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Abstract

We consider a generalization of homogeneous and isotropic Çinlar velocity fields to capture

power-law spectra. The random velocity field is non-Gaussian with a representation motivated

by Lagrangian and Eulerian observations. A wide range of turbulent flows can be generated by

varying the stochastic parameters of the model. The velocity field being a functional version

of Poisson shot-noise is constructed as the superposition of eddies randomized through their

types and arrival times. We introduce a dependence between the eddy types which are spatial

parameters and the decay parameter which is temporal. As a result, long-range correlation in

space and a power-law spectrum previously used with Ornstein-Uhlenbeck velocity fields are

achieved. We show that a corresponding power-law form for the probability distribution of the

eddy diameter is sufficient for this result. The parameters of the probability distribution are

further specified in view of Kolmogorov theory of the inertial scales. In particular, |k|−5/3 scaling

of the spectrum is obtained. In the diffusive limit, we show that the parameters governing the

decay and the arrival rate, and the speed of rotation of an eddy increase while its diameter

decreases. That is, the eddies arrive fast, decay fast, and rotate fast with a small radius for a

Brownian limit.

Key Words: Stochastic flows; Kolmogorov spectrum; Hurst exponent; homogeneous turbulence.
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1 Introduction

Lagrangian data collected from the ocean over the last two decades indicate that the flow in the

ocean is much more correlated than a random walk or a Brownian flow. Significant research

efforts have gone to model the Eulerian velocity field or the Lagrangian motion to capture such

correlations. In particular, the class of velocity fields introduced by Çinlar [1, 2] is motivated by

small to medium scale eddies. They can generate a wide range of flows as well as the features

of stationary and homogeneous turbulence [3, 4, 5]. Our aim is to study a generalization of

Çinlar flows that yield power-law spectra in view of Kolmogorov theory of the inertial scales.

We provide a structural description in space and time domain for this purpose.

The velocity field being the functional version of Poisson shot-noise is constructed as the

superposition of deterministic velocity fields. These are typically eddies randomized through

their types and arrival times and decaying exponentially in time to form a stationary, Markov

velocity field. The motivation comes from vortex development and decay observed in the ocean

[6]. The eddies that comprise the isotropic velocity field are similar to those used in the vortex

method, which is a numerical approach. In contrast to Brownian flows where the particle

motions are diffusions and the Eulerian velocity is delta-correlated, Çinlar velocity field itself is

Markovian resulting in medium to long-term correlated flows.

In this paper, we introduce a generalization to Çinlar velocity field such that stationarity still

holds, but with a power-law correlation across scales. This is achieved by making the decay rate

depend on the spatial parameters determined by the type of an eddy. The resulting velocity field

is no more Markovian, but captures the power-law spectra assumed by physical considerations.

More explicitly, the velocity field and its flow statistics depend essentially on two parameters δ

and γ. The parameter δ which is involved in the eddy diameter distribution governs the spatial

correlation in the inertial range, and γ which goes into the decay rate expression controls the

temporal correlation in Kolmogorov spectrum. We show that the slope of the wave spectrum
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in this case is δ − 3, which can be made equal to -5/3 with the choice δ = 4/3. That is, the

energy spectrum E(|k|) can be made proportional to |k|−5/3 when |k| takes values in the inertial

range (1/l2, 1/l1) where l1, l2 ∈ IR are the corresponding length scales. We also consider the

range (0, 1/l2) where a parameter θ serves as the counterpart of δ. The parameter θ must

assume values greater than 2 for finite energy and long-range correlation in space occurs when

2 < θ < 3. The rigorous formulations of all these are carried out based on the probability

distribution of the eddy diameter. As for temporal correlations, the case γ = 0 reduces to the

original Çinlar model and we have a Markovian velocity field taking values in C(IRd → IRd).

For γ > 0, the temporal correlation depends on the spatial scales and we show that γ = 1/3 is

indicated by Kolmogorov scaling.

Kolmogorov 5/3 law can also be replicated with assumptions only on the probability dis-

tributions of the original Çinlar velocity field where the decay rate in time is a constant [8].

On the other hand, as the temporal correlation is related to the spatial scales in the present

study, both long-lived structures in time and power-law scaling in space are achieved. The

resulting power-law spectra is similar to those used in earlier models [9, 10] where Ornstein-

Uhlenbeck flows form a particular Gaussian and Markovian case. Some others [11] include shear

flows in particular. Such models are constructed with assumptions on the spectra, whereas our

model originates from observed structures of eddies and randomness in the ocean. We obtain

the spectral properties as a consequence of the choice of the parameters and the probability

distributions.

We prove the diffusive limit for γ = 0 by scaling the time through fast arriving, but short-

lived eddies in addition to a scaling in space. Since our tools rely on Markov property, these

results are valid only for the Markovian version of the velocity field. The limit is related to

model parameters specifically. The decay and the arrival rate, and the speed of rotation of an

eddy increase while its diameter decreases. That is, the eddies arrive fast, decay fast, and rotate

fast with a small radius for the single particle path to be approximated by a Brownian motion.
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The velocity field model has sufficiently many parameters for exploiting eddy structures in

a robust fashion. Recent high-frequency radar measurements of the ocean [6] have detected

eddies of radii 1-5 km, which occur sporadically in time and space. The parameters of the

original Çinlar velocity model have been estimated from these measurements in [7] which thus

validates its applicability. Similarly, the stochastic velocity model of the present paper can

potentially resolve such submesoscale eddies within more comprehensive numerical ocean models.

