
SeCond: A System for Epidemic Peer-to-Peer
Content Distribution◊

I.

II.

A.

◊ This work is supported in part by TUBITAK (The Scientific and Technical Research Council of Turkey) under CAREER Award Grant 104E064.

Ali Alagöz*, Öznur Özkasap°and Mine Çağlar^
* Department of Computational Sciences and Engineering

° Department of Computer Engineering
^ Department of Mathematics

Koc University, Istanbul, Turkey
{alialagoz|oozkasap|mcaglar}@ku.edu.tr

Abstract—We propose an efficient cooperative content
distribution protocol in which the cooperation among
participants is based on a peer-to-peer (P2P) paradigm. Our
main contribution to P2P content distribution is the use of
an epidemic communication approach. Since epidemic
algorithms are easy to use, robust and adaptive to dynamic
conditions, they have found several application areas in
distributed systems such as failure detection, data
aggregation and database replication. However, they have
not been used in cooperative content distribution before. In
addition to the use of epidemic algorithms for state
exchange among peers, we propose some methods in order
to increase utilization of system resources during
distribution of the files. We demonstrate effectiveness and
scalability of the protocol through our simulation model.

INTRODUCTION
As the usage of the Internet grows up, the number of

people preferring to share their contents increases.
However, accessibility of the content is affected badly
whenever there are lots of end systems retrieving that
content simultaneously. It is well known that traditional
client-server based solutions are not appropriate for
distribution of popular files such as software updates or
CD images. When several peers strive to achieve a file at
the same time, the file server hence the overall system
may fail easily. To avoid such failures, well designed
protocols addressing content distribution should have the
following properties:
o Scalability: As the popularity of the released content

increases, the number of users trying to achieve the
file simultaneously also increases. Hence, a well
designed content distribution protocol should be able
to handle large set of users at the same time.

o Adaptive to dynamic arrivals and departures: During
distribution of the content, for most of the cases
users’ arrival rate and arrival times may not be
anticipated before. Similarly, a user may leave the
system without notice. An efficient protocol should
be able to operate under dynamic conditions.

o Easy to deploy: Although some of the protocols seem
to operate well in theory, it is hard to deploy them in
real life. That might be due to the requirement of
router support or difficulties in the implementation of
protocols.

o Heterogeneity: Among millions of geographically
distributed users, download and upload bandwidths,
hardware properties (such as CPU speed) differ from
one user to another. Similarly, different network
conditions may be observed at different locations. In
order to operate efficiently, the platform for content
distribution has to take these differences into account.

In this study, we propose a protocol that alleviates the
load imposed on the file server while minimizing
download times of users at the same time. Our cooperative
content distribution protocol, called SeCond, disseminates
the load of distribution among all peers in the system.
Cooperation among system participants is based on a P2P
paradigm similar to BitTorrent [1] and Slurpie [2].
Namely, while peers are downloading blocks of the file,
they also upload the blocks they have downloaded before.
However, informing other peers about available blocks is
based on epidemic information dissemination. Moreover,
partial views of the peers are continuously updated in
order to increase utilization of system resources. By use of
epidemic algorithms, dynamic arrivals and departures can
be easily handled. Epidemic or probabilistic dissemination
algorithms have many advantages. They are easy to
implement and inexpensive to run. During propagation,
load on the links and users is distributed uniformly. In
case of dynamic user arrivals and departures, it does not
require an extra effort in order to reconfigure itself. Most
importantly, they are inherently scalable.

Remaining part of the paper is organized as follows.
Related work and comparison with our study are
described in Section II. Details of our model SeCond is
explained Section III. Simulation model and simulation
results are given in Section IV and V, respectively.
Section VI concludes the paper and states future work.

RELATED WORK
We group existing solutions for alleviating the load on

the source of the file in a distributed system as follows:

Infrastructure-based Solutions
One type of solution in this category is mirroring or

replication of the server. Akamai [3] is the best example
deployed in the Internet for years which runs tens of
thousands of servers. Although mirroring seems to be the
best solution for increasing server’s resources, in order to
reply large number of requests in flash-crowded scenarios,

serving capacity of the file server should be increased
linearly with the number of requests which is impossible
in most of the cases.

Another approach is caching hierarchies. One example
to this kind of solutions is Squid [4]. It stores the
requested Internet objects on a system closer to the
requesting site than to the source in order to reduce load
on the server and client return time.

All the solutions under this category require
infrastructure support which is usually an expensive
supply. Moreover, demand on the content should be
predictable so that content providers can make provision
against bottlenecks in data distribution. However, it is not
possible to anticipate the demand accurately all the time.
Misconstructions may lead to waste of resources.

