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Abstract—We examine spreading of epidemics for an anti- round with the pull based anti-entropy algorithm [5]. In the
entropy algorithm in networks with various P2P (peer-to-peer) pull approach, when an infectious peer (holding data to be
overlay topologies. Neighborhood knowledge among peers andgpareqd) picks a susceptible peer (lacking the specific data)
information exchange based on proximity are considered. Our N . S . .
analytical model for Sl (Susceptible-Infected) epidemics involves randomly, thls_trlggers datg dissemination fr_om infectious peer.
equations for calculating the infection probability of each peer in 0 the susceptible. Spreading updates are triggered by suscepti-
consecutive epidemic rounds as a function of the topology. Using ble peers when they are picked as targets by infectious peers.
numerical evaluations, we study the effect of graph properties |n contrast to current study, partial membership knowledge
on dissemination as an aspect of real world P2P overlays. among peers and information exchange based on proximity
have not been considered in [5].

The paper is organized as follows. In the next section, we

Epidemic spreading in a network takes place from infectiogsate the basic definitions related to epidemic dissemination.
nodes to susceptible nodes, and it is modeled as a processHe related work is summarized in Section 3. Section 4 gives
an undirected graph with nodes where every infectious nogige details of the proposed model for topology dependence.

exchanges information with one of its neighbors. ModelinBumerical results are presented in Section 5. Finally, Section
the spread of epidemics by taking into account the topolog-concludes the paper.

ical and nodes’ neighborhood information provides benefits
such as predicting the future spreading behavior, developing T
methods to control epidemics or achieving faster epidemic
information dissemination. In prior work, for SIS (Susceptible In this section, we give information about the types of epi-
- Infected - Susceptible) model, different epidemic thresholdemic models and define epidemic dissemination approaches.
are identified in relation to various topological properties
of the underlying .network [1]., .[2]. 'Such properties includey Epidemic Models
average connectivity, connectivity divergence of the topology
and maximum eigenvalue of the adjacency matrix. SIS modell) SI (Susceptible-Infected)n this model, infectious peers
is applicable in security services in particular to spread @f€ never cured and continue to infect the remaining suscep-
internet worms and e-mail viruses. The epidemic thresholdtigle peers until the infection is spread among the network.
Significant for detecting if the epidemics will Spread to th@"lformation dissemination over a network is defined with Sl
entire network or not. model in [5].
In this study, we investigate the impact of topology on 2) SIS (Susceptible-Infected-Susceptible)this model an
SI epidemic model, which is suitable for the applicationgfectious peer turns to be a susceptible peer after the cure
of content dissemination. Topological properties consider¢@l. But the nodes may become infected again without any
for SIS model as well as graph invariants such as degrestriction.
distribution and eigenvalues are studied as an aspect of rea8) SIR (Susceptible-Infected-Removethis model is used
world P2P networks. In P2P content dissemination systenasrepresent virus/worm propagation in distributed systems [6].
such as BitTorrent [3] and SeCond [4], each peer exchangdsere are two different proposed models for SIR model: In the
information with a group of its neighbors on the overlay. Wérst model, each infectious peer is detected and removed from
introduce a model for calculating the infection probabilitiethe system. In this model, there exist only infectious and sus-
of the nodes as a function of the topology through a genet#ptible peers and the population size decreases dynamically
adjacency matrix and show our numerical results on variodse to removals. In the second model, each infectious peer
power-law and Erds-Renyi random topologies. is cured and gains immunity such that it does not receive
Epidemic spreading is examined by calculating the infectionfection again. In this model, there exist only infectious,
probabilities of all the nodes in the network for every epidemisusceptible and immune peers.

