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SUMMARY

The maximum likelihood estimator for the drift of a Brownian ow on IRd, d � 2, is found

with the assumption that the covariance is known. By approximation of the drift with known

functions, the statistical model is reduced to a parametric one that is a curved exponential

family. The data is the n-point motion of the Brownian ow throughout the time interval [0; T ].

The asymptotic properties of the MLE are also investigated.

key words: Brownian ows, maximum likelihood estimation, function approximation, oceanog-

raphy.

1 Introduction

The theory of stochastic ows have been built on that of stochastic di�erential equations which

was initiated by K. Itô in 1942. Since then the theory has been developed in various directions.1

In particular, a Brownian ow is generated by a stochastic di�erential equation involving stan-

dard Brownian motions, or Wiener processes, as the so called driving processes. The property

that a Brownian ow is characterized by two functions only, namely drift and covariance, estab-

lishes its importance also from statistical point of view. In this paper, we study the estimation

of the drift assuming that the covariance function is known.

The motivation for the sampling scheme comes from the drifter experiments in oceanography.

Certain number of drifters are placed in a region of the ocean, and then their trajectories are

�xed by satellites at frequent intervals. Assuming that they completely follow the ow, hence

behave as proxies for uid particles, and the trajectories are observed continuously in time, we

de�ne our sample data as the n-point motion of a Brownian ow in interval [0; T ]. We de�ne

and briey review Brownian ows in Section 2. The ow is de�ned as a process taking values in

the space of homeomorphisms of IRd, d � 2, but the n-point motion is essentially a di�usion on
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IRnd. The tools of stochastic calculus are used to get the maximum likelihood estimator (MLE)

of the drift based on this data, in Section 3.

The estimation of the drift of a di�usion has been extensively studied in the literature where

the basic approach is to parametrize it. Brown and Hewitt2 employ the approximation of the

drift through known functions for one-dimensional di�usions. Our problem is the estimation of

a d-dimensional drift which we transform to the case of nd-dimensional di�usions properly. The

usual approach is to assume that the drift is a linear combination of given functions. Hence

estimation of a function reduces to estimation of real parameters.

The statistical model for Brownian ows with parametrization belongs to the exponential

family.3 Although the multidimensionality of the parameter space necessitates stronger assump-

tions for asymptotic results, the MLE exists and can be displayed explicitly. The asymptotic

properties are given in Section 4.

2 Preliminaries

On the probability space (
;H; IP), we de�ne a stochastic ow of homeomorphisms as

a collection fFst : 0 � s � tg of continuous random maps from IRd to IRd which satisfy the

following properties almost surely:

(a) Fss = identity map for all s 2 IR+ ,

(b) Fst � Frs = Frt for all 0 � r � s � t ,

(c) Fst : IRd ! IRd is a homeomorphism for all 0 � s � t .

In particular, a Brownian ow is a stochastic ow which further satis�es the following property:

(d) for each integer n � 1 and all 0 � t1 � t2 � : : : � tn , the random maps

Ft1t2 ; : : : ; Ftn�1tn are independent.
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We are interested in temporally homogeneous Brownian ows which means that the distribution

of Fs+h;t+h is free of h 2 IR+, for all 0 � s � t. The in�nitesimal mean u0 and the in�nitesimal

covariance a of F are found by

u0(x) = lim
h#0

1

h
IE[Ft;t+h(x)� x]

a(x; y) = lim
h#0

1

h
IE[(Ft;t+h(x)� x)(Ft;t+h(y)� y)T]

A Brownian motion U taking values in C(IRd ! IRd), the continuous functions from IRd to

IRd, is de�ned as a stochastic process whose increments are Gaussian random �elds on IRd and

are independent. That is, for every t1 � : : : � tn, the collection

fU(�; ti+1)� U(�; ti) : i = 1; : : : ; ng

is an independent collection of continuous random �elds on IRd.

