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Abstract

Sticky Brownian motion on the real line can be obtained as a weak solution
of a system of stochastic differential equations. We find the conditional
distribution of the process given the driving Brownian motion, both at an
independent exponential time and at a fixed time t > 0. As a classical
problem, we find the distribution of the occupation times of a half-line, and
at 0, which is the sticky point for the process.

Keywords: sticky Brownian motion, resolvent density, Arcsine law, weak
solution

1. Introduction

An important special case of diffusions with boundary conditions is sticky
Brownian motion, defined by means of an infinitesimal generator on the half-
line with a sticky boundary condition at 0 [5]. Ito and McKean [9] provided
a construction of the process as a time-changed reflected Brownian motion.
Ikeda and Watanabe [8] studied such diffusions with boundary conditions as
solutions to stochastic differential equations. A sticky Brownian motion on
the real line, where 0 is not at the boundary, is characterized as a solution
of a system of stochastic differential equations. Recently, both versions have
attracted further research interest motivated by applications [1, 2, 3, 4, 6,
11, 13]. In this paper, we derive the conditional law of the real-valued sticky
Brownian motion at a snapshot in time, given the driving Brownian motion,
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as well as the occupation times at each half-line and 0 based on the results
of [4, 13].

The one-sided, or reflecting, sticky Brownian motion is determined as a
weak solution of the stochastic differential equation

dXt = 1{Xt>0}dBt + θ1{Xt=0}dt (1)

where θ > 0 is the stickiness parameter, with X0 ≥ 0 [13, Eq.(1.1)], [4,
Eq.(3.3) and Thm.5]. In [13], the conditional distribution of Xt given Ft,
where (Ft)t≥0 is the filtration generated by the driving Brownian motion B,
has been found as

P{Xt < x|Ft} = e−2θ(Bt+Lt−x) (2)

where Lt = sup
s≤t
{−Bs ∧ 0}, x ∈ [0, Bt +Lt], and initial condition (X0, B0) =

(0, 0). This remarkable result is verified from the point of view of stochastic
flows in [6]. On the other hand, the two-sided, or global, version of sticky
Brownian motion is described by a system of stochastic differential equations
given by

dXt = 1{Xt 6=0}dBt (3)

1{Xt=0}dt =
1

θ
dl0t (X) (4)

where l0t (X) denotes the local time of X at 0. We will refer to the two-sided
version as the sticky Brownian motion in this paper. It has been recently
shown in [3] and [4] that there exists no strong solution to equations (3) and
(4), but the system admits a weak solution uniquely determining the prob-
ability law of X. Moreover, if (Xt, Bt) solves (3)-(4), then (|Xt|, B̂t) with
B̂t :=

∫ t
0 sgn(Xs)dBs solves (1) as shown in the proof of [4, Thm.5,pg.18-

19]. As a result, |Xt| is a one-sided sticky Brownian motion with the same
parameter θ. Based on this association, the positive and negative parts of
X behave similar to the one-sided sticky Brownian and play a crucial role
in our results.

Our first result is the characterization of the joint distribution of (Xt, Bt)
through their resolvent density as given in Theorem 1. This is then used in
Theorem 2 to derive the conditional law of XT given BT at an independent
exponential time T with parameter λ as

P{XT < x|BT = b} =
(sgn(b− x)

4
+sgn(x)

γ

4δ

)
e−δ|b−x|+γ(|b|−sgn(x)x) +

ix(b)

2
(5)
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where γ2 = 2λ, δ2 = 2λ + 2θγ, and ix(b) = 1{b<x}. We invert the Laplace
transforms involved in (5) to obtain P{Xt < x|Bt = b} in Corollary 1. Our
approach is parallel to [13] by relying on Knight’s theorem. However, we
condition on a single random variable Bt rather than the filtration Ft.

As another result, we derive the distributions of the occupation times of
the sticky Brownian motion in Theorem 3. Our exposure is along the lines
of Brownian motion, for which the celebrated Arcsine law holds [12]. The
counterparts for the one-sided case are derived based on the results of [13]
for finding the distribution of the occupation time at 0. The occupation time
at 0 during [0, 1], A0

1, is nonzero as the process is sticky at 0, and satisfies

P{A0
1 > t} = Erfc(

θt√
2(1− t)

)

for 0 < t < 1. The distribution of the occupation time of the positive axis,
A+

1 , is found as

P{A+
1 > t} = 1− E

[
Erfc

(
−Z2 + Z

√
Z2 + θ2(1− t)
θ
√

2t

)]
which approximates Arcsine law when θ →∞ as expected.

