I. Matta and J]. Byers,

BRITE: Universal topology Generator from a
Users Perspective, Technical Report, BUCS-TR-
2001-003, April 12, 2001, Boston University.

(http:/ /www.cs.bu.edu/brite/publications /usermanual.pdf)

[16] A. Medina, A. Lakhina, I. Matta and J. Byers, BRITE:
An Approach to Universal Topology Generation, Proc. of
MASCOTS, Cincinnati, OH, August 2001.

[17] B. Zhang, T.S.E. Ng, A. Nandi, R. Riedi, P. Druschel, G.
Wang, Measurement based analysis, modeling, and synthe-
sis of the internet delay space, Proc. of 6th ACM SIGCOMM
conference on Internet measurement, October, 2006.

[18] gt-itm, http://www-static.cc.gatech.edu/fac/Ellen.Zegura
/graphs.html

[19] N.T.]J.Bailey, The Mathematical Theory of Infectious Diseases
and its Applications, second edition, Hafner Press, 1975.

[20] A. Alagoz, E. Ahi and 0. Ozkasap, Network Awareness
and Buffer Management in Epidemic Information Dissem-
ination, (poster paper), ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing (PODC), July 2005,
Las Vegas.

[21] M. Caglar and O. Ozkasap, A Chain-Binomial Model for

20

Pull and Push-Based Information Diffusion, IEEE ICC, June
2006, Istanbul.

[22] M. ENeuts, Matrix-geometric solutions in stochastic models,
The John Hopkins University Press, 1981.

[23] O.Ozkasap, E. S.Yaziq, S. Kiigiikgifci and M. Caglar, Exact
performance measures for peer-to-peer epidemic informa-
tion diffusion, Lecture Notes in Computer Science, 4263, ISCIS
2006.

[24] I Stoica, R. Morris, D. Karger, M. FKaashoek and H. Bal-
akrishnan, Chord: A Scalable Peer-to-peer Lookup Service
for Internet Applica-tions, In Proc. of ACM SIGCOMM
Conference, San Diego, CA, USA, August 2001.

[25] S. Ratnasamy, P. Francis, M. Handley, R. Karp and
S. Shenker, A Scalable Content-Addressable Network, In
Proc. of ACM SIGCOMM Conference, San Diego, CA, USA,
August 2001.

[26] B. Zhao, J. Kubiatowicz and A. Joseph, Tapestry: An in-
frastructure for fault-tolerant wide-area location and rout-
ing, Comput. Sci. Div,, Univ. California, Berkeley, Tech.
Rep. UCB/CSD-01-1141, 2001.

[27] D. Stutzbach, R. Rejaie, S. Sen: Characterizing unstruc-
tured overlay topologies in modern P2P file-sharing sys-
tems, IEEE-ACM Trans. Networking, vol. 16, no. 2, 2008, pp.
267-280.