We have the following decomposition of U into independent, one-dimensional Wiener Pro-

cesses W1;W2; : : : . There exist deterministic, continuous vector �elds u0; u1; : : : on IRd such

that

U(x; t) = u0(x)t+
1X
k=1

uk(x)Wk(t) : (2.1)

The vector �eld u0 is called the drift and the matrix function

a(x; y) =
1X
k=1

uk(x)uk(y)
T (2.2)

is called the covariance of U . The law of a Brownian motion is characterized by its drift and

covariance functions. We have

IEU(x; t) = u0(x)t x 2 IRd; t 2 IR+ ;

and

Cov(U i(x; s); U j(y; t)) = aij(x; y)(s ^ t) i; j = 1; : : : d; x; y 2 IRd; s; t 2 IR+ :
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Given a Brownian ow fFst; 0 � s � tg satisfying global Lipschitz and linear growth

conditions

ju0(x)j � K(1 + jxj); ju0(x)� u0(y)j � Kjx� yj; x; y 2 IRd

ka(x; y)k � (1 + jxj)(1 + jyj);

ka(x; y)� a(x0; y)� a(x; y0) + a(x0; y0)k � Kjx� x0jjy � y0j; x; x0; y; y0 2 IRd

and the condition

jIE [Fst(x)� x]j � K(1 + jxj)jt� sj

for some K > 0, one can �nd a unique Brownian motion U with drift u0 and covariance a such

that for every �xed s and x, we have

Fst(x) = x+

Z t

s
U(Fsr(x); dr) ; (2.3)

which is a generalization of Itô's stochastic di�erential equation based on U .1

Conversely, suppose the �elds u0; u1; : : : that form a Brownian motion U as in (2.1) satisfy

1X
k=0

juk(x)j
2 � K(1 + jxj)2 (2.4)

and
1X
k=0

juk(x)� uk(y)j
2 � Kjx� yj2 : (2.5)

Then, Equation (2.3) has a unique solution F which is a Brownian ow with in�nitesimal mean

u0 and covariance a as given in (2.2) ( Ref.1, pg.106). Hence, F is also characterized by u0 and

a.

The n-point motion of a Brownian ow can be interpreted as the �nite dimensional projection

of it. It is the process (F0t(x1); : : : ; F0t(xn)) for �xed x1; : : : ; xn in IRd and is a di�usion on IRnd

with in�nitesimal generator A(n) which satis�es

(A(n)f)(x1; : : : ; xn)

=
1

2

nX
p;q=1

dX
i;j=1

aij(xp; xq)
@2f

@xip @x
j
q

(x1; : : : ; xn) +
nX

p=1

dX
i=1

ui0(xp)
@f

@xip
(x1; : : : ; xn)
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for all f 2 C2(IRnd ! IR) and x1; : : : ; xn 2 IRd. The operator A(2) involves the covariance a(x; y)

for all x; y 2 IRd, consequently the law of two-point motion determines the law of a Brownian

ow.

Using the relation (2.1), we can write Equation (2.3) in di�erential form as

dFst(x) = u0(Fst(x))dt+
1X
k=1

uk(Fst(x))Wk(dt) (2.6)

for each x 2 IRd and 0 � s � t. In the context of the ow, Fst(x) denotes the position of the

particle at time t which started from position x at time s. Note that the time homogeneity of

F is reected in the fact that the drift and covariance of U do not depend on time.

3 The Maximum Likelihood Estimator

3.1 The Likelihood

Let (Ft) be a �ltration on the probability space (
;H; IP). The likelihood in estimation for

stochastic processes is analogous to the classical likelihood de�nition in parameter estimation for

random variables. Two measures � and � on the same measure space E are said to be absolutely

continuous with respect to each other, when their null sets are the same. Then, according to

the Radon-Nikodym Theorem there exists a unique density p such that

�(dx) = p(x)�(dx) :

Since the distribution of a process is a measure on the space it takes values, we de�ne the

likelihood as the density of the distribution of the process of interest, with respect to that of

another process. The latter is to be chosen according to the parameters to be estimated. Below,

we write d�=d� instead of p.

