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Abstract

An analytical framework is developed for establishing exact performance measures
for peer-to-peer (P2P) anti-entropy paradigms used in biologically-inspired epidemic
data dissemination. Major benefits of these paradigms are that they are fully dis-
tributed, self-organizing, utilize local data only via pair-wise interactions, provide
eventual consistency, reliability and scalability. We derive exact expressions for infec-
tion probabilities through elaborated counting techniques on a digraph. Considering
the first passage times of a Markov chain based on these probabilities, we find the
expected message delay experienced by each peer and its overall mean as a function
of initial number of infectious peers. Further delay and overhead analysis is given
through simulations and the analytical framework. The number of contacted peers
at each round of the anti-entropy approach is an important parameter for both de-
lay and overhead. These exact performance measures and theoretical results would
be beneficial when utilizing the models in several P2P distributed system and net-
work services such as replicated servers, multicast protocols, loss recovery, failure
detection and group membership management.
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1 Introduction

Self-organization has emerged as a promising paradigm when designing ser-
vices and applications for distributed systems. A self-organizing system con-
sists of a large number of components that function autonomously and interact
via basic and local rules. This paradigm has the potential of being scalable,
robust and fault-tolerant since the individual components do not depend on
centralized mechanisms and they are capable of tolerating the failures of the
other components. The global behavior becomes apparent from the local in-
teractions and such systems are often inspired by biological phenomena.

In this endeavor, biologically-inspired approaches have become an appealing
alternative for building self-organizing P2P applications in distributed settings
as opposed to traditional centralized network mechanisms. An efficient ap-
proach for data dissemination in distributed systems is to utilize biologically-
inspired epidemic algorithms. We investigate variations of the epidemic algo-
rithms used in the context of distributed data dissemination and derive exact
performance measures for them. Epidemic algorithms are fully distributed and
randomized approaches such that every peer in a data diffusion session picks
a (subset of the other) peer(s) randomly for efficient propagation of data, that
happens through periodic rounds. The underlying epidemics theory for the
biological systems study the spreading of infectious diseases through a popu-
lation [1,6]. When applied to a data diffusion application, such protocols have
beneficial features such as scalability, robustness against failures and provision
of eventual consistency.

There are different classes of epidemic processes one of which is referred to as
anti-entropy. The term anti-entropy [7] refers to protocols that detect and cor-
rect inconsistencies in a distributed system by means of continuous epidemic
rounds (or gossiping). The length of each round is larger than the maximum
round-trip time between peers in the system. The round-trip time corresponds
to the duration of a remote procedure call over the links used by the protocol.
In each round, every peer picks another peer at random, and sends its state
information. We study three approaches for data dissemination; namely, pull,
push and push&pull cases as particular models of anti-entropy. Algorithms
and details of these approaches are described in section 3.

In this article, we propose an analytical framework for P2P epidemic anti-
entropy mechanisms. The main contribution of our study is the derivation of
exact expressions for infection probabilities as the data diffusion progresses.
We model the diffusion through a Markov chain which represents the number
of peers informed at each round. The transition probabilities on the chain are
calculated through elaborated counting techniques on a digraph, with no resort
to approximate probability distributions that rely on several independence
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assumptions. Once the transition probability matrix is known exactly, then
the mean delay until a particular peer gets the data, and the expected time
until all peers receive the data, can be computed numerically.

Our preliminary results have been reported in [23] for the exact infection
probability distributions and the associated mean delays. In the present study,
we find the distribution of the dissemination time to the whole system in
addition to its mean. Then, the exact results are compared in depth with the
approximate probability distributions as well as asymptotical delay results.
We further analyze the push approach in the case when each peer contacts
with multiple peers at each round. This speeds up the epidemic diffusion
while producing overhead in the form of duplicate message transmission. A
key contribution of the present study is the extensive evaluation of the degree
of redundancy in data dissemination such as the overhead. Simulations are
performed to verify the latter analytical results qualitatively.

The article is organized as follows. Related work is discussed in the next sec-
tion. In Section 3, our models for the pull, push and push&pull anti-entropy
are explained. The exact diffusion probabilities are derived in Section 4. In
Section 5, the Markov chain formulation and delay computations are given.
Section 6 describes overhead analysis for the push model, and discusses ana-
lytical and simulation results. Finally, Section 7 states the conclusions.

2 Related Work

One of the first studies that applies epidemic methods to computer systems
used the idea for spreading updates in a replicated database [7]. Several suc-
ceeding work utilized epidemic (or sometimes so-called gossip-style, to reflect
rumor propagation in a social network) communication in a variety of contexts
such as large-scale direct mail systems [4], group membership tracking [11],
support for replicated services [19], message garbage collection [13], failure de-
tection [27], loss recovery in reliable multicast [3], and distributed information
management [28]. An overview of epidemic data dissemination is given in [9]
where the focus is on four design constraints namely, membership, network
awareness, buffer management, and message filtering.

In [18], flat and hierarchical gossip-based protocols are evaluated considering
the relationship between reliability of dissemination and system parameters
such as population size, link/node failure rates and fan-out. For gossip proto-
col, a push approach is considered as described in [7]. The way probabilistic
gossip algorithms can be modeled via random graphs are described. Organiz-
ing peers into a hierarchy based on their network proximity is shown to reduce
the network load considerably in comparison to flat gossip.
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Another study [8] is based on the pull approach in the context of a gossip-based
broadcast protocol named lpbcast (lightweight probabilistic broadcast). The
protocol focuses on scalable buffer management and membership management.
In addition to dissemination of event notifications, gossip messages are also
used for propagating digests of notifications and membership information. As
a key result of this study, it has been shown that there is little dependency
between reliability of dissemination and the size of views each member has.

Likewise, [15] proposes a general purpose gossip-based framework for peer-
sampling service which provides each node a random subset of peers to gossip
with. Each peer has a partial view and this view is updated periodically using
gossiping. It has been shown that, in gossip-based membership protocols push-
pull model for communication should be preferred since pull or push only
models can cause partitioning of peers.

Exact as well as asymptotical distributions have been studied for different
epidemic models from anti-entropy. In our prior work [5], pull and push anti-
entropy approaches have been compared through a binomial probability dis-
tribution for information flow where push approach is shown to be superior
in terms of message delays. In [10,14], the epidemic process is defined on a
random graph. In [24], the infection is spread through random contact in a
manner less structured than a random graph and simpler than anti-entropy.

In the file-sharing context, [21] provides analytical bounds for the dissemina-
tion time using the epidemic nature of the file-sharing applications. Although
the dissemination process is optimized in many ways in such applications, the
true diffusion time is found to be close to the analytical bounds. The lower
bound for the dissemination time is calculated by the so-called occupancy dis-
tribution [16] which is exact for the diffusion mechanism described in [21]. This
mechanism is very similar to the push approach described in the present article
with one distinction that brings their diffusion probability formula closer to
that of our pull approach. Since the latter formula is computationally harder
to evaluate, [21] carry on simulations for larger group sizes.

