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We study the simulation of stationary, homogeneous, incompressible and isotropic C� �nlar

ows on IR2. The ow is generated by a velocity �eld obtained by the superposition of vortices

of rotation. The arrival time and location of vortices form a Poisson point process. The two

stages of the simulation of the ow are the generation of the velocity �eld and the integration

of the particle paths. We generate the velocity �eld on a bounded domain D exactly. The

velocity �eld on D is fully described by the parameters of vortices that are stored in a stack

the size of which is fairly stable at the stationary regime. We obtain the particle path by

integrating the ow equation using a fourth order Runge-Kutta method. A range of ratios

of the two relevant time scales lead to a variety of particle paths. Under some regimes, the

paths are nearly Brownian, under other, the paths are clearly circular with some drift. Finally,

we compute single particle dispersion, Lagrangian autocorrelation, and di�usivity estimators

through Monte Carlo simulations. The results are useful for �tting the model to real data.
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1 Introduction

We investigate the simulation of ows generated by a class of velocity �elds recently introduced

by C� inlar.1;2 Such velocity �elds are vector �eld-valued versions of Poisson shot-noise and are

close to those used in discrete vortex methods. But they have superior qualities: they are

stationary and ergodic, and can be made homogeneous, incompressible and isotropic easily by

1Current address: Ko�c University, Istanbul, Turkey
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means of a more general de�nition of a vortex. We focus on ows on IR2 with all of these

properties in the present paper, a preliminary version of which has appeared elsewhere.3

Let v be a deterministic velocity �eld called the basic vortex, and let Q = IR2 � IR� (0;1)

be an index set. We obtain vortices for q 2 Q by

vq(x) = a v(
x� z

b
) for q = (z; a; b) : (1)

Let N be a Poisson random measure on the Borel sets of IR�Q with mean measure

�(dt; dz; da; db) = � dt dz �(da)�(db) (2)

where � is the arrival rate per unit time-unit space, and � and � are probability distributions.

The arrival time t of a vortex, its location z in space, its amplitude a as well as its dilation

factor b are all random and governed by N . By the superposition of these vortices appropriately

decaying in time, a stationary velocity �eld u is constructed1 as

u(x; t) =

Z
(�1;t]�Q

N(ds; dz; da; db) e�c(t�s) a v(
x� z

b
) x 2 IR2; t 2 IR (3)

where c > 0 is the decay parameter.

The path fXt : t � 0g of a particle that started at x at time 0 is the solution of the ordinary

di�erential equation

d

dt
Xt = u(Xt; t) X0 = x : (4)

Our aim is to simulate a variety of particle paths and hence explore the parameters of the velocity

model (3). In Section 2, the details of the velocity model is outlined. In Section 3, we investigate

the typical length and time scales. The identi�cation of these scales serves as a general guide for

comparing di�erent models and putting numerical values into physical perspective. The typical

paths are simulated in Section 4 for a range of ratios of the time scales while keeping the length

scale constant. Each ratio appears to represent a di�erent regime of motion.

In the last two decades, Lagrangian data have been extensively used to describe the charac-

teristics of ows in several regions of ocean.4 The positions of current following surface drifters,

�xed by the sensors on satellites, provide the data. In stationary and homogeneous regions,

the observations are used to obtain single particle dispersion, Lagrangian autocorrelation, and
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di�usivity estimators.5 We explore these basic indicators in C� inlar ows through Monte Carlo

simulations in Section 5, as an extension of the results of Section 4. Finally, we deduce a

framework for matching the parameters of the ow model to real data.

