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Abstract—We examine spreading of epidemics for an anti-
entropy algorithm in networks with various P2P (peer-to-peer)
overlay topologies. Neighborhood knowledge among peers and
information exchange based on proximity are considered. Our
analytical model for SI (Susceptible-Infected) epidemics involves
equations for calculating the infection probability of each peer in
consecutive epidemic rounds as a function of the topology. Using
numerical evaluations, we study the effect of graph properties
on dissemination as an aspect of real world P2P overlays.

I. I NTRODUCTION

Epidemic spreading in a network takes place from infectious
nodes to susceptible nodes, and it is modeled as a process in
an undirected graph with nodes where every infectious node
exchanges information with one of its neighbors. Modeling
the spread of epidemics by taking into account the topolog-
ical and nodes’ neighborhood information provides benefits
such as predicting the future spreading behavior, developing
methods to control epidemics or achieving faster epidemic
information dissemination. In prior work, for SIS (Susceptible
- Infected - Susceptible) model, different epidemic thresholds
are identified in relation to various topological properties
of the underlying network [1], [2]. Such properties include
average connectivity, connectivity divergence of the topology
and maximum eigenvalue of the adjacency matrix. SIS model
is applicable in security services in particular to spread of
internet worms and e-mail viruses. The epidemic threshold is
significant for detecting if the epidemics will spread to the
entire network or not.

In this study, we investigate the impact of topology on
SI epidemic model, which is suitable for the applications
of content dissemination. Topological properties considered
for SIS model as well as graph invariants such as degree
distribution and eigenvalues are studied as an aspect of real
world P2P networks. In P2P content dissemination systems
such as BitTorrent [3] and SeCond [4], each peer exchanges
information with a group of its neighbors on the overlay. We
introduce a model for calculating the infection probabilities
of the nodes as a function of the topology through a general
adjacency matrix and show our numerical results on various
power-law and Erd̈os-Ŕenyi random topologies.

Epidemic spreading is examined by calculating the infection
probabilities of all the nodes in the network for every epidemic

round with the pull based anti-entropy algorithm [5]. In the
pull approach, when an infectious peer (holding data to be
shared) picks a susceptible peer (lacking the specific data)
randomly, this triggers data dissemination from infectious peer
to the susceptible. Spreading updates are triggered by suscepti-
ble peers when they are picked as targets by infectious peers.
In contrast to current study, partial membership knowledge
among peers and information exchange based on proximity
have not been considered in [5].

The paper is organized as follows. In the next section, we
state the basic definitions related to epidemic dissemination.
The related work is summarized in Section 3. Section 4 gives
the details of the proposed model for topology dependence.
Numerical results are presented in Section 5. Finally, Section
6 concludes the paper.

II. PRINCIPLES ONEPIDEMIC SPREADING

In this section, we give information about the types of epi-
demic models and define epidemic dissemination approaches.

A. Epidemic Models

1) SI (Susceptible-Infected):In this model, infectious peers
are never cured and continue to infect the remaining suscep-
tible peers until the infection is spread among the network.
Information dissemination over a network is defined with SI
model in [5].

2) SIS (Susceptible-Infected-Susceptible):In this model an
infectious peer turns to be a susceptible peer after the cure
[6]. But the nodes may become infected again without any
restriction.

3) SIR (Susceptible-Infected-Removed):This model is used
to represent virus/worm propagation in distributed systems [6].
There are two different proposed models for SIR model: In the
first model, each infectious peer is detected and removed from
the system. In this model, there exist only infectious and sus-
ceptible peers and the population size decreases dynamically
due to removals. In the second model, each infectious peer
is cured and gains immunity such that it does not receive
infection again. In this model, there exist only infectious,
susceptible and immune peers.



B. Dissemination Algorithms

There are two approaches for epidemic dissemination de-
scribed as follows.

1) Simple epidemics:In this algorithm, epidemics dissem-
inate from an infectious peer to a subset of its neighbors,
defined by the fanout parameter, in each epidemic round.
Since there is no mutual exchange of state information, an
infectious peer may receive a particular data message multiple
times. Hence, this causes redundant message transmission in
the network. However, simple epdemics has reduced overhead
in comparison to broadcasting/flooding.