The paper is organized as follows. Section 2 gives the resolvents involved
and the conditional law for the sticky Brownian motion. The occupation
distributions are found in Section 3.

2. Joint Resolvent and Conditional Distribution

In this section, we first obtain some fundamental identities using Sko-
rohod representations, which will also be useful to derive the occupation
time distributions in the next section. Then, we recover the resolvent of the
sticky Brownian motion X found as a weak solution of (3)-(4), with X0 = 0.
As for the main results, we derive the joint resolvent of X and the driving
Brownian motion B, and the conditional law of Xt given Bt for each t > 0.

The occupation times of Xt and their right continuous inverses are de-
fined as follows

A0
t =

∫ t

0
1{Xs=0}ds α0

t = inf{u : A0
u > t} (6)

A+
t =

∫ t

0
1{Xs>0}ds α+

t = inf{u : A+
u > t} (7)

A−t =

∫ t

0
1{Xs<0}ds α−t = inf{u : A−u > t} (8)
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Note that A0
t , A

−
t and A+

t are right continuous and non-decreasing processes
justifying the definition of the corresponding right inverses.

Let P(x,a) and E(x,a) denote the probability law and the expectation, re-
spectively, given the initial condition (X0, B0) = (x, a), x, a ∈ R. We simply
use P and E when (X0, B0) = (0, 0). Let X+ and X− denote the positive
and negative parts of the real-valued random variable X, respectively. The
identities shown in the following lemma will be used in the sequel.

Lemma 1. There exist independent Brownian motions W+
t and W−t such

that

X+

α+
t

= W+
t +

θ

2
A0
α+
t
, X−

α−t
= W−t +

θ

2
A0
α−t

and

A0
α+
t

=
2

θ
sup
s≤t

(−W+
s ) , A0

α−t
=

2

θ
sup
s≤t

(−W−s ) .

Proof. Tanaka formula [12, Thm.VI.1.2] for X satisfying equations (3)-(4)
yields

X+
t =

∫ t

0
1{Xs>0}dBs +

θ

2
A0
t

X−t = −
∫ t

0
1{Xs<0}dBs +

θ

2
A0
t . (9)

As a result of a time change t→ α+
t , we get

X+

α+
t

=

∫ α+
t

0
1{Xs>0}dBs +

θ

2
A0
α+
t

Define

W+
t :=

∫ α+
t

0
1{Xs>0}dBs and W−t := −

∫ α−t

0
1{Xs<0}dBs.

Then, 〈W+
t ,W

+
t 〉 = 〈W−t ,W

−
t 〉 = t by definitions (7) and (8). This implies

that W+ and W− are Brownian motions by Levy’s characterization theorem.
Note that 〈W+

A+
t

,W+

A+
t

〉 = A+
t , 〈W−

A−t
,W+

A−t
〉 = A−t and 〈W−

A−t
,W+

A+
t

〉 = 0.

Therefore, by Knight’s theorem ([12, Thm.V.1.9]) W+
t and W−t are inde-

pendent Brownian motions as A+
∞ = A−∞ = ∞. Furthermore, θ

2A
0
α+
t

is

a continuous and strictly increasing function of α+
t and constant on the

set {t : X+

α+
t

> 0}. Thus, the result follows by Skorohod’s Lemma [12,

Lem.VI.2.1].
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The following lemma gives the resolvent kernel of the sticky Brownian
motion X starting from zero. Although it is available in [7, pg.23], where α0

and analogous definition for the right continuous inverse of the time spent in
R \ {0} are considered, we provide a proof referring to the times spent by X
in the three regions introduced above inspired by the proof of [13, Prop.13]
for one-sided sticky. Our approach emphasizes the two-sided nature of X,
also used in Section 4.

Lemma 2. The resolvent kernel pλ(0, dy) of the sticky Brownian motion X
starting from 0 is given as

pλ(0, dy) =
θ

θγ + λ
e−γ|y|dy +

1

θγ + λ
δ0(dy)

where γ2 = 2λ.