2 Homogeneous and Isotropic Velocity Field

In this section, we review some details of the velocity �eld

u(x; t) =

Z
(�1;t]�Q

N(ds; dz; da; db) e�c(t�s) a v(
x� z

b
) x 2 IR2; t 2 IR (5)

as given in references 1 and 2. It is stationary, homogeneous and isotropic according to the

following de�nitions. A velocity �eld u is said to be stationary (in the strict sense) if, for each

x 2 IRd, the distribution of the collection fu(x; s + t) : t 2 IRg is the same for all s 2 IR. A

velocity �eld u is called homogeneous in space if, for each t 2 IR, the probability law of the

collection fu(z + x; t) : x 2 IRdg is the same for all z 2 IRd. That is, the probability law

of ut is invariant under translations of the space IRd. Isotropy corresponds to invariance of

the same law under rotations and reections of the coordinate system. Precisely, u is called

isotropic if it is homogeneous and for each t the probability laws of fu(Gx; t) : x 2 IRdg and

fGu(x; t) : x 2 IRdg are the same for all orthogonal transformations G of IRd.

The veri�cation of these properties rely on the characteristic function formula

IE exp i

Z
N(dr)f(r) = exp

Z
�(dr)(eif(r) � 1) (6)

about integrals with respect to Poisson random measures6 since the velocity �eld (5) is such an

integral. The �nite dimensional distributions of u, that is, the distributions of

u(x1; t); u(x2; t); : : : ; u(xn; t) x1; : : : ; xn 2 IRd

determine the distribution of the collection fu(x; t) : x 2 IRdg. The characteristic function for

such distributions is computed1;2 through the use of formula (6) and is given by

IE exp i

Z
IRd

(dx) � u(x; t)

= exp �
R
IR+�Q

�(dt; dq)[1 � exp ie�cs
R
IRd (dx) � vq(x)]
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where dot denotes inner product and the measure  has the form

Z
IRd

(dx) � f(x) =
nX
i=1

ri � f(xi)

for vectors r1; : : : ; rn 2 IRd. Then, the mean measure (2) and the form (1) of the vortices are

taken into account to verify the above properties.

Since (5) is homogeneous2 in space the covariance function R depends only on time and

space lag, and is given by

Rij(x; t) = IEui(y; s)uj(y + x; t+ s)

=
1

2c
e�cjtj �

Z
IR
�(da) a2

Z
IR+

�(db) b2
Z
IR2

dz vi(z) vj(z +
x

b
) (7)

where x; y 2 IR2, s; t 2 IR, i; j = 1; 2. This is computed by the use of the following formulas for

the expectations and variances of integrals with respect to Poisson random measures6

IE

Z
N(dr) f(r) =

Z
�(dr) f(r)

and

IE

Z
~N(dr)

Z
~N(dr0) f(r) g(r0) =

Z
�(dr) f(r) g(r)

where ~N(dr) = N(dr)� �(dr).

Since the ows considered in this paper are in IR2, isotropy requires the basic vortex v to

have a speci�c form. Namely, v = (v1; v2) corresponds to rotation around 0 with magnitude

m(r) at distance r from 0. The speci�c equations for v are

v1(x) =
x2

r
m(r) (8)

v2(x) =
x1

r
m(r)

where x = (x1; x2) and r = jxj 2 [0; 1]. As a rotation on IR2, v is incompressible, that is,

divergence free. We let it vanish outside the unit disk. Then, every vortex is a rotation, since

it is translation, ampli�cation and dilation of v. As a superposition of these eddies, the velocity

�eld u is both incompressible and isotropic.
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3 Length and Time Scales

In this section, we follow the length and time scale de�nitions of Piterbarg,7 given in terms

of the spectral density of a stationary, homogeneous and isotropic velocity �eld. We compute

these in terms of the covariance tensor R, which is explicit in the velocity model of Section 2.

Following the usual convention, we take (R11(0; 0) +R22(0; 0))1=2 to be the typical velocity. In

absence of isotropy, the de�nitions can be modi�ed to account for each spatial direction.