2) Anti-entropy (gossip) algorithms:In these algorithms,
peers in the network choose one or a group of its neighbors
determined by fanout and exchange status information prior
to actual data dissemination. This phase is called gossiping.
There exist three approaches for information exchange, namely
pull, push and hybrid, as particular models of anti-entropy [5].
In anti-entropy algorithms, information carried on each peer
is compared prior to information exchange to avoid the pitfall
of sending unnecessary information as in simple epidemics.
The algorithm causes no overhead but gossiping is a required
phase.

III. R ELATED WORK

In earlier work [1] using simple epidemics with SIS model,
the effect of network topology on dissemination is examined.
A critical ratio for detecting if the epidemics will spread to
entire network or not is named as epidemic threshold. The
average connectivity in the network is denoted by< k >,
and the connectivity divergence is by< k2 >, the mean and
the second moment of the degree distribution, respectively. It
has been suggested that an epidemic threshold isτ = 1

<k>

for homogenous Erd̈os-Ŕenyi networks andτ = <k>
<k2> for

power-law topologies. In [1], a general epidemic threshold of
τ = 1

λ1,A
is suggested for an arbitrary network whereλ1,A

is the largest eigenvalue of the adjacency matrix. It has been
shown that infection eventually dies out ifφ

δ < 1
λ1,A

whereφ
is the infection rate andδ is the cure rate.

In another study again considering SIS [2], strength of
the spreading is examined and the role of the topological
properties over persistence of the epidemics is emphasized.
Whenn represents the total number of nodes in the network, it
has been shown that spreading rapidly takesO(log(n)) rounds
when φ

δ < 1
λ1,A

and it takesΩ(en) rounds whenφ
δ > 1

λ1,A
.

In [5], SI model and anti-entropy algorithms are considered
assuming that each peer has global knowledge of all peers.
That is, any other peer in the network can be chosen as a
gossip target. Although this assumption is not realistic, it is
a crucial simplification for the exact probability calculations
performed in [5]. The probability distribution of the number
of newly infected peers at each round is derived for push,
pull and hybrid algorithms.

IV. PROPOSEDMODEL

Our model examines epidemic dissemination with pull
based anti-entropy algorithm and SI epidemic spreading. The
pull algorithm is given below in which spreading data is
triggered by susceptible peers (bypulling data) when they are
picked as gossip destinations by infectious peers. In SI model,
the infectious peers are never cured and continue to infect the
remaining susceptible peers until the infection is spread over
the network as in information diffusion. The analytical model
we develop in this section is an extension of earlier work
developed for SIS simple epidemic which is used for spreading
of viruses in particular and a peer becomes susceptible after
a cure [1], [7].

Algorithm 1 Pull Algorithm
Node I is infectious and nodeS is susceptible. When
I picks a neighborS as the gossip target, infection is
triggered:
1. After state exchange via gossip,S requests missing data
from I to initiate the pull action.
2. S receives (pulls) the data fromI.
3. Upon receiving the data,S becomes infectious.

We derive equations to calculate the infection probability
of each peer (node) in consecutive epidemic rounds. The
following notation is used:

pi,t :probability that nodei is infected at timet
ζi,t :the probability that a nodei will not receive infections

from its neighbors at timet
nj :total number of neighbors of a nodej, that is,

nj =
N∑

k=1

A(j, k) (1)

whereA is the adjacency matrix andN is the total number
of nodes.

nj = 5

ji

Fig. 1. Node selection

The selection process for a nodei by nodej in the pull
approach is illustrated in Fig. 1 where nodej has 5 neighbors
and hencei becomes infectious with probability 1/5. Clearly,
if there are multiple neighbors ofi which are infectious, then
the probability ofi being selected increases in a given round.