Our study differs from earlier work in the following of aspects. First of all, the
anti-entropy algorithms we use for data dissemination have some differences
from the ones described in [7] proposed for update exchange in a replicated
database. In [7], when a site makes a call to another site in an epidemic round,
in order to resolve differences on an update in the database, these two sites
need to exchange their updates and they both execute the actions for resolving
differences. However, in our algorithms update, or data, is not sent in a digest
message. Instead, identifiers (such as sequence numbers) of the local data
at a peer are put into the digest. Also, actions for resolving differences are
only performed at a peer upon receiving a digest message. If differences in
some data are found, then the receiving peer either pulls data, pushes data
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or performs both push&pull depending on the type of anti-entropy. Sending
digest messages helps to reduce redundant data transmissions. The action of
push, pull or push&pull is performed by the calling site in [7] whereas it is
performed by the gossip receiving peer in our case. Consequently, the push
and pull terms swap in [7] and the present work.

Our pull anti-entropy approach is similar to the one used in Bimodal Multi-
cast [3] for message loss recovery. However, the approach in this study is used
for peer-to-peer data dissemination in contrast to the multicast loss recovery.
What is more, we derive exact diffusion probabilities while previous studies
[3,8,5] provide only approximate expressions. Therefore, the delay computa-
tions of the present study are also exact. We evaluate the mean delay per
peer in addition to the dissemination time for which asymptotic results are
provided in [17,25] to compare push and pull approaches. In [25], push and
pull mechanisms are investigated asymptotically in the context of spreading
multiple messages as in file sharing applications. Our results are consistent
with these asymptotic studies.

3 Model Descriptions

In the anti-entropy process [1], non-faulty peers are always either susceptible
or infectious. According to the terminology of epidemiology, a peer holding a
data or an update it is ready to share is called infectious. If a peer has not yet
received a data, it is called susceptible. Diffusion of data progresses periodically
via rounds of epidemics. At each round, every peer picks randomly fan-out
number of peers, and sends its digest message. A digest message contains the
identifiers (such as sequence numbers) of the data received by the peer. We
study the pull, push and push&pull approaches for data dissemination that
are described next. These approaches execute in a fully distributed manner at
each peer.

Pull Approach: In this approach, spreading data is triggered by suscepti-
ble peers (by pulling data) when they are picked as digest destinations by
infectious peers. Steps involved in the dissemination between two such peers
is depicted in Fig.1(a) for a single a data message. The infectious peer (on the
left) has data labeled A. The infectious peer sends a digest message including
its state information. On receiving digest and comparing it with its local data,
the susceptible peer finds out it lacks A and sends a request for A back to
the infectious. Upon getting request, infectious peer sends a retransmission of
data A which causes the susceptible peer to be infectious for A.

Actions performed at each peer for the pull anti-entropy data dissemination
is given in Algorithm 1. At each epidemic round, every peer picks randomly
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Fig. 1. Model Descriptions

fan-out number of peers and sends its digest (containing the identifiers of
the data messages it has received). In fact, each peer in the system performs
state exchange periodically and concurrently with the others. We define three
events that can occur in a round at a peer, namely digest receipt, request re-
ceipt and retransmission receipt. When a digest message is received by a peer,
it compares the data IDs in the digest with the IDs of its local data. If the peer
determines some data messages that it lacks, then it can request the data from
the digest sender. When a peer gets a data request message, it retransmits the
data requested from its buffer. We call this operation as retransmission to
distinguish it from the original transmission by the data source. Thus, a re-
transmission is done as a result of digest and request transmission in epidemic
rounds, and it is used for reliable data dissemination. When a retransmission
of data is received by a peer, it updates its local buffer with the new data.

Algorithm 1 Pull Anti-entropy Algorithm

Algorithm executed periodically once per epidemic round at each peer p:
for fan-out number of randomly selected peers q do

Send Digest (containing list of p’s data ids) to q
end for
Event(Digest Receipt) from peer r :
Compare Digest of r with p’s local data
if r has data d that p is missing then

Request d from r
end if
Event(Request Receipt) for data d from peer q :
Retransmit d to q
Event(Retransmission Receipt) for data d :
Update p’s local data with d

Push Approach: When a susceptible peer picks an infectious peer and sends
its digest, this would trigger data dissemination (by pushing data) from infec-
tious peer to the susceptible. Hence, spreading data is triggered by infectious

6



peers when they are selected as digest targets by susceptible peers. Steps in-
volved in the dissemination between two such peers is depicted in Fig.1(b)
where infectious peer (on the left) has data labeled A. The infectious peer on
receiving digest and comparing it with its local data finds out that the digest
owner lacks A and directly retransmits, or pushes data A, which causes the
susceptible to become infectious for A.

Push anti-entropy data dissemination is described in Algorithm 2. Like in the
pull algorithm, at each epidemic round, digest transmission is performed. We
define two events that can occur in a round at a peer, namely digest receipt
and retransmission receipt. Note that different than the pull approach, in the
push approach, no request messages are used. When a peer receives a digest
message, it compares the data IDs in the digest with the IDs of its local data.
If there are data messages that the digest sender lacks, then the retransmits
these data to the digest sender. When a peer receives retransmission of data,
it updates its local buffer with the new data.

Algorithm 2 Push Anti-entropy Algorithm

Algorithm executed periodically once per epidemic round at each peer p:
for fan-out number of randomly selected peers q do

Send Digest (containing list of p’s data ids) to q
end for
Event(Digest Receipt) from peer r :
Compare Digest of r with p’s local data
if p has data d that r is missing then

Retransmit d to r
end if
Event(Retransmission Receipt) for data d :
Update p’s local data with d

Push&pull Approach: This is a hybrid of pull and push approaches de-
scribed above. When a peer sends its digest to a randomly selected peer in
the population, this may trigger data dissemination at both peers. Consider
the case where a peer has data A and the other has data B, as illustrated in
Fig.1(c). When the former selects the latter as the digest target in a given
round, data A and B would be disseminated to the peer that lacks it using
pull and push approaches together. In particular, push&pull would be useful
for delay sensitive applications since it decreases overall delay during data
dissemination at the cost of possible duplicate data transmissions.

Actions performed at each peer for the push&pull anti-entropy data dissemina-
tion is given in Algorithm 3. We define three events that can occur in a round
at a peer, namely digest receipt, request receipt and retransmission receipt. On
receipt of a digest message, a peer compares the data IDs in the digest with the
IDs of its local data. If the peer determines some data messages that it lacks,
then it can request the data from the digest sender. This corresponds to the
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pull process. In addition, if the peer determines some data messages that the
digest sender lacks, then it retransmits these data to the digest sender. This
corresponds to the push process. On receipt of a data request message, a peer
retransmits the data requested from its buffer. On receipt of a retransmission
of data, a peer updates its local buffer with the new data.

