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ABSTRACT

Bellcore studies have shown that Fractional Brownian Motion (FBM) is a convenient and compact mathematical

representation that can account for the burstiness and long-range auto-correlation observed in the traffic of high-

speed data networks. The convenience of the FBM representation for a traffic stream lies in the fact that it is

described by just three parameters ( )m,a,H , where m is the mean rate, a the ‘peakedness’ and H the Hurst

parameter. Clearly, for the FBM traffic model to be applied in practice, the parameters of the model have to be

estimated from the measurements that are available in the switching systems supplied by equipment vendors. On

the basis of these measurements, traffic capacity management (TCM) algorithms must ensure that the provisioned

capacity is sufficient to meet the anticipated traffic of broadband applications, but not so excessive as to render

broadband services uneconomical.

We investigate how the estimation of the parameters of the FBM model is affected by the frequency of collection

of the traffic measurements, and examine this dependency for two methods of estimation applied to two data sets:

the method of variance-time plots and the recently-proposed method based on wavelets. If estimation error is

judged by its impact on the engineering of link capacity, we find that both the variance-time plot method and the

wavelet method offer about the same accuracy, with a slight edge for the wavelet method. Our results suggest that

for high-speed traffic sources with moderate values of H, say, 0.5 ≤ H ≤ 0.8, traffic measurements at 1-minute

intervals might be adequate for estimation of parameters for link engineering. For traffic sources with H > 0.85,

measurements may  have to be more fine-grained, at intervals of the order of 1 second or several milliseconds. In

either case, we observe that existing switch measurements at standard intervals of 15-minutes are inadequate for

parameter estimation of FBM traffic models, and could lead to provisioning errors of about 10%.
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1. Introduction

Bellcore studies of the traffic streams of high-speed data networks [1, 2] have shown that a considerable degree of

correlation exists in the traffic bursts in such streams. Fractional Brownian Motion (FBM) has been proposed as a

convenient and compact mathematical representation [3] that can account not only for the observed peakedness of

such traffic, but also for the longer-than-usual auto-correlations exhibited by such traffic. The convenience of the

FBM representation for a traffic stream lies in the fact that it is described by just three parameters ( )m,a,H ,

where m stands for the mean rate, a for the ratio of variance to mean (at a pre-selected time unit) and H for the

Hurst parameter. However, for the FBM traffic model to be applied in practice, the parameters of the model have to

be estimated from the actual measurements that are publicly available, such as those measured and stored in the

switching systems supplied by equipment vendors. On the basis of the available measurements, traffic capacity

management (TCM) algorithms must ensure that the provisioned capacity is sufficient to meet anticipated demand

for broadband (e.g., ATM and Frame Relay) applications, but not so excessive as to render broadband services

uneconomical.  This task of capacity management has proved to be considerably harder in data networks than in

networks for voice traffic.

Traffic measurements are collected not only to assess the current network performance and detect violations of

quality of service, but also to observe the traffic trends and estimate the load for use in network engineering. One of

the most critical steps in developing comprehensive TCM methods is to define the required traffic measurements

(statistics). Therefore, algorithms must be developed both to estimate critical performance measures from the

collected traffic measurements and to determine the parameters that describe the observed traffic. The traffic model

derived from the measurements will be the basis of capacity management algorithms that determine the network

capacity needed to carry current and future demands.

In this paper, we concentrate on the problem of estimating the parameters for the FBM traffic model that has been

proposed for ATM and Frame Relay traffic, using available traffic measurements.  Clearly, the effectiveness of

traffic model estimation depends both on the intrinsic richness of the available measurements and on the accuracy

of the estimation procedure that is used. Thus, an investigation of this problem has two dimensions: 1) the
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sufficiency or insufficiency of the available traffic measurements for the estimation procedure and 2) a robust

estimation procedure for the critical parameters. To assert, for example, that vendor-supplied equipment should

provide more frequent measurements of traffic flow on a link, one has to make an economic case for the need for

the finer granularity.

We investigate how the estimation of the FBM model parameters for traffic is affected by the frequency of

collection of traffic measurements, and examine this dependency for two methods of FBM parameter estimation

applied to two data sets: the method of variance-time plots [2] and the recently-proposed method based on wavelets

[4,5]. If we judge estimation error by its impact on the engineering of link capacity, we find that both the variance-

time plot method and the wavelet method offer about the same accuracy, with a slight edge for the wavelet method.