Proof. Take exponentially distributed random times T1, T2 and T3 with rate
λ independently from (X,W ), and define

T = α0
T1 ∧ α

+
T2
∧ α−T3 . (10)

By Lemma 1, (θ/2)A0
α+
t

and (θ/2)A0
α−t

are the running supremums of in-

dependent Brownian motions W+ and W−, respectively. Therefore, A0
α+
T2

and A0
α−T3

are exponentially distributed with rate θγ
2 , where γ2 = 2λ. Note

that T is also exponentially distributed with rate λ independent of X, simi-
lar to the one-sided case given in [13], essentially due to independence of Ti,
i = 1, . . . , 3. Now, we have XT = 0 if and only if T = α0

T1
, which can be true

only if α0
T1
< α+

T2
∧ α−T3 . Since A0

t is a right continuous and nondecreasing

process, if α0
T1
< α+

T2
∧ α−T3 then T1 < A0

α+
T2

∧A0
α−T3

. Thus, we get

P{XT = 0} = P{T = α0
T1}

= P(T1 < A0
α+
T2

∧A0
α−T3

)

=
λ

λ+ θγ
.

For y 6= 0, we consider only y > 0 since on negative axis the calculations
are similar. For XT > 0, we should have T = α+

T2
and this can be possible

only if A0
α+
T2

< T1 ∧ A0
α−T3

. Then, note that X+

α+
T2

is a reflected Brownian

motion and its probability law for y 6= 0 is independent from the level of
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the running supremum of −W+ (or negative of the running infimum of
W+), which is equal to A0

α+
T2

by Lemma 1. This is due to the fact that

the reflected Brownian motion is formed by the excursions of W+ from its
infimum and the excursion measure does not depend on the level of the
last infimum (see e.g. [12, Sec.XII.2]). Moreover, X+

α+
T2

is independent from

A0
α−T3

again by Lemma 1. Therefore, X+

α+
T2

is independent from the event

{A0
α+
T2

< T1 ∧A0
α−T3
}. Then, for y > 0, we have

P{XT ∈ dy} = P{X+

α+
T2

∈ dy,A0
α+
T2

< T1 ∧A0
α−T3
}

= P{X+

α+
T2

∈ dy}P{A0
α+
T2

< T1 ∧A0
α−T3
}

= γe−γy
θγ
2

λ+ θγ
dy =

θλ

λ+ θγ
e−γ|y|dy (11)

where we have used the fact that the distribution of the reflected Brownian
motion at T2 is exponential with parameter γ =

√
2λ. For y < 0, we have

the same expression due to symmetry. The result follows as pλ(0, dy) =
(1/λ)P(XT ∈ dy).

We are ready to find the joint resolvent Vλ of the process (X,B), defined
by

Vλf(x, a) = (1/λ)E(x,a)[f(XT , BT )]

for bounded measurable functions f : R2 → R, where T is an independent
exponential time with parameter λ.

Theorem 1. Let (Xt, Bt) be the solution to stochastic differential equations
(3) - (4) with X0 = 0. Then, there exists a Brownian motion W 0

t such that

Xt +W 0
A0
t

= Bt (12)

and the joint resolvent Vλ of the process (Xt, Bt) is given by

Vλf(x, a) =
1

θ

∫ ∞
−∞

νλ(x, a, 0, b)f(0, b) db+

∫ ∞
−∞

∫ ∞
−∞

νλ(x, a, y, b)f(y, b) dy db

+

∫
{a+y=b+x}

r−λ (x, y)f(y, b)dy

where

νλ(x, a, y, b) =
θ

2δ
e−γ(|y|+|x|)−δ|b−y−a+x|
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with γ2 = 2λ, δ2 = 2λ+ 2θγ, and

r−λ (x, y) = γ−1(e−γ|y−x| − e−γ|y+x|)

which is the resolvent density of Brownian motion killed at 0.

Proof. When X0 = 0, (3) - (4) imply

Xt +

∫ t

0
1{Xs=0}dBs = Bt.

Define W 0
t as

W 0
t =

∫ α0
t

0
1{Xs=0}dBs.

Then, Levy’s characterization and definition of α0
t yield W 0

t is a Brownian
motion and so decomposition (12) is shown.