The following theorem will be used to derive the likelihood function for the estimation of the

drift in a Brownian ow. Here, two di�usion processes4 X and Y are considered. They have the
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same covariance, but di�erent drifts. The conditions of the theorem are regularity conditions

which establish the existence and uniqueness of the processes X and Y , as well.

Theorem 3.1 Let X and Y be IRd-valued processes having the following di�erentials

dXt = v0(Xt; t)dt+
1X
k=1

vk(Xt; t)Wk(dt); X0 = Y0

dYt = w0(Yt; t)dt+
1X
k=1

vk(Yt; t)Wk(dt)

where Wk, k = 1; 2; : : : are independent Wiener processes adapted to (Ft), and w0, vk, k =

0; 1; : : : are IRd-valued continuous functions de�ned on IRd � IR+. Suppose that the following

hold:

I. There exists K > 0 such that

jw0(x; t)j
2 +

1X
k=0

jvk(x; t)j
2 � K(1 + jxj2)

jw0(x; t)� w0(y; t)j
2 +

1X
k=0

jvk(x; t)� vk(y; t)j
2 � Kjx� yj2

for all x; y 2 IRd, t 2 [0; T ].

II. The equation
1X
k=1

vk(Xt; t)�k(Xt; t) = v0(Xt; t)� w0(Xt; t)

has a bounded solution (�k) for each t 2 [0; T ] .

III. Almost surely

Z T

0
v0(Zt; t)

T[
1X
k=1

vk(Zt; t)v
T
k (Zt; t)]

+v0(Zt; t) dt

+

Z T

0
w0(Zt; t)

T[
1X
k=1

vk(Zt; t)v
T
k (Zt; t)

T]+w0(Zt; t) dt <1

for Z = X and Z = Y , where [N ]+ denotes the pseudo inverse of a matrix N .
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Then �X and �Y , the distributions of fXt : t 2 [0; T ]g and fYt : t 2 [0; T ]g respectively, are

absolutely continuous with respect to each other and

d�X
d�Y

(X) = expf

Z T

0
[v0(Xt; t)�w0(Xt; t)]

T[
1X
k=1

vk(Xt; t)v
T
k (Xt; t)]

+ dXt

�
1

2

Z T

0
[v0(Xt; t)� w0(Xt; t)]

T[
1X
k=1

vk(Xt; t)v
T
k (Xt; t)]

+[v0(Xt; t)� w0(Xt; t)] dtg

Proof. This theorem is the natural generalization of (the corollary to) Theorem 7.18 of Ref. 5,

where X and Y satisfy the same di�erentials but with k = 1; : : : ;M , M <1. 2

Let F be the ow based on the Brownian motion U of (2.1), as de�ned in Section 2. Since

it is time homogeneous, we will concentrate on the processes fF0t(x) : t 2 [0; T ]g while x varies

on IRd, and T > 0. From (2.6), for each x 2 IRd, Ftx � F0t(x) satis�es

dFtx = u0(Ftx)dt+
1X
k=1

uk(Ftx)Wk(dt) : (3.1)

Our aim is to estimate u0 which is deterministic, yet unknown. Although the covariance

function a has to be estimated also, we will assume that it is known in order to �nd the MLE

of u0 below, and then comment on how an estimate of it can be obtained for our purposes.

The estimation procedure will be based on the n-point motion data through [0; T ], that is,

we observe the process fFtxi : xi 2 IRd; i = 1; : : : ; n; 0 � t � Tg where x1; : : : ; xn are assumed to

be pairwise di�erent. This is a di�usion on IRnd and satis�es the following di�erential equation

d ~Ft~x = ~u0( ~Ft~x)dt+
X
k

~uk( ~Ft~x)Wk(dt)

where

~x =

2
6666666664

x1

x2
...

xn

3
7777777775

~Ft~x =

2
6666666664

Ftx1

Ftx2
...

