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Abstract— In order to deliver innovative and cost-effective IP multimedia applications over mobile devices, 

there is a need to develop a unified service platform for the future mobile Internet referred as the Next 

Generation (NG) all-IP network. It is convincingly demonstrated by numerous recent studies that modern 

multimedia network traffic exhibits long-range dependence (LRD) and self-similarity. These characteristics 

pose many novel and challenging problems in traffic engineering and network planning. One of the major 

concerns is how to allocate network resources efficiently to diverse traffic classes with heterogeneous QoS 

constraints. However, much of the current understanding of wireless traffic modeling is based on classical 

Poisson distributed traffic, which can yield misleading results and hence poor network planning. Unlike 

most existing studies that primarily focus on the analysis of single-queue systems based on the simplest 

First-Come-First-Serve (FCFS) scheduling policy, in this paper we introduce the first of its kind analytical 

performance model for multiple-queue systems with self-similar traffic scheduled by priority queueing to 

support differentiated QoS classes. The proposed model is based on a G/M/1 queueing system that takes 

into account multiple classes of traffic that exhibit long-range dependence and self-similarity. We analyze 

the model on the basis of non-preemptive priority and find exact packet delay and packet loss rate of the 

corresponding classes.  We develop a finite queue Markov chain for non-preemptive priority scheduling, 

extending the previous work on infinite capacity systems. We extract a numerical solution for the proposed 

analytical framework by formulating and solving the corresponding Markov chain. We further present a 



 2

comparison of the numerical analysis with comprehensive simulation studies of the same system. We also 

implement a Cisco-router based test bed, which serves to validate the mathematical, numerical, and 

simulation results as well as to support in understanding the QoS behaviour of realistic traffic input.  

 Keywords: QoS, 3G, UMTS, GGSN, Self-Similar 

I. INTRODUCTION  

Over the past ten years, the subject of understanding the nature of Internet traffic has sparked considerable 

research activity and it has been shown that Internet traffic exhibits self-similarity and burstiness over a large 

range of time scales. The first study, which triggered the attention of the Internet research community towards 

self-similarity phenomena was based on the measurements of Ethernet traffic at Bellcore [1]. As a result of 

detailed investigations performed on wide-area TCP traffic [2, 3, 4] and earlier studies conducted on LAN traffic 

[5, 6, 7] by using an extensive set of actual traces, it was shown that the distribution of packet interarrivals clearly 

differs from the classical exponential distribution and these studies argued convincingly that both local-area and 

wide-area network traffic appear to be better modeled by using statistically self-similar processes as compared to 

Poisson models. Subsequent statistical analysis has provided much experimental evidence that many other types 

of Internet traffic including WWW traffic [8], VBR video [9] and Signaling System No. 7 [10] also exhibit self-

similarity. In addition, a deeper investigation of Internet traffic has led to the discovery of various properties such 

as self-similarity [11], long-range dependence [12] and scaling behavior at small time-scales [13]. Further 

information on the modeling and analysis of self-similar traffic is found in [14, 15] which cover both theoretical 

and applied aspects of self-similarity and long-range dependence.    

Concurrently, third Generation Systems (3G) are being deployed and growing in popularity. One of the 

distinctive objectives of 3G systems is to provide voice, graphics, video and other broadband services direct to 

the end-user over mobile devices. The Universal Mobile Telecommunication System (UMTS) is one of the major 

proposed standards for 3G, developed by Third Generation Partnership Project (3GPP) [16]. A simplified UMTS 

network architecture is shown in Fig. 1. Evolved from GSM and GPRS, the Core Network (CN) of UMTS 

consists of two service domains, a Circuit Switched (CS) service domain and a Packet Switched (PS) service 

domain, which is of interest in this paper. In the PS service domain, UMTS connects to a Packet Data Network 
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(PDN) through the Serving GPRS Support Node (SGSN) and Gateway GPRS Support Node (GGSN). From the 

UMTS perspective, 3GPP defines four different UMTS QoS classes (conversational, streaming, interactive and 

background) classified and ordered by their delay sensitivity [16]. 

On the other hand, the increasing demand for wireless Internet access and the wide deployment of large 

ubiquitous installed IP infrastructure is imposing a major paradigm shift and pressuring the wireless industry to 

adopt the technologies, services and architectures already present in the Internet and it is now widely recognized 

that IP will be the foundation for next-generation mobile networks [17]. Three main QoS frameworks, IntServ 

[18], DiffServ [19] and MPLS [20] have been standardized in order to provide support for a variety of traffic 

classes with different demands in the Internet. Based on these three IP QoS models, various kinds of all-IP 

architectures have been proposed for 3G wireless networks [21-27]. 3GPP is also leaning towards future wireless 

all-IP network architecture to deliver innovative and cost-effective services (e.g. IP telephony, media streaming 

and multiparty gaming). To support these services over UMTS networks, 3GPP has defined a new domain, IP 

Multimedia Subsystem (IMS) in its latest specification [28]. All these factors have contributed to attract the 

attention and curiosity of researchers towards understanding the nature of wireless IP traffic and recent studies 

have proved that wireless data traffic exhibits self-similar behaviour as well [29-34]. However, most of the 

existing work on network traffic modeling is based on the simplified assumption of Poisson distributed traffic. 

The Poisson models fail to capture the attributes of real network traffic which is long-range dependent and 

statistically self-similar. This necessitates new traffic models with self-similar characteristics for optimal resource 

allocation and bandwidth assignment to heterogeneous traffic classes. In order to offer guaranteed QoS to 

different end-users, there is a need to determine parameters such as queueing delay, packet-loss rate, and 

expected queue length using realistic traffic conditions. We start by giving an overview of related work on 

wireline and wireless IP traffic modeling. Then, we present our proposed self-similar traffic model and highlight 

our contributions to network traffic modeling.  

II.    RELATED WORK 

In this section, we first discuss related work, which has been done in the area of performance evaluation of wired 

IP and Wireless IP networks under self-similar input and then we compare our model with the previous work.   
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A. Related Work on Wireline IP Traffic Modeling 

During the last ten years, much research has been dedicated to Internet traffic modeling based on queueing theory 

in the presence of self-similar traffic [35-44]. Here we discuss some of the available results. In [35], it was shown 

that, with self-similar traffic, shared output buffering provides higher throughput and lower cell loss probability as 

compared to dedicated output buffering strategies at the cost of higher cell delay. An empirical demonstration was 

provided in [36] to prove that long-range dependence is a dominant characteristic for a number of traffic 

engineering problems and has considerable impact on queueing performance beyond its statistical significance in 

traffic measurements. A Markovian Modulated Poisson Process (MMPP) is used in [37] as traffic input to 

compute the numerical results for a two class DiffServ link on the basis of a Matrix Geometric (analytical) 

method. The loss probability of MMPP/D/1 was investigated in [38], where MMPP is generated so as to mimic the 

variance-time curve of the self-similar process over several time-scales. The major weakness of MMPP models is 

that MMPP may require an estimation of a large number of parameters. A neural-based technique was proposed in 

[39] for estimating queueing latency of self-similar packet traffic. To see the impact of self-similarity on the 

performance of DiffServ networks, on OPNET based simulation analysis was done in [40] and performance 

measures in the form of expected queue length were found in relation to the Hurst parameter and server utilization. 