A diffusion term could be added if smaller, molecular scales are also to be represented. In that

case, our spectral results would still be valid for larger space and time scales.

There are also other stochastic models of turbulence that aim to capture the strong correla-

tions observed in the ocean. These include the representation of joint particle motions through

Langevin equations [12], which is hence capable of describing a complete flow. For the single

particle, white noise in the Langevin equation can be replaced with fractional Gaussian noise to

introduce stronger Eulerian correlations [13]. On the other hand, fractional Brownian motion

can be used directly for a particle path in view of Lagrangian observations [14].

The paper is organized as follows. In Section 2, Çinlar velocity fields and flows are reviewed.

In Section 3, we introduce the generalization of the decay parameter of the velocity field and

show its consequences for a Kolmogorov spectrum. Finally, in Section 4, we derive the precise

scaling of the parameters of the velocity field in the diffusive limit using the Markovian model

and provide some simulation examples.

2 Homogeneous and Isotropic Çinlar Flows

In this section, we review flows generated by Çinlar velocity fields [1, 2, 3, 4, 5]. Let v be a

deterministic velocity field on IRd called the basic eddy, and let Q = IR2 × IR × (0,∞) be an

index set. Eddies of different sizes and amplitudes for q ∈ Q, x ∈ IRd are obtained by

vq(x) = a v(
x− z

b
) for q = (z, a, b) . (1)
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Let N be a Poisson random measure on the Borel sets of IR×Q with mean measure

µ(dt, dq) ≡ µ(dt, dz, da, db) = λ dt dz α(da)β(db) (2)

where λ is the arrival rate per unit time-unit space, and α and β are probability distributions.

The arrival time t of an eddy, its location z in space, its amplitude a as well as its scale b are

all random and governed by N . By the superposition of these eddies appropriately decaying in

time, a stationary velocity field u is constructed as

u(x, t) =
∫

(−∞,t]×Q
N(ds, dz, da, db) e−c(t−s) a v(

x− z

b
) x ∈ IR2, t ∈ IR (3)

where c > 0 is the decay parameter [1]. The flow generated by u is defined as the family of

solutions of the equation

d

dt
Xt = u(Xt, t) X0 = x , t ∈ IR+ . (4)

The stochastic construction of u as in (3) is motivated by the observation of eddies over the

ocean surface, which seem to occur sporadically in time rather than continuously. A Poisson

process captures arrivals that occur in this manner: independent from each other and one at a

time. In view of this and with the aim of constructing a non-Gaussian velocity field, a Poisson

random measure is used instead of a white noise that appears in the constructions based on

stochastic differential equations such as a Brownian flow. We reserve the white noise as a

diffusion term, which can be added to the right hand side of the flow equation (4). Hence, the

velocity field (3) models larger scales than molecular. It is most appropriate for submesoscale

eddies which are not usually resolved with the deterministic numerical models of the ocean at

the mesoscale.

Çinlar velocity field has independent increments and hence is a Markov process. The ex-

ponential decay coefficient in (3) guarantees the Markovian property, which facilitates a more

tractable analysis of the velocity field and its Lyapunov exponents. Nevertheless, the Markov

velocity field u yields medium to long-term correlated particle paths consistent with Lagrangian
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observations of the ocean. A flow model based on a Markov velocity field such as u represents

real oceanic flows more accurately than a Brownian flow. Markovian property holds for the

resultant particle paths in a Brownian flow and indicate only short term correlation.

The velocity field is stationary, homogeneous and isotropic according to the following def-

initions. A velocity field u is said to be stationary (in the strict sense) if, for each x ∈ IRd,

the distribution of the collection {u(x, s + t) : t ∈ IR} is the same for all s ∈ IR. A velocity

field u is called homogeneous in space if, for each t ∈ IR, the probability law of the collection

{u(z + x, t) : x ∈ IRd} is the same for all z ∈ IRd. That is, the probability law of ut is invariant

under translations of the space IRd. Isotropy corresponds to invariance of the same law under

rotations and reflections of the coordinate system. Precisely, u is called isotropic if it is homoge-

neous and for each t ∈ IR the probability laws of {u(Gx, t) : x ∈ IRd} and {Gu(x, t) : x ∈ IRd}
are the same for all orthogonal transformations G of IRd. The verification of these properties [2]

rely on the characteristic function formula

IE exp i

∫
N(dx)f(x) = exp

∫
µ(dx)(eif(x) − 1) (5)

about integrals with respect to Poisson random measures [15] since the velocity field (3) is

defined as such an integral. The finite dimensional distributions of u, that is, the distributions

of

u(x1, t1), u(x2, t2), . . . , u(xn, tn) x1, . . . , xn ∈ IRd, t1, . . . , tn ∈ IR

determine the distribution of the collection {u(x, t) : x ∈ IRd, t ∈ IR}. The characteristic

function for such distributions is computed through the use of formula (5) and is given by

IE exp i
n∑

k=1

rk · u(xk, tk) =

exp
∫

IR

∫

Q
µ(ds, dq)[exp i

n∑

k=1

e−c(tk−s)rk · vq(xk)1(−∞,tk](s)− 1] (6)

where dot denotes inner product and r1, . . . , rn ∈ IRd. Then, the mean measure (2) and the

form (1) of the eddies are taken into account with t1 = . . . = tn = t where necessary, to verify
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the properties of stationarity, homogeneity and isotropy.