3.1 Length Scale

In a stationary, homogeneous and isotropic velocity �eld, the spectral density tensor8 can be

written in terms of two spectral densities EL and EN as

Eij(k;w) = EL(jkj; w)(�ij �
kikj
jkj2

) +EN (jkj; w)
kikj
jkj2

(9)

where jkj = k21 + k22 . The covariance tensor R is given by

Rij(x; t) =

Z
IR

Z
IR2

ei(k�x+wt)Eij(k;w) dk dw (10)

Piterbarg7 assumes that EN = 0 and de�nes a length scale l by

l =

� R R
jkjEL(jkj; w) djkj dwR R
jkj3EL(jkj; w) djkj dw

�1=2
(11)

We write this de�nition in terms of the covariance matrix R, and thus EN is not necessarily 0 in

our de�nitions. From (9), Eii(k;w) = EL(jkj; w) (1� k2i =jkj
2) (with EN = 0), and hence from

(10)

f(x) � R11(x; 0) +R22(x; 0) =

Z
IR

Z
IR2

eik�xEL(jkj; w) dk dw : (12)

Changing k = (k1; k2) to polar coordinates and evaluating at x = 0, we get

R11(0; 0) +R22(0; 0) = 2�

Z
IR

Z
IR+

jkjEL(jkj; w) djkj dw : (13)

Then, we compute from (12) that

@21f(0) + @22f(0) = �

Z
IR

Z
IR2

(k21 + k22)EL(jkj; w) dk dw (14)

= �2�

Z
IR

Z
IR+

jkj3EL(jkj; w) djkj dw :
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where @2i � @2=@x2i . From (11), (13) and (14), it follows that the length scale l is given by

l =

 
R11(0; 0) +R22(0; 0)

�[@21(R
11(x; 0) +R22(x; 0)) + @22(R

11(x; 0) +R22(x; 0))]x=0

!1=2

in terms of the covariance tensor R. Here, units of `velocity squared' is divided by units of

`1/(time squared)', and then the square root is taken, so l is in units of length. Another way of

de�ning a length scale could be by taking the derivative of f only once to have a quantity in

units of `accelaration', and then divide f which is in units of `velocity squared' by this, to get

a quantity in units of `length'. See for example Ref. 9, pg.51. However, the previous approach

takes advantage of isotropy and the quantities are simpler to evaluate. Indeed, from (7) and (8)

we get

R11(0; 0) +R22(0; 0) =
�

2c

Z
IR
�(da)

Z
IR+

�(db) a2b2
Z
B
dz m2(r)

(z1)2 + (z2)2

r2

=
��

c

Z
�(da) a2

Z
�(db) b2

Z 1

0
dr rm2(r)

where r = jzj and B is the closed unit ball in IR2. We also compute the quantity in (14) to get

@21f(0) + @22f(0) =
��

c

Z
�(da) a2

Z 1

0
dr rm(r)(m00(r) +m0(r)=r �m(r)=r2) :

Hence,

l =

 R
�(db)b2

R 1
0 dr rm

2(r)

�
R 1
0 dr rm(r)(m00(r) +m0(r)=r �m(r)=r2)

!1=2

:

3.2 Time Scales

The typical time scale �T is de�ned7 as the ratio of the length scale l to the typical velocity

�T =
l

(R11(0; 0) +R22(0; 0))1=2

called the turnover time. From the computations of the previous subsection, we get

�T =

�
�
��

c

Z
�(da)a2

Z 1

0
dr rm(r)(m00(r) +m0(r)=r �m(r)=r2)

��1=2
:

Another time scale is de�ned7 by

�E =

R
jkjEL(jkj; 0) djkjR R
jkjEL(jkj; w) djkj dw
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called Eulerian correlation time, or lifetime of an eddy. Working in terms of R again, we have

Z
IR2

eik�xEii(k;w) dk =
1

2�

Z
IR
e�iwtRii(x; t) dt

by inverting the Fourier transform (10). Putting x = 0, w = 0, recalling that E11(k; 0) +

E22(k; 0) = EL(jkj; 0), and changing to polar coordinates, we get

2�

Z
IR+

jkjEL(jkj; 0) djkj =
1

2�

Z
IR
[R11(0; t) +R22(0; t)] dt :

Then, from (13) we can write

�E =
1

2�

Z
IR
[R11(0; t) +R22(0; t)] dt = [R11(0; 0) +R22(0; 0)] :

From (7), we �nd

�E =
1

2�

Z
IR
e�cjtjdt =

1

�c
:

The Eulerian correlation decays exponentially, however �E = 1=�c is too small to characterize

the decay time for some choices of c. Since � is just a constant, we take

�E =
1

c

in our computations, which are based on time scales only comparatively.