It is hard to offer guaranteed QoS parameters on the basis of such analysis. The offered queueing based results in 

[35-44] lack the capability of offering differential treatment to multiple classes of input traffic because the 

majority of the analysis is based on FIFO scheduling and further the results are asymptotic. To provide an 

overview of work in the area of IP networks performance evaluation, the readers are referred to [45-49]. The major 

drawback of the existing work is that the queueing models considered are not able to capture the self-similar 

characteristics of IP traffic. Furthermore, it is important to note that most of the previous work is focused on the 

analysis of only one type of traffic without discussing its effect on the performance of other kinds of network 

traffic.   

B. Related Work on Wireless IP Traffic Modeling 

Here we discuss the most relevant work in the area of wireless traffic modeling. According to 3GPP, UMTS-to-IP 

QoS mapping is performed by a translation function in the GGSN router/server that classifies each UMTS packet 
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flow and maps it to a suitable IP QoS class. The principle of flows aggregation between end users and GGSN 

leads to an increase of the load on the network elements while moving towards the GGSN. Thus, as can be seen 

from Fig. 1, the GGSN is the node most exposed to self-similarity influence in UMTS [50]. In this paper, a 

FBM/D/1 queueing system has been used to analyze the performance of GGSN while taking into account self-

similar input. The submitted approach enabled the determination of different probabilistic and time characteristics: 

upper and lower bounds of the GGSN service rate, the average queue length in the server buffer and average 

service time of information units.  A QoS framework for heavy-tailed traffic over the wireless Internet is proposed 

in [51]. A simulation study that has been conducted to analyze the performance of the Foreground-Background 

scheduler and Round-Robin (RR) scheduler and the resulting insight shows that a FB scheduler requires much less 

network resources to attain a given QoS. There are no analytical proofs of the simulation results. The aggregated 

connectionless traffic is modeled with Fractional Brownian Motion (FBM) in [52]. This study indicates three 

major contributions (1) characterization of connectionless traffic, (2) bandwidth allocation formula and (3) short-

term traffic prediction. An aggregated traffic model for UMTS is presented in [53]. The key idea is based on 

customizing the batch Markovian Arrival Process (BMAP) such that different packet sizes of IP packets are 

represented by rewards. Modeling and simulation of the Cellular Digital Packet Data (CDPD) network of Telus 

Mobility (a commercial service provider) are performed by using the OPNET tool in [54]. The trace-driven 

simulations with genuine traffic trace exhibiting long-range dependent behaviour are used to evaluate the 

performance of the CDPD protocol. The results indicate that genuine traffic traces, compared to traditional traffic 

models such as Poisson, produce longer queues. The references [55, 56] provide a detailed discussion on 

practically usable traffic models for emerging data applications in GPRS networks. The readers are further referred 

to [57-60] to get an overview of the analysis that has been done in wireless IP traffic modeling. These studies are 

merely based on characterization of wireless traffic and the issue of providing QoS guarantees to different users 

with diverse QoS demands has not been addressed properly.  

C. Our Proposed Self-Similar Traffic Model and its Comparison with Prior Work 

Compared to prior work done for wireless environments, the present study brings a certain level of novelty and 

overcomes the major limitations in the field of traffic modeling (wireline and wireless IP both) by offering 

guaranteed QoS parameters to heterogeneous traffic classes. We are presenting a realistic and novel analytical 
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model by considering two different classes of traffic that exhibit long-range dependence and self-similarity. Our 

model implements two queues based on a G/M/1 queueing system and we analyze it on the basis of priority with 

no preemption. The traffic model considered is parsimonious (with few parameters to match measurements) and 

has been studied in [61]. The model is analytical (solvable when fed into queueing models), flexible (one model 

but many variants for different applications), implement-able (less time consuming for simulation) and exhibits 

absolute accuracy (critical for business case studies). The model is furthermore similar to an on/off process, in 

particular to its variation N-Burst model studied in [62] where packets are incorporated. However, only a single 

type of traffic is considered in [62]. The work in this paper extends on an earlier conference paper from 2006 [63]. 

In this paper, we make the following major contributions to IP traffic modeling (wireline and wireless): 

Interarrival Time Calculations: For the particular self-similar traffic model [61], we calculate the packet 

interarrival time distributions. The distribution of cross interarrival time between different types of packets is 

derived on the basis of single packet results. 

QoS Parameters for Multiple Self-Similar Traffic Classes: We consider a G/M/1 queueing system which takes into 

account two different classes of self-similar input traffic denoted by SS/M/1 and analyze it on the basis of non 

preemptive priority and find exact packet delays and packet loss rate for corresponding self-similar traffic classes. 

For the first time, we present closed form expressions for G/M/1 with priority. 

Embedded Markov Chain Formulation: We develop the finite Markov chain for the non-preemptive priority 

scheduling discipline, extending the previous work on infinite capacity systems and derive the corresponding 

transition probabilities. 

Numerical Solution of Markov Chain: We extract a numerical solution for the above mentioned queueing system 

by numerically formulating and solving the corresponding Markov chain. 

Implementation of Simulator: We implement a discrete event simulator for modeling a G/M/1 queueing system 

under self-similar traffic that is readily extendible to any scheduling discipline. We present a comparison of 

simulator and numerical results to verify our analytical modeling. 

Test bed Implementation: We implement a real traffic generator, which realizes the self-similar traffic model [61] 

described above. We run and implement this traffic generator on a real test bed consisting of Linux workstations 
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and Cisco 1841 modular router. We implement non-preemptive priority scheduling on the Cisco router and find 

the queueing delays for corresponding self-similar traffic classes. The Cisco test bed serves to validate the 

mathematical, numerical and simulation results as well as to support in understanding the QoS behaviour of 

realistic traffic input.  

The rest of the paper is organized as follows. Section III is devoted to the explanation of self-similar traffic model 

with multiple classes and the derivation of interarrival times. Section IV describes the procedure of formulating 

the embedded Markov Chain along with a derivation of the limiting distribution and QoS parameters. In Section V 

we extract the numerical solution of the queueing system by numerically formulating and solving the 

corresponding Markov Chain. In section VI and VII we cover the simulation analysis and test bed implementation 

respectively along with a comparison of analytical, simulation and test bed results. The applications of the model 

are discussed in section VIII. Finally, we conclude the paper with future work in Section IX. 

III. SELF-SIMILAR TRAFFIC WITH SEVERAL CLASSES 

In this section, the self-similar traffic model is reviewed as necessary for the derivation of the interarrival time 

distributions. The interarrival time of packets for a single class is considered in detail. Then, the distribution of cross 

interarrival time between packets of different classes is derived on the basis of single packet results. 