Since the flows considered in this paper are in IR2, isotropy requires the basic eddy v to have

a specific form. Namely, v = (v1, v2) corresponds to rotation around 0 with magnitude m(r)

at distance r from 0, where m : IR → IR+ is continuous and has support [0, 1]. The specific

equations for v are

v1(x) = −x2

r
m(r) v2(x) =

x1

r
m(r) (7)

where x = (x1, x2) and r = |x| ∈ [0, 1]. As a rotation on IR2, v is incompressible, that is,

divergence free. We let it vanish outside the unit disk through the choice of m. Then, every

eddy is a rotation, since it is translation, amplification and dilation of v. As a superposition of

these eddies, the velocity field u is both incompressible and isotropic.

Several analytical and simulation results are available for Çinlar velocity fields. The Lya-

punov exponents of the flow exist, and the top Lyapunov exponent appears to be strictly positive

for the two dimensional incompressible flow [5]. As for simulation of flow and single particle

dispersion, a range of ratios of two relevant time scales lead to a variety of particle paths [3].

Under some regimes, the paths are nearly Brownian, under other, the paths are clearly circular

with some drift. Simulation with real ocean dimensions and homogenization through a diffusive

term have been considered in addition to other physical aspects such as a Kolmogorov spectrum

[8]. In homogeneous and incompressible flow, various dispersion measures are investigated for a

mass cloud, single particle and a particle pair through simulation [4]. The relation of these mea-

sures with each other and the parameters of the velocity model is determined, and the physical

predictions are confirmed.

3 Velocity Fields with Power-Law Spectra and Correlation Time

In this section, we formulate an important generalization of Çinlar velocity fields. In particular,

we prove that a Kolmogorov type spectrum is achieved.
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3.1 Generalization of Çinlar Velocity Fields

The main variation we introduce to the original Çinlar velocity field is the dependence of the

decay parameter on the spatial variable x and the index q as

cq(x) = c

∣∣∣∣
x− z

b

∣∣∣∣
2γ

if q = (z, a, b) (8)

for each x ∈ IRd where c > 0 as before and γ > 0. The decay rate is defined inversely proportional

to the eddy scale b through a power-law in order to obtain a Kolmogorov type spectrum [9, 10]

where γ controls the time correlation of the velocity field. Note that different decay rates are

generated similar to different eddies. We will show that the particular form (8) is useful for

representing the time and space dependence through separate parameters. The dependence of

cq on the spatial location relative to the center also identifies that an eddy may not retain the

same shape as it decays.

For x ∈ IR2, t ∈ IR, the velocity field is given by

u(x, t) =
∫ t

−∞

∫

Q
N(ds, dz, da, db) e−c|(x−z)/b|2γ(t−s) a v(

x− z

b
) (9)

It can be proven as in [1, 2] that the velocity field (9) is stationary in time and homogeneous in

space. Similarly, isotropy follows from the fact that the basic eddy v is a rotation. For the sake

of clarity, we provide a proof of isotropy in the following theorem.

Theorem 1 Let u be given by

u(x, t) =
∫ t

−∞

∫

Q
N(ds, dz, da, db) e−c|(x−z)/b|2γ(t−s) a v(

x− z

b
) x ∈ IRd, t ∈ IR

where N is a Poisson random measure with mean measure

µ(dt, dz, da, db) = λ dt dz α(da)β(db)

on the Borel sets of Q = IRd× IR× (0,∞). If the basic eddy v satisfies v(Gx) = Gv(x) for every

orthogonal transformation G of IRd, then u is isotropic.
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Proof. We omit the proof of homogeneity which is necessary for isotropy. Fix an orthogonal

transformation G of IRd. We will show that the characteristic functions of {u(Gx, t) : x ∈ IRd}
and {Gu(x, t) : x ∈ IRd} are the same. We have

∫

Q
dz α(da)β(db)[exp i

n∑

k=1

e−c|(Gxk−z)/b|2γ(t−s) a rk · v(
Gxk − z

b
)− 1]

=
∫

Q
dz α(da)β(db)[exp i

n∑

k=1

e−c|(Gxk−Gz)/b|2γ(t−s) a rk · v(
Gxk −Gz

b
)− 1]

=
∫

Q
dz α(da)β(db)[exp i

n∑

k=1

e−c|G xk−z

b
|2γ(t−s) a rk · v(G

xk − z

b
)− 1]