Our results suggest that for high-speed traffic sources with moderate values of H, say, 0.5 ≤ H ≤ 0.8, traffic

measurements at 1-minute intervals might be adequate for estimation of parameters for link engineering. For

traffic sources with H > 0.85, measurements may  have to be more fine-grained, at intervals of the order 1 second

or several milliseconds. In either case, we observe that existing switch measurements at standard intervals of 15-

minutes are inadequate for parameter estimation of FBM traffic models, and could lead to provisioning errors of

about 10%.

An outline of this paper is as follows.  In Section 2, we describe the FBM model used in this study and discuss the

assumptions made regarding the availability of traffic measurements. In Section 3, the variance-time plot method

of estimating the FBM model parameters from the available traffic measurements is described. Also, the basis for

the statistical analysis of parameter estimates derived from the traffic measurements is discussed. The method of

estimation by wavelet analysis is described in Section 4.  The results of the application of these methods to two data

sets are analyzed in Section 5, and the engineering impact of estimation accuracy is investigated. Finally, our

conclusions are stated in Section 6.

2. Traffic Model and Traffic Measurements

2.1 FBM Traffic Model

The FBM model for data traffic consists of the three parameters ( , , )m a H , where

m =  mean traffic rate, say, in bits/ time-unit

a =  ‘peakedness’ factor =
unit-over time rate icmean traff

unit-over time arrivals  trafficof variance

H =  Hurst parameter (a dimensionless measure of the persistence of correlation in data-rate, with 15.0 <≤ H .

With just these three parameters, the model expresses the burstiness of data over a wide range of time-scales by its

intrinsic time-scaling properties [1,2]. Thus, in principle, burstiness over a single time-scale determines the model
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parameters, and thus the burstiness over all time-scales. However, in fitting an actual data set to such an FBM

model, it is necessary to assure ourselves that the FBM model, is, in fact, a good fit to the data. This requires us to

examine the data over different time-scales, and then, we have the problem of reconciling several sets of FBM

parameters, each set obtained by considering the data at a particular granularity of time intervals.

The question for us to consider is “What granularity of traffic measurements is necessary for ATM and Frame-

Relay traffic for the reliable estimation of the parameters of the FBM model corresponding to such traffic sources”?

In particular, existing switches that support ATM and Frame-Relay offer only a limited set of infrequent traffic

measurements, e.g., at intervals of 15 minutes. Are such ‘aggregate’ measurements of any value for estimating the

FBM parameters m a H, ,  and with sufficient accuracy for purposes of link engineering?

We examine this question by analyzing two data sets of Frame-Relay and Ethernet traffic collected by Bellcore for

previous studies [2]. We compare the FBM parameters estimated from the original data-sequence with those

estimated from aggregated samples of the same sequence, to see what accuracy and precision are lost when

working with infrequent measurements. It is known [2] that the Hurst parameter H can be reliably estimated only

from long sequences, i.e., from frequent traffic measurements within a duration (say, an hour) over which the

traffic may be considered stationary. It is shown that while the mean rate m  may be estimated from aggregated

measurements, the peakedness factor a  is subject to considerable ‘sampling’ error, especially when associated

with a value of H  close to 1. In order to judge the engineering consequence of the estimation error, we determine,

on the basis of the parameter estimates obtained from different levels of data-aggregation, the number of

independent traffic sources that can be carried on a link, for given service criteria of delay and loss. We conclude

from our analysis of these two data sets that traffic measurements at intervals of one minute may be acceptable in

cases when H is no greater than about 0.8. However, measurements at intervals of the order of one second or

several milliseconds may be necessary for traffic sources with H > 0.85.  In any case, existing switch measurements

at intervals of 15-minutes are quite inadequate for estimation of FBM traffic models for high-speed data networks.

Whether there are other traffic models that lend themselves to reliable estimation from such aggregated traffic

measurements is a question of considerable interest, and has to be investigated.

2.2 Traffic Measurements

Bellcore has issued several documents in which generic requirements for broadband traffic statistics are specified

[GR-1114-CORE, GR-110-CORE, TA-NWT-001248]; however, in practice, few switch vendors are meeting such

requirements. We state here the assumptions made in this paper about traffic measurements available from various

switching systems.