Algorithm 3 Push&pull Anti-entropy Algorithm

Algorithm executed periodically once per epidemic round at each peer p:
for fan-out number of randomly selected peers q do

Send Digest (containing list of p’s data ids) to q
end for
Event(Digest Receipt) from any peer r :
Compare Digest of r with p’s local data
if r has a data d that p is missing then

Request d from r
end if
if p has a data d that r is missing then

Retransmit d to r
end if
Event(Request Receipt) for data d from any peer q :
Retransmit d to q
Event(Retransmission Receipt) for any data d :
Update p’s local data with d

For the anti-entropy approaches described above, when the fan-out is 1, there
are no duplicate data messages sent to an already infectious node. On the other
hand, when the fan-out is greater than 1, duplicate retransmissions of data
are possible for the push and push&pull approaches. Duplicates could happen
when multiple infectious peers receive a digest message from a susceptible peer,
and they all retransmit the data that the susceptible lacks. In this study, we
also analyze the overhead formed by the duplicate messages. Note that for the
pull approach, there is no overhead in the case of fan-out greater than 1, since
a susceptible peer would request data only from one of the infectious peers it
becomes aware of.

For the system failures, we consider fail-stop model for peers and receive-
omissions for message losses. Such failures are assumed to be transient. For
instance, if a data transmission to a peer fails due to a receive omission, con-
tinuous epidemic rounds will help to disseminate data. Note that in order to
obtain exact expressions, our simplified model of the analytical framework
does not assume network delays and packet losses. However, our network sim-
ulations used for comparison with analytical findings consider network delays
between peers and also realistic topologies.
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4 Exact Diffusion Probabilities

In this section, we will restrict our attention to the processes of distributing
a single data message with the assumption that fan-out is 1. Therefore, a
peer with a copy of the data message is referred to as infectious; otherwise,
it would be susceptible. A digraph D is a directed graph consisting of a node
set V (D) and an arc set E(D), where each arc is an ordered pair of nodes.
If (u, v) ∈ E(D) then we call (u, v) as an arc with u being the tail and v
being the head. As the anti-entropy protocol proceeds with a request phase
before the actual data transmission, each step of the diffusion process can
be represented by a digraph D where a node corresponds to a peer in the
population and the arcs correspond to the selection of a peer by another.
If node u chooses to communicate with node v, then there will be an arc
with tail u and head v in D. Since fan-out is taken to be 1, the out degree
of each node will be 1 in D as it chooses exactly one node at each step.
The digraph, which describes a realized request phase, also characterizes the
actual data transmission that immediately follows. Exactly how many and
which susceptible peers get infected can be read from this digraph according
to the type of the anti-entropy protocol.

4.1 Derivation of Probability Distributions

Assume there are n peers in the population. It follows that the number of all
possible digraphs with n nodes is (n − 1)n. All of these digraphs are equally
likely for each step of the dissemination process. Therefore, we will count the
number of digraphs that infect i more nodes and take the ratio of this number
with the number of all possible digraphs to find the probability of infecting
i more nodes at each step. Note that if there are k infectious nodes present,
after one step there will be k + i infectious nodes.

Let S be the set of all susceptible nodes and I be the set of all infectious nodes
with |I| = k and |S| = n−k. For simplicity, we will denote arcs with susceptible
heads and infectious tails by IS-arcs, similarly arcs with infectious heads and
susceptible tails, infectious heads and infectious tails, and susceptible heads
and susceptible tails will be represented by SI-arcs, II-arcs, and SS-arcs,
respectively. Note that D is the disjoint union of four subgraphs formed by
IS-arcs, SI-arcs, II-arcs, and SS-arcs.

We will use Stirling numbers of second kind for our calculations. The Stirling
number of second kind, denoted by S(n, k), is defined as the number of all
partitions of a n-element set into k nonempty subsets. The Stirling number of
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second kind satisfy the relation

S(n, k) = kS(n− 1, k) + S(n− 1, k − 1).

Also S(n, k) can be written in closed form as

S(n, k) =
1

k!

k∑

i=0

(−1)k−i

(
k

i

)
in.

For further information on these numbers see [26].

Pull Case: We form the digraph D as above. In the pull case, a susceptible
node s will be infected if and only if there exists an IS-arc in D with the head
s. Therefore, SI-arcs, II-arcs, and SS-arcs will not contribute to the number
of new infectious nodes. Fig.2 (a) illustrates the pull case. We will determine
the number of digraphs representing a step that results in i more infectious
nodes.
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The number of different possible subgraphs formed by SI-arcs and SS-arcs is
(n−1)n−k, since each of the n−k nodes in S can be adjacent to n−1 different
nodes.

Now we need to count the number of different possible digraphs that can be
formed by IS-arcs and II-arcs. Let k1 be the number of IS-arcs. Note that
k1 has to be at least i since each IS-arc infects at most one new node in
S. Also there are

(
k
k1

)
such k1-subsets of I. We have k − k1 II-arcs and the

number of different possible subgraphs formed by these arcs is (k − 1)k−k1 .
Finally we will count the number of different subgraphs that can be formed
by IS-arcs. Among n−k susceptible nodes there are

(
n−k

i

)
different i-subsets

of S that may be infected. There are S(k1, i)i! different ways for k1 nodes to
infect exactly i new nodes since we partition k1 nodes into i subsets where
each subset represents the set of nodes in I that chooses to communicate with
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a specific node in S. Therefore, the number of different subgraphs that can

be formed by IS-arcs and II-arcs is
k∑

k1=i

(
k

k1

)
(k − 1)k−k1

(
n− k

i

)
S(k1, i)i! .

Hence, the probability of infecting i more nodes in the next step is

p(i|k) =

(n− 1)n−k
(

n−k
i

)
i!

k∑

k1=i

(
k

k1

)
(k − 1)k−k1S(k1, i)

(n− 1)n

=

(
n−k

i

)
i!

k∑

k1=i

(
k

k1

)
(k − 1)k−k1S(k1, i)

(n− 1)k
·

where k = 2, 3 . . . , n− 1 and i = 0, 1, . . . , n− k.

When k = 1, we can easily see that p(0|1) = 0 and p(1|1) = 1.

Push Case: In the push case, a susceptible node s will be infected if and
only if there exists a SI-arc with the tail s. Therefore, IS-arcs, II-arcs, and
SS-arcs will not contribute to the number of new infectious nodes.

Fig.2 (b) illustrates the push case. The number of different possible subgraphs
formed by IS-arcs and II-arcs is (n− 1)k. Since i new nodes will be infected

there are i SI-arcs and
(

n−k
i

)
different i-subsets of S. For each SI-arc there are

k different choices for the head of the arc, therefore there are
(

n−k
i

)
ki different

possible subgraphs formed by these arcs. Finally, as there are n−k−i SS-arcs,
the number different possible subgraphs formed by SS-arcs is (n−k−1)n−k−i.
Hence, the probability of infecting i more nodes after this step is

p(i|k) =
(n− 1)k

(
n−k

i

)
ki(n− k − 1)n−k−i

(n− 1)n
=

(
n−k

i

)
ki(n− k − 1)n−k−i

(n− 1)n−k
·

where k = 1, 2, . . . , n− 2 and i = 0, 1, . . . , n− k.

Clearly, when k = n − 1, we get p(0|k) = 0 and p(1|k) = 1. The probability
distribution above can be rewritten as

p(i|k) =

(
n− k

i

) (
k

n− 1

)i (
n− k − 1

n− 1

)n−k−i

(1)

which can now be recognized as binomial distribution with parameters n− k
and success probability k/(n− 1).