=
∫

Q
dz α(da)β(db)[exp i

n∑

k=1

e−c|(xk−z)/b|2γ(t−s) a rk ·Gv(
xk − z

b
)− 1]

where first equality follows from the invariance of the Lebesgue measure on IRd under orthogonal

transformations G and third equality uses the hypothesis and the fact that |Gx| = |x| for all

x ∈ IRd. Therefore, we get

IE exp i
n∑

k=1

rk · u(Gxk, t) = IE exp i
n∑

k=1

rk ·Gu(xk, t)

in view of the characteristic function

IE exp i
n∑

k=1

rk · u(xk, t) =

exp
∫ t

−∞
ds

∫

Q
dz α(da)β(db)[exp i

n∑

k=1

e−c|(xk−z)/b|2γ(t−s) a rk · v(
xk − z

b
)− 1]

which is similar to (6). As a result, the collections {u(Gx, t) : x ∈ IRd} and {Gu(x, t) : x ∈ IRd}
have the same distribution for each t ∈ IR. 2

The covariance matrix R of the stationary and homogeneous velocity field u is given by

Rij(x− y, |t− s|) = IEui(x, s)uj(y, t)

as the mean velocity is zero due to isotropy. Let us compute R using the following formulas for

expectations and variances of integrals with respect to Poisson random measures

IE
∫

N(dx) f(x) =
∫

µ(dx) f(x)
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and

IE
∫

Ñ(dx)
∫

Ñ(dx′) f(x) g(x′) =
∫

µ(dx) f(x) g(x)

where Ñ(dx) = N(dx) − µ(dx). Then, for x, y ∈ IR2 and s, t ∈ IR, s < t without loss of

generality, i, j = 1, 2, we have

Rij(x− y, |t− s|)

= IE
∫ s

−∞

∫

Q
Ñ(dr, dq) e−cq(x)(s−r) vi

q(x)
∫ s

−∞

∫

Q
Ñ(dr, dq) e−cq(y)(t−r) vj

q(y)

= λ

∫ s

−∞
dr

∫

Q
dz α(da)β(db) e−cq(x)(s−r)e−cq(y)(t−r)vi

q(x)vj
q(y)

= λ

∫

Q
dz α(da)β(db)

e−c|(y−z)/b|2γ(t−s)

c|(x− z)/b|2γ + c|(y − z)/b|2γ
avi(

x− z

b
) avj(

y − z

b
)

= λ

∫

IR2
dz

∫

IR
α(da)

∫

IR+

β(db)
a2b2 e−c|z|2γ |t−s|

c|z|2γ + c|z + (x− y)/b|2γ
vi(z)vj(z +

x− y

b
)

where the last line is obtained through a change of variable (y − z)/b to z.

For a power-law decay of covariances in the spatial variable, we choose the distribution β of

b as a power-law distribution. An example is a Pareto distribution with the probability density

function f(b) = δlδ1b
−δ−1, b ≥ l1, where δ > 0 is a shape parameter and l1 > 0 is a scale parameter

that serves as the ultraviolet cutoff scale for the spectrum. In order to generate various power-

law scalings in the inertial range and have finite energy, we instead use an evolutionary Pareto,

also called biPareto, distribution [22] given by

β(db) =





δlδ1b
−δ−1 db if l1 ≤ b < l2

θlδ1l
θ−δ
2 b−θ−1 db if b ≥ l2

(10)

where δ, θ > 0 are the parameters to capture power-law dependence, and l1, l2 > 0 will serve as

the cutoff scales. Note that the distribution in (10) has a piecewise continuous density function

with a discontinuity at l2, while it satisfies
∫∞
l1

β(db) = 1. Hence, we have

Rij(x, t) = (11)

λδlδ1
c

∫

IR
α(da) a2

∫

IR2
dz e−c|z|2γ |t|

∫ l2

l1
db b1−δ 1

|z|2γ + |z + x/b|2γ
vi(z)vj(z +

x

b
)
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+
λθlδ1l

θ−δ
2

c

∫

IR
α(da) a2

∫

IR2
dz e−c|z|2γ |t|

∫ ∞

l2
db b1−θ 1

|z|2γ + |z + x/b|2γ
vi(z)vj(z +

x

b
)

for x ∈ IRd and t ∈ IR.

3.2 Spatial Long-Range Correlation

A stationary process Xt with autocorrelation function ρ is said to have long-range correlations if

there exists 0 < α < 1 and cρ > 0 such that limx→∞ ρ(x)/(cρx
−α) = 1 [16]. For stationary and

homogeneous velocity fields, long-range correlation is considered for the spatial variable only

[9, 17]. On the other hand, temporal correlation obtained from Lagrangian measurements agree

well with an exponential form as in (11).

We study R11(x, 0) + R22(x, 0), which is a function of |x| due to isotropy, as |x| → ∞.