Traffic counts are the basic measurements assumed to be available at regular intervals. Although other

measurements, such as buffer levels and packet losses, may offer additional information for constructing traffic
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models, we shall only consider traffic counts here. These counts may be available only at intervals of, say, 15

minutes, as a rule; occasionally, for ‘special studies’, one may be able to arrange for more frequent measurements,

say, at 1-second intervals, but these cannot always be assumed to be routinely available.

The natural question regarding traffic measurements is “How often should they be collected?” The answer to this

question, of course, depends on the use to which the measurements are put. Our assumption here is that the traffic

measurements are used to estimate the parameters of the mathematical model chosen as a description of the

characteristics of the traffic.  Presumably, more frequent measurements will yield a higher accuracy in estimating

the parameters of the traffic model, but what accuracy is it necessary to achieve?  We judge the consequence of

‘inaccurate’ traffic estimation (due to infrequent measurements) by the resulting inaccuracy in the estimation of the

effective bandwidth needed to carry the traffic (for a given quality of service). Thus, our plan is to begin with a

sequence of fine-grained traffic measurements (obtained, let us say, by ‘special studies’), and then consider various

levels of aggregation of this data sequence, to correspond to the data that would be obtained from less frequent

measurements of the same traffic stream. We carry out the estimation of the parameters of the traffic model (the

Fractional Brownian Motion model in this paper) both from the fine-grained measurements and from the more

aggregated measurements. We then determine the number of independent traffic sources that can be carried on a

link, (for given service criteria of delay and loss) from these various parameter-sets, and consider the magnitude of

the discrepancies with respect to the results from the fine-grained measurements.

Of the three parameters (m, a, H) in the FBM traffic model, m, the stationary mean rate of the traffic, say, over an

hour, can be estimated directly from the available measurements, whether fine-grained or aggregated. The

parameters a and H are then jointly estimated by either of the two methods described below. However, H cannot be

reliably estimated from very small sets of aggregated samples, e.g., on the basis of four 15-minute counts in an

hour. We could assume that, in this case, it is possible to supplement the routine traffic measurements by more

detailed measurements (‘special studies’ referred to above) for a limited period, such as a selected hour once a

week, by means of Network Management Systems, such as SNMP (Simple Network Management Protocol). Such

Network Management queries are not a suitable mechanism for the regular collection of traffic measurements,

owing to the large demands placed on switch processing; however, it may not a problem to invoke the mechanism,

say, for a chosen hour once a week. From such traffic counts at a fine resolution (intervals of 1-second or smaller),

we can estimate the Hurst parameter H by either of the two methods below. The rationale is that the Hurst

parameter, which describes the correlation in the traffic, is a stable and intrinsic characteristic of the services

(video, data, etc.) that give rise to the traffic, and not a strong function of the hourly or daily variations in the

traffic rate. The estimate of H derived from the detailed measurements could then be used to obtain an estimate of

the peakedness parameter a from less frequent measurements. The numerical value of a depends on the time-unit

used; the following formula provides for the conversion of its value from one time-unit to another:
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me)unit of ti(for one  ime)units of t(for T aa  T 12H ∗−= ; (1)

i.e., when the unit of time is multiplied by T , the peakedness factor is multiplied by 12 −HT .

3. Estimation of FBM Parameters by Variance-Time Plot

Consider the sequence of traffic counts { },...,N,kxk 1= , where kx  is the number of traffic units that arrived in

the k’th measurement period, and N is the total number of measurement samples. To construct the variance-time

plot for a long data-sequence, we consider the sequence formed by the aggregation of the traffic arrivals in n

consecutive measurement periods, for various values of n. Thus, the n-fold aggregated sequence }{ (n)
jy  is defined

by
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Of course, 1=n corresponds to the original sequence itself, with NM =1 .

3.1 Estimation of  m

The mean arrival rate, estimated from the original unaggregated sequence, is given by

N

x
m

N

k
k∑
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where the time-unit used is the sampling interval of the original sequence. The same estimate is obtained even after

aggregation of data, after conversion to the same time-unit as in (3), as long as no data are ignored, i.e., when
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Thus, the estimate of the mean is essentially unaffected by aggregation of data, and we can attach to it the

confidence interval corresponding to the original unaggregated sequence.
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3.2 Estimation of a and H