4 Simulation of Particle Paths

In this section, we simulate a variety of particle paths by separation of the time scales �E, �T

and the unit time as described below. Under some regimes, the paths are nearly Brownian,

under other, the paths are clearly circular with some drift.

4.1 Simulation Procedure

There are two stages in simulation: the generation of the Eulerian velocity �eld and numerical

integration of the ow equation (4). To generate the velocity �eld, we rewrite (3) in the form

u(x; t) =
X
ti�t

e�c(t�ti)ai v(
x� zi
bi

)
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where (ti; zi; ai; bi) are atoms of N . To get the velocity �eld over a bounded domain D, we

�rst pick the desired distribution � of the ai to have a bounded support. Let â > 0 denote the

maximum value that ai can take in absolute value. Pick the desired distribution � of the bi to

have support on (0; b̂], where b̂ > 0. Then, to get the velocity �eld on D exactly, we in fact need

to simulate all the vortices with centers in E = D + b̂ = fy 2 IR2 : jy � xj � b̂ for some x 2 Dg.

For instance, if D is the disk of radius r, then E is the disk of radius r + b̂, both centered at

0. Let �̂ be the intensity � multiplied by the area of E. We generate the times t1; t2; : : : to be

the arrival times of a Poisson process with rate �̂. To each ti, we associate the random point

zi with the uniform distribution over E. Then, we take ai from the distribution � and bi from

the distribution �. This speci�es u(x; t) for all x 2 D and t � 0. We store the ti; zi; ai and bi

for each vortex, but only until the vortex decays to negligible magnitude, that is, until the �rst

time t > ti such that e�c(t�ti)jaij is very small, so small that this quantity times � is still small,

otherwise the sum u(x; t) can be large for large values of �. We conclude that the velocity �eld

reaches the stationary regime at the �rst time t� > 0 that makes � e�ct
�

jâj negligible. Indeed,

the number of vortices that are kept in our stack is fairly stable after t�. In the generation of

the velocity �eld, there is no discretization of time or space, so numerical errors come only from

machine precision and the killing of vortices, which are both negligible.

We place a particle in D at time t� and relabel the time as 0. The observation time t̂ is

predetermined according to typical length and time scales so that it is probably less than the

�rst hitting time of the particle to the boundary of D. Then, the computation of the particle

path is a deterministic integration over the realization of the velocity �eld in time [0; t̂]. We use

the fourth order Runge-Kutta method10 to solve (4). Precisely, let h be the integration time

step. We compute in turn

k1 = hu(xn; tn)

k2 = hu(xn +
k1
2
; tn +

h

2
)

k3 = hu(xn +
k2
2
; tn +

h

2
)

k4 = hu(xn + k3; tn + h)

xn+1 = xn +
1

6
(k1 + 2k2 + 2k3 + k4)
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with x0 = x. Since the velocity �eld jumps at arrival times of the Poisson process (remaining

continuous in x), the discretization of time is done accordingly. Each time we move the particle,

we need to compute the Lagrangian velocity u(Xt; t) by searching our data structure for the

vortices. It is su�cient to search for vortices with centers within a radius b̂ of the particle.

The velocity �eld u(x; t) is continuous in x, and it is in�nitely di�erentiable in t between jumps.

Therefore, the discretization error is of O(h5) as usual for the fourth order Runge-Kutta method.

In the next section, the numerical values of h and t̂ are chosen so that the particle paths are

invariant over [0; t̂] for those and smaller values of h.

We �x the length scale by �xing the distribution � of the bi and the magnitude function m.

We select � from a one-parameter family of distributions. Then, the inputs to the simulation

program are only c, �, t̂ and the parameter of �. The program is coded in the C programming

language, and it is executed on Silicon Graphics machines. For most parameter choices, the

program runs very fast. The output is the particle position at every time step.