A. Traffic Model 

We use a traffic model that captures the dynamics of packet generation while accounting for the scaling properties 

observed in telecommunication networks [61]. It belongs to a particular class of self-similar traffic models called 

infinite source Poisson models. A common feature in such models is a heavy-tailed distribution for the sessions that 

occur at the flow level and arrive according to a Poisson process. On the other hand, the local traffic injection process 

over each session is a distinguishing feature. The Hurst parameter is implicit in the distribution of the sessions and its 

estimation has been studied recently in [64].  

Our traffic model is long-range dependent and almost second-order self-similar as the auto-covariance function of its 

increments is equal to that of fractional Gaussian noise for sufficiently large time lags. The traffic can be approximated 

by FBM when the rate of packet arrivals tends to infinity [61]. In fact, two other heavy traffic limits are also possible 

depending on the increase of the arrival rate as shown recently in [65, 66]. One of these is a Levy process, which does 
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not account for packet dynamics like FBM. Another limit is a variation of the Telecom process which appears in the 

analysis of another infinite source Poisson model [66]. The Telecom process represents a fluid type traffic injection 

rather than individual packets. Bordered by such various limiting self-similar and/or long-range dependent stochastic 

processes for data traffic, our packet generation model covers a wide range of statistical distributions through the 

choice of its parameters. 

The traffic is found by aggregating the number of packets generated by several sources. In the framework of a Poisson 

point process, the model represents an infinite number of potential sources. Each source initiates a session with a 

heavy-tailed distribution, in particular a Pareto distribution whose density is given by 1)( −−= δδδ rbrg , r > b, where 

δ  is related to the Hurst parameter by 2/)3( δ−=H . The sessions are assumed to arrive according to a Poisson 

process with rateλ . Locally, the packets generated by each source arrive according to a Poisson process with rate 

α throughout each session. The local packet generation process could be taken as a compound Poisson process which 

would then represent packet sizes as well [61, 66].  

 For a single class of traffic, the traffic Y (t) measured as the total number of packets injected in [0, t] can be written as 

                     ))(()( ∑
≤

−∧=
tS

iii
i

StRUtY  

where iU  denotes the local Poisson process over session i, iR  and iS  denote the duration and the arrival time of 

session i, respectively, and the values of i denote an enumeration of the arriving sessions. Here, iR  is positive, iS  is 

real valued and iU  which counts the number of packets of session i is integer valued. As a result, Y(t) corresponds to 

the sum of packets generated by all sessions initiated in [0,t] until the session expires if that happens before t, and until 

t if it does not. We consider the stationary version of this model based on an infinite past. Fig.2 illustrates the 

components of the traffic. The sessions have been arriving for a long time and hence the incremental traffic is 

stationary. The sessions are represented with horizontal line segments with their lengths equal to the ordinate of their 

starting points (s,r). The starting points of the sessions are indicated with a diamond. The vertical segments represent 

the packets which are placed over each session at the time of their arrivals. The component u, which is not represented 
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in Fig.2, is the number of packets over a session. The numbers s, r and u denote the realization of ii RS ,  and iU  for 

session i, respectively.  

In the present study, we exploit the traffic model to represent different classes of traffic streams. Each stream has its 

own parameters and is independent from the other(s). The packet sizes are assumed to be fixed because each queue or 

traffic class corresponds to a certain type of application where the packets have fixed size or at least fixed service time 

distribution.  

The times of arrivals can be visualized in Fig.2 as the projections of the packet arrival times on all sessions to the time 

axis.  Although the local packet generation is assumed to be Poisson over each session, the aggregated packet arrival 

process is clearly not Poisson. This aspect is consistent with the long-range dependence of the packet arrivals. We 

study the distribution of the time between consecutive packets next. In contrast to other infinite source Poisson models 

or on/off processes, our model lends itself to such a computation under certain simplifications.  

B. Interarrival Times for a Single Class 

In this subsection, we obtain the interarrival distribution for a single class of traffic by taking advantage of the specific 

structure of our traffic model. Given that there is a packet arrival at an instant in time, we find the distribution of the 

time until the next arrival T through determining }{ tTP >  for t>0. This is a conditional probability concerning two 

consecutive packets. Therefore, it can be safely used in the calculation of the transition probabilities of the embedded 

Markov chain for G/M/1. Clearly, the times between different pairs of consecutive packets of the same type are not 

necessarily independent. 

Since the traffic input is stationary, the current time can be taken as 0. To find the conditional probability that there is 

no packet arrival in the next t time units, }{ tTP > , this event can be split as  

• A = “Any active sessions that expire after t do not incur any new arrivals” 

• B = “Any active sessions that expire before t do not incur any new arrivals.” 

• C = “No new session arrivals in t or at least one session arrival with no packet arrival in t.” 
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We find the probability that all three events occur at the same time by using the independence of a Poisson point 

process over disjoint sets. The events A and B are independent from C, as the arrival times of the sessions involved in 

each fall into disjoint regions on the s, r plane as shown in Fig.3.  The events A and B are associated with the regions 

},0:),{( strsrsAt −>≤=  and },0:),{( strssrsBt −≤≤−≤= , respectively, and the sessions of the event C 

are in the region }0:),{( tsrsCt ≤≤= . The sessions with starting time and duration in set tA  are active at time 0 

and the expiration time s+r is after t, hence related to the event A. Similar arguments hold for the events B 

and C.   

Recall that all probabilities must be calculated conditionally on the event that a packet arrival occurred at time 0 which 

has an effect on the distribution of the number of active sessions at time 0. Most importantly, the number of active 

sessions must be strictly positive in that case. That is why we interpret the given condition as “there is at least one 

active session at 0” which makes possible the calculation of the first two probabilities.  Namely,  

P( BA∩ | a packet arrival at time 0) ≈  P( BA∩  | at least one active session at time 0) 

It is well known that the number of active sessions that do not and do expire before t are independent Poisson random 

variables [67, pg. 277] with respective means  

)()()()()()(
0

tGtdrrgrdrrgtrdsdrrgA
ttst

t λλλλν −=−== ∫∫∫ ∫
∞∞

∞−

∞

−

             (1) 

∫∫ ∫ +==
∞−

−

−

tst

s
t tGtdrrgrdsdrrgB

0

0

)()()()( λλλν                    (2) 

where g andG  are the density and the complementary distribution functions, respectively, corresponding to Pareto 

distribution. The notation )( tAν  is chosen to indicate that it is the measure of Poisson point process over the 

set tA . Similarly, )( tBν  is for tB . The condition that there is at least one packet alive violates the 

independence of the two parts of the active sessions in a very specific way; their total must be strictly 

positive. Otherwise, we do the probability calculations as in the unconditional case. The last step is to assign 

the probability that no packets arrive in each session, which can easily be found through the local 
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(compound) Poisson process. For the event A,  te α−  is the probability of no packet arrival for each session 

and can be used in the calculation as the sessions and the local packet arrivals are independent from the 

model. For the event B, we need to know the expiration times of the sessions. It is also well known that for 

Poisson arrivals which depart the system after a random amount of time as in an M/G/∞  queue, the 

departure process is also Poisson. Since we have further split the event B by conditioning on the number of 

sessions, the expiration times are now jointly distributed as order statistics over [0,t] [67].  Therefore, the 

probability that no new packet arrivals occur over m active sessions is  

m

mt
t

t
t

mm

tt

m t
eee

t
mdttddttmI m

m

)(
)1(!),(

2

1

0
11

00 α

α
αα

−
−−

−
−

== ∫∫∫ KK         (3) 