Push&pull Case: In the hybrid case of push and pull, a susceptible node s
will be infected if and only if there exists either a SI-arc with the tail s or an
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IS-arc with the head s. Therefore, II-arcs and SS-arcs will not contribute to
the number of new infectious nodes.

Fig.2 (c) illustrates the push&pull case. There are i new infectious nodes and(
n−k

i

)
different i-subsets of S. Let S1 be the set of the tails of SI-arcs with

|S1| = i1. There are
(

i
i1

)
i1-subsets of each i-set. The number of different

possible subgraphs formed by SI-arcs and SS-arcs is

(
n− k

i

)(
i

i1

)
ki1(n−k−

1)n−k−i1 .

Let K1 be the set of nodes that are the tails of the IS-arcs whose heads are in
S \ S1, with |K1| = k1. There are

(
k
k1

)
different ways to choose K1. These k1

arcs will infect i−i1 new nodes and there are S(k1, i−i1)(i−i1)! different ways
to do this. Finally the remaining k− k1 arcs can be chosen in (k− 1 + i1)

k−k1

different ways. Therefore, the number of different possible subgraphs formed
by IS and II-arcs can be calculated as

Θk,i(i1) =
k∑

k1=i−i1

(
k

k1

)
(k − 1 + i1)

k−k1S(k1, i− i1)(i− i1)!.

Hence, the probability of infecting i more nodes in the next step is

p(i|k) =

(
n−k

i

)

(n− 1)n

i∑

i1=0

(
i

i1

)
ki1(n− k − 1)n−k−i1Θk,i(i1)

where k = 2, 3 . . . , n− 2 and i = 0, 1, . . . , n− k.

Now, we will consider the end points. If k = n − 1, then p(0|k) = 0 and

p(1|k) = 1. If k = 1, then p(0|1) = 0 and p(i|1) =

(
n−1

i

)
i(n− 2)n−i−1(n− 1)

(n− 1)n

for all i ≥ 1. To see this; there can be
(

n−1
i

)
different i-subsets of S and i

different possibilities for the head of an SI-arc, call this node u. There are
n− 1 possibilities for the arc with the tail u. The arcs coming out of the rest
of the i − 1 nodes will have heads in I and there is a unique way to do this.
Finally the remaining n − i − 1 arcs can be chosen in (n − 2)n−i−1 different
ways.

For an illustrative comparison, we plot the diffusion probabilities in figures 3
and 4 for k = 25 and k = 75, respectively. Although the mean and variances
vary, all distributions are close to normal distribution for n = 100. Normal
distribution is expected for fairly large group sizes since it is a good approxi-
mation for binomial in the push case. In pull and push&pull cases, the distrib-
utions are close to occupancy distribution which has a Poisson approximation
and hence close to a normal distribution for large n [16].
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Fig. 3. The probability distributions of i more nodes getting infected, for k = 25
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4.2 Comparison with Approximate Results

For the pull approach, we note that binomial probability distribution suggested
in [5,8] are based on approximate arguments and in fact do not represent the
true distribution. In [8], probabilistic broadcast is considered through gossiping
as in [7]. In the pull case, the epidemic spreads by the call of an infectious peer
to a susceptible one. It is adequately argued in [5,8] that the probability of a
fixed susceptible peer’s getting infected is 1−qk with q = 1/(n−1) when there
are k infectious peers. Clearly, q is the probability that an arbitrary infectious
peer does not select the mentioned susceptible peer as the gossip target and qk

is the probability that none of the infectious peers select it. Furthermore, q can
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be written more elaborately as in [3,8] to take into account process and link
failures. Then, a binomial distribution follows if such an infection for the fixed
susceptible happens independently from the other susceptible peers. Under the
implicit assumption of such independence, [5,8] use a binomial distribution.
However, if a particular susceptible peer is chosen as the gossip target by an
infectious peer, it implies that any other susceptible peer has not been chosen
by the same infectious peer. Therefore, the mutual independence of infection
event of each susceptible from another is violated and binomial distribution
serves only as an approximation.

For the push approach, the probabilistic reasoning given in our prior work [5]
turns out to be exact and is essentially the same binomial distribution derived
above. The only difference is that the number of possible nodes among which
an infectious node chooses to communicate has been rounded as n. We restate
the arguments which yields the exact distribution. Assume that there are k
infectious peers and n − k susceptible peers at a given moment. In the push
case, recall that a susceptible member’s selecting an infectious peer is sufficient
for infection. Fix one of the susceptible nodes arbitrarily. The probability that
this susceptible member selects an infectious peer is given by

p =
k

n− 1
(2)

since the susceptible member gossips to one of the n − 1 members due to
f = 1 and only k of them are infectious. Since all susceptible members send
gossip messages independently from each other and in an identical manner,
the number of new infections follow a binomial distribution with parameters
n− k and p by definition. Using the probability of success in (2), we get

Pkj =

(
n− k

j − k

)
pj−k(1− p)n−j (3)

as given in Equation (1) with i = j − k new infections.

For the pull approach, the approximate distributions used in [3,8] are essen-
tially the same with the binomial distribution suggested in [5] since they are
all constructed with similar arguments. The only difference is that the latter
does not take link failures into account for the sake of simplicity. Using these
approximate distributions rather than the exact distribution derived above
has the advantage of simplicity and tractability of computation for large n.
However, they are not accurate and the difference from the exact distribu-
tion cannot be quantified analytically. In Fig.5, we compare the approximate
distribution given in [5] with the exact distribution for the intermediate start-
ing value k = 50 and n = 100. Both distributions are close to a normal
distribution with almost the same mean, but the standard deviation of the
approximate distribution is larger. It is more important to quantify the im-
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Fig. 5. The exact and approximate probability distributions of i more nodes getting
infected, for k = 50 and n=100.

pact of the error of approximation on performance measures such as mean
delay and dissemination time. This will be discussed in the next section. As
for push&pull approach, no approximate distribution has been suggested ear-
lier. It would be good to have at least asymptotical approximations for the
pull and push&pull approaches for large n, and hence express the error of
approximation analytically.

Note that our exact expressions supersede the earlier approximate results with
no further simplifying assumptions. Features such as network delays, packet
losses due to congestion and user heterogeneity are essentially omitted in order
to obtain closed form expressions in the other analytical studies of anti-entropy
mechanisms as well [8,17,21,25]. On the other hand, it is possible to insert a
packet drop probability which is identically the same in the network as in
[3,8] without taking heterogeneity into account. As another aspect of real
systems, the peers could have partial views rather than complete membership
knowledge. However, a thorough incorporation of this feature into a Markov
chain model would make it intractable [8]. In view of these, we construct
the underlying Markov chain for epidemic diffusion to obtain the relevant
performance measures in the following sections.