The resolvent of (X,B) can be derived by similar methods used for the
resolvent kernel of X as in Lemma 2. Recall the definition of T in (10) as
T = α0

T1
∧ α+

T2
∧ α−T3 . Now, we have

A0
T = T1 ∧A0

α+
T2

∧A0
α−T3

(13)

where A0
α+
T2

, A0
α−T3

and T1 are independent exponential random variables with

rates θγ
2 ,

θγ
2 and λ, respectively. The distributions of A0

α+
T2

and A0
α−T3

, to-

gether with their independence follow from Lemma 1. Therefore, A0
T is expo-

nentially distributed with rate λ+θγ. Moreover, A0
α+
T2

, A0
α−T3

, and W 0 are all

independent because W+
t and W−t , and W 0

t are independent Brownian mo-
tions again by Knight’s theorem. It follows that the W 0 is independent of A0

T

given in (13), and W 0
A0
T

is double exponentially distributed with parameter

δ :=
√

2(λ+ θγ), with the probability density function f(x) = (δ/2)e−δ|x|

for x ∈ R.
To find the joint resolvent, we first consider a starting point of the form

(X0, B0) = (0, a). Then, (12) becomes

Xt + a+W 0
A0
t

= Bt

We will consider the events XT = 0 and XT 6= 0 separately. The first event
corresponds to the event T = α0

T1
, whereas the second one occurs only if
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T = α+
T2

or α−T3 . Since T = α0
T1

is equivalent to A0
T = T1, we have

P(0,a){XT = 0, BT ∈ db} = P(0,a){XT = 0,W 0
A0
T
∈ d(b− a)}

= P(0,a){A0
T = T1,W

0
A0
T
∈ d(b− a)}

=
λ

2δ
e−δ|b−a|db

by independence of A0
T and W 0 as explained after (13) above, and T1 being

the minimum of three independent exponential random variables. On the
other hand, when XT 6= 0, it is implicit that T = α+

T2
or α−T3 . Then, for

y > 0 (y < 0), we have

P(0,a){XT ∈ dy,BT ∈ db} = P(0,a){XT ∈ dy,W 0
A0
T
∈ d(b− y − a)}

= P(0,a){XT ∈ dy}P(0,a){W 0
A0
T
∈ d(b− y − a)}

=
λ

2δ
e−γ|y|−δ|b−y−a| dy db

where we have used (11), and the independence of XT and W 0
A0
T

when

T = α+
T2

(α−T3). To see the independence, recall that (W+
t ,W

−
t ,W

0
t ) is a

3-dimensional Brownian motion by Knight’s theorem. Therefore, X+

α+
·

, X−
α−·

and W 0 are independent processes by Lemma 1. Moreover, X+

α+
T2

is indepen-

dent from the event {A0
α+
T2

< T1∧A0
α−T3
} as explained in the proof of Lemma

1 before (11), and these together characterize the distribution of XT . It
follows that XT is independent from W 0

A0
T

, analogous to the one-sided case

given in [13, pg.12].
Now, as Vλf(x, a) = (1/λ)E(x,a)[f(XT , BT )], we get

Vλf(0, a) =

∫ ∫
P(0,a){XT ∈ dy,BT ∈ db}f(y, b)dy db

+

∫
P(0,a){XT = 0, BT ∈ db}f(0, b) db

=
1

θ

∫ ∫
νλ(0, a, y, b)f(y, b) dy db+

∫
νλ(0, a, 0, b)f(0, b) db

where νλ(x, a, y, b) := θ
2δe
−γ(|y|+|x|)−δ|b−y−a+x| is used for brevity of notation.

To find the resolvent of (Xt, Bt) starting from (x, a), x 6= 0, let us define
the time H0 at which Xt hits zero for the first time, and use the strong
Markov property of Xt at H0, the hitting time of X to 0. Since Xt is in
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lockstep with Bt for t ∈ [0, H0], having the same trajectory according to (3)
- (4), the law of the process X during t ∈ [0, H0] is just that of a Brownian
motion started at x and killed at 0. If we define R−λ as the resolvent of
Brownian motion killed at 0, with ψλ(x) = E(x,a)[e−λH0 ] = e−γ|x|, where
γ =
√

2λ, and fx,a(y) = f(y, a+ y − x), we get

Vλf(x, a) = R−λ fx,a(x) + ψλ(x)Vλf(0, a− x)

which follows from the strong Markov property at the hitting time to 0; see
e.g. [7, pg.24] for more details in the one-sided case. Denoting the density
of R−λ with respect to Lebesgue measure by r−λ yields the desired result.