4.2 Particle Paths

We select � to be a discrete distribution with the following probability mass function

p(0:5) = 8=15; p(1) = 4=15; p(1:5) = 2=15; p(2) = 1=15 : (15)

This �xes the length scale l to be 0:235. We visualize the ow on a disk of radius 50 l � 11,

which is reasonably large. We take � to be the uniform distribution on [�â; â]. We select the

magnitude function m by

m(r) =
1� cos 2�r

2
0 � r � 1

and m(r) = 0 otherwise.

Every choice of the input parameters yields di�erent time scales �E and �T . Since the length

scale is �xed, we concentrate only on the ratio of the time scales �E=�T . This is roughly the

`number of turns' in one Eulerian time by which the velocity �eld decays considerably. We study

the ratios 0.1, 1, 10 and 100, and separate the scales �T , �E and 1 (unit time) within the same

ratio. In all cases, the time step h is chosen so small that the particle paths converge. Precisely,
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we have

max
n
jxn(h)� xn(h

0)j � 0:1 for h0 � h (16)

Typically, h varies from 0.1 to 0.001 in the particle paths generated over [0; t̂] below.

The results are given in Figures 1 through 9 where the relation x� y means y is 10 times x

in magnitude for real valued quantities x and y. The �gures span all possible separation of scales

except for one family. We have not displayed the cases where �T � 1 (except for Figure 1).

When �T � 1, the particle has to be moved very slowly, for a very long time. This is basically

because �T is the typical time; to observe motion we have to wait for several units of �T . We

omit this case as the ratio �E = �T is more important and is explored in other cases.

Figures 1,2,3 correspond to ratio �E = �T = 0:1, Figures 4, 5 to �E = �T = 1, Figures 6, 7, 8

to �E = �T = 10, and Figure 9 to �E = �T = 100. We observe that the number of turns increases

as the ratio increases as expected. The rotations are very obvious for �E = �T = 10; 100. Yet,

every picture within the same ratio looks qualitatively di�erent as the time unit varies. For

instance, as c increases the paths start to look more irregular and less smooth for each �xed

ratio. This suggests that the particle behaves more like a Brownian particle when the decay

rate c increases, which is observed especially for ratios 0.1 and 1. In the case of �E = �T = 10,

the particle is locked to an eddy for some time for the smallest value of c in Figure 6. A similar

pattern is observed also for ratio 100. Finally, �T is indeed the typical time; the bigger it is with

respect to unit time, the shorter the length of the path is within the �xed domain D for a �xed

period.

5 Dispersion

The term dispersion usually refers to that of a cloud of admixture placed in uid. The concen-

tration of mass at all positions x 2 IRd and times t 2 IR+ provides the complete picture and

is usually studied for quantifying dispersion of an admixture. In the beginning, suppose this

mass occupies a disk of �nite radius, say r, around the origin. In a ow of homeomorphisms

the mass is contained in this boundary at all times, but the boundary moves in time. In an

incompressible ow, the area and the concentration of the mass inside the boundary remain the
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same in time. However parts of the mass disperse far from distance r as prolongated extensions.

This is illustrated in Figure 10, in which the parameters are the same as in Figure 4. We follow

only the particles on the boundary as the ow is a homeomorphism basically by the smoothness

of the basic vortex chosen.11 We place 1000 particles on a circle of radius 3 at t = 0 on the

stationary velocity �eld. When two particles get more distant than they were at the beginning,

we insert another particle between them.12 As the particles are very close to each other, this

approximation is appropriate for visualization purposes. At time 35, we have 48689 particles on

the boundary. Here, the time step h is 0.1 and as it is reduced the traces remain invariant. For

example, the distance between corresponding particles is less than 0.05 for traces with h = 0:1

and h = 0:01, and the plots are visually indistinguishable.