5 Delay Analysis

Many stochastic models of epidemic processes are based on the fact that the
number of infectious peers, equivalently the number of susceptibles when the
population size n is fixed, forms a Markov chain [1]. In existing models, the
transition probabilities are modeled according to a probability distribution
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or left as rates to be estimated from the network due to the complexity of
the problem. What is accomplished in Sect. 3 is that we have analyzed the
true dynamics taking place at each transition of the Markov chain with no
assumptions on any parameters. Using the analytical expressions derived for
the transition probabilities, we find the message delay in this section. An
important performance measure is the mean delay per user from the user
perspective. On the other hand, the total latency for dissemination to all group
members gives an overall measure for the system. We study both quantities
and compare with the previous asymptotic results in this section.

5.1 Mean Delay

The Markov chain under consideration is {It : t = 0, 1, 2, . . .} where It denotes
the number of infectious processes at time t. The transition probabilities Pkj =
P{It+1 = j |It = k} can be obtained from p(i|k) given in the previous section
by

Pkj = p(j − k|k) j = k, k + 1, . . . , n

where j − k is the number of newly infected peers. Clearly, Pkj = 0 if j < k.

The delay experienced by each peer can be found by considering the first
passage time of It to a specific set of states [5]. Let dij̄ denote the expected
value of the first passage time from state i to the set of states j = {j, j +
1, . . . , n}, for i = 1, 2, . . . , j − 1. If the Markov chain enters the set j̄ by
taking a value m which is strictly greater than j, there will be at least j
infectious peers in the system and the jth infection will occur only at the time
of transition to m. Therefore, we can interpret dij̄ as the expected time for
the jth infection to occur. In other words, it is the mean delay that a member,
who is in the jth position to receive the message, experiences. At any instant,
there is a positive probability that the realization of the delay may be the
same as the mth member experiences for some m > j, in view of the argument
above and due to the discreteness of time in the epidemic model. However,
the delays of jth and mth members will be different on the average.

For each j, we form a set of equations to solve for dij̄ using one step analysis
of the Markov chain. Recall that the transition matrix P is upper triangular.
For j = 2,

d12̄ = 1 + P11d12̄

as the chain has to make at least one transition, equivalent to one gossip
round to enter the states {2, 3, . . .}. If it remains in state 1 which occurs with
probability P11, then the process restarts itself and has to wait d12̄ amount
of time again on the average. As a result, d12̄ = 1/(1 − P11) the mean of a
geometric random variable as expected. Similarly,
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Fig. 6. Peers ordered according to their expected delays given in rounds, for 1, 25
and 75 starting number of infectious peers and n=100.

d13̄ = 1 + P11d13̄ + P12d23̄

d23̄ = 1 + P22d23̄

Solving these equations yields both d13̄ and d23̄. In general for j ≥ 2

dij̄ = 1 +
j−1∑

k=i

Pikdkj̄ i = 1, 2, . . . , j − 1

which is equivalent to the system

(I − Pj)Dj = 1 (4)

where Pj is the upper left j−1×j−1 portion of matrix P , I is the j−1×j−1

identity matrix, Dj = [d1j, d2j, . . . , dj−1,j]
T and 1 is a vector of 1’s. The kth row

of the solution matrix D provides information on the mean delay experienced
by the peers when the initial number of infectious peers I0 is k. In order to find
dkj̄ even for a single k value, one needs to solve the complete set of equations
4. Since P is upper triangular, the system can be solved very efficiently.

The delay experienced by each peer is an important performance measure from
the user perspective. In Fig.6, the peers in the order they receive the message
are plotted against the expected number of rounds for different starting num-
ber k of infectious peers, for k=1,25,75 and n=100. That is, dkj̄ appears in the
x-coordinate for j = k, k +1, . . . , n and I0 = k. Push&pull approach performs
significantly better than the others. Although push approach is only slightly
better than pull case in terms of mean delay when k = 1, its total time to
disseminate to the whole population is much lower than the other. The delay
is clearly lower for push case when k > 1. On the other hand, some peers have
lower expected delay in the course of the information diffusion process when
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Fig. 7. Mean delay per susceptible versus initial number of infectious peers for
n=100.

k = 1 such as the 10th to 15th peers in the order of receiving the message. In
the pull approach, some infections are expected in bursts although the curves
are very close for both pull and push case.

Mean delay experienced per susceptible peer is depicted in Fig.7. In terms of
this performance measure, the pull and push approaches behave similarly for
small k, and the push&pull approach behaves like the push case as k increases
to n.

Table 1
Expected time to dissemination and mean delay (in rounds) when I0 = 1

Time to dissemination Mean delay per peer

n=100 n=200 n=100 n=200

Pull 12.30 14.05 6.76 7.75

Push 9.79 11.03 6.75 7.75

Push&pull 6.53 7.40 4.33 4.96

The advantage of epidemic dissemination, the anti-entropy paradigm in partic-
ular, is its scalability with respect to the population size. In order to demon-
strate scalability, we have tabulated the expected time of dissemination to
the whole population and the mean delay (in number of epidemic rounds) per
peer in Table 1. These values are consistent with the prediction of asymptotical
results for epidemic processes that the delay values increase only logarithmi-
cally as n increases [24]. The computation of formulas for pull and push&pull
approach pose a precision problem. For instance, the transition probabilities
for n = 200 in the pull case have been computed using arbitrary precision
arithmetic. Similar solution is necessary for push&pull approach with larger
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Fig. 8. Dissemination time versus group size starting with I0 = 1 in push approach.

network sizes. As a result, the computation time is prolonged. This problem
is reported also in [21] for the (specified) occupancy distribution that is very
similar to our pull distribution due to similarity of the respective data diffu-
sion mechanisms. In contrast, the push approach is tractable computationally
as well as being more efficient than the pull approach. MATLAB statistics
toolbox can efficiently compute binomial probabilities for so large group sizes
as 10,000. It turns out that binomial probabilities emerging for the push case
is a useful model of epidemic dissemination. See [1,6] for binomial models.
We demonstrate the scalability of dissemination time through the push model
numerically in Fig.8 where the dissemination time indeed increases as the
logarithm of the group size.

Although the binomial distribution is only approximate for the pull approach,
it is computationally tractable for large n. Therefore, it is important to analyze
the impact of the approximations of [3,5,8] on delay. The delays are illustrated
through the expected number of infected processes for each round in [3,8], in
accordance with the Markov chain analysis of [5] and the present work. The
approximate results can be compared with those in Fig.6 for the pull case.
For f = 1, the results given in [5] for n = 100 differs from the exact result of
Fig.6. The total dissemination time is found as 14 rounds in [5], only 2 rounds
more than the exact value which is about 12. The approximate delay can serve
as a conservative estimate in this case. On the other hand, the delay result
of [8] is based on fan-out 3 for the pull case. There are no exact results to
compare with fan-out values greater than 1. Since the analytical delay curve
in [8] matches well with the simulations imitating the analytical model in the
same study, it appears to be a good approximation.
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5.2 Distribution of Dissemination Time

In addition to the mean delay analysis, we can find the distribution of the
dissemination time exactly. The dissemination time T is the time to absorption
to 0 of the Markov chain It, that is when the number of infectious processes
becomes n, equivalently the number of susceptibles become 0. Considering the
transition of the Markov chain, one can easily verify the following expressions
about the distribution of T [22,pg.46]. Denoting P{T = t} by fT (t), the
cumulative distribution function by F (t) and expectation by E, we get

fT (t) = αM t−1v t = 1, 2, . . .