Putting (7) in (11) and using the identity

z1(z1 +
x1

b
) + z2(z2 +

x2

b
) =

(|z + x/b|2 + |z|2 − |x|2/b2)
2

we get

R11(x, 0) + R22(x, 0)

=
λδlδ1IEa2

c

∫

IR2
dz

∫ l2

l1
db b1−δ (|z + x/b|2 + |z|2 − |x|2/b2) m(|z|) m(|z + x/b|)

2|z||z + x/b|(|z|2γ + |z + x/b|2γ)

+
λθlδ1l

θ−δ
2 IEa2

c

∫

IR2
dz

∫ ∞

l2
db b1−θ (|z + x/b|2 + |z|2 − |x|2/b2) m(|z|) m(|z + x/b|)

2|z||z + x/b|(|z|2γ + |z + x/b|2γ)

By making a change of variable b/|x| to b, we obtain

R11(x, 0) + R22(x, 0) (12)

=
λδlδ1IEa2

2c
|x|2−δ

∫ l2/|x|

l1/|x|
db b1−δ

∫

IR2
dz

(|z + x
|x|b |2 + |z|2 − 1

b2
) m(|z|) m(|z + x

|x|b |)
|z||z + x

|x|b |(|z|2γ + |z + x
|x|b |2γ)

+
λθlδ1l

θ−δ
2 IEa2

2c
|x|2−θ

∫ ∞

l2/|x|
db b1−θ

∫

IR2
dz

(|z + x
|x|b |2 + |z|2 − 1

b2
) m(|z|) m(|z + x

|x|b |)
|z||z + x

|x|b |(|z|2γ + |z + x
|x|b |2γ)

Now, recall that m has a compact support, namely [0,1]. The model spans a wide spectrum of

eddy scales only through b. As a result, for each fixed x, the innermost integral on IR2 above
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is effectively on A = {z : |z + ex/b| ≤ 1, |z| ≤ 1, ex ∈ IR2, z ∈ IR2} where ex is the unit vector

x/|x|. For |x| sufficiently large, l2/|x| ≤ 1/2 and for values of b less than 1/2, the set A is

empty. Hence, the integral on b is effectively on a subset of [1/2,∞) in the second summand in

(12), independent of x for large |x|. We fix the direction of x and let |x| grow without loss of

generality due to isotropy. It follows that

lim
|x|→∞

R11(x, 0) + R22(x, 0)
|x|2−θ

= C

for a constant C > 0. Therefore, u has long-range correlations in space with θ − 2 for α in the

definition, when 2 < θ < 3. Its Hurst parameter is given by [16]

H =
4− θ

2
1
2

< H < 1 .

Of course, the choice of particular m depends on γ so that the covariance R is finite.

Çinlar velocity fields as given in Section 2 model medium scale structures which Brownian

flows cannot capture. They can also have long-range correlation as long as we pick the distri-

bution β as in (10) representing almost all scales from small to large. Spatial correlation in

long-range correlated Ornstein-Uhlenbeck flows [17] is governed by a single parameter similar

to δ or θ here. Another parameter, here γ, controls the temporal correlation for Kolmogorov

spectrum, which will be discussed next.

Remark. We could have chosen the decay parameter as c/b2γ with c > 0 instead of cq(x) of (8).

However, the spatial covariance would be governed by both θ and γ in that case and there would

not be separate parameters for the time and space dependence. Namely, R11(x, 0) + R22(x, 0)

would be proportional to |x|2−θ+2γ for large x.

3.3 Kolmogorov Spectrum

The Fourier transform E of R is called the spectral density tensor given by

Eij(k,w) =
1

(2π)d

∫

IR

∫

IRd
e−i(k·x+wt)Rij(x, t) dx dt i, j = 1, . . . , d .
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Energy spectrum E is obtained from E by removing all directional information. It is defined as

E(|k|) =
1
2

d∑

i=1

∮ ∫

IR
Eii(k, w) dw dS(|k|) (13)

where S(|k|) is the sphere in wavenumber space, centered at the origin, with radius |k|, and
∮

dS(|k|) denotes integration over this surface [11, 18]. If the velocity field has no time depen-

dence, E completely determines E in isotropic turbulence.

For Ornstein-Uhlenbeck velocity fields with Kolmogorov type spectra [9], the spectral density

is constructed for k ∈ IRd, w ∈ IR as

Eij(k, w) =
β(k)

w2 + β(|k|)2
E(|k|)
|k|d−1

(
δij − kikj

|k|2
)

where δij is Kronecker delta and the energy spectrum E is usually chosen to be zero near the

origin and near infinity, and to behave like a power in the inertial range. This power behavior

controls the spatial correlation, whereas β usually chosen also as a power form controls the time

correlation. For the same type velocity fields, a covariance matrix of the following form is also

considered [17, 19, 20]

Rij(x, t) =
∫

IRd
e−|k|

2βt cos(k · x)
E(|k|)
|k|d−1

(
δij − kikj

|k|2
)

dk (14)

where β > 0, t > 0, x ∈ IRd, and E is the energy spectrum given by E(r) = a(r)r1−2α, r > 0 for

α > 0 and a proper ultraviolet or infrared cutoff function a.