Let ρ  denote the probability that there is at least one active session at any time, which can be found through 

the analogy with the steady state system size of an M/G/∞  queue as  Ge µλρ −−= 1  where Gµ  denotes the 

mean of the Pareto distribution.  We can now write  

P( BA∩  | at least one active session at time 0) = 

⎥
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where the term )()( tt BAv ee ν−−  is subtracted to make sure that there is at least one active session. After substituting (3) 

and simplifying, we get 

[ ]1)]/()1)((exp[])(exp[1 )()( −− −−−− teBveAvee t
t

t
t

BAv tt α
ρ

ααν  

The condition that a packet arrival occurred at time 0 has no implication on the event C. Therefore, they are 

independent and we need to find the marginal probability )(CP . The number of session arrivals in [0,t] is Poisson 

with mean tλ . When at least one arrival occurs in [0,t], the time of expiration of such sessions could be within [0,t] or 

later. However, we ignore these exact arrival and departure times when considering the probability of no packet 

arrivals over each session which we write as the Poisson probability te α−  approximately in 
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We have actually compared this expression with a detailed version where the arrival and departure times of the 

sessions are taken into account similar to the analysis of tA  and tB . This yields negligible difference in the 

numerical results. That is why only the simple formula (5) is reported above.   

Now, we can multiply P(C) with the probability in (4) as they are independent and put the expression for ρ  and 

observe Gtt BvAv λµ=+ )()(  to get 
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This can be differentiated and negated to find the probability density function of T. 

C. Interarrival Times for Multiple Classes 

In this subsection, we consider two classes of traffic streams arriving at a router. Let iT  denote the interarrival time of 

class i packets, i=1,2. We will derive the distribution of the interarrival time between a type i and a type j packet when 

both types of packets arrive at the router, for 2,1, =ji .   

Consider the event of consecutive arrivals of class 1 packets. More precisely, we will need to consider the conditional 

event that a type 1 arrival is followed by another type 1 arrival in the Markov chain formulation of the next section. 

Given that a type 1 arrival occurred and the next arrival is again type 1, the density of the time until the next arrival is 

just )(
1

tfT , which is the probability density function of 1T . It can be found through the differentiation of 

complementary cumulative distribution function }{)( 11
tTPtFT >= . Similarly, the density of the time until the next 

arrival of type 2 given that a type 2 arrival occurred is denoted by )(
2

tfT . 

We now find the cross interarrival time density for the arrival of a type 2 packet given that a type 1 arrival occurred. If 

a type 1 packet arrived at the current time, this information has no implication on the number of active sessions of 

class 2. Then, we compute the complementary probability 



 13

{)(
0

2 PtF = no type 2 packets arrive in t time units}         (6) 

where we denote by superscript 0 the fact that the possibility of no type 2 sessions being active is included in the 

derivation of (6). In contrast, the condition that an arrival occurred implies that there is at least one active session, 

when a single class interarrival time distribution is considered. Except for this fact, the derivation is very similar to the 

single class case studied in subsection III-B. As a result, we obtain     

)]1(exp[)( 222
2

)()(0

2
tBvAv eteetF tt αλ −−− −−= )]/()1)((exp[])(exp[ 222

22 teBveAv t
t

t
t ααα −− −  

where )(2 tAν  and )(2 tBν  are defined analogously as in (1) and (2). Note that ρ  does not appear in the denominator 

and there is no subtraction of 1 in the last term as opposed to )(2 tF  since now both m=n=0 is possible in Equation 

(4).  We denote the density function of the time until the arrival of a class 2 packet next by )(0
2 tf , which can be found 

through taking the derivative of the complementary distribution function 0
2F .  

The use of these density functions in the Markov chain of the next section is as follows. Note that for a transition to 

occur from a class 1 arrival to a class 1 arrival; the event “no type 2 packets arrive in t time units” must occur, which 

has probability )(
0

2 tF .  Then, the probability that a transition from a state involving an arrival of type 1 to another 

state also with an arrival of type 1 is found by using the fact that the next arrival will occur at time t with density 

)(
1

tfT  and with the condition that no class 2 packets arrive in the mean time, which happens with probability )(
0

2 tF . 

Hence, we can use the product )()(
0

21
tFtfT  to calculate the complete transition probability from a given state to 

another, when both states have an arrival of type 1. Along the same lines, the density )(0
2 tf  gets multiplied with 

)(
1

tFT  to make sure that a type 1 packet is followed by a type 2 packet and the time until the next arrival is t. Other 

combinations follow similarly. Although it does not denote a density function, we use the notation 
ijTf to denote a 

product of a density and a complementary probability when a class i packet is followed by a class j packet. That is, the 

notation used below is  

)()()(
112

0
2 tFtftf TT = ,   )()()( 0

2111
tFtftf TT = ,    )()()( 0

1222
tFtftf TT = ,   )()()(

221

0
1 tFtftf TT =  
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which are based on the independence of  the two classes of traffic streams. 

IV. SS/M/1 WITH TWO CLASSES: NON-PREEMPTIVE PRIORITY SERVICE  

We consider a model of two queues based on G/M/1 by taking into account two classes of self-similar input traffic 

denoted by SS/M/1, and analyze it on the basis of priority with no preemption. Let the service time distribution have 

rate 1µ  and 2µ  for type 1 and type 2 packets, respectively, and let type 1 packets have priority over type 2 packets. 

A.  SS/M/1 with Two Classes 

The usual embedded Markov chain [68] formulation of 1// MG  is based on the observation of the queueing system 

at the time of arrival instants, right before an arrival. At such instants, the number in the system is the number of 

packets that arriving packet sees in the queue plus packets in service, if any, excluding the arriving packet itself. We 

specify the states and the transition probability matrix P of the Markov chain with the self-similar model for two types 

of traffic.  

 Let }0:{ ≥nX n  denote the embedded Markov chain at the time of arrival instants. As the service is based on 

priority, the type of packet in service is important at each arrival instant of a given type of packet to determine the 

queueing time. Therefore, we define the state space as: 

},},,,{},,{:),,,{( 21212121 +∈∈∈= ZiiIsssaaasaiiS  

where a1, a2 are labels to denote the type of the arrival, s1, s2 are labels to denote the type of the packet in service, i1 ,  i2 

are the number of packets in each queue including a possible packet in service, and I denotes the idle state in which no 

packet is either in service or being queued.                                                                                                  

 Some of the states in the state space S given above have zero probability. For example, ),,0,( 211 sai  is impossible.  

The particular notation is chosen for simplicity, although the impossible states could be excluded from S. Each 

possible state, the reachable states from each and the corresponding transition probabilities will be explained in the 

sequel. 
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B.  States of the Embedded Markov Chain 

The states of the Markov chain and the possible transitions with respective probabilities can be enumerated by 

considering each case. We will analyze the states with non-empty queues and those with at least one empty queue at 

the time of an arrival, separately.   