Ftxn

3
7777777775

~uk(~x) =

2
6666666664

uk(x1)

uk(x2)

...

uk(xn)

3
7777777775
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xi 2 IRd, i = 1; : : : ; n, k = 0; 1; 2; : : :, and Wk, k = 1; 2; : : : are independent Wiener processes as

before.

We will write the density of the law, that is the distribution, of the n-point motion ~F ~x,

denoted by � ~F ~x, with respect to the law of the n-point motion of a 0-drift Brownian ow G,

denoted by � ~G~x. So, we choose G identical to F , except that its drift is zero. Analogous to F ,

the n-point motion of G satis�es

d ~Gt~x =
1X
k=1

~uk( ~Gt~x)Wk(dt) :

Assuming for a moment that the assertions of Theorem 3.1 hold, we write the density as

d� ~F ~x

d� ~G~x

(f ~Ft~x : 0 � t � Tg) = (3.2)

expf

Z T

0
[~u0( ~Ft~x)]

T[U( ~Ft~x)]
�1 d ~Ft~x�

1

2

Z T

0
[~u0( ~Ft~x)]

T[U( ~Ft~x)]
�1~u0( ~Ft~x) dtg

where U( ~Ft~x) is the matrix 2
6666666664

K11 K12 : : : K1n

K21 K22 : : : K2n

...
...

...

Kn1 Kn2 : : : Knn

3
7777777775

(3.3)

formed by the blocks of d� d matrices

Kij = a(Ftxi; Ftxj) i; j = 1; : : : ; n:

Theorem 3.1 states the su�cient conditions for absolute continuity of the laws of F and G when

n = 1. However, for n-point motions with n � 2, we need stronger conditions. We refer to

Theorems III.3.24 and III.5.19 in Ref.6 for this purpose. These theorems imply that if U is

invertible, then the processes are well de�ned in (3.2) and it is indeed the desired density for all

n 2 IN.

It can easily be veri�ed that U is symmetric and positive de�nite by the fact that a is

symmetric and positive de�nite. For invertibility, we assume that it is strictly positive de�nite.

9



All possible matrices U given in (3.3) are strictly positive de�nite if and only if for all n 2 IN, and

all x1; : : : ; xn in IR
d pairwise di�erent, the matrices [a(xi; xj)]i;j=1;:::;n are invertible. Considering

all x1; : : : ; xn in IRd pairwise di�erent is su�cient as F is a ow of homeomorphisms, since as

a result, Ftx1; : : : ; Ftxn in IRd remain pairwise di�erent for all t � 0. In terms of the velocity

�elds uk, k = 1; : : : ; n, this is equivalent to the following condition.

Condition 3.1 For all n 2 IN and all x1; : : : ; xn 2 IRd pairwise di�erent and for all h1; : : : ; hn 2

IRd

1X
k=1

 
nX
i=1

hTi uk(xi)

!2

> 0 :

Equivalently,

span

8>>>>><
>>>>>:

2
666664
uk(x1)

...

uk(xn)

3
777775 : k = 1; 2; : : :

9>>>>>=
>>>>>;
= IRnd :

As a result, we assume Condition 3.1 is satis�ed in addition to the conditions I,II,III of

Theorem 3.1. Note that condition I is su�cient for the existence and uniqueness of the ow in

view of equations (2.4) and (2.5). For the estimation purpose of u0, the density d� ~F ~x=d� ~G~x

will now be interpreted as the likelihood of ~u0 (or u0) given the realization f(Ftxi)(!) : 0 � t �

T; xi 2 IRd; i = 1; : : : ; ng, ! 2 
, and will be denoted by L(~u0; f ~Ft~x : 0 � t � Tg) below.