We see that the probability density that a particle is found at x at time t is sometimes

identi�ed with the expected concentration of an admixture at that position and time. The

heuristic argument for this is based on the assumption that all particles di�use independently.13

Then, when a large ensemble of particles of unit mass is released at the origin at time 0, the

amount of mass at x at time t should give the desired probability. This is only approximate

for large scale ows where the particles close to each other at start move closely at least for a

while. Yet, single particle dispersion, which will shortly be de�ned as the second moment of the

distribution of the particle position, is considered as an important indicator for mass dispersion.

Let Xt denote the position at time t of a particle that started at position 0 at t = 0. We

de�ne single particle dispersion as

IE jXtj
2 = IE (X1

t )
2 + IE (X2

t )
2 : (17)

From (4), we have

d

dt
(Xi

t )
2 = 2Xi

t u
i(Xt; t) = 2

Z t

0
ui(Xt; t)u

i(Xs; s) ds : (18)

Since u is stationary, homogeneous and incompressible, the Lagrangian velocity process fu(Xt; t) :

t � 0g is also stationary by Proposition 5.3.4 of Ref. 14. Let � denote the autocorrelation tensor

of this process, called the Lagrangian autocorrelation. That is,

�ij(s) =
IEui(Xt; t)u

j(Xt+s; t+ s)

IEui(0; 0)uj(0; 0)
:
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Then, after integrating (18), taking expectations, and making a change of variable, we get

IE (Xi
t )
2 = 2 IEui(0; 0)2

Z t

0

Z r

0
�ii(s) ds dr = 2 IEui(0; 0)2

Z t

0
(t� s)�ii(s) ds : (19)

This is known as Taylor's Theorem for homogeneous and stationary turbulence in presence of

which it is conjectured that the Lagrangian velocity is also a stationary process.13 This is indeed

satis�ed by the velocity model (5) as described above.

Studying Equation (19), we see that as t tends to 0, �(t) goes to 1 and

IE (Xi
t )
2 � IEui(0; 0)2 t2 as t ! 0 :

On the other hand, when t is very large, we have

IE (Xi
t )
2 � 2 IEui(0; 0)2 t

Z 1

0
�ii(s) ds as t !1 (20)

if the integrals
R1
0 �(s) ds, and

R1
0 s�(s) ds are �nite. As t ! 1, the particle shows di�usive

behavior as in Brownian motion where second moment of the particle position grows like t.

The turbulent di�usion is usually studied through the advection di�usion equation, which

is a di�erential equation for the expected concentration of mass. Suppose this concentration is

identi�ed with the probability density function of Xt, as described above. In this case, if the

distribution of Xt is assumed to be Gaussian, the ith component of the di�usion constant in the

advection di�usion equation can be found to be

Ki =
1

2

d

dt
IE (Xi

t )
2

where molecular di�usion is neglected. See Ref. 13, pg.62, for a derivation. From (19), we have

Ki = �2
Z t

0
�ii(s) ds

where �2 � IEu1(0; 0)2, which is equal to IEu2(0; 0) because of isotropy. In general, the quantity

Ki is taken as a de�nition for di�usivity in the analysis of data from a homogeneous and

stationary ow. Note that for large t, Ki is approximately equal to 1/2 times the coe�cient of

t in Equation (20). From (17), we have

IE jXtj
2 � 4K t as t!1 (21)

where we put K = K1 = K2 in view of isotropy.
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5.1 Monte Carlo Simulation

We perform a large number, say n, of independent simulation runs in order to estimate IEjXtj
2

of (17) by calculating

jXtj2 =
1

n

nX
k=1

jXtj
2
k ; (22)

where jXtj
2
k is the statistic from kth run, and X0 = 0. Each run is the simulation of the particle

path, which is described in the previous section.

Since n is large, we have chosen \ran1.c",15 a random number generator with a long period.