States ),,,( 21 saii  with 0, 21 ≠ii   and Is ≠ : 

 We can divide the states and transitions into 16 groups because (a, s) can occur 2x2=4 different ways, and the next 

state (p, q) can be composed similarly in 4 different ways as },{, 21 aapa ∈  and },{, 21 ssqs ∈ . We analyze only two 

examples in detail; the others follow similarly. 

Transition from ),,,(),,,( 22211121 sajjsaii →  

Consider the case where a transition occurs from an arrival of type 1 to an arrival of type 2 such that the first arrival 

has seen a type 1 packet in service, 1i  packets of type 1 in the system (equivalently, total of queue 1 and the packet in 

service) and 2i  packets of type 2 in the system (in this case only queue 2). The transition occurs to 1j  packets of type 

1 and 2j  packets of type 2 in the system with a type 2 packet in service. This transition is shown in Fig. 4. Due to 

priority scheduling, an arrival of type 2 can see a type 2 packet in service in the next state only if all type 1 packets 

including the one that arrived in the previous state are exhausted during the interarrival time. That is why 1j  can take 

only the value 0 and exactly 11 +i  packets of type 1 are served. In contrast, the number of packets served from queue 

2, say k, can be anywhere between 0 and 12 −i  as at least one type 2 packet is in the system, one being in service, 

when a new arrival occurs. The transition probability is 

)},,,(|),,,0({ 11212221 saiiXsakiXP nn =−=+  

1{ 1 += iP  served from type 1, k served from type 2 and a type 2 packet remains in service during 12T } 

where we use the fact that the remaining service time of a type 1 packet in service has the same exponential 

distribution Exp( 1µ ), due to the memory-less property of a Markovian service and we denote the interarrival time 

between a type 1 and type 2 arrival by 12T . Therefore, for 1,,0 2 −= ik K   
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)},,,(|),,,0({ 11212221 saiiXsakiXP nn =−=+  

∫ ∫ ∫
∞ ∞

−
++=

0 0

)()()(
122

11
12

t

xt
TSSS dtdxdstfxfsf ki  

where l
mS  : sum of l independent service times of type m packets, m=1, 2, +∈Zl . Note that l

mS  has an Erlang 

distribution with parameters ),( ml µ  as each service time has an exponential distribution, and the sum 21
21
ll SS +  being 

the sum of several exponentially distributed random variables has a hypoexponential distribution. The numerical 

evaluation of these density functions is discussed in the following section. 

Transition from ),,,(),,,( 12211121 sajjsaii →  

This is the case where a transition occurs from an arrival of type 1 to an arrival of type 2 such that the first arrival has 

seen a type 1 packet in service, 1i  packets of type 1 in the system (equivalently, total of queue 1 and the packet in 

service) and 2i  packets of type 2 in the system (in this case only queue 2). The transition occurs to 1j   packets of type 

1 and 2j   packets of type 2 in the system with a type 1 packet in service. This transition is shown in Fig. 5. An arrival 

of type 2 sees a type 1 packet in service in the next state, which indicates that no type 2 packets has been served 

during this transition due to priority scheduling. In contrast, the number of packets served from queue 1, say k, can be 

anywhere between 0 and 1i  as at least one type 1 packet is in the system, the one in service, when a new arrival 

occurs. The transition probability is 

)},,,(|),,,1({ 112112211 saiiXsaikiXP nn =+−=+  

kP{=  served from type 1, no packet served from type 2 and a type 1 packet remains in service during 12T } 

∫ ∫ ∫
∞ ∞

−

=
0 0

)()()(
1211

t

xt
TSS dtdxdstfxfsf k  

 The above two transitions are summarized below. 
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     Initial State                      Reachable State m = (1, 2)                                       Transition Probability 

   ),,,( 1121 saii                      ),,,0( 222 saki − , 1,,0 2 −= ik K                                     ∫ ∫ ∫
∞ ∞

−
++

0 0

)()()(
122

11
12

t

xt
TSSS dtdxdstfxfsf ki  

    ),,,( 1121 saii                                11221 .....1,0),,,,1( iksaiki =+−                                  ∫ ∫ ∫
∞ ∞

−0 0

)()()(
1211

t

xt
TSS dtdxdstfxfsf k  

Similarly, we can enumerate all 16 cases.                       

States ),,,( 21
saii with 1i or 2i equal to 0 or :Is =  

The states when one queue is empty i.e. ( 01 =i  or  02 =i )  or when both queues are empty and the system is idle, 

i.e. ),0( 21 Isii === can be considered similarly. There are a total of 8 such states. The details can be found in [69].  

C.   Limiting Distribution and QoS Parameters 
 
The steady state distribution π as seen by an arrival is obtained by solving ππ =P , where P  is the transition matrix 

of the Markov chain analyzed above. In practice, the queue capacity is limited in a router. So the Markov chain is 

finite and the steady state distribution exists.  

Consider a finite state system with queue capacity n. In a finite system, an arrival can occur at a full queue described 

by the states of the type (n, k, a1, sm) and (k, n, a2, sm). In these cases, the queue is full and the arriving packet is 

dropped. The transitions  for these states are the same as those from a queue which has only one vacant position that is 

filled by the arriving packet, since in the latter, the arriving packet is queued, and the state is now identical to the full-

queue case. Thus, the transitions for (n, k, a1, sm) are the same as those for (n-1, k, a1, sm) and similarly for (k, n, a2, 

sm). 

To the best of our knowledge, no previous analytical expressions are available for the waiting time of a G/M/1 queue 

with priority. Our analysis relies on the limiting distribution of the state of the queue at the arrival instances, which 

can be computed using the analysis given above for our self-similar traffic model. In general, the following analysis is 

valid for any G/M/1 queueing system where the limiting distribution π  at the arrival instances can be computed.  

The expected waiting time for the high priority queue can be found as 
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where J1 and J2 are the respective capacities of each queue. This follows clearly from the fact that an arriving packet 

of higher priority will wait until all packets of the same priority as well as the packet in service are served. Depending 

on the type of the packet in service, we have the constituent expressions in the sum.   

On the other hand, we obtain the expected waiting time for the low priority queue by analyzing the events that 

constitute this delay. The amount of work in the system at any time is defined as the (random) sum of all service times 

that will be required by the packets in the system at that instant. The waiting time of a type 2 packet can be written as:  

....3212 +++= ZZZW                                                     (7) 

where Z1 is the amount of work seen by the arriving packet in the system, Z2 is the amount of work associated with 

high priority (i.e.type 1) packets arriving during Z1, Z3 is the amount of work associated with type 1 packets arriving 

during Z2, and so on. As illustrated in Fig.6, the waiting time of an arriving packet of type 2 is indeed given by the 

total workload building in front of it. The arrows in the figure denote the arrival times of type 1 packets, and all the 

oblique lines have 45 degrees angle with the time axis. In this figure the waiting time is 43212 ZZZZW +++=  as an 

example.   