The energy spectrum for Çinlar velocity fields for d = 2 is given by [8]

E(|k|) =
π3

c
|k|

∫

IR
α(da)a2

∫

IR+

β(db)b4v̂(bk) · v̂(−bk)

where k ∈ IR2 and v̂ is the Fourier transform of the basic eddy v, that is,

v̂(k) =
1

(2π)d

∫

IRd
e−ik·xv(x) dx .

The proof of this result uses the fact that turbulent energy per unit mass is defined in physical

space as (1/2)
∑d

i=1 Rii(0, 0), which is equivalent to

1
2

∫

IRd

d∑

i=1

1
(2π)d

∫

IRd
e−ik·xRii(x, 0) dx dk =:

∫ ∞

0
E(|k|) d|k| . (15)
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This definition of E is consistent with (13). We follow the same lines of the proof in [8] using

(11) for the velocity field (9). By rearranging the integrals and making a change of variable

z + x/b to x, we get

∫

IRd
e−ik·xRij(x, 0) dx

=
λδlδ1IEa2

c

∫ l2

l1
db b3−δ

∫

IR2
dz eibk·zvi(z)

∫

IR2
dx e−ibk·x vj(x)

|z|2γ + |x|2γ

+
λθlδ1l

θ−δ
2 IEa2

c

∫ ∞

l2
db b3−θ

∫

IR2
dz eibk·zvi(z)

∫

IR2
dx e−ibk·x vj(x)

|z|2γ + |x|2γ
.

It can be shown as in [7, Proposition II.2.12] that
∑2

i=1

∫
IRd e−ik·xRii(x, 0) dx depends on k only

through |k|. Hence, letting

f(b|k|) :=
2∑

i=1

∫

IR2
dz eibk·zvi(z)

∫

IR2
dx e−ibk·x vj(x)

|z|2γ + |x|2γ
,

making a change of variable b|k| to b, putting in (15), and changing the integral in k to polar

coordinates, we get

E(|k|) =
2π|k|
2(2π)2

(
λδlδ1IEa2

c

∫ |k|l2

|k|l1
db

b3−δ

|k|4−δ
f(b) +

λθlδ1l
θ−δ
2 IEa2

c

∫ ∞

|k|l2
db

b3−θ

|k|4−θ
f(b)

)

=
λδlδ1IEa2

4πc
|k|δ−3

∫ |k|l2

|k|l1
db b3−δf(b) +

λθlδ1l
θ−δ
2 IEa2

4πc
|k|θ−3

∫ ∞

|k|l2
db b3−θf(b) . (16)

By similar arguments of Section 3.2, the second integral in (16) does not depend on |k| for small

|k|. Hence, we must have θ > 2 for finite energy. The velocity field is said to be long-range

correlated also if θ < 3, which is consistent with the results of Section 3.2 in view of [15, Theorem

2.1].

The interval (l1, l2), l1, l2 ∈ IR+, corresponds to the inertial scales. In particular, Kol-

mogorov’s spectrum for the inertial range can be obtained with δ = 4/3, since then, E(|k|) ∼
|k|−5/3 in (16). If modeling goes through only the spectral density tensor, then confining to the

inertial range wavenumbers is adequate [10]. By means of θ, we generate a complete spectrum

including the inertial range as well as the energy containing larger scales, equivalently, smaller
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wavenumbers. For |k|2 or |k|4 behavior of E at the origin [18, 21], θ must take values 5 or 7, re-

spectively. In view of (12), the values 5 or 7 for θ indicate that R decays rapidly as |x|−3 or |x|−5

, respectively, as |x| → ∞. When l1 < |x| < l2, namely |x| is in the inertial scales, the first term

dominates. At the dissipation scales (0, l1), the structure function, which is 4[R(0, 0)−R(x, 0)],

grows as |x|2. This follows from Taylor expansion as R is an even function in x provided that it

is twice continuously differentiable. This amounts to assuming that the magnitude function m

is twice differentiable everywhere.

The velocity field (9) being Markovian in time has an exponential autocorrelation, but with

an extra parameter γ that will be handy in replicating Kolmogorov spectrum for fully developed

turbulence in three dimensions. The ocean surface is an interface of a three dimensional field

and does not necessarily obey two dimensional fluid dynamics laws [8]. On scales smaller than

the vertical layering depth, it exhibits aspects of three dimensional turbulence. That is why,

we will choose δ = 4/3 in the inertial range to reproduce Kolmogorov’s −5/3 spectrum. This

is consistent with 2/3 law [21] for the second order structure function given by IE|u(y + x, t)−
u(x, t)|2 which is equal to 4

∑2
i=1[Rii(0, 0) − Rii(x, 0)]. Indeed, we can show similar to the

derivation of (12) that

2∑

i=1

[Rii(0, 0)−Rii(x, 0)] =
λδlδ1IEa2

2c
|x|2−δ

∫ l2/|x|

l1/|x|
db b1−δ

∫

IR2
dz ·


m2(|z|)

2|z|2γ
−

(|z + x
|x|b |2 + |z|2 − 1

b2
) m(|z|) m(|z + x

|x|b |)
2|z||z + x

|x|b |(|z|2γ + |z + x
|x|b |2γ)


 + φ(θ)

which is proportional to |x|2/3 with δ = 4/3 for |x| sufficiently greater than l1, in the inertial

range. Here, we have omitted the terms that depend on parameter θ and denoted simply by

φ(θ).