We calculate, for several values of n, the sample variance )(ˆ nV of the n-fold aggregated sequence, considering, in

practice, only those values of n for which there are at least 4 members in the sequence. For an FBM source with

parameters (m, a, H), the plot of )(log nV  versus nlog , where V (n) is the true variance of the n-fold aggregated

process, is a straight line with slope HS 2= , with an ordinate-axis intercept of )log(maC = . Thus, we may use

linear regression on the set of points }log),(ˆ{log nnV to estimate both the slope S  and the ordinate-axis

intercept C of the curve, and obtain an estimate of H and of the peakedness parameter a (knowing the sample

mean m̂ of the sequence); i.e.,

m

Ce
a

S
H

ˆ
ˆ;

2
ˆ == (5)

3.3 Sources of Error in Parameter Estimation  from Variance-Time Plots

The chief source of error is in the approximation of )(nV by )(ˆ nV ; the latter is calculated from the samples in the

n-fold aggregated sequence }{ (n)
jy . Since adjacent the members of this sequence correspond to aggregations of

adjacent blocks of length n of the original sequence, it follows that the samples of }{ )(n
jy can be correlated with

each other. In this case, )(ˆ nV can be a biased estimate of )(nV . Beran [6] shows that the correction for the bias is

the multiplicative factor

( ) 12
1

−−

−
H

nMnM

nM
(6)

to be applied to )(ˆ nV . However, the correction (6) itself depends on the Hurst parameter H, which is one of the

parameters to be estimated by this method and unknown to begin with. Thus, a proper application of the variance-

time plot would require an iterative procedure. An estimate of H obtained from (5) is used to derive the

multiplicative correction factor (6) to be applied to the sample variances )}(ˆ{ nV , from which a new estimate of H

is derived by the linear regression formula (5), and so on, until convergence is attained.

We also note that the correction factor (6) gets large for small N, and becomes unbounded as H tends to 1, i.e., for

a highly correlated data-sequence. For this reason, one expects that estimation errors in H become magnified in the

estimation of the peakedness parameter when H is close to 1.
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3.4  Statistical Analysis of Parameter Estimates

3.4.2 The estimate of mean m

It has been noted above that the original data sequence and its various aggregated versions yield the same estimate

m̂ for the mean m. Thus, the accuracy of m̂ is unaffected by data-aggregation, and we can assign to it the

confidence interval corresponding to the unaggregated data-sequence. Thus, the 95% confidence interval for the

mean is given by

N

s
mm

N

s
m

ˆ
96.1ˆ

ˆ
96.1ˆ +<<− (7),

where ŝ is the sample estimate of the standard deviation given by (10) below, and N is the number of samples in

the original sequence.

3.4.2 The estimates of H and a

In the method of variance-time plots, the linear regression calculations use Student’s t distribution, with )2( −M

degrees of freedom whereM is the number of points (i.e., the number of aggregation levels considered for the

original sequence of traffic measurements), to determine the 95% confidence limits for the slope S , and thus for

the Hurst parameter H .  In the presence of long-range correlation )5.0( >H , the actual degrees of freedom are

fewer, and, in fact, depend on theH  being estimated. We ignore this complication and accept the confidence

interval given by the linear regression.

Linear regression also furnishes an estimate and confidence interval for a , which, however, is based on the

assumption of independence of the traffic counts.  We proceed as follows to derive an estimate and approximate

confidence interval for a  from the data for different levels of aggregation, accounting for correlation in an

approximate way.

Suppose that, for a given level of aggregation, we have the stationary data sequence },,1,{ Mkwk K= , with

mean m and variance 2σ . The sample mean m̂ and sample variance 2s are given by

M

w

m

M

k
k∑

== 1ˆ (8)
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In the presence of correlation among the }{ kw , however, 2s is a biased estimate of 2σ . An unbiased estimate

2ŝ is given by [6]
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HMM

M
ss (10),

and the corresponding estimate of a  is given by
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We now use the approximation that 
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 is described by the chi-square distribution with the number

of degrees of freedom given by the integer part of )( 12 −− HMM .  Thus, if 
2

pχ  is the p′ th  percentile of the

chi-square distribution, the 95% confidence interval for a is given by

2
025.

2
975.

ˆ)1(ˆ)1(

χχ
aM

a
aM −<<−

(12)

The estimate â and its confidence interval can be transformed from one time-unit to another by formula (1).