Remark In general, absolute continuity of the laws of n-point motions requires much stronger

conditions than those for the absolute continuity of one point motions in a ow. A striking case7

of an Ornstein-Uhlenbeck ow is iterated in Ref.8 as an example. Also, in some degenerate cases

where uk � 0 for k > m for some m 2 IN, certain structural assumptions on u0 are needed.
8 In

our case, note that Condition 3.1 excludes such a degeneracy.
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3.2 The Estimator

In this subsection, our aim is to �nd an estimator for ~u0 which maximizes the function

L(~u0; f ~Ft~x : 0 � t � Tg). Suppose that each component of the vector �eld u0 is in L2(IRd), in

(3.1). Our approach will be to approximate u0 by an orthonormal basis for L2(IRd).

We assume that each component ui0, i = 1; : : : ; d, is approximated by a �nite number of

functions  m, m = 1; : : : ;M , from an orthonormal basis as follows:

ui0
�=

MX
m=1

�im m i = 1; : : : ; d

where �im 2 IR, and M depends on the precision we want to achieve. In the n-point motion

model of the previous subsection, we must then parametrize the velocity �eld ~u0 in the following

way

~u0(~x) =

2
6666666664

u0(x1)

u0(x2)

...

u0(xn)

3
7777777775
=

2
6666666664

�

�

. . .

�

3
7777777775

2
6666666664

 (x1)

 (x2)

...

 (xn)

3
7777777775
= �	(~x) (3.4)

where the matrix � = [�ij], i = 1; : : : ; d, j = 1; : : : ;M , and  (x) is the vector [ 1(x) : : :  M (x)]T

for each x 2 IRd. Hence, we will estimate u0 using the n-point motion data. The log of the

likelihood in Equation (3.2) is now given by

logL(�) = logL(~u0; f ~Ft~x : 0 � t � Tg) (3.5)

=

Z T

0
[�	( ~Ft~x)]

T[U( ~Ft~x)]
�1 d ~Ft~x

�
1

2

Z T

0
[�	( ~Ft~x)]

T[U( ~Ft~x)]
�1[�	( ~Ft~x)] dt

since we have parametrized the estimation problem. Let Bij, i; j = 1; : : : ; n be d � d matrix

blocks in U�1, as Kij are in U as given in Equation (3.3). Then, we can display (3.5) more

explicitly as

logL(�) =

Z T

0

nX
i;j=1

 (Ftxi)
T�TBij( ~Ft~x) dFtxj (3.6)
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�
1

2

Z T

0

nX
i;j=1

 (Ftxi)
T�TBij( ~Ft~x) �  (Ftxj) dt

=
nX

i;j=1

Z T

0

dX
k=1

MX
m=1

 m(Ftxi)[�
T]mk[B

ij( ~Ft~x)dFtxj]k

�
1

2

nX
i;j=1

dX
k;s=1

MX
r;m=1

�sr[�
T]mk

Z T

0
 m(Ftxi)[B

ij( ~Ft~x)]ks r(Ftxj) dt

where [N ]ij denotes the (i; j)-entry of a matrix N . This notation is more useful in these inter-

mediate steps; of course, [�T]mk = �km.

Let ~� 2 IRMd denote a vector whose entries are obtained from the matrix � in one-to-one

correspondence. Then, (3.6) is equivalent to

logL(�) = bT~� �
1

2
~�TA ~�

where

Apq =
nX

i;j=1

Z T

0
 m(Ftxi)[B

ij( ~Ft~x)]ks r(Ftxj) dt (3.7)

bp =
nX

i;j=1

Z T

0
 m(Ftxi)[B

ij( ~Ft~x)dFtxj]k

if ~�p = �km and ~�q = �sr

p; q 2 f1; 2; : : : ;Mdg, k; s 2 f1; : : : ; dg, m; r 2 f1; : : : ;Mg. The following computation shows

that A is strictly positive de�nite. Let ~y 2 IRMd be arbitrary. Let y denote a d �M matrix

formed by the elements of ~y with the following rule

ykm = ~yp if ~�p = �km

p = 1; : : : ;Md, k = 1; : : : ; d, m = 1; : : : ;M . Then, we have

~yTA~y =
dX

k;s=1

MX
r;m=1

ysr[y
T]mk

nX
i;j=1

Z T

0
 m(Ftxi)[B

ij( ~Ft~x)]ks r(Ftxj) dt (3.8)