Note that the time correlation parameter γ is similar to β of Equation (14) which is chosen

to be 1/3 for Kolmogorov scaling [10]. For determining γ, we consider b as a length scale of

the model. We aim to obtain a time scale in terms of b to relate to Kolmogorov spectrum. A

simple approach would be using the reciprocal of the decay rate 1/cq as a time scale which is
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proportional to b2γ/c omitting the dependence on |x−z|. Note that if we had the simpler version

cq = c/b2γ , then the time scale would be simply equal to b2γ/c.

Alternatively, we can consider Eulerian correlation time as a time scale of the model given

by [3]

τE =
1
2π

∫

IR
[R11(0, t) + R22(0, t)] dt / [R11(0, 0) + R22(0, 0)] (17)

We indicate only the relevant, namely, inertial scales in the following derivation for the sake of

clarity and denote the remaining term as Φ(θ). From (11) and (7), the numerator of (17) is

1
2π

∫

IR
[R11(0, t) + R22(0, t)] dt

=
1
2π

λδlδ1IEa2

c

∫

IR
dt

∫ l2

l1
db b1−δ

∫

IR2
dz e−c|z|2γ |t| 1

2|z|2γ
m2(|z|) + Φ(θ)

=
λδlδ1IEa2

2πc

∫

IR2
dz |z|−δ

∫ l2/|z|

l1/|z|
db b2γ−δ−1 m2(1/b)

∫ ∞

0
dt e−ct/b2γ

+ Φ(θ) (18)

found by making change of variables bz to z for z variable, then b/|z| to b for b variable which

suppresses the dependence on z of the innermost integral. The denominator of (17) scales the

quantity in (18) to obtain the units of time. However, the integral
∫∞
0 dt e−ct/b2γ

is the crucial

term for obtaining a time scale as it is an integral over time. Therefore, we define the time scale

T at the spatial scale b to be

T =
∫ ∞

0
dt e−ct/b2γ

=
b2γ

c
(19)

which is the same as the time scale defined in terms of the decay rate above. Eulerian correlation

time τE has a power-law dependence on spatial scale b, locally.

We consider b as the length scale L at wavenumbers k with |k| ∼ 1/b. Kolmogorov’s scaling

law in the inertial range is

E(|k|) = Cε2/3|k|−5/3 (20)

where C is a dimensionless constant. Considering (20) with the dimensions of the energy spec-

trum E and the mean dissipation rate ε, which are L3/T 2 and L2/T 3, respectively, we get
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T ∝ ε−1/3b2/3. In view of (19), we can choose

c = ε1/3 , γ = 1/3 ,

C as a constant related to those in (16), as well as δ = 4/3.

We plot the empirical power spectral density function versus frequency in Figure 1, using

γ = 1/3 and δ = 4/3. The density is obtained by partitioning the spatial grid of a single run

in view of homogeneity. Only one of the formerly studied set of parameters [3], except for the

obvious difference in the decay parameter and the distribution of the radius b introduced in

the present paper, is given here for illustration of 5/3 scaling. This set of parameters yields a

mixture of irregular and circular paths in contrast to diffusive paths that will be discussed in

Section 4. The others corresponding to different regimes of motion [3] also yield the same 5/3

scaling as expected, when γ and δ are selected as above. In the simulation, b can take at most

the value l2 which serves as an infrared cutoff and hence θ is not used.

To replicate Kolmogorov scaling for the original Çinlar velocity field (3), a joint distribution

for a and b is considered as [8]

κ(da, db) = C(r, q)
∫ L

−L
dx δxbq(da)br db b ∈ (b1, b2) (21)

where L, b1, b2 > 0, δx is the Dirac measure sitting at x, r, q > 0 are parameters and C(r, q)

is a normalizing constant that depend on them. That is, the mean measure (2) is taken to be

µ(dt, dz, da, db) = λdt dz κ(da, db) which characterizes the distribution of the Poisson random

measure N through the characteristic function given in (5). In this setting, a can be considered

as the typical velocity in order to connect its distribution to the dissipation rate ε. In the present

study, the decay rate c plays this role.
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Figure 1: Log-log plot of power spectral density versus frequency. The straight line has slope

-5/3, c = 0.1, λ = 0.1, a ∼ Unif(-5.4,5.4), (l1, l2) = (0.1, 2)

4 Diffusive Limit

In this section, we consider the Markovian velocity field

u(x, t) =
∫

(−∞,t]×Q
N(ds, dz, da, db) e−c(t−s) a v(

x− z

b
) x ∈ IR2, t ∈ IR (22)

given earlier in Equation (3). This corresponds to the velocity field (9) having γ = 0. With a

mean measure that involves (21), it satisfies Kolmogorov spectrum as well as being Markovian