B. Cooperative Content Distribution Solutions
Instead of only requesting blocks of files from server,

nodes may also be involved in the distribution of a
popular file. Although the idea lying behind the
cooperative solutions seems very simple, implementing
such a protocol organizing nodes effectively in a dynamic
system where arrival and departure of nodes occurs very
frequently is a challenging topic. Cooperative solutions
can be classified as follows:

1) Multicast: Multicast solutions strive to deliver the
information to a group of destinations using the most
efficient strategy to deliver the messages over each link of
the network only once and only create copies when the
links to destinations split. A criterion to classify multicast
schemes is the degree of reliability they offer. First group
of protocols offering strong reliable multicast schemes
such as atomicity and message delivery ordering suffer
from scalability. Moreover, their performance can become
unstable under stressed conditions [5]. Other group of
protocols offers better scalability, but best-effort
reliability. For instance, Bimodal Multicast is a protocol
offering scalability and probabilistic reliability as stated in
[6]. Although it provides a high level of reliability and
scalability, it is not adaptable to dynamic systems. In fact,
most of the multicast solutions do not intend to operate
well under conditions where node arrivals and departures
occur frequently. Moreover, nodes do not decide from
where they download a block dynamically taking network
conditions into consideration.

2) Peer-to-Peer Cooperative Protocols: P2P systems
create a platform where people find lots of files to
transfer, but generally they do not intend to disseminate a
popular file. Popular file sharing applications such as
KaZaA [7], Gnutella [8], and e-donkey/e-mule [9] are
good examples of this kind of systems where peers are
organized together so that they can exchange different
files. However, the main goal of these applications is
locating sources for the desired files. Two important
examples of P2P protocols whose main goal is organizing
the peers sharing and requesting the same file into an
overlay network are BitTorrent and Slurpie. Peer-to-peer
cooperative protocols let the end systems decide the
source for the data they strive to achieve locally. This
locality increases the utilization of the system resources
and enables parallel downloading [10].

Similar to SeCond, both BitTorrent and Slurpie
construct meshes among the end systems trying to obtain
copies of the file. While peers continue the download,

they also upload the blocks of the file they have obtained.
This cooperation alleviates the load on the original source
for the file.

BitTorrent executes a rarest-first block selection policy
in order to decrease the sparsity of blocks in the system.
Whenever, a block cannot be obtained from the other
peers in the system, peers try to get that block from the
original seed. However, while peers are approaching the
end of the download, simultaneous requests for missing
blocks may cause a bottleneck on the seed. Slurpie avoids
this problem by using a random back off policy.
Whenever a peer cannot obtain a block from the other
peers, it goes to the server with some probability. Our
SeCond algorithm deploys a different back off policy. If a
peer has initiated a block download from any source in a
given time interval recently, it does not strive to obtain a
block from the server. This allows the other peers, which
cannot obtain a block for the same time interval, to initiate
a block download from the server with an acceptable
download rate. Moreover, since the main goal of our
protocol is to make copies of the blocks available in the
system as fast as possible, we limit the number of parallel
downloads from the file server also. Otherwise, especially
for flash crowded scenarios, download rates of
transmissions for the blocks obtained from the file server
may decrease below an acceptable lower bound. As a
result, replication of the blocks in the system may take
longer times.

Another point that SeCond differs from Slurpie and
BitTorrent is the propagation of states during the
dissemination of the file. Instead of multicasting available
blocks whenever a new block is obtained, we deploy a
gossiping mechanism to propagate peers’ states during the
dissemination of the content.

BitTorrent deploys a rate based “tit-for-tat” mechanism
to avoid free riding [11]. However, as stated in [12], that
policy is not effective in preventing unfairness especially
for heterogeneous systems. In SeCond, instead of forcing
peers upload to peers from where they can download, each
peer utilizes its upload bandwidth independently. This
leads to an increase in utilization of system sources. In
return, it increases the performance of the file distribution.
However, peers give priorities to peers from where they
have downloaded more. The details of this procedure are
given in the description of our model in the next section.

There are studies examining the performance of
BitTorrent-like systems. In [13], the performance of
BitTorrent is studied by representing the system with a
fluid model. The study given in [14] investigates real life
performance of BitTorrent by collecting data for a five
month period. Another analysis for BitTorrent [15] shows
how the performance of the system is affected in case of
exponential decrease in peer arrival rate. Similar to [11], it
is stated that fairness cannot be achieved for
heterogeneous systems.