=

Z T

0

nX
i;j=1

 (Ftxi)
TyTBij( ~Ft~x) y  (Ftxj) dt :
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Recall that U is positive de�nite, moreover we have assumed that it is strictly positive de�nite.

It follows that U�1 is also strictly positive de�nite, that is, for any zi 2 IRd, i = 1; : : : ; n

nX
i;j=1

zTi B
ij(�)zj > 0 :

So, with zi = y  (Ftxi), i = 1; : : : ; n, the integrand in the second equality in (3.8) is strictly

positive, for each t. This proves that A is strictly positive de�nite, which in turn implies that A

is invertible. So, logL is a concave quadratic function of ~� and it has a maximum. Now, taking

the derivative with respect to ~�, we get

r logL(�) = b�A~� :

Setting this equal to 0, we get the unique maximum likelihood estimator ~̂� of ~� as

~̂� = A�1b : (3.9)

With the original indexing scheme, we denote the matrix obtained from ~̂� as �̂. Then since �̂ is

the MLE for �, the MLE û0 for u0 is

û0 = �̂  :

Remark 1 In the previous subsection, we considered a time homogeneous Brownian motion,

and the ow generated by this, that is, the drift and the covariance are not functions of time.

However, Theorem 3.1 allowed them to be so and the discussion above would be still all right if

we replaced u0(x) and a(x; y) by u0(x; t) and a(x; y; t), respectively, provided that we used the

correct basis to decompose u0 which would then be de�ned on IRd � IR+.

Remark 2 Above, we have assumed a is known. If it is not, in order to get û0, we must use

an approximation for Bij( ~Ft~x) in (3.7). Usually, the data f( ~Ft~x)(!); 0 � t � Tg is not available

for all t 2 [0; T ], but only at t1; t2; : : : ; tm 2 [0; T ], and we have to approximate the integrals in

(3.7) by discrete sums. So, we suggest the following approximation â to a:

â(Ftkxi; Ftkxj) =
[Ftk+1xi � Ftkxi][Ftk+1xj � Ftkxj ]

T

tk+1 � tk
:
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4 The Properties

The likelihood function can be written in a simpli�ed form with the notation introduced in

Section 3, as

L(�) = expf~�Tb�
1

2
~�TA ~�g

Because of this structure, the model is a curved exponential family with minimal su�cient

statistic (b;A).3 Moreover, the conditional Fisher information coincides with the observed one

in this model and is given by A. Note that A depends on T and for asymptotic results below it

is more convenient to regard it as a process fA(t) : t � 0g. Then each component App can be

interpreted as the Fisher information process associated with ~�p, p 2 f1; : : : ;Mdg.

From Equation (3.1) and Equation (3.4), we can write

dFtxi = � (xi) dt+
1X
k=1

uk(Ftxi)Wk(dt) i = 1; : : : ; n (4.1)

where � is the true parameter in matrix form. Let �0 be its vector form with the indexing scheme

introduced in Section 3. Taking Equation (4.1) into account, from the expression for b in (3.7),

we get

b = b0 +A�0

where

b0p =
nX

i;j=1

dX
m=1

1X
k=1

Z T

0
 r(Ftxi)[B

ij( ~Ft~x)]sm[uk(Ftxj)]mWk(dt) if ~�p = �sr :

Then since A ~̂� = b from (3.9), we get

b0 = A(~̂� � �0) : (4.2)