F (t) = 1− αM t1 t = 0, 1, . . .

E[T ] = α(I −M)−11

where α is the row vector of the probability that the chain starts at transient
states 1, . . . , n − 1, again 1 is a vector of 1’s, M is the transient portion of
the transition matrix P and v is the column vector of one step transition
probabilities from the transient states to the absorbing state n as depicted in

P =




M v

0 1


 .

The probability mass functions fT for the three approaches with n = 100 and
starting with I0 = 1 are given in Fig.9. The distributions are clearly discrete
as the unit of time is a round, but the probability points are connected for the
aim of distinguishing the distribution of various approaches visually. Clearly,
the expected dissemination times coincide with the number of rounds given in
Fig.6 corresponding to the last group member, namely 100.

Finding the distribution of the dissemination time T is especially useful for
computing the reliability of dissemination. For instance, in real-time applica-
tions, where there is a deadline of delivery, the probability of meeting this
deadline can be considered as a factor affecting reliability. From Fig.9, we see
that the dissemination occurs in at most 7 rounds with more than 90% prob-
ability with push&pull approach and similar conclusions can be drawn for the
other approaches. As another example, the probability of dissemination time
being less than the time of discarding a message from all buffers of the peers
can be interpreted as the reliability of the system when each peer has a limited
buffer space for keeping previously received messages for retransmission.
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Fig. 9. The distribution of dissemination time for n=100.

5.3 Comparison with Asymptotic Results

The delay of push and pull algorithms have been investigated asymptotically
in the context of transmission of updates to distributed copies of a database
in [17] where the terminology of push and pull follows the descriptions in [7].
Recall that the differences from the present paper are stated at the end of
Section 2. However, the asymptotic analysis is valid also for our anti-entropy
approaches, respectively, as the data dissemination occurs in the same fashion
once the terms are correctly matched. Although network latency is not mod-
eled explicitly, both asymptotic and exact results are useful for comparing the
different cases intrinsically for the same network structure.

As explained in [17], the number of infectious peers grows exponentially until
about n/2 peers are informed in the pull case (push of [17]). At about this time,
the exponential growth stops and the remaining diffusion takes an additional
Θ(ln n) rounds during which the number of susceptible peers decreases by a
constant factor approximately equal to 1−1/e. On the other hand, in the push
scheme (pull of [17]) when the rumor starts with a single peer, that is when
k = 1, it may take some time before this peer is called for the first time by
a susceptible peer. That is why the initial phase of the push case is expected
to proceed slowly for O(ln n) rounds with high probability until about n/2
peers are infected. After this point, push algorithm takes over pull algorithm
as the fraction of susceptible peers roughly squares from round to round. The
so-called shrinking phase is expected to take an additional Θ(ln ln n) rounds.

Our delay results given in Fig.6 confirm these predictions as n = 100 is nu-
merically large enough for the evaluation of the asymptotic expressions. After
the data is disseminated to about half of the peers, in this case 60 or so, the
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remaining time for diffusion to the whole population is indeed about log 100,
rounds for the pull case and log log 100 for the push case. Before the data
reaches about half of the population, the pull approach is expected to dis-
seminate faster for most of the peers as predicted when the initial state I0

is 1. In [17], it is furthermore proved for push&pull approach that the data
is disseminated to all peers in log3 n + O(log log n) rounds for large n. This
bound is not precisely distinguished from the bound O(log n) + Θ(log log n)
which is discussed above for the push approach. However, our analysis shows
that push&pull performs significantly better than the mere push case about
2 log log n rounds in the exact results of Fig.6 and Tab.1. What is more, the
present analysis allows more detailed performance evaluation. We observe that
the push approach is more efficient than pull all throughout the dissemination
when it starts with more than a single peer holding the data, that is, k À 1.
We have been able to compute the mean delay per peer for various starting
states to measure this efficiency, whereas the asymptotic analysis only sug-
gests that the delays before n/2 and after n/2 may compensate each other for
k = 1.

Spreading of multiple messages are investigated in [25] as in file sharing appli-
cations. The total number of pieces to be disseminated explicitly appears in
the analytical expressions derived asymptotically in n. Pull and push conven-
tion is as in the classical random gossip literature [7,17]. The main focus of
this study is on the advantage of file splitting with different approaches if any,
while consistent results with [17] are obtained for no splitting. The fact that
pull approach (push in [25]) is slow in the final stages of dissemination is con-
firmed through the probability bounds derived. A hybrid algorithm is devised
to do pull and push alternating in even and odd rounds slightly different from
our push&pull which allows bidirectional communication in the same round.
Better performance with file splitting is guaranteed in this case with complete
dissemination in at most a multiple of “log n+number of pieces” time.

6 Overhead Analysis for Push Approach

When the fan-out is 1 as in the previous sections, there are no duplicate data
messages sent to an infectious node. In the push&pull case, we neglect the
fact that a member can request the data message through the pull approach
before another member sends the same message through the push mechanism.
Although there may be duplicates in this case, we may assume that in such
a tie situation the member gets the message only by the push approach and
does not request from others. A streamlined push&pull type protocol has
been devised in [25]. However, the duplicates are inevitable when the fan-out
is greater than 1 for the push and push&pull approaches. Such extra messages
or duplicates are called the overhead of an approach. For the pull approach, no
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extra data messages would be sent as the susceptible node will request from
only one of the infectious peers it becomes aware of.

In this section, we study the overhead messages produced by the push ap-
proach for fan-out greater than 1. This is possible due to the simple form
of the distribution function for the push case, namely binomial distribution.
The exact diffusion probability analysis becomes quite complicated for the
push&pull approach for fan-out greater than 1. The results for the push case
will serve as an upper bound for the push&pull case since not all infections
occur due to push mechanism, some are due to pull approach with no dupli-
cates.

6.1 Larger Fan-out Values

In the previous sections, we have analyzed the three anti-entropy approaches
for fan-out parameter f equal to 1. However, we can find the exact dissemi-
nation probability distribution for the push case even for larger fan-out values
because it also turns out to be a binomial distribution as follows. For fan-out
f = 2, 3, . . ., a fixed susceptible peer gossips to f of the n− 1 members where
only k of them are infectious. There is a chance that the peer sends gossip
messages only to the other n− k− 1 susceptible members which may happen
with probability (

n−k−1
f

)
(

n−1
f

)

if f < n− k, that is k < n− f , in which case the peer does not get infected at
this round. Therefore, the probability that a fixed susceptible member selects
at least one infectious peer and hence gets infected can be found as

pf = 1−
(

n−k−1
f

)
(

n−1
f

) (5)

when k < n−f . Then, the probability that the Markov chain It makes a tran-
sition from k infectious peers to j infectious peers is again given by Equation
(3) with the probability of success of (5) when k < n−f as all infectious peers
get infected identically and independently. That is, the transition probabilities
are