Another protocol using epidemics in order to
disseminate information and manage the membership is
Newscast [16]. In Newscast, caches of peers hold
neighbors’ descriptors. A descriptor for a peer consists of
peer address, creation time of that descriptor and
information of the corresponding peer. At predefined time
intervals, each peer creates its own descriptor. Since cache
has a fixed size, that descriptor is replaced with the oldest
one. After that, a peer is selected from cache and an

exchange of states occurs with the selected peer. Then
views are merged and old entries are removed to keep
cache fresh. By this way, dynamic joins and leaves are
handled easily by the protocol. However, this protocol
does not directly target distribution of large files
especially in flash-crowd scenarios.

III.

A.

B.

C.

D.

E.

IV.

A.

MODEL DETAILS
There are two servers in SeCond, namely index server

and file server. Index server is responsible for holding Ids
of peers currently downloading the file. File server is the
place where the complete file is stored initially. To
initiate a download, a peer should register itself to index
server. After registration, index server returns a list of
peers currently downloading the file which is called view
of the peer. At predefined time intervals, peers send
gossip messages containing Ids of available blocks to
randomly selected peers from their view. By the help of
these gossip messages, peers upload and download blocks
of the file from other peers and update their views as well.
Each peer continues updating its partial view during
dissemination in order to maximize utilization of system
sources. Below we give details of our protocol.

Mesh Construction
As mentioned, index server is responsible for helping

peers to find each other. It is similar to the tracker of
BitTorrent. The list returned by the index server contains
peers randomly selected among the ones registered before.
To update global view of the index server, active peers
report their state to the server periodically. Moreover, if a
peer realizes that one of the peers in its partial view is not
active, it reports that dead peer also. A peer containing all
blocks of the file is called a seed. Although a peer has
become a seed, it may not continue remaining in the
system. In order to alleviate load of the server, we have to
utilize resources of existing seeds in the system
efficiently. To achieve this aim, upon becoming a seed,
peer reports its state to the index server. Since propagating
available blocks of other peers to seeds is meaningless,
mesh of a recently joined peer is constructed among the
ones which are not seeds. However, index server asks the
seeds to add new peers to their partial view. Mechanism
for adding a peer to the partial view of another peer is
explained in the Section III D below.

Structure of the File
File server is the original source for the file. In order to

enable parallel downloading, the file is broken into blocks.
Since small block sizes increase the TCP overhead, the
size of a block is set to 256KB. File server refuses
uploading if the number of peers served simultaneously
reaches a particular value. This value may be adjustable
with respect to upload capacity of the file server and
average download capacities of the peers. Refused peer
does not try to download a block from the server for a
given duration.

State Propagation
Peers propagate their states via gossiping. A gossip

message holds the Ids of the downloaded blocks of the
peer. Targets for that gossip message are uniformly
chosen from the partial view of the peer. Upon receiving a
gossip message, receiver peer looks for the blocks that it
does not have but the sender has. If there are such blocks,

that peer requests them from the sender. It should be noted
that sometimes requesting blocks may not initiate block
downloads. Another important point is that gossiping is
not reciprocal. Namely, holding some peer in the partial
view and sending gossip messages to that peer does not
necessitate that destination peer also sends gossip
messages to counterpart.

View Update
In order to increase the performance of content

distribution, cooperation among the peers should be
maximized. Hence, peers should be able to upload and
download blocks. However, the peers given by index
server at registration may have left the system or
approximately all of the block transmissions among the
peers might have been done. This leads to waste of link
capacities of the peers. In such a case, a peer is forced to
download blocks from the server. To avoid this situation,
peers update their partial views during dissemination. This
is done again via gossiping. When a peer receives a gossip
message from an unknown peer, it looks for a place in its
partial view in order to add sender. If there is a free space,
it directly adds the unknown peer to its view. However, if
the capacity of the list is full, then it looks for a passive
peer. A peer in the partial view that has not downloaded
any block in a given time interval is said to be a passive
peer. If there is a passive peer, it is replaced with the new
one and the partial view is updated.

Downloading Decisions
Whenever a peer is able to download blocks from other

peers, it prefers downloading blocks from them, not from
the server. However, if it cannot initiate any block
download for a while, it has to visit the server. Since peers
are asynchronous, it is not expected that all peers try to
download a block from the server simultaneously.
Moreover, similar to a file server, number of peers that a
peer serves at the same time is limited.

Whenever a peer realizes a source holding some blocks
of the file that it has not, it tries to obtain missing blocks
from that source. In order to increase density of the blocks
in the system, the source prefers to forward the least
uploaded blocks. The decision for the density of the
blocks is given locally. Same uploading policy is also
applied on the original file server.

Requesting some blocks from a source does not
guarantee the initiation of block download. Since the
concurrent upload capacity of the peers is limited, the
request may be refused. In such a case, not to refuse a
request, peers put the received requests into their upload
queues. However, these are not first in first out queues. A
priority is given to peers that upload more to the owner of
the queue.

SIMULATION MODEL