In order to determine n, �rst we check the sample mean of u(0; 0), for n=1000, 2000, and 3000

runs. As the real mean IEu(0; 0) is 0, this analysis provides an empirical estimate of n. On

the other hand, we control the accumulation of errors throughout time by checking the sample

mean Xt for the period of time t̂ that the particle is followed. The exact value is IEXt = 0, for

all t � 0, because

IEXt =

Z t

0
IEu(Xs; s) ds ;

which is equal to 0 because IEu(Xs; s) = IEu(0; 0) = 0 for each s as fu(Xt; t) : t 2 IRg is

stationary. We also compare the sum (X1
t )

2 + (X2
t )

2 with jXtj2, for 0 � t � T . The number

n is chosen su�ciently large to make their di�erence at most 0.1% of jXtj2. Note that second

moment of Xt is also its variance, as its mean is 0. So, by control of this error and large choice

of n, there is no signi�cant di�erence between the statistics we get from the estimator in (22)

and the sample variance s2 �
PN

k=1(Xk �X)2=(N � 1).

5.2 Single Particle Dispersion

Our aim is to explore both the small time (quadratic) and the large time (linear) behavior of

jXtj2, and compute the di�usivity K. We focus on dispersion caused by turbulent eddies which

have larger scales than molecular motions. In view of the results of the previous section, we

select the decay rate c su�ciently small so that Eulerian velocity decorrelates slowly in time.

Although we cannot compute analytically, Lagrangian autocorrelation � must be a�ected by c

in a similar way. So, we select �E relatively high. On the other hand, we will see that a certain

pattern exists for a range of values of �T below.
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We study �T = 1 in detail. Fixing �T leaves two parameters free among c, � and â. We

investigate a range of these parameters as follows. We start with the parameters of Figures 4

and 6 of the previous section that correspond to �T = 1. The estimators �̂11 and jXtj2 are given

in Figure 11 for the parameter set of Figure 4 where c = 1. We do not display �̂22 since it is

almost identical to �̂11 by isotropy. Note that jXtj2 grows linearly in time almost right from

time 1. The parameter combination of Figure 6 where c = 0:1 has shown a similar behavior. In

both of these cases, we have �=c = 0:1 and the di�usivity K as de�ned in (21) is estimated to

be 0.02.

Next, we reduce c to 0.01, with � = 0:01. The autocorrelation estimator �̂11, and dispersion

estimator jXtj2 are given in Figure 12. Here we have faster dispersion in shorter time. The

statistic jXtj2 is clearly quadratic for small t and becomes linear after around t = 5 when �̂ii,

i = 1; 2, become practically 0. We have also tried c = 0:001 with � = 0:001. This gives almost

the same result as in Figure 12. In both of these cases, we have �=c = 1 which is 10 times that

in Figure 11. Intuitively, the eddies arrive faster than they decay, and hence we are able to

observe the small time behavior. For the large time behavior, the di�usivity K is 0.04, greater

than that of Figure 11.

Continuing in this manner, we increase �=c to 10. The results with c = 0:01 are given in

Figure 13. The parameter combination c = 0:001 and � = 0:01 has produced a similar output.

In these cases, we have faster dispersion and higher di�usivity K 0.07. However, increasing the

ratio �=c to 100 with c = 0:001 and c = 0:0001 does not change the outlook of dispersion and

the di�usivity any more, K is still 0.07. Estimators of the di�usivity K are tabulated in Table

1 for all of our experiments with �T = 1.

The graph of dispersion together with K can be used to �t parameters to real data. To

match the magnitude of K to that estimated from data, one needs to rescale the space, which

has been the free dimension in our analysis. Indeed in all above experiments, the di�usivity K

is around the same order of magnitude, but the graph of dispersion varies. The choice of the

unit of space and rescaling it by varying the distribution � of b would adjust the value of K

to the one estimated from data. An increase in length scale l when �T is held constant would

result in higher values of di�usivity.
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By the same token, to produce a wide range of orders of magnitude for K one could change

the time scale �T while keeping the length scale constant. We expect that K will increase

as �T decreases. With this insight, we have also conducted the following experiments with

�T = 0:01; 0:1, and 10; the graphs of dispersion are given in Figures 14, 15 and 16, respectively.