Let Mj denote the number of type j arrivals over Zi, j=1, 2,…. Then 

L+++= 2
1

1
112

MM SSZW  

where jM
S1  denotes the random sum of Mj independent service times of type 1 packets. Then, 

L+++= ][][][][][[ 211112 ] MESEMESEZEWE  

since the service times and the arrival process are independent. For a stationary packet arrival process, we get 

][][]]|[[][ 11 jjjjj ZEcZcEZMEEME ===  
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due to mentioned independence, where 01 >c  is a constant particular to the arrival process. That is, expectation of the 

number of arrivals in any period of time is proportional to the length of that period because of stationarity in time and 

linearity of expectation. In our stationary self-similar traffic input process, c1 is the expected number of arrivals per 

unit time which can be called the arrival rate, given by the product of the arrival rate of session arrivals, the arrival 

rate of packets over a session, and the expected session length [61].  

Explicitly,  )1/(1 −= δλαδ bc . Hence, the expected waiting time reduces to 

L+++= ][][][][][[ 21111112 ] ZEcSEZEcSEZEWE  

][][
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in view of (7). Therefore, we get 
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which implies that the traffic intensity 
1

1

µ
c

 must be less than 1. Another QoS parameter readily available from this 

description of the system is the packet loss rate (PLR) (due to a full queue) or equivalently the system availability. For 

each class of traffic, this is the sum of the steady-state probabilities of states where an arrival occurs for a full queue: 

( )∑ ∑
= =

=
2

0 2,1
111 ,,,

J

k m
msakJPLR π  

V. NUMERICAL ANALYSIS 

In this section, we present a numerical example demonstrating the application of the above analytical framework. We 

first note that numerically solving the queueing system modeled in the previous section amounts to calculating the 
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transition probabilities of the corresponding Markov chain i.e. generating the transition probability matrix P. The 

steady-state distributionπ  then can be obtained by solving the left-eigenvalue system ππ =P . 

Consider the integrals given in Section IV.B for finding the entries of P. Every transition probability may be directly or 

indirectly calculated from an integral of the form: 

∫ ∫ ∫
∞ ∞

−
+

0 0
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t
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mnllk
           (8) 

where k=1,2, l1=0,…,J1, l2=0,…,J2 and m, n = 1,2. Here J1 and J2 are the respective capacities of queue 1 and queue 2. 

The term )(2
2

1
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xf ll SS +
 in the integral above is a hypo-exponential distribution. It is the density function of the service 

time of l1 packets of type 1 and l2 packets of type 2. It is the sum of two Erlang distributions and its density function 

can be obtained by convolution on the density functions of the two Erlang distributions, namely: 
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Note that if l1 = l2 = 0, then we assume that ( )xxf
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, the Dirac-delta function.  

Thus, the generic transition probability integral (8), above reduces to: 
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We first note that for a system with a finite queue capacity, N = max (J1, J2), the Markov chain formulation leads to a 

state space of size 4N2 + 4N + 2 and thus we have a Markov matrix, P, with O(N4) elements. However, there are only 

O(N2) distinct values of (8). Thus, a significant computational saving can be obtained by pre-computing all O(N2) 

values and filling out the O (N4) elements of the Markov matrix using them. 

To obtain the results described below, we set each queue to a capacity of 10 packets and packet arrivals occur 

according to the process described in section III. For the higher priority class we set the session arrival rate to λ1=8s-1, 

the in-session packet arrival rate to α1 = 50s-1 (characteristic of VoIP traffic) and the service rate to µ1 = 2500s-1. For the 
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lower priority class we set the session arrival rate to λ2=50s-1, the in-session packet arrival rate to α2 = 8s-1 and the 

service rate to µ2 = µ1. In the following sections, we investigate the effects of varying the Hurst parameter (0.5 < H < 1) 

on the delay and packet loss rate QoS parameters. 

For numerical accuracy, we have performed some evaluation experiments to verify that we obtain a stochastic matrix. 

While performing a numerical check of the Markov transition matrix, we have found that the sum of the transition 

probabilities of each row of the matrix is 1, giving evidence that the matrix P is indeed stochastic.  

In fact, the recommended default queue size by Cisco for priority queueing implementation, particularly for real time 

applications such as voice is 20 [70]. Although the computation of P seems to be somewhat costly, it is certainly 

possible to solve a system with 20 packets in a reasonable amount of time. To show the practicability of the approach, 

here we give some timing information. Computing a complete row of  P for  the smaller valued states like (3, 4, a1, s1) 

takes around 60 sec and for higher valued states such as (18, 18, a2, s1) takes about 10-15 min in MATLAB, which can 

be performed clearly in parallel. The running time for a 3-packet system is less than 10 minutes and for a system with 2 

queues 10 packets each, computing P takes up to 3 hours (depending on the value of H) in MATLAB without any 

optimization. This time could be reduced tremendously if directly coded for example in a language such as C by 

eliminating the overhead time caused by the tools of MATLAB. On the other hand, much effort has been dedicated to 

solve for the stationary distribution of large Markov chains over the recent years. The current state of the art enables 

solving a Markov chain with a billion states using iterative methods [71].  

VI. SIMULATION RESULTS 

In this section, we explain the simulation results and present a comparison with the numerical analysis, which serves 

to validate the analytical modeling.  First of all, we provide some comprehensive details about simulation framework 

followed by accuracy considerations and comparison of simulation and numerical results. 

A.  Simulation Framework 

A comprehensive discrete-event simulator for queueing systems was built to understand and evaluate the QoS 

behaviour of self-similar traffic. The simulation engine is highly modular by design allowing free customization of the 

traffic generator and the scheduling logic. This allows for the ready evaluation of any scheduling discipline under any 

specific kind of input traffic. 
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The key element for the scheduler logic is the Scheduler class. Here we used the template method design pattern 

[72]. This allows any scheduling algorithm to be loosely coupled but easily integrated, overriding the existing 

program skeleton. PriorityScheduler was actually implemented to analyse the corresponding QoS behaviour. 

A traffic generator was also written, which implements the traffic model described in Section III. This generator may 

also be readily over-ridden by another traffic model. 

A number of other associated classes were written to facilitate program function and accuracy. These include: 

• Simulation. This class served as the simulation engine – moving time forward and updating the event list 

etc. 

• RandomNumber. A class for generating random number with specific distributions including: uniform, 

exponential, Poisson, Compound-Poisson and Pareto. 

• Packet. A class used to store the system state as encountered by each packet. 

• Additionally, a specialist numerical algorithm [73] was implemented for computing the variance to combat 

the numerical instability in the aggregation of the QoS statistics. 

The QoS results from the simulation studies along with their corresponding theoretical values are presented in the next 

subsections. 

B.  Accuracy Considerations 

Getting accurate results from simulating the traffic model discussed in Section III requires attention. The numbers of 

packets are directly simulated rather than the inter-arrival time distributions. We discuss the related issues here. 