A node i remains susceptible at timet when either one of
the following occurs

• neighbor nodej is susceptible at timet − 1, which has
probability 1− pj,t−1



• neighbor nodej is infected at timet − 1 but chooses
a neighbor other thani, which happens with probability
(nj − 1)/nj

Since the neighbors act independently in anti-entropy model,
we can write the probability that a nodei remains susceptible
at time t as

ζi,t =
∏

j: neighbor ofi

[
(1− pj,t−1) +

(
pj,t−1

(
nj − 1

nj

))]

=
∏

j: neighbor ofi

(
1− pj,t−1

nj

)

Then, the probability that a nodei is susceptible at timet is
the product of the probability that it is susceptible at timet−1
and the probability that it does not receive infection from its
neighbors. That is,

1− pi,t = (1− pi,t−1)
∏

j: neighbor ofi

[
1−

(
pj,t−1

nj

)]
(2)

We show that epidemic will spread to entire network, in
other words the system is stable at~P = ~1, irrespective of the
size of the initial number of infected node, where~P is the
vector of entriespi, i = 1, ..., n. It is convenient to work with
the probability of being susceptible rather than being infected.
Let qi,t = 1− pi,t. From (2), it is given by

qi,t = qi,t−1

∏

j: neighbor ofi

[(
1− 1

nj

)
+

(
qj,t−1

nj

)]
.

The probability that nodei is still susceptible at timet can be
represented with the following discrete non-linear dynamical
system:~Qt = ~f( ~Qt−1) with f = (f1, . . . fn) where

fi( ~Q) = qi

∏

j: neighbor ofi

[(
1− 1

nj

)
+

(
qj

nj

)]

and ~Q is the vector of entriesqi, i = 1, ..., n after suppressing
the time for simplicity. The system’s being stable at~Q = ~0
means that the information will certainly diffuse, that is,
Pt will converge to~1, starting with any initial number of
infectious nodes. Due to [8], pg. 280, the system is stable
at ~Q = ~0 if the eigenvalues of∇f(~0) are less than1 in
absolute value. The gradient matrix is given by the entries
[∇f( ~Q)]ik = ∂fi( ~Q)/∂qk, i, k = 1, . . . , N . Taking the partial
derivatives, we get

∂fi( ~Q)
∂qi

=
∏

j: neighbor ofi

[(
1− 1

nj

)
+

(
qj

nj

)]

since j 6= i when j neighbor of i. On the other hand,
∂fi( ~Q)/∂qk = 0 if k 6= i and k is not a neighbor ofi since

fi( ~Q) doesn’t depend onqk. Finally,

∂fi( ~Q)
∂qk

= qi
∂

∂qk

[(
1− 1

nk

)
+

(
qk

nk

)]

·
∏

j: neighbor ofi,j 6=k

[(
1− 1

nj

)
+

(
qj

nj

)]

=
qi

nk

∏

j: neighbor ofi,j 6=k

[(
1− 1

nj

)
+

(
qj

nj

)]

ask 6= i whenk is a neighbor ofi. Therefore,

∂fi(~0)
∂qk

=





∏

j: neighbor ofi

(
1− 1

nj

)
if k = i

0 if k 6= i

In matrix notation, we find

∇f(~0) = diag(λ1, . . . , λN )

with

λi =
∏

j: neighbor ofi

(1− 1/nj) i = 1, . . . , N.

Clearly,λi are simply eigenvalues of∇f(~0) and0 ≤ λi < 1.
Therefore, the information will certainly diffuse as expected.

The analysis above does not only confirm the applicability
of the discrete model (2) for epidemic diffusion, but also
provides the tools for evaluating the rate of dissemination in
connection with the adjacency matrix. Scrutinizing the stability
proof of [8] which states that there exists a constantµ < 1
such that

‖ ~Qt‖ ≤ µt ‖ ~Q0‖ (3)

we see thatµ can be chosen as a perturbation|λ| + ε of
the maximum eigenvalueλ in magnitude of∇f(~0) where
ε > 0 can be chosen arbitrarily small. The largest eigenvalue
would be binding in the worst case, especially for larget.
Therefore, Equation (3) reflects that the dissemination occurs
exponentially with a rate depending in general on all the
eigenvaluesλ1, . . . , λN which are found above in terms of the
row sums (1) of the adjacency matrix. Since (1) corresponds
to the number of degrees of each nodej, we explore the
effect of the degree distribution as well as the eigenvalues on
the diffusion rate for different random topologies next.