I. INTRODUCTION

. PRINCIPLES ONEPIDEMIC SPREADING



B. Dissemination Algorithms IV. PROPOSEDMODEL

There are two approaches for epidemic dissemination de-OUf model examines epidemic dissemination with pull

scribed as follows. based anti-entropy algorithm and Sl epidemic spreading. The

1) Simple epidemicstn this algorithm, epidemics dissem—puII algorithm is given below in which spreading data is
inate f pie ep facti tg b pt £ it iahb triggered by susceptible peers (pwlling data) when they are
inate from an [ntectious peer 1o a subset of 1S NeIGhbotgy o g 45 gossip destinations by infectious peers. In SI model,
defined by the fanout parameter, in each epidemic rou ﬁ

Since there is no mutual exchanue of state information e infectious peers are never cured and continue to infect the
. : . 9 » maining susceptible peers until the infection is spread over
infectious peer may receive a particular data message multi

times. Hence. this causes redundant message transmission%nnetwork as in information diffusion. The analytical model
' ' 9 We develop in this section is an extension of earlier work

the network. However, simple epdemics has reduced Overh%%%eloped for SIS simple epidemic which is used for spreading

n compgrlson to broad(?astlng/ fIc_;odmg. ) of viruses in particular and a peer becomes susceptible after
2) Anti-entropy (gossip) algorithmsin these algorithms, 5 e 111, [7].

peers in the network choose one or a group of its neighbors

determined by fanout and exchange status information prigigorithm 1 Pull Algorithm

to actual data dissemination. This phase is called gossipingNGge 7 is infectious and nodes is susceptible. When
There exist three approaches for information exchange, namely, picks a neighborS as the gossip target, infection is
pull, push and hybrid, as particular models of anti-entropy [5]. triggered:

In anti-entropy algorithms, information carried on each peer | After state exchange via gossif,requests missing data
is compared prior to information exchange to avoid the pitfall from 1 to initiate the pull action.

of sending unnecessary information as in simple epidemics., S receives (pulls) the data froth

The algorithm causes no overhead but gossiping is a require%' Upon receiving the data§ becomes infectious.
phase.

We derive equations to calculate the infection probability
ll. RELATED WORK of each peer (node) in consecutive epidemic rounds. The

_ ) _ ) _ ) following notation is used:
In earlier work [1] using simple epidemics with SIS model,

the effect of network topology on dissemination is examined.pm :probability that node is infected at timet

A critical ratio for detecting if the epidemics will spread to (;.+ the probability that a nodewill not receive infections
entire network or not is named as epidemic threshold. TRem its neighbors at time

average connectivity in the network is denoted dyk >, n; ‘total number of neighbors of a node that is,

and the connectivity divergence is by k? >, the mean and

the second moment of the degree distribution, respectively. It N )

has been suggested that an epidemic threshotd 4s % nj = ZA(J’ k) @)
for homogenous Efkis-Renyi networks andr = <<,§>> for . _ k=1 _ _

power-law topologies. In [1], a general epidemic threshold dfhere A is the adjacency matrix and/ is the total number

o

T = 31 is suggested for an arbitrary network whexe 4 of nodes.
is the largest eigenvalue of the adjacency matrix. It has been
shown that infection eventually dies out§f< ﬁ where ¢
is the infection rate and is the cure rate. '

In another study again considering SIS [2], strength of

the spreading is examined and the role of the topological \ nj =5
properties over persistence of the epidemics is emphasized.

Whenn represents the total number of nodes in the network, it

has been shown that spreading rapidly takékg(n)) rounds Fig. 1. Node selection

when $ < <1 and it takes2(e") rounds wheng > 1.

In [5], SI model and anti-entropy algorithms are considered The selection process for a nodeby node;j in the pull
assuming that each peer has global knowledge of all peetBproach is illustrated in Fig. 1 where nogléas 5 neighbors
That is, any other peer in the network can be chosen a@laj hence becomes infectious with probablllty 1/5. Clearly,
gossip target. Although this assumption is not realistic, it i§there are multiple neighbors afwhich are infectious, then
a crucial simplification for the exact probability calculationéhe probability of: being selected increases in a given round.
performed in [5]. The probability distribution of the number A nodei: remains susceptible at timewhen either one of
of newly infected peers at each round is derived for puste following occurs
pull and hybrid algorithms. « Nneighbor nodegj is susceptible at timeé — 1, which has

probability 1 — p; ;1



—

« neighbor nodej is infected at timet — 1 but chooses f;(Q) doesn't depend ogy. Finally,
a neighbor other thai, which happens with probability ~