The �rst two correspond to the parameter sets of Figures 8 and 9, respectively, and the last

one is similar to those in Figure 1, all with �=c = 1. The similarity of Figures 14 and 15 to the

dispersion plot in Figure 12 is striking. In these, only the time axis is di�erent consistent with

the time scales �T = 0:01; 0:1; 1, and all have �=c = 1. The same similarity exists also for the

corresponding autocorrelation functions.

We have plotted K versus �T in log-log scale in Figure 17 for all experiments performed.

The order of magnitude of K increases as �T decreases as we expected. So, alternatively, one

can change the time scale while keeping the length scale constant to �t parameters to real data.

Further adjustment should be made by choice of the ratio �=c to match the estimated dispersion.

Finally, we note that the particle paths have been observed \long enough" in Section 4.2 from

dispersion point of view. The large time behavior for obtaining K appears much earlier in

Figures 11 to 16 compared with total observation times in Figures 1 to 9 when the two sets are

matched according to their �T .
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K 0.02 0.02 0.04 0.05 0.07 0.07 0.07 0.07

�=c 0.1 0.1 1 1 10 10 100 100

� 0.01 0.1 0.01 10�3 0.1 0.01 0.1 0.01

c 0.1 1 0.01 10�3 0.01 10�3 10�3 10�4

Table 1: Summary of the results for typical time �T = 1.



-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 1: �E = �T = 0:1 1 � �E � �T .

x0 = (0; 0), x700 = (0:3; 0:6), c = 1, � = 0:01, a � Unif(-0.54,0.54)
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Figure 2: �E = �T = 0:1 �E � �T � 1 .

x0 = (0; 0) , x250 = (1:5; 1:0), c = 10, � = 0:1, a � Unif(-5.4,5.4)
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Figure 3: �E = �T = 0:1 �E � �T � 1 .

x0 = (0; 0), x35 = (0:7;�0:1), c = 100 , � = 1 , a � Unif(-54,54)
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Figure 4: �E = �T = 1 �E � �T � 1 .

x0 = (0; 0), x80 = (�0:7;�1:5), c = 1, � = 0:1, a � Unif(-1.7,1.7)
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Figure 5: �E = �T = 1 �T � �E � 1 .

x0 = (0; 0) , x12 = (�2:0;�1:5), c = 10, � = 1, a � Unif(-17,17)
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Figure 6: �E = �T = 10 1 � �T � �E .

x0 = (0; 0), x200 = (�2:1; 1:8), c = 0:1, � = 0:01, a � Unif(-1.7,1.7)
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Figure 7: �E = �T = 10 �T � �E � 1 .

x0 = (0; 0) , x25 = (�1:7; 2:1), c = 1, � = 0:1, a � Unif(-17,17)
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Figure 8: �E = �T = 10 �T � �E � 1 .

x0 = (0; 0), x2 = (2:1; 1:8), c = 10, � = 10, a � Unif(-54,54)
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Figure 9: �E = �T = 100 �T � 1� �E .

x0 = (0; 0) , x30 = (1:1;�3:2), c = 0:1, � = 0:1, a � Unif(-5.4,5.4)
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Figure 10: Boundary of an admixture cloud in the ow.

Parameters: c = 1, � = 0:1, a � Unif(-1.7,1.7)
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Figure 11: Autocorrelation and dispersion with c = 1, � = 0:1, a �Unif(-1.7,1.7) and �T = 1.
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Figure 12: Autocorrelation and dispersion with c = 0:01, � = 0:01, a � Unif(-0.54,0.54) and

�T = 1.
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Figure 13: Autocorrelation and dispersion with c = 0:01, � = 0:1, a � Unif(-0.17,0.17) and

�T = 1.
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Figure 14: Dispersion with c = 10, � = 10, a � Unif(-54,54) and �T = 0:01.
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Figure 15: Dispersion with c = 0:1, � = 0:1, a � Unif(-5.4,5.4) and �T = 0:1.
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Figure 16: Dispersion with c = 1, � = 0:1, a � Unif(-0.17,0.17) and �T = 10.
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Figure 17: Log-log plot of di�usivity K versus typical time �T .