Next, we use the joint resolvent of the process (Xt, Bt) derived in Theo-
rem 1 to obtain the conditional distribution at an independent exponential
time.

Theorem 2. Let (Xt, Bt) satisfy (3)-(4) with initial condition (0, 0) and let
T be exponentially distributed with rate λ independent from (X,B). Then,
we have

P{XT < x|BT = b} =
(sgn(b− x)

4
+ sgn(x)

γ

4δ

)
e−δ|b−x|+γ(|b|−sgn(x)x) +

ix(b)

2

where γ2 = 2λ, δ2 = 2λ+ 2θγ and ix(b) = 1{b<x}.

Proof. For a bounded Borel function g on R2, the resolvent Vλ of (X,B)
satisfies Vλg(0, 0) = E(0,0) g(XT , BT ). In particular, consider

g(y, b) = 1{y≤x}f(b) =: ix(y)f(b)

for a bounded Borel function f on R. On the other hand, the projection
property of conditional expectation implies

E[g(XT , BT )] = E[1{XT≤x}f(BT )] = E[P{XT ≤ x|BT }f(BT )] .

Therefore, if we show that

Vλg(0, 0) = [Vλ(ixf)](0, 0) = [Rλ(exf)](0)

for some ex : R→ R, where Rλ is the resolvent of Brownian motion, we can
conclude that ex(b) = P{XT < x|BT = b} with (X0, B0) = (0, 0). Now, by
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Theorem 1, we get

[Vλ(ixf)](0, 0) =
1

θ

∫ ∞
−∞

νλ(0, 0, 0, b)ix(0)f(b) db

+

∫ ∞
−∞

∫ ∞
−∞

νλ(0, 0, y, b) ix(y)f(b)dy db

= ix(0)
1

2δ

∫ ∞
−∞

e−δ|b|f(b) db

+
θ

2δ

∫ ∞
−∞

∫ x

−∞
e−γ|y|−δ|b−y|f(b) dy db

where νλ(x, a, y, b) = θ
2δe
−γ(|y|+|x|)−δ|b−y−a+x|. Assume x > 0, then

[Vλ(ixf)](0, 0) =
1

2δ

∫ ∞
−∞

e−δ|b|f(b)db+
θ

2δ

∫ ∞
−∞

f(b)

∫ x

−∞
e−γ|y|−δ|b−y|dydb

=
1

2δ

∫ ∞
−∞

e−δ|b|f(b)db+
θ

2δ

∫ ∞
−∞

f(b)

∫ x

−∞
e−γ|y|−δ|b−y|dydb

=
1

2δ

∫ ∞
−∞

e−δ|b|f(b)db

+
θ

2δ

∫ ∞
x

f(b)
(∫ x

0
e−γy−δ(b−y)dy +

∫ 0

−∞
eγy−δ(b−y)dy

)
db

+
θ

2δ

∫ x

0
f(b)

(∫ x

b
e−γy−δ(y−b)dy +

∫ b

0
e−γy−δ(b−y)dy

+

∫ b

−∞
eγy−δ(b−y)dy

)
db

+
θ

2δ

∫ 0

−∞
f(b)

(∫ x

0
e−γy−δ(y−b)dy +

∫ 0

b
eγy−δ(y−b)dy

+

∫ b

−∞
eγy−δ(b−y)dy

)
db

=:

∫ ∞
−∞

1

γ
e−γ|b|e(1)

x (b)f(b)db = [Rλ(e(1)
x f)](0)

where Rλ is the resolvent of Brownian motion and explicitly

e(1)
x (b) = e−δ|b−x|+γ(|b|−x)

(sgn(b− x)

4
+

γ

4δ

)
+
ix(b)

2
. (14)
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For the case x ≤ 0, we have

[Vλ(ixf)](0, 0) =
θ

2δ

∫ ∞
−∞

f(b)

∫ x

−∞
e−γ|y|−δ|b−y|dy db

=
θ

2δ

∫ ∞
x

f(b)

∫ x

−∞
eγy−δ(b−y)dy db

+
θ

2δ

∫ x

−∞
f(b)

(∫ x

b
eγy−δ(y−b)dy +

∫ b

−∞
eγy−δ(b−y)dy

)
db

=

∫ ∞
−∞

1

γ
e−γ|b|e(2)

x (b)f(b)db

= [Rλ(e(2)
x f)](0))

where

e(2)
x (b) = e−δ|b−x|+γ(|b|+x)

(sgn(b− x)

4
− γ

4δ

)
+
ix(b)

2
.