One issue arises from the infinite past assumption of the traffic model in Section III. This assumption is necessary to 

guarantee stationarity. In simulation however, we are forced to replace ∞−  with a sufficiently large negative number 

say T (< 0). In [61], the expected error (difference) in the number of packets generated over a given interval is 

analyzed, due to the truncation of the infinite past to T. For traffic generated on [0, t] we have: 

( ) ))((
)2)(1(
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δδ

δδ
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NB: 1) The expected error is larger for the highly self-similar version of the traffic model. As H approaches 1 from 

below, δ approaches 1 from above and the expected error becomes very large. 
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2) Note also that for a given constant truncation point T, the error increases linearly as we increase the interval under 

consideration [0, t]. This would indicate that a shorter simulation interval is desirable in terms of traffic model 

accuracy. However, the theoretical values obtained from the analytical modeling represent the QoS parameters of the 

system while in steady-state. It is likely that the queueing system does not reach steady-state for small values of t. 

Thus, for the ideal choice of t, there is a trade-off between traffic model accuracy and reaching the system steady-

state. This trade-off was addressed by qualitative observations in this work. Further investigation into the accuracy of 

the simulation is likely to be of interest. 

Another issue arises from the difficulty of simulating heavy-tailed distributions in general and the Pareto distribution 

in particular. Session durations in our traffic model are governed by a Pareto distribution. Thus being able to 

accurately generate Pareto distributed numbers is important to the accuracy of the simulation study. Figure 7 shows 

expected theoretical mean value of the Pareto distribution versus the values actually obtained from random number 

generation experiments. 95% confidence intervals are also shown. For each of H=0.55, 0.75 and 0.95 we show the 

theoretical mean and 5 points showing the experimental mean. Each (Experimental Mean) point in Fig. 7 represents 

the statistical aggregate mean for approximately the same number of random number generations (RNG) as in the 

simulation results presented following (>105), and so the analysis here has direct relevance to the results. 

We can clearly see the extremely high variance in the data as H approaches 1. In fact, for H=0.95 several points are 

not shown because they were well-off the graph. This is a direct consequence of the infinite variance of the Pareto 

distribution. The problem is particularly acute for H close to 1 as the tail of the distribution is heaviest and we are 

more likely to see extremely large values generated by the RNG. 

As the above discussion shows it is very difficult to obtain accurate results from a simulator generating random 

numbers from a (very) heavy-tailed distribution. The tail is heaviest for H close to 1 and generating accurate 

simulation results proves to be particularly difficult in that range. Gross et al. study a related issue in detail in [72] and 

conclude that care must be taken in simulations involving Pareto distributions as they can lead to large errors due to 

the heavy tail.  

It should also be noted though, that the bulk of empirical evidence [1, 8-9, 74-75] suggests that H ~ [0.7, 0.85] is the 

region of interest in network traffic. Ergo it is this range of values of H that are of primary interest in the following 

results and not the values very close to 1 just discussed. 



 24

Fig. 8 shows a comparison of the numerical and simulation results for the packet loss rate. The results appear to 

validate the modeling. We note the significant increase in the Packet Loss Rate of the lower priority queue as the 

degree of self-similarity increases. 

VII. TEST BED IMPLEMENTATION ON CISCO 1841 SERIES MODULAR ROUTER 

In this section, we describe the interim results of the IP QoS tests running non-preemptive priority scheduling on a 

Cisco Modular Router 1841 and present a comparison with the numerical and simulation results given in the previous 

sections. 

A. Test Bed Description 

A Cisco 1841 Modular Router with Cisco QoS features running Cisco IOS 12.4 was connected to two Linux 

workstations through dedicated 100 Mbps Ethernet links as shown in Fig. 9. We implemented a traffic generator on 

the Sender workstation, which simultaneously generated two different self-similar traffic streams over UDP. We 

implemented two sinks SINK1 and SINK2 on the Receiver workstation to receive the two different classes of traffic 

on different ports.  

B. Cisco 1841 Router Configuration with Priority Queueing 

We implemented Priority Queueing in a Cisco Modular Router 1841 to provide differential treatment to the different 

classes of self-similar traffic. Priority Queueing’s most distinctive feature is its scheduler. It supports a maximum of 

four queues: High, Medium, Normal and Low. If the High queue always has a packet waiting, the scheduler will 

always serve the packets from this queue. On the other hand, if the High queue does not have a packet waiting, but the 

Medium queue does, one packet is taken from the Medium queue – and then the process starts over at the High queue. 

The low queue only gets service if the High, Medium, and Normal queues do not have any packets waiting [70]. Any 

number of queues out of four can be configured on an interface; the scheduler simply serves these configured queues 

and skips others. As we have two kinds of traffic, we only configured two queues; High and Medium at the output 

interface Fa0/1. As shown in Fig. 9, there are two interfaces Fa0/0 (input interface) and Fa0/1 (output interface). We 

need to classify different kinds of traffic at the input interface and assign them to the proper queue at the output 

interface on the basis of destination port number. We briefly cover the configuration steps here: 
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We defined the priority list, classified the traffic at input interface (Fa0/0) and assigned them to the proper queue at 

the output interface (Fa0/1) by executing the following commands: 

priority-list 1 protocol ip high udp 63000 

priority-list 1 protocol ip medium udp 63001 

Next we specified the maximum size of each queue at the output interface: 

priority-list 1 queue-limit 10 10 60 80 

Finally we assigned the priority list 1 to the output interface (Fa0/1) by executing the following command. 

priority-group 1 

C. Time Synchronization between Sending and Receiving Machine 

In order to obtain an accurate measure of the one-way delay through the network, the clocks on the sending and 

receiving machines had to be synchronized. Network Time Protocol (NTP) [76] was used for this purpose, as it meets 

our accuracy requirements and there are numerous readily available implementations. To have accurate time 

synchronization between the sending and receiving machine’s clocks and not to interrupt with the self-similar traffic 

passing through the router, we used dedicated Ethernet ports over a cross-over cable for the NTP connection. We 

assigned an IP address 173.16.10.1 to the sending machine’s ethernet card and an IP address 173.16.20.1 to the 

receiving machine’s ethernet card as detailed in Figure 9. An NTP primary server, or stratum 1, was connected to a 

high precision reference clock and equipped with NTP software. Other computers (stratum 2s), equipped with similar 

software automatically queried the primary server to synchronize their system clocks. We made the sending machine 

as the NTP primary server in our network. The NTP primary server was connected to a high precision reference clock 

(au.pool.ntp.org) to synchronize its system’s clock. Then we executed the following command on the receiving 

machine (which was acting as NTP client in the network and also equipped with NTP software) to synchronize its 

system clock with the primary NTP server:                              

                                                                       ntpdate –u 173.16.10.1 

Further, to achieve real time synchronization between the sender and receiver’s clocks, a small program was written, 

to enable NTP to run as a background process. We executed the following command on the router (which is also the 
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NTP client in our network) in the global configuration mode to synchronize its system clock with the NTP primary 

server:     

                                                                          ntp server 173.16.10.1 

D. Measurement of Queueing Delay for Multiple Classes of Self-Similar Traffic 

All packets in a network experience delay from when the packet is first transmitted to when it arrives at its destination. 

Fig. 9 shows the different kinds of delay a packet experiences from source to destination. We explain them here, 

briefly: 

(1) Serialization Delay: is the time it takes to encode the bits of a packet on to the physical interface and can be 

calculated by dividing the number of bits sent by link speed. 