[8]. Using previous results on Markovian velocity fields, we show that the single particle path

generated by the velocity field (22) becomes a diffusion in the limit with a proper scaling in

time and space. The scaling for the particle path corresponds to the scaling of the parameters

of the velocity field in time and space explicitly whereas for Ornstein-Uhlenbeck velocity fields

the scaling is in the frequency domain. Hence, our results further provide an understanding of

the dynamics for a diffusion limit.
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The single particle path in a flow based on the velocity field u is the solution of the ordinary

differential equation
d

dt
Xt = u(Xt, t) X0 = x , t ∈ IR+ (23)

For velocity fields that are Markovian, stationary, homogeneous and incompressible, it has been

shown in [23] that the single particle path scaled with ε > 0, given by

Xε
t = εXt/ε2 t ≥ 0 (24)

converges to a Brownian motion as ε → 0, provided that the velocity field satisfies a spectral

gap condition. An example is the stationary and divergence-free Ornstein-Uhlenbeck velocity

field with a corresponding condition on its spectral measure. It has been shown in [5] that the

velocity field u satisfies such a spectral gap. Namely, there exists a constant k > 0 such that

−(LF,F )L2(E,ζ) ≥ k ‖F‖2
L2(E,ζ)

for all F in the domain of L with
∫
E ζ(dy) F (y) = 0 where L is the generator of the Markovian

velocity field u. Hence, the scaled path Xε on u converges to a Brownian motion when u is of

the form (22). The proof of this result [5] does not depend on the form of the joint distribution

of a and b. Therefore, the single particle path Xε converges to a diffusion in the limit, also when

it is generated through the distribution (21).

It follows from Equation (23) that (24) is equivalent to the following scaling of the velocity

field

uε(x, t) =
1
ε

u

(
x

ε
,

t

ε2

)
x ∈ IRd, t ∈ IR+ .

That is, Xε is the solution to (23) with the velocity field uε. Scrutinizing this scaling of the

velocity field, we can show that the diffusion limit is obtained when the eddies arrive fast, decay

fast, and rotate fast with a small radius. This is quite intuitive in view of the emergence of

central limit theorem in various applications.
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With the non-Markovian velocity field (9), diffusion limits can be sought only with tech-

niques other than Markov property of the Lagrangian velocity. In particular, Markovian non-

mixing or Ornstein-Uhlenbeck flows have been studied for diffusive and non-diffusive limits

[17, 19, 20]. What is referred as a non-diffusive limit here is a fractional Brownian motion

(FBM). Drifter observations indicate that the flow in the ocean is much more correlated in time

than a Brownian motion. As a result, an FBM is sometimes used for modeling transport [14].

A persistent FBM is a Gaussian process with Hurst parameter H ∈ (1/2, 1) and reduces to

ordinary Brownian motion for H = 1/2. Its increment process called fractional Gaussian noise

is stationary with long-range correlations if H > 1/2. We intend to investigate the possibility

of an FBM limit for the particle motion as future work. Lamperti’s theorem [24] suggests that

Xε
t = εXt/ε1/H could be a candidate scaling of the particle motion X. For H = 1/2, this re-

duces to the same scaling as (24) which yields an ordinary Brownian motion as expected. For

Ornstein-Uhlenbeck flows, the large scale limit is a Brownian motion in presence of an infrared

cutoff which is required for finite energy. If the infrared cutoff is gradually removed as ε → 0,

then the limit is still a Brownian motion [25]. Therefore, our search for an FBM limit requires

further analysis.

5 Conclusions

In this paper, we have considered a generalization of homogeneous and isotropic Çinlar velocity

fields to model power-law correlation across spatial scales. This has been achieved by making

the decay rate depend on essentially the eddy radius which is assumed to have a power-law

distribution. Long-range correlation in space is also studied and a similar spectrum previously

used with Ornstein-Uhlenbeck velocity fields is replicated. Such models are constructed with

assumptions on the spectra, whereas our model originates from observed structures of eddies

and randomness in the ocean. We have obtained the spectral properties as a consequence of
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the choice of the parameters and the probability distributions. The parameters of the proba-

bility distributions are further specified in view of Kolmogorov theory of the inertial scales. In

particular, |k|−5/3 scaling of the spectrum is obtained.

We have used an exponential form for temporal correlation for replicating the covariance

used earlier with Ornstein-Uhlenbeck flows. On the other hand, one can construct various

stationary and homogeneous velocity fields by

∫ t

−∞

∫

Q
N(ds, dq) f(t− s, x− z, a, b) vq(x)

where f : IR+ × IRd × IR × IR+ → IR is such that the velocity field is square integrable. As for

future work, the form of f and the distribution of a can be selected so that u has a different

correlation structure in time motivated by Eulerian observations.

Finally, we have shown that the single particle trajectory of the original Markovian velocity

field converges to a Brownian motion with a proper scaling in time and space. For the generalized

velocity field which is no more Markovian, any diffusive or non diffusive limits are left as future

work.
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Abbreviated Title

Velocity Fields with Power-Law Spectra

Figure Captions

Figure 1. Log-log plot of power spectral density versus frequency. The straight line has

slope -5/3, c = 0.1, λ = 0.1, a ∼ Unif(-5.4,5.4), (l1, l2) = (0.1, 2)
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