Pkj =

(
n− k

j − k

)
pj−k

f (1− pf )
n−j k = 1, . . . , n− f − 1

On the other hand, if f ≥ n−k, that is k ≥ n− f , then the peer gets infected
for sure. Therefore, the transition probabilities are Pkn = 1 and Pkj = 0 for
j = 1, . . . , n− 1 if k = n− f, . . . , n.
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Fig. 10. Expected delays versus fan-out f = 1, . . . , 7 from right to left, starting with
1 infectious peer for n=500

We show the expected delays for different fan-out values in Fig.10 as found
from system (4). It implies qualitatively similar conclusions with those given
in [8,5] based on approximate analysis. That is, the delay decreases for all
members as fan-out increases. For clarity, we have shown only up to f = 7,
the larger fan-out values 8 to 10 show a similar behavior. Here, we use n = 500
for comparison with the simulations given below for the same group size. The
decrease in delay practically stops at larger values of f as also evident from
Fig.11 which shows the dissemination time to the whole group. In this figure,
simulation results with 100 independent replications are also depicted with
approximate 95% confidence intervals which are found by x± 2s/

√
100 where

x and s denote the mean and the standard deviation of the dissemination
times, respectively. In each simulation run, f peers are selected randomly.
They are classified as susceptible and infectious dynamically and the number
of rounds until all peers become infectious are recorded. On the other hand, the
overhead which we study in the next subsection is also expected to increase
as fan-out increases. In real information dissemination, this may cause the
dissemination time to increase for larger values of fan-out. An optimal fan-out
value could exist in this case which would minimize the delay.

6.2 Expected Overhead

For the push algorithm in the case of fan-out greater than 1, a fixed susceptible
peer may receive the same data message from multiple infectious peers due
to the fact that these infectious peers have been selected as gossip targets by
the susceptible one in the same epidemic round. Such extra messages cause an
overhead associated with the push approach. We first find the expected value
of the extra data messages, which will simply be discarded by the receiving
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Fig. 11. Expected dissemination time in rounds versus fan-out starting with 1 in-
fectious peer for n=500. Error bars denote 95% confidence intervals for simulation.

susceptible peer. Then, we can find the expected overhead messages for all
susceptible peers due to their identical behavior. Note that the overhead of
communication investigated in [17] refers to a different quantity. It is the total
number of replicas of the data message generated until complete dissemina-
tion in comparison to a deterministic scheme which would require only n− 1
transmissions from the sender to all other n− 1 peers.

Consider a fixed susceptible peer which gets infected through the push mech-
anism. We will study the cases k < n − f and k ≥ n − f separately as
the infection probability differs. Given that the susceptible got infected, this
could have been achieved by a single data message sent to it or multiple mes-
sages including the duplicates sent by several other infectious peers at most
f in number. The conditional probability of the fixed susceptible getting in-
fected by receiving exactly m messages (given that it is one of the susceptible
peers which gets infected at this round) can be found for k < n − f and
m = 1, . . . , min(f, k) as

pm =

(
k

m

)(
n− k − 1

f −m

)/min(f,k)∑

l=1

(
k

l

)(
n− k − 1

f − l

)
(6)

where the numerator of (6) denotes the number of possible ways to select ex-
actly m from the infectious members and f−m from the susceptible processes,
and the denominator contains all possible combinations for getting infected.
The probability (6) is also that of having m − 1 duplicates. Therefore, the
expected number of duplicates for our fixed susceptible is

µk =
min(f,k)∑

m=1

(m− 1)pm
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which is identically the same for all other susceptible peers. As a result, if the
Markov chain makes a transition from k to j infectious members, the expected
overhead at this transition is given by

Skj = (j − k)µk if k = 1, . . . , n− f − 1

for j = k, k + 1, . . . , n. On the other hand, when fan-out is larger than the
number of susceptible peers, namely k ≥ n − f , the susceptible gets infected
for sure but with an overhead of

αk =
min(f,k)∑

m=f−(n−k−1)

(m− 1)




(
k

m

)(
n− k − 1

f −m

)/ min(f,k)∑

l=f−(n−k−1)

(
k

l

)(
n− k − 1

f − l

)


where we have used the fact that the number of infectious members that
receive push messages must be at least f − (n − k − 1) as the number of
susceptible peers which gossip is n − k − 1, and the limits of the summation
are consistent because k ≤ n− 1 and f ≤ n− 1. Then, the expected overhead
when k ≥ n− f is given by

Qkn = (n− k)αk if k = n− f + 1, . . . , n

since all susceptible members get infected.

The total number of extra messages during the whole dissemination period
will be computed through the first step analysis of the Markov chain. Let vk

denote the total overhead incurring until the end of dissemination, namely the
absorption instant of the Markov chain It to state n, when the initial number
of infectious members is k. For k = 1, . . . , n− f − 1, we have

vk =
n∑

j=k

Pkj(Skj + vj) (7)

since vj is the overhead incurring from state j to n, and Skj is the incremental
overhead when a transition occurs from j to k with probability Pkj. On the
other hand, the overhead for k = n − f, . . . , n is simply vk = Qkn which also
satisfies Equation (7) with Skj replaced with Qkj since vn = 0 and Pkn = 1 in
this case. Therefore, the system (7) can be solved to get all v1, . . . , vn. It is an
upper triangular system given by

(I − P )v = M

where M is the vector defined by Mk =
∑n

j=k PkjSkj if k = 1, . . . , n − f − 1
and Mk = PknQkn if k = n− f, . . . , n.

Fig.12 shows the results for fan-out values 1 to 7 with n = 500. The compu-
tations can be accomplished easily for larger group sizes as well. However, the
combinatorial expression in (6) requires a slight increase of precision during
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Fig. 12. Overhead versus k = 1, . . . , 500 initial number of infectious members for
n=500. Line graphs denote theoretical computations and error bars denote 95%
confidence intervals from simulation for various values of k.

calculations for fan-out 7 and larger. Simulation results verify these calcula-
tions as shown in Fig.12 [29]. The error bars denote approximate 95% con-
fidence intervals which are found by x ± 2s/

√
100 where x and s denote the

mean and the standard deviation of the number of duplicates found in 100
independent simulation runs, respectively. In each run, the random selection
of peers are simulated and the total number of duplicates are counted until
all peers become infectious. The curves get closer for fan-out values 8 to 10,
which are not shown here for better visualization purposes. The dependence
of overhead to fan-out can be also inferred from Fig.12. The total overhead
increases with fan-out as expected. The case of k = 1 is scrutinized in Fig.13
up to f = 10. The increase is quite steady until f = 8 and becomes slower
after that, which is clearly a threshold depending on the network size n = 500.