Letting ex(b) = 1{x>0}e
(1)
x (b) + 1{x≤0}e

(2)
x (b), we obtain

E[1{XT<x}f(BT )] = E[ex(BT )f(BT )]

which completes the proof.

Theorem 2 allows us to calculate the conditional distribution of Xt given
Bt, for t > 0, next.

Corollary 1. The conditional distribution of sticky Brownian motion Xt,
given the driving Brownian motion Bt, both staring from zero, is given by

P{Xt ≤ x|Bt = b} =
√

2πt e
b2

2t

[sgn(b− x)

4
f1(x, b, t) ∗ f2(x, b, t)

+
sgn(x)

4
f3(x, b, t) ∗ f4(x, b, t) +

ix(b)

2
f2(x, b, t)

]

11



where ∗ is the convolution operator, and

f1(x, b, t) =
|b− x|√

2πt3
e−

2|b−x|2
4t

−θ|b−x|

+
θ

2
√

2πt3

∫ ∞
√

2|b−x|
ξ e
− ξ

2

4t
− θξ√

2 I1

(
θ

√
ξ

2
− |b− x|2

)
dξ

f2(x, b, t) =
1√
πt
e−
|x|2
2t

f3(x, b, t) =
1

2
√

2πt3

∫ ∞
0

ξe
− ξ

2

4t
− θξ√

2 dξ

f4(x, b, t) =
|x|√
2πt3

e−
√
2|x|2
4t

Proof. Under the initial condition (X0, B0) = (0, 0), we can write the joint
distribution as

P{XT ≤ x,BT ∈ db} = P{XT < x|BT = b}P{BT ∈ db}

=

[
γ

2

(sgn(b− x)

4
+ sgn(x)

γ

4δ

)
e−δ|b−x|−γ|x| +

ix(b)

2

γ

2
e−γ|b|

]
db (15)

where we have used the fact that BT is double exponentially distributed with
parameter γ =

√
2λ as T is exponential with parameter λ. By conditioning

on T , we have

P{XT < x,BT ∈ db} =

∫ ∞
0

P{XT < x,BT ∈ db|T = t}λe−λtdt

=

∫ ∞
0

P{Xt < x,Bt ∈ db}λe−λtdt

Thus, we can obtain P{Xt < x,Bt ∈ db} by Laplace inversion of (15).
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Denoting the Laplace transform operator by Lλ, we get

P{Xt < x,Bt ∈ db} = L−1
λ

(sgn(b− x)

4γ
exp{−δ|b− x| − γ|x|}

)
db

+ L−1
λ

( 1

4δ
sgn(x) exp{−δ|b− x| − γ|x|}

)
db

+ L−1
λ

( ix(b)

2γ
e−γ(|b|)

)
db

=
sgn(b− x)

4
L−1
λ

(
exp{−δ|b− x|}1

γ
exp{−γ|x|}

)
db

+
sgn(x)

4
L−1
λ

(1

δ
exp{−δ|b− x|} exp{−γ|x|}

)
db

+
ix(b)

2
L−1
λ

(1

γ
e−γ(|b|)

)
db

Let the inverse Laplace transforms fi : R2 × [0,∞)→ R be assigned as

f1(x, b, t) = L−1
λ

(
exp{−δ|b− x|}

)
[t] , f2(x, b, t) = L−1

λ

(1

γ
exp{−γ|x|}

)
[t]

f3(x, b, t) = L−1
λ

(1

δ
exp{−δ|b− x|}

)
[t] , f4(x, b, t) = L−1

λ

(
exp{−γ|x|}

)
[t]

Then, the inverse Laplace formula in [10, pp. 978-979] yields the result.

3. Distribution of Occupation Times

In this section, we find the distributions of occupation times of positive
and negative axes by the two-sided sticky Brownian motion. We also find
the distribution of the time spent at 0, which we show to be the same as that
of the one-sided case. The desired distributions will be calculated via the
relation between the two-sided and the one-sided sticky Brownian motions.