4. Wavelet Estimation Method

The wavelet estimation method is similar to the variance-time method in that the data stream is analyzed in a

succession of resolution of scales. However, while the variance-time analysis is in the time domain, the wavelet

method is in the frequency domain and thus has the following superior statistical properties: 1) The discrete

wavelet transformation is applied to the traffic stream to get the associated details in the frequency domain. 2)

The details are quasi-decorrelated although the original stream could be highly correlated because of long-range

dependence. 3) Any linear or polynomial trends in the data are automatically factored out of the wavelet analysis.

4) The wavelet estimation method constructed on these details has low variance and high robustness.

We consider the joint estimation of H  and a  by the wavelet estimation method as given in [4]. Let ),( kjd ,

jnk ,,1K= , Jj ,,1K= denote the details obtained by the discrete wavelet transform of the sequence of
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traffic counts { },...,N,kxk 1= , where J is such that 21 22 ++ ≤≤ JJ N , and jn  is the number of coefficients

available at octave j. The statistic central to the method is given by

 Jj ,,1K= . Then, the Hurst parameter H and the coefficient fc  of the spectrum of the data stream are

estimated through a weighted linear regression of

jjj gy −= )(log2 µ    (13)

over 21 ,, jjj K= where 1j and 2j are the scales relevant for long-range dependence. The constant

)(log)12())((log 22 CcHjEg fjj −−−= µ is introduced to ensure that the fundamental hypothesis of

regression holds (with C being a constant that depends on H ). Then, the slope α of the regression line is equal to

12 −H  and its intercept β is B2log , where CcB f= . Veitch and Abry [4] devise unbiased estimators for

12 −H  and Cc f  under mild assumptions, which effectively hold for FBM. The estimate of H  is obtained by

2

1ˆ += α
H

which is unbiased and consistent. The estimator of CcB f= is given by

β2ˆ ⋅= pB

where p  is a constant to ensure unbiasedness of B̂ . We now set

C

B
cf ˆ

ˆ
ˆ =

where Ĉ  is computed using Ĥ . The estimate  fĉ  is asymptotically unbiased and consistent. Both estimators

have small variances close to the Cramer-Rao lower bound. Using the relationship of fc  to the variance of the

traffic counts for larger scales, we obtain the estimate of the peakedness parameter a by

),(
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1

2 kjd
n
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j ∑

=
=µ
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−
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                  (14)

where m̂  is  the estimate of the mean of the traffic counts as before. As an involved function of fĉ  and Ĥ , it is

not known how this estimate of a behaves. Empirical studies show that it could be slightly biased with acceptable

variance [5]. We approximate a confidence interval for a  through that of fc , assuming that Ĥ is known in

Equation (14).

The wavelet estimator of H in general performs very well as expected. Other simulation studies [7,8] have also

verified this. The performance of the variance-time type of analysis in these studies is found to be better than

some other analysis methods. In particular, Jennane et al [9] report good performance. The wavelet method

assumes that the length of the data set is a power of 2, which can lead to the exclusion of some available

information. Besides, when the data set is too short, there may be too few scales for regression with this method.

In these cases the variance-time method may be used.

5. Results

We consider two data sets:

a) ONESEC: This consists of 3600 measurements (traffic counts in bytes) on a Frame Relay link, at one-second

intervals, for a total duration of one hour

b) 40MSEC: This consists of 24000 measurements (traffic counts in bytes) on an ethernet, at 40-millisecond

intervals, for a total duration of 16 minutes

5.1 Variance-Time Plot Results

ONESEC

The variance-time plot for the original data set, with variance calculated at several aggregation levels, is shown in

Figure 1. This plot allows us to estimate H on the basis of the entire sequence of 3600 one-second measurements.
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In addition to the original sequence, we then consider two levels of aggregation  up to one-minute intervals (60

samples), and 15-minute intervals (4 samples).  However, H cannot be estimated from just 4 samples of 15-minute

aggregation of traffic counts; hence, we assign to this case the value of H estimated from the original 3600-sample

sequence, in order to calculate the confidence interval for a . The estimates of Ham ,, and their 95% confidence

intervals are indexed by the number of samples below:

msec-byte

msec-byte

msec-byte

;bytes/sec  1005

13043 528 214;   

7434  32;90.084.0 77.0

502235 22876;.072.00.69

 800595

436004

6060

36003600

4603600

<=<
<=<<=<
<=<<=<

===< <

aHH

aH

aH

mmm

be to assigned

40MSEC

The variance-time plot for this data set is shown in Figure 2.