(2) Propagation Delay: is the time it takes a single bit to get from one end of the link to the other and can be 

calculated by using the formula: 
sm

linklength
/101.2 8×

 

(3) Processing Delay: refers to the time taken by the router to examine the packet at the input interface and 

placing it in the output queue on the output interface 

(4) Queueing Delay: consists of time spent in the queues inside the router—typically just in output queues in a 

router. 

(5) Transmission Delay: is the delay that the scheduler takes to put the packet from output queue on to the link; it 

is same as serialization delay [70]. 

In our delay calculations, we can ignore the processing delay inside the input interface of the router and at the 

receiving machine as this is in order of few microseconds, several orders of magnitude smaller than the expected 

delay. The propagation delay through the network is also negligible and therefore ignored. Compensating for the 

serialization delay at the sending machine and transmission delay at the output interface of the router, we found the 

following queueing delay for the two different classes of self-similar traffic in our test bed experiments (Refer to 

Table 1). Fig. 10 shows the mean delay, in which the test bed results have been plotted with 95% confidence interval 

against numerical and simulation results. 

We see the significant detrimental impact of increasing the Hurst parameter (the degree of self-similarity) on the QoS 

offered. We also note the characteristics of a priority queueing system: as the load increases, we see a significant 
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increase in the delay for the lower priority queue. The slight difference between test bed and numerical results is likely 

due to congestion at the NIC of the Receiver workstation, particularly when self-similarity increases. 

VIII. APPLICATIONS OF THE MODEL 

Here we briefly present the prime applications of the model. With the tremendous growth in data traffic, the 

telecommunication industry is evolving its core networks towards IP technology. An all-IP DiffServ model is widely 

considered to be the most promising architecture for guaranteed QoS provisioning in NG wireless networks. This is 

largely due to its scalability, mobility support and the ability to inter-network heterogeneous radio access networks 

[77]. To transport UMTS services through IP networks without loosing end-to-end QoS provisioning, an accurate and 

consistent QoS mapping is required. According to 3GPP, UMTS-to-IP QoS mapping is performed by a translation 

function in the GGSN router that classifies each UMTS packet flow and maps it to a suitable IP QoS class [78]. Being 

able to accurately model the end-to-end behaviour of different classes of IP traffic (conversational, streaming, 

interactive and background) passing through a DiffServ domain is essential to the guaranteed delivery of various QoS 

parameters. Several queueing tools have been developed that can be implemented in IP routers within different QoS 

domains including Priority Queueing (PQ), Custom Queueing (CQ), Weighted Fair Queueing (WFQ), Class Based 

Weighted Fair Queueing (CBWFQ) and Low-Latency Queueing (LLQ) [70]. This paper specifically considers the QoS 

behaviour of PQ. Work on the other tools is ongoing. Our model is directly applicable to the problem of determining 

the end-to-end queueing behavior of IP traffic through both Wired and wireless IP domains. Modeling accuracy is 

most crucial though, in resource-constrained environments such as wireless networks. For example, our model is 

directly able to analyze the behavior of different QoS classes of UMTS traffic (which have been proven statistically 

self-similar and long-range dependent) passing through a DiffServ domain, in which the routers implement priority 

queueing. The model enables tighter bounds on actual behaviour so that over-provisioning can be minimized. It also 

enables translations of traffic behaviour between different kinds of QoS domains so that it is possible to map 

reservations made in different domains to provide session continuity. We have jointly considered traffic engineering 

and QoS issues. The fundamental themes of this study span traffic modeling, stochastic analysis and network design. It 

also provides significant insight and guidance for the design of NG-IP based networks. 
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IX. CONCLUSION AND FUTURE WORK 

In this paper, we have contributed to the accurate modeling of wireless IP traffic behavior, by presenting a novel 

analytical model based on a G/M/1 queueing system under different classes of self-similar input traffic. We have 

analyzed it on the basis of non-preemptive priority and derived explicit expressions for the expected waiting time and 

packet loss rate for multiple classes. The accuracy of the model is demonstrated by comparing the numerical solution 

of the analytical modeling to simulation experiments and the actual test-bed results. The present study can be used as a 

guide for the efficient allocation of buffer space and bandwidth for individual traffic classes – with the aim of 

guaranteeing the QoS required by different applications while minimizing excessive allocation. Further, the model 

represents an important step towards the overall aim of understanding realistic (under self-similar traffic) end-to-end 

QoS behaviour (in terms of QoS parameters such as delay, jitter and throughput) of multiple traffic classes passing 

through heterogeneous wireless IP domains (IntServ, DiffServ and MPLS). Our future work will analyze the QoS 

performance of different domains implemented with different queueing disciplines such as CQ, LLQ and CBWFQ. We 

plan to develop various models for priority, polling and the combination of polling and priority systems and use 

iterative methods to solve the Markov chains. 
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Figures 

 

 
 

Fig. 1: A Simplified UMTS Network Architecture 
 

 
Fig. 2: Illustration of the traffic process. Horizontal segments represent the sessions, their lengths are determined by r, arrival 
times s are the projections of the diamonds to the horizontal axis and the packet arrivals are indicated by vertical segments over 
the sessions.  
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Fig. 3: Various regions where the arrival times and the length of sessions fall. The oblique lines make a 45º degree angle with the 
s-axis. The session lengths in tA  are large enough that they expire after t. In contrast, the expiration times are before t for those 

sessions in tB . 
 
 
 
 
 

 
 

Fig. 4: An Example of Markov Chain Transition from ),,,(),,,( 22211121 sajjsaii →  
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Fig. 5: An Example of Markov Chain Transition from ),,,(),,,( 12211121 sajjsaii →  

 
 
 
 
 
 
 

 
 

Fig.6: Waiting time of a type 2 packet in terms of Zj’s. 
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The Pareto Distribution: 
Theoretical Mean vs. Experimental Mean
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Fig.7: Shows the theoretical mean of the Pareto distribution vs. that actually obtained through the random number generator for 
H=0.55, 0.75, 0.95. 
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Fig.8: Packet Loss Rate: Numerical vs. Simulation Results 
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Fig. 9: Test Bed Setup 
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Fig. 10: Mean Delay vs Hurst Parameter 
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Queueing Delay H = 0.55 H = 0.75 H = 0.9 
Numerical  

High Priority Queue 
0.5981 ms 0.7370 ms 1.255 ms  

Simulation  
High Priority Queue 

0.74569 ms 0.938621 ms 1.33546 ms 

Test Bed 
High Priority Queue 

0.619245 ms 1.0214684 ms 1.6593448 ms 

Numerical 
Low Priority Queue 

0.9813 ms 2.0652 ms 6.8412 ms 

Simulation 
Low Priority Queue 

1.32639 ms 2.51992 ms 7.09702 ms 

Test Bed  
Low Priority Queue 

0.7704125 ms 2.0657048 ms 7.0052631 ms 

 
 

Table 1: Queueing Delay Results: (Numerical, Simulation and Test Bed) corresponding to different values of Hurst Parameter 
 

 
 
 