We first recover the distribution of the time spent at 0 by the one-sided
sticky Brownian motion, which satisfies Equation (1). This result is cited
in [13], but not given explicitly. For the sake of completeness, we derive the
distribution of both occupation times in the following lemma.

Lemma 3. Let X̄t denote the one-sided sticky Brownian motion satisfying
(1), and let

Ā0
t =

∫ t

0
1{X̄s=0}ds and Ā+

t =

∫ t

0
1{X̄s>0}ds .

13



Then, we have

i) P{Ā0
s < t} = 1− Erfc(

θt√
2(s− t)

)

ii) P{Ā+
s < t} = Erfc(

θ(s− t)√
2t

)

for t ≤ s, where Erfc(z) := 2√
π

∫∞
z e−ξ

2
dξ.

Proof. Let ᾱ+
t = inf{s : Ā+

s ≥ t}. It has been shown in [13] that Ā0
ᾱ+
T

is

exponentially distributed with rate θγ = θ
√

2λ. Formally, we can write

θ
√

2λ e−θ
√

2λx dx = P{Ā0
α+
T
∈ dx} =

∫ ∞
0

P{Ā0
α+
t
∈ dx|T = t}P{T ∈ dt}

=

∫ ∞
0

P{Ā0
α+
t
∈ dx}λe−λtdt.

That is, (1/λ)P{Ā0
α+
T

∈ dx} = Lλ(f(·, x)) where f(t, x) dx = P{Ā0
α+
t

∈ dx}.
The formula [10, (10) p.964] yields

P{Ā0
ᾱ+
t
∈ dx} =

θ
√

2√
πt
e−

θ2x2

2t dx (16)

for x ≥ 0, which is half normal distribution with parameter σ =
√
t/θ.

Recall that t = Ā0
t + Ā+

t for each t > 0. So, the distribution of ᾱ+
t can be

calculated as

P{ᾱ+
t < x} = P{t+ Ā0

ᾱ+
t
< x} = P{Ā0

ᾱ+
t
< x− t}

=

∫ x−t

0

θ
√

2√
πt
e−

θ2y2

2t dy =

∫ x

t

θ
√

2√
πt
e−

θ2(y−t)2
2t dy

in view of (16). Then, the density is given by

P{ᾱ+
t ∈ dy} =

θ
√

2√
πt
e−

θ2(y−t)2
2t dy for y ≥ t

which is also half Normal, but shifted to t. The result i) follows from the
definition of ᾱ+

t since

P{Ā+
s < t} = P{s < ᾱ+

t } (17)

Then, ii) follows from the fact that P{Ā0
s < t} = P{s−Ā+

s < t} = 1−P{Ā+
s ≤

(s− t)}.
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Recall that the occupation times of the sticky Brownian motion have
been defined in equations (6) to (8). Clearly, A+ and A− have the same
distribution, which is given in the following main result of this section. The
distribution deviates from the Arcsine law corresponding to Brownian mo-
tion [12, Thm.VI.2.7]. Although our method of proof is borrowed from that
for Brownian motion, we take into account that A0

t is positive with positive
probability in the sticky case.

Theorem 3. Let X be the sticky Brownian motion satisfying (3)-(4) with
X0 = 0. For 0 < t < 1, the occupation times of X satisfy

i) P{A0
1 > t} = Erfc(

θt√
2(1− t)

)

ii) P{A+
1 > t} = 1− E

[
Erfc

(
−Z2 + Z

√
Z2 + θ2(1− t)
θ
√

2t

)]

for 0 < t < 1, where Z is a standard Gaussian random variable.