The oscillating behavior of the curves, which are more emphasized for larger
fan-out values in Fig.12 implies an intriguing relationship of the starting num-
ber of infectious peers with overhead. Starting the dissemination with higher
number of infectious peers helps the dissemination time to be lower as shown in
the previous section when delay due to overhead is neglected. However, Fig.12
indicates that there exist certain states of the number of infectious peers that
cause a high number of duplicates when started with. In real networks, this
could cause a non-trivial dependence of the dissemination time to initial num-
ber of infectious peers. Although unexpected, the oscillations in Fig.12 can
be explained as follows. Consider the case of only one infectious peer to start
with. Even if all other susceptible peers do manage to gossip to the infectious
one in the next round, no duplicates will be generated as only one data mes-
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Fig. 13. Overhead versus fan-out starting with 1 infectious peer for n=500. Error
bars correspond to 95% confidence intervals for simulation.

sage can be sent to each susceptible by the single source. When the number of
infectious peers increase in the system, the probability of duplicates received
by each fixed susceptible peer increases as well. However, the same cannot be
said for the total number of duplicates since the number of susceptible peers
which will receive these duplicates decrease at the same time. Therefore, the
expected overhead even just at the next round is a nontrivial function of the
current state i of the Markov chain illustrated in Fig.14. It could be low in one
state, and high in the other depending on n and the fan-out. What is more, the
oscillating behavior can now be expected from the dynamics. The total num-
ber of duplicates accumulate as expressed in (7) in expected sense, when the
chain moves from one state to another. It is conceivable that the chain is likely
to visit less overhead incurring states until absorption to n when it starts from
some initial states and more overhead when it starts from the others. This is
also due to the non-monotonicity of the transition probability distribution,
which is Binomial with parameters depending on each visited state i at each
step. On the other hand, it may be argued that starting with a state smaller
than a high overhead incurring state such as about 300 in Fig.12 for f = 6,
the chain might eventually visit this high overhead incurring state. But, this
may be with such a low probability that the total number of duplicates turns
out to be low such as for those states about 200. Note that the nonlinearity
observed is intrinsic to the epidemics and not the Markov model because it is
a good abstraction of the true dynamics.

6.3 Comparison with ns-2 Simulations

We have developed a simulation model for the push-based dissemination on
ns-2 network simulator [2], and performed overhead analysis on large-scale
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hierarchical topologies. Our aim of conducting these simulations is to observe
the overhead behavior through realistic network settings. Thus, the network
simulation study serves for qualitative comparison with the analytical results.

Simulations consider realistic network features such as link delays between
peers and topologies. For the hierarchical topologies, we have used several
randomly generated transit-stub graphs produced by gt-itm generator [12].
These topologies consist of interconnected routing domains where each domain
can be classified as either a stub or a transit domain. The network consists of
1500 nodes and the link delays are 2 msec. The number of peers is set to 500
and the node positions are chosen randomly according to uniform distribution
on the network topology. Initially, there exists a single infectious peer in the
system. The duration of the epidemic round is set to 100 msec. The gossip
rounds are synchronous across the peers. A data message is disseminated to
all peers in the system by means of the push approach. We have also repeated
the simulations by setting the link delays to zero in order to approach the
simplified settings of the analytical results. For each setting, average values and
confidence intervals are reported over several independent runs with different
seeds.

We examine the impact of increasing fan-out on the overall number of dupli-
cate messages and dissemination time. Fig.15(a) gives results for the system-
wide overhead in the form of duplicate messages transmitted, as a function
of fan-out. The overhead increases as fan-out increases verifying our analyt-
ical findings reported in Fig.13. Fig.15(b) shows dissemination time to the
entire peer population as a function of fan-out. In our simulations, fully reli-
able data dissemination is achieved. Hence, dissemination times in the graphs
indicate the values when full data dissemination to all peers is completed.
Consistent with the analytical results reported in Fig. 11, the dissemination
time decreases as fan-out increases. In Fig.15, simulations with both link de-
lays/topology effects and no link delays are reported. The results turn out to
be close in both cases. Although we set link delays to zero, the node processing
delays cannot be removed in the underlying ns-2 simulation. Due to such de-
lays, a susceptible peer can gossip more than once before the “first gossiped”
infectious peer pushes the data message. By the same token, we have nonzero
overhead for f = 1. The standard deviation is high among the simulation
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Fig. 15. (a) Overhead versus fan-out; error bars denote 68% confidence intervals (b)
Dissemination time (seconds) versus fan-out; error bars denote 95% confidence in-
tervals. 1 round=100 msec, n=500 on 1500-node topology, starting with 1 infectious
peer

runs due to the variance introduced by the shifts from the delays. We have
performed 10 replications and reported 68% confidence intervals in Fig.15 (a)
for better visualization. Since the standard deviation is lower in dissemination
times, 95% confidence intervals are shown in Fig.15 (b).

Fig.16 shows the results for overhead and dissemination time as the initial
number of infectious peers varies between 1 and 450 when f = 2 and n = 500.
As depicted in Fig.16(a), there is an oscillatory behavior for overhead for
smaller values of the initial number of infectious peers. This phenomenon is
confirmed by the analytical model results of Fig. 12. Likewise, as the number
of initially infectious peers increases, lower dissemination times on the average
are observed as given in Fig.16(b).

7 Conclusions and Future Work

An analytical framework is developed to establish the exact probability dis-
tributions for the pull, push and push&pull data dissemination models of
anti-entropy. This study is the first one deriving exact distributions. In con-
trast, previous studies rely on simplified models of epidemics usually requiring
estimation of several parameters. Our findings show that the binomial model
used previously for pull case is not accurate whereas the model for the push
case is exact. There exists no previous probability model for the push&pull
case, the exact distribution of which is derived in this article.

The exact distributions of anti-entropy models found at the first stage of the
study are put into use through further performance analysis and comparison
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Fig. 16. (a) Overhead versus initial number of infectious peers; error bars denote
68% confidence intervals (b) Dissemination time (seconds) versus initial number of
infectious peers; error bars denote 95% confidence intervals. 1 round=100 msec, for
n=500 on 1500-node topology

in terms of delay and overhead. The results are useful when integrating the
diffusion models in distributed scenarios such as replicated servers, loss re-
covery, failure detection and group membership management. Therefore, it is
important to differentiate the performance of the different paradigms. We have
computed the expected delay of each peer as well as per arbitrary peer exactly,
depending on the initial number of infectious members in the population. The
push&pull approach outperforms pull and push paradigms, and push is better
than the pull case in terms of delay.

Analysis of larger fan-out values are accomplished for the push approach. An-
alytical expressions are derived for transition probability distributions and
expected delays are computed. What is more, a thorough overhead analysis
is given. We have found the expected number of duplicates received until the
end of dissemination starting with an arbitrary number of infectious peers,
analytically. These are verified with simulations which represent the random
selection of peers and the push mechanism through MATLAB computations.
The expected number of duplicates has a decreasing trend as the initial num-
ber of infectious members k increases, but this is not monotone for smaller
k especially in the case of larger of fan-out values. However, the overhead
increases with fan-out as expected for a fixed number of initially infectious
peers. The dissemination time decreases as fan-out increases also as expected.
For comparison with more realistic network scenarios, we have run ns-2 sim-
ulations as well. The average behavior of overhead with fan-out and different
starting number of infectious peers is confirmed.

We have considered dissemination of a single data message. As future work,
characteristics with a bigger volume of content such as in file sharing applica-
tions could also be analyzed. We also plan to consider the partial membership
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knowledge among peers and information exchange based on proximity. The
effect of network topology is another aspect to be included in our framework
[20].
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