of; 0 1
(nj —1)/n; ACI A [(1—> - (qk)]
. _ _ _ _ Aqx, g, i, ni,
Since the neighbors act independently in anti-entropy model, 1 g
we can write the probability that a nodeemains susceptible Kl - + (njﬂ
at timet as j: neighbor ofi,j#k J J
qi 1 4j
N CONE)
Cit = H {(1 —pjt-1) + <pj7t—1 ( jnA ))} "k Jj: neighbor ofi,j#k " &
j: neighbor ofi 7 . . . )
ask # i whenk is a neighbor ofi. Therefore,
_ H <1 _ pj,tl) .
j: neighbor ofi nj afz(ﬁ) H (1 — n) if k=1
O = 4j: neighbor ofi J
Then, the probability that a nodeis susceptible at time is 0 if k#i
the product of the probability that it is susceptible at tithel  |n matrix notation, we find
and the probability that it does not receive infection from its . )
neighbors. That is, Vf(0) =diag\, ..., An)
with
(1 [ Pji—1 )
L—pip=0-pii1) ][] [1 (nj )} ) = [ a-1my)  i=1,...,N

j: neighbor ofi j: neighbor ofi

We show that epidemic will spread to entire network, ifr'€ary. A: are simply eigenvalues 67 f(0) and0 < A; < 1.
other words the system is stable At= 1, irrespective of the Therefore, thg information will certainly dl_ffuse as exp_ectgq
size of the initial number of infected node, wheftis the The analysis above does not only confirm the applicability
vector of entrieg;, i = 1, ..., n. It is convenient to work with ©f the discrete model (2) for epidemic diffusion, but also

the probability of being susceptible rather than being infecteffovides the tools for evaluating the rate of dissemination in
Letgi; = 1 — p;4. From (2), it is given by connection with the adjacency matrix. Scrutinizing the stability

proof of [8] which states that there exists a constant 1

1 Gt such that . .
womwe I1 (1 5)+ (2] 1l < ut 1ol )

n
j: neighbor ofi J .
we see thatu can be chosen as a perturbatipx] + € of

The probability that nodé is still susceptible at time can be (€ Maximum eigenvalué in magnitude ofVf(0) where
represented with the following discrete non-linear dynamicél> 0 can be chosen arbitrarily small. The largest eigenvalue

svstem:0, = (0, 1) with f — .. f.) where would be binding in the worst case, especially for latge
y Qe =1(Qr-) f=h fa) Therefore, Equation (3) reflects that the dissemination occurs
. 1 " exponentially with a rate depending in general on all the
fi(Q) = qi H Kl — n) + (;)} eigenvalues\;, ..., Ay which are found above in terms of the
J J

j: neighbor ofi row sums (1) of the adjacency matrix. Since (1) corresponds
to the number of degrees of each noglewe explore the
and@ is the vector of entries;, i = 1, ..., n after suppressing effect of the degree distribution as well as the eigenvalues on
the time for simplicity. The system’s being stable@t: 0 the diffusion rate for different random topologies next.

means that the information will certainly diffuse, that is,
P, will converge to T, starting with any initial number of

infectious nodes. Due to [8], pg. 280, the system is stable . ] )

at § = 0 if the eigenvalues ofvf(0) are less tharl in We can|der power-law and Eyd-Renyi graphs as overlay.
absolute value. The gradient matrix is given by the entrid@pologies. Power law graphs have attracted great interest since
[Vf(é)]'k _ 8f4(@)/6qk i,k=1,...,N. Taking the partial the Internet topology exhibits a power law degree distribution.

V. NUMERICAL RESULTS

derivatives, we get A power law graph is one where the number of nodes with
degreek is proportional tok—? for somes3 > 1. For the mean
8f4(Q_’) 1 ” degree to be finite, we negtli> 2. On the other hand, Eéd-
k = H Kl - > + < J )] Rényi graph is of interest as a bench-mark random graph.
8qi ?’Lj nj

Erdos-Renyi is characterized by parametersaand p wheren

is the number of nodes, and there exists an edge between each
since j # i when j neighbor ofi. On the other hand, pair of nodes with probability independently from the other
8fi(cj)/8qk =0 if k # ¢ andk is not a neighbor of since edges. It follows that the average degreéris- 1)p [2].