V. NUMERICAL RESULTS

We consider power-law and Erdös-Ŕenyi graphs as overlay
topologies. Power law graphs have attracted great interest since
the Internet topology exhibits a power law degree distribution.
A power law graph is one where the number of nodes with
degreek is proportional tok−β for someβ > 1. For the mean
degree to be finite, we needβ > 2. On the other hand, Erdös-
Rényi graph is of interest as a bench-mark random graph.
Erdös-Ŕenyi is characterized by parametersn andp wheren
is the number of nodes, and there exists an edge between each
pair of nodes with probabilityp independently from the other
edges. It follows that the average degree is(n− 1)p [2].



We evaluate epidemic spreading in various power-law
graphs using Barabási power-law graph generator [9]. The
nodes have an average degree which is twice of a free pa-
rameter in the generator. The algorithm creates networks with
a distribution followingk−2.9±0.1. For Erd̈os-Ŕenyi graphs,
we vary the parameterp to obtain different mean degrees.
The network size is 1024 and we evaluate 10 graphs of each
topology by varying the mean degrees. The expected number
of infected nodes is found by adding the entries of the vector
Pt and we report the percentage of infected nodes in our
numerical evaluations. The mean degree and the eigenvalues
of the gradient matrix have been investigated with respect to
the rate of diffusion. We examine the percentage of infected
nodes at 15th and 20th rounds of dissemination. At the 15th
round, infection disseminates significantly on the graph and at
the 20th round the dissemination is almost complete.

As observed in Fig.2, the diffusion rate increases quickly
with the mean degree up to a certain threshold, in this case 10,
then only slightly for larger degrees. Erdös-Ŕenyi graphs show
faster dissemination when compared with power-law graphs
with the same mean values. Since the rate differs for the
same mean values, we conclude that mean degree is not a
discriminating graph invariant across different topologies.
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Fig. 2. Impact of mean degree on diffusion

We have observed that the mean of eigenvalues of the gra-
dient matrix discriminates the groups of different topologies at
both 15th and 20th rounds. Erd̈os-Ŕenyi graphs all have a mean
about 0.37 while power-law graphs have mean eigenvalue of
0.43 and larger as shown in Fig.3.

We report the standard deviation of the eigenvalues in
Fig.4 which distinguishes clearly both between groups
and within a specific group. Erdös-Ŕenyi graphs all have
smaller deviation of eigenvalues compared to power-law.
In general, dissemination rate is inversely proportional
to mean and standard deviation of the eigenvalues. We
have also investigated the standard deviation of the degree
distribution. We conclude that Erdös-Ŕenyi graphs show
faster dissemination when compared with power-law graphs
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Fig. 3. Impact of mean of eigenvalues of gradient matrix
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Fig. 4. Impact of standard deviation of eigenvalues of gradient matrix

since they have smaller standard deviation for both eigenvalue
and degree distributions.

The maximum eigenvalue of the gradient matrix depicted in
Fig.5 shows a similar behavior to mean degree given in Fig.2.
Therefore, maximum eigenvalue alone is not a discriminating
factor for different random graphs. Indeed, Erdös-Ŕenyi
graphs show faster dissemination when compared with
power-law graphs with the same maximum eigenvalues.

VI. CONCLUSION

We have derived an analytical model for pull type anti-
entropy approach for SI epidemic information dissemination.
We have assumed neighborhood knowledge among peers
and information exchange based on proximity. Our model
explicitly involves overlay topology through the inclusion
of its adjacency matrix. The rate of dissemination is found
to be related to the adjacency matrix in a nonlinear way.
However, we can explicitly compute the gradient matrix of
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Fig. 5. Impact of maximum of eigenvalues of gradient matrix

the function that governs the dynamics of diffusion. In our
numerical evaluations, we have investigated the topological
properties such as degree distribution and eigenvalues of the
gradient matrix over Erd̈os-Ŕenyi and power-law random
graphs. Rather than the maximum eigenvalue, the mean and
the standard deviation of all eigenvalues are found to be
effective in predicting the rate of diffusion.
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