Note that b0 is a local martingale and the following computation shows that A is the quadratic

variational process of b0.4 Let �~k ~m = ~�p and �sr = ~�q. From the stochastic calculus of Wiener

processes, we have Wk(dt)Wk0(dt
0) = dt if k = k0 and t = t0, and Wk(dt)Wk0(dt

0) = 0, otherwise.
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Then, the cross variational process of b0p and b
0
q is

nX
i;j;i0;j0=1

dX
m;m0=1

Z T

0
 ~m(Ftxi0)[B

i0j0( ~Ft~x)]~km0 r(Ftxi)[B
ij( ~Ft~x)]sm

1X
k=1

[uk(Ftxj)]m[uk(Ftxj0)]m0 dt;

and in view of (2.2) and (3.3), we get

nX
i;j;i0;j0=1

dX
m;m0=1

Z T

0
 ~m(Ftxi0)[B

i0j0( ~Ft~x)]~km0 [B
ij( ~Ft~x)]sm[K

jj0 ]mm0 r(Ftxi) dt : (4.3)

But,
P

j;m[B
ij]sm[K

jj0 ]mm0 is equal to 1 if s = m0 and i = j0, and is 0 otherwise, since K and B

are blocks in U and U�1, respectively. So, (4.3) is simpli�ed as

nX
i;i0=1

Z T

0
 ~m(Ftxi0)[B

i0i( ~Ft~x)]~ks r(Ftxi) dt

which is Apq.

When IEA(t) < 1 holds for all t � 0, the process fb0(t) : t � 0g becomes a martingale.

This allows us to make use of a central limit theorem (CLT) for martingales. Hence, we have

the following theorem which establishes that the MLE for �0 is asymptotically Gaussian and

is consistent, as t ! 1. The conditions of the theorem are on A(t), but implicitly are on the

covariance function a of the Brownian motion U of (2.1). The notations X
IP
! Y and X

d
! Y

denote convergence of X to Y in probability and distribution, respectively.

Theorem 4.1 Suppose that Lt = IEA(t) < 1 for all t � 0 and the diagonal elements of Lt

tend to in�nity as t ! 1. Let Kt = diag(k1t ; : : : ; k
Md
t ) where (kit)

2 = Lt(i; i) = IEAii(t),

i = 1; : : : ;Md. If as t!1

K�1
t A(t)K�1

t
IP
�! �

and

K�1
t LtK

�1
t �! �

where � is a random positive de�nite matrix and � is a deterministic strictly positive de�nite

matrix, then conditionally on fdet(�) > 0g, we have

(K�1
t A(t)K�1

t )1=2Kt(~̂�(t)� �0)
d
�! Z (4.4)
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(~̂�(t)� �0)TA(t)(~̂�(t)� �0)
d
�! Y (4.5)

and

~̂�(t)
IP
�! �0 (4.6)

as t ! 1, where Z is a random vector with Gaussian distribution of mean 0 and covariance

matrix I, identity matrix, and Y is a random vector with �2 distribution with Md degrees of

freedom. In case kit, i = 1; : : : ;Md tend to in�nity at the same rate, we have

A1=2(t)(~̂�(t)� �0)
d
�! Z : (4.7)

Proof. Because of the assumption Lt = IEA(t) < 1 for all t � 0, the process b0 becomes a

martingale. Then, applying the martingale central limit theorem9 to b0, we get

(KtA
�1(t)Kt)

1=2K�1
t b0(t)

d
�! Z

But from Equation (4.2) b0 = A(~̂� � �0), so by the identity

(KtA
�1(t)Kt)

1=2K�1
t A = (K�1

t A(t)K�1
t )1=2Kt

we get (4.4). The statement (4.5) follows directly from the martingale central limit theorem,

and (4.6) is a consequence of (4.4). Finally, (4.7) is a particular case of (4.4). 2
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