7+ neighbor ofs



We evaluate epidemic spreading in various power-law

. - 00— o _
graphs using Barddsi power-law graph generator [9]. The ®,
nodes have an average degree which is twice of a free pa- % :
rameter in the generator. The algorithm creates networks with %[ v
istribyti i —2.940.1 : i 3
a distribution following k~2-9%0 . For Erdds-Renyi graphs, 3 o PLround 15 ®
we vary the parametep to obtain different mean degrees. 8 ooff v ERroundis @ Q
. . o] ® PL,round 20
The network size is 1024 and we evaluate 10 graphs of each = v ER. round 20 o
topology by varying the mean degrees. The expected number ¢ .l
. . . . el
of infected nodes is found by adding the entries of the vector § °
P, and we report the percentage of infected nodes in our &
numerical evaluations. The mean degree and the eigenvalues %
of the gradient matrix have been investigated with respect to o
the rate of diffusion. We examine the percentage of infected 75 ‘ ‘ ‘ ‘
. . . 0.36 0.38 0.4 0.42 0.44 0.46
nOdeS at 1@ and 261 roundS Of d|Ssem|nat|0n. At the 15th Mean of eigenvalues of Gradient Matrix
round, infection disseminates significantly on the graph and at
the 20th round the dissemination is almost complete. Fig. 3. Impact of mean of eigenvalues of gradient matrix
As observed in Fig.2, the diffusion rate increases quickly
with the mean degree up to a certain threshold, in this case 10,
then only slightly for larger degrees. EJ:dF_ényi graphs show 10—V VYWY VYV eagy .
faster dissemination when compared with power-law graphs VY o .
. . . [ ]
with the same mean values. Since the rate differs for the o5l Ve
. %
same mean values, we conclude that mean degree is not a g vv
discriminating graph invariant across different topologies. 2 bl 2,
‘;g) 9011 ® PL,round 20 OO
i v ER, round 20 o
S
100 .wv: v.v‘ ° o ® o % ‘::? a5k .
o® v vV v 7 g
951 vV O PL,round 15 sol
é w vV ER,round 15
<} o) ® PL,round 20
% ool R o o © © © Vv ER,round 20 s ‘ ‘ ‘ ‘ ‘ © ‘
g 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
% o Standard Deviation of eigenvalues of Gradient Matrix
% 85 o
g Fig. 4. Impact of standard deviation of eigenvalues of gradient matrix
o
80
O . . . .
s ‘ ‘ ‘ ‘ ‘ since they have smaller standard deviation for both eigenvalue
0 10 2 30 40 50 60 and degree distributions.

Mean Degree

The maximum eigenvalue of the gradient matrix depicted in
Fig.5 shows a similar behavior to mean degree given in Fig.2.
Therefore, maximum eigenvalue alone is not a discriminating

We have observed that the mean of eigenvalues of the gfaetor for different random graphs. Indeed, &seRenyi
dient matrix discriminates the groups of different topologies graphs show faster dissemination when compared with
both 18" and 20" rounds. Erds-Renyi graphs all have a meanpower-law graphs with the same maximum eigenvalues.
about 0.37 while power-law graphs have mean eigenvalue of
0.43 and larger as shown in Fig.3.

We report the standard deviation of the eigenvalues in
Fig.4 which distinguishes clearly both between groups We have derived an analytical model for pull type anti-
and within a specific group. Etd-Renyi graphs all have entropy approach for S| epidemic information dissemination.
smaller deviation of eigenvalues compared to power-laWe have assumed neighborhood knowledge among peers
In general, dissemination rate is inversely proportionaind information exchange based on proximity. Our model
to mean and standard deviation of the eigenvalues. \&eplicitly involves overlay topology through the inclusion
have also investigated the standard deviation of the degudeits adjacency matrix. The rate of dissemination is found
distribution. We conclude that Eidd-Renyi graphs show to be related to the adjacency matrix in a nonlinear way.
faster dissemination when compared with power-law graph®wever, we can explicitly compute the gradient matrix of

Fig. 2. Impact of mean degree on diffusion

VI. CONCLUSION
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Fig. 5. Impact of maximum of eigenvalues of gradient matrix

the function that governs the dynamics of diffusion. In our
numerical evaluations, we have investigated the topological
properties such as degree distribution and eigenvalues of the
gradient matrix over Eids-Renyi and power-law random
graphs. Rather than the maximum eigenvalue, the mean and
the standard deviation of all eigenvalues are found to be
effective in predicting the rate of diffusion.
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