 Figure 1: Variance-Time Plot of ONESEC
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In this case, along with the original sequence of 24000 measurements at 40-millisecond intervals, we also consider

two levels of aggregation: one-second intervals (960 samples), and one-minute intervals (16 samples).  For the 16-

sample case, H is very close to 1, and the actual confidence interval obtained from the regression violates the

feasible range (0.5, 1) and is replaced by the feasible range. Also, as pointed out in Section 3.3, Beran’s correction

(6) becomes very large for  this value of H. Our approximations regarding degrees of freedom in the chi-square

distribution no longer make sense, and we set the degrees of freedom to be 151 =−M  for the calculation of a

for this case. The results are indexed by the number of samples below:

msec-

msec-byte  

msec-byte  

;bytes/sec   3189

byte  2.35 0.98 54.0; 1.00.945.0

48.3413  79.28;77.073.069.0

83.3.713 68.387;.081.00.76

 31883187

1616

960 960

2400024000

1696024000

<=<<=<
<=<<=<

<=<<=<
===< <

aH

aH

aH

mmm

5.2 Wavelet Results

ONESEC

We first consider the entire data set at one-second intervals. There are 3600 in total, but we make use of only the

first 1122048 =  of these because of the nature of the wavelet method. Although this means disregarding some of

the available data, our analysis of different segments of the stream has shown similar results to those obtained with

the first 2048. This confirms the stationarity of the traffic within the one-hour period. After discrete wavelet

transform of the data, we plot the points jy  of  (13)  versus scales 10,,1K=j  in Figure 3.

Figure 2: Variance-Time Plot of 40MSEC
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The wavelet method relies on a linear relationship of jy  versus j for higher scales 21 ,, jj K . It is evident from

Figure 3 that the linear relationship starts after octave 2. We take =1j 3 and =2j 8, excluding octaves 9 and 10

as jn , the number of available details, is small for these octaves. The results are

74.067.059.0 2048 <=< H

792505338 2048 <=< a   byte-msec

where the ranges denote the approximate 95% confidence intervals.

Second, we consider the aggregated measurements at one minute intervals. Then, there are only 60 data points of

which only 32 can be used in the wavelet method. This leaves us with at most 4 octaves for regression. Using

octaves 2,…,4, we obtain the following results

    161.00 32 <=< H

58940547118 32 <=< a   byte-msec

where the actual confidence interval for H is not reported as it is out of the definition range (0,1). The confidence

interval for a is equally huge and not informative.

As for the highest aggregation of 15 minute intervals, there are only 4 points left. Having only 1 octave in this

case, regression is not possible and we cannot analyze it with the wavelet estimation method.

Figure 3: Regression plot for one-second data
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40MSEC

The entire length of this data set is 24000 measurements at 40 millisecond intervals for a total duration of 16

minutes. The wavelet method makes use of the first 16384 142=  for estimation. The plot of the

jy  of  (13)  versus scales 13,,1K=j  is given in Figure 4.

In this plot, we take =1j 7 and =2j 11. The results are

90.078.066.0 16384 <=< H

7.839.171.6 16384 <=< a   byte-msec

Again, the last two octaves are disregarded because of low number of details available.

Next, we consider one-second aggregation of the data, which results in 960 samples. We use only 512 92= of

these and get

99.081.064.0 512 <=< H

1.377.125.5 512 <=< a   byte-msec

Figure 4: Regression plot for 40-millisecond data

4

6

8

10

12

14

16

18

20

22

1 2 3 4 5 6 7 8 9 10 11 12 13

Octave j



23-Sep-98 Caglar, Krishnan, and Saniee

15

which result is close to the previous one. Here, we take =1j 3 and =2j 7 disregarding only octave 8 among

higher scales.

The highest aggregation level is at one-minute intervals, which results in 16 data points. Using all of these, we

have 3 scales available. The use of octaves 2 and 3 only violates a technical condition of the wavelet estimation in

this particular situation. So, we consider all octaves 1,…,3 in regression to get

181.008.0 16 <=< H

4.546.01.0 16 <=< a   byte-msec

where the confidence interval for a  does not even intersect with the previous ones. The confidence interval for H

is very large although its point estimate is close to the previous estimates.