Proof. i) The relation between the two-sided and one-sided sticky Brownian
motion has been given in [4]. Through the specific construction of (Xt, Bt)
given in [4, Sec.2] satisfying (3)-(4), the pair (|Xt|, B̂t) satisfies Equation (1)
for the one-sided sticky Brownian motion and equivalently the system

dXt = 1{Xt 6=0}dBt +
1

2
1{Xt>0}dBt (18)

1{Xt=0}dt =
1

2θ
dl0t (X) (19)

by [4, Thm.5]. Note that local time of two-sided sticky Brownian motion Xt

satisfies

l0t (X) = P- lim
ε↓0

1

2ε

∫ t

0
I(−ε ≤ Xs ≤ ε)d〈X,X〉s

= P- lim
ε↓0

1

2ε

∫ t

0
I(0 ≤ |Xs| ≤ ε)d〈X,X〉s,

and local time of one-sided sticky Brownian motion |Xt| is defined as lt0(|X|) =
P- limε↓0

1
ε

∫ t
0 I(0 ≤ |Xs| ≤ ε)d〈Xs, Xs〉 which implies l0t (X) = 1

2 l
0
t (|X|). In

view of SDE’s (1) (equivalently (18)-(19)) and (3)-(4), we obtain

A0
t =

1

θ
l0t (X) =

1

2θ
l0t (|X|) = Ā0

t ,
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as in [4, Eq.3.8], where Ā0
t is as defined in Lemma 3. This implies that A0

t

and Ā0
t have the same distribution that is also given in Lemma 3.

ii) Note that t = A0
t +A−t +A+

t , which implies

α+
t = t+A0

α+
t

+A−
α+
t

. (20)

Since P{A+
1 > t} = P{1 > α+

t }, we will study α+
t to get the distribution

of A+
1 . Recall from Lemma 1 that θ

2A
0
α+
t

is the running supremum of the

Brownian motion −W+. Hence, we have

A0
α+
t

=
2

θ
sup
s≤t

(−W+
s ) =:

2

θ
S+
t (21)

at time t, where S+
t has the law of a reflected Brownian motion. Now, for

studying the term A−
α+
t

in (20), define the stopping times

τt = inf{s > 0 : l0s(X) > t} and TW
−

(a) = inf{t : W−t > a}

for a > 0. Note that (9) implies

0 = X−τt = −W−
A−τt

+
θ

2
A0
τt = −W−

A−τt
+
l0τt(X)

2
= −W−

A−τt
+
t

2

in view of (4). This yields W−
A−τt

= t
2 . Then, we have

A−τt = TW
−

(t/2)

for each t ≥ 0, which follows along the same lines of proof for Brownian
motion in [12, Thm.VI.2.7]. Replacing t with l0

α+
t

above yields

A−
α+
t

=TW
−

(l0
α+
t
/2) = TW

−
(
θ

2
A0
α+
t

)
= TW

−
(S+
t ) (22)

where the last equality follows from (21).
We are now ready to compute P{A+

1 > t}. Using (20), (21) and (22), we

16



get

P{A+
1 > t} = P{1 > α+

t } = P{0 > t− 1 +A0
α+
t

+A−
α+
t

}

= P{0 > t− 1 +
2

θ
S+
t + TW

−
(S+
t )}

= E[P{0 > t− 1 +
2

θ
S+
t + TW

−
(S+
t ) |S+

t }]

= E[P{0 > t− 1 +
2

θ
S+
t +

(S+
t )2

(W−1 )2
|S+

t }] (23)

= P
{

0 > t− 1 +
2

θ
S+
t +

(S+
t )2

(W−1 )2

}
where (23) follows by the independence of S+ andW− from [12, III.Prop.3.10],
which states that

TW
−

(a)
(d)
=

a2

(W−1 )2
a > 0 .

As S+ and W− are independent, we will only need the roots of the polyno-
mial P (x) = t − 1 + 2

θx + x2

w2 . The positive root is given by (w2/θ)(−1 +√
1 + θ2(1− t)/w2). As a result, we get

P{A+
1 > t} =

∫ ∞
−∞

(∫ (x2/θ)(−1+
√

1+θ2(1−t)/x2)

0

2 e−y
2/(2t)

√
2πt

dy

)
e−x

2/2

√
2π

dx

=

∫ ∞
−∞

∫ x2

θ
√
t
(−1+
√

1+θ2(1−t)/x2)

0

2 e−y
2/2

√
2π

dy

 e−x
2/2

√
2π

dx

since S+ has the law of a reflected Brownian motion.

As a final remark, we observe from (23) that the distribution of A+
1 con-

verges to the Arcsine law as θ → ∞, by similar computations that would
follow as in the proof of [12, Thm.VI.2.7] for Brownian motion. This is
consistent with the fact that the two-sided sticky Brownian motion approx-
imates a standard Brownian motion in this case.
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