5.3 Comparison of Parameter Estimates from the Two Methods

The estimates for H and a from the variance-time plots and wavelet analysis are shown in the table below:

Table 1: Estimates of FBM Parameters from Sampled Traffic Measurements

ONESEC 40MSEC

Sampling Interval Sampling IntervalParameter

1-sec 1-min 15-min 40-msec 1-sec 1-min

Variance-Time Plot 0.72 0.81 ? 0.81 0.73 0.94

H Wavelet Analysis 0.67 0.61 ? 0.78 0.81 0.81

Variance-Time Plot 235 34 ? 3.7 31.0 0.98a (byte-msec)

Wavelet Analysis 505 547 ? 17.9 12.7 0.46

5.4 Link-Engineering from Sampled Measurements

To investigate the engineering consequence of relying on the various sampling rates, we calculate the number of

(independent) traffic sources that can be carried on a T1 link (1544 kbits/sec), using the parameter estimates (m, a,

H) of each sampled sequence corresponding to each data set. We used a delay criterion of 10 milliseconds, a bit

loss-rate criterion of 0.0001, and a buffer of 500 bytes, and assumed a peak-rate equal to twice the mean rate for
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each source. It should be noted that although the FBM model does not consider a finite ‘peak rate’ in its traffic

description, the engineering algorithm that is used [10] does take account of a user-specified peak rate for the

source. The results are shown in Table 2 below:

Table 2: Estimated Number of Sources Supported on a T1 Link

Number of  ONESEC  sources Number of 40MSEC sources

Sampling Interval Sampling IntervalEstimation Method

1-sec 1-min 15-min 40-msec 1-sec 1-min

Variance-Time Plot 190 193 ? 57 54 53

Wavelet Analysis 190 190 ? 53 53 59

It is reasonable to take the result corresponding to the smallest sampling interval as the ‘correct’ (most reliable)

number of sources for each data set. Then, for ONESEC, we see that the wavelet method is insensitive to the

aggregation of 1-second measurements to 1-minute samples, while the variance-time plot method incurs an

engineering error of about 1.5%.

For 40MSEC, the wavelet method is once again insensitive to the aggregation of 40-millisecond measurements to

1-second samples, whereas the variance-time plot method causes an engineering error of about 5%. With 1-minute

samples, both methods produce an engineering error of about 7%.

Thus, for purposes of link engineering by the method discussed in [10], both the variance-time plot method and the

wavelet method achieve, on the whole, about the same accuracy of parameter estimation from the traffic

measurements, with a slight edge for the wavelet method.

6. Conclusions and Further Work

On the basis of the analysis of the above two data sets, we find that for high-speed data traffic sources with

moderate values of H, say 8.05.0 ≤≤ H , measurements at 1-minute intervals would be adequate for estimation

of parameters for link engineering. For traffic sources with 0.185.0 <≤ H , measurements may  have to be

more fine-grained, at intervals of the order 1 second or several milliseconds. In either case, we observe that

existing switch measurements at standard intervals of 15-minutes are quite inadequate for parameter estimation of

FBM traffic models for high-speed data networks, and could lead to significant errors in provisioning.  We also

conclude that both the variance-time plot method and the wavelet method for the estimation of FBM parameters

offer comparable accuracies for link engineering, with a slight edge for the wavelet method
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A broader question to ask is what class of traffic models is best suited for the development successful methods for

traffic capacity management (which comprises both traffic estimation and link engineering). The traffic models in

the literature [11] can be divided into two categories:

(a) models which exhibit long range dependence (such as FBM, limiting aggregates of on/off models with heavy-

tailed distributions for the on/off durations, and M/ Pareto / ∞ models), and

(b) Markovian models that exhibit only short-range dependence (such as on/off models with exponential on/off

distributions, Markov-modulated Poisson process, and Gaussian auto-regressive models, which typically have

exponentially-decaying correlation functions).

While Markovian models are more amenable to queuing analysis than models with long-range dependence, it

appears that the latter models better capture the statistical characteristics of high-speed data traffic. It may,

therefore, be useful to consider Markovian models (which are short-range dependent in the mathematical sense,

with asymptotic exponential decay in the auto-correlation function) with slow enough decay to capture the strong

auto-correlation over the range of time-scales that matter for the system being studied. We expect that although

Markovian traffic models lend themselves to more reliable parameter estimation than do FBM models, there would

be many more parameters to estimate, one for each of the on and off periods.  Whether the corresponding

engineering methods are as robust to errors in parameter estimation as the FBM model is a question that deserves

further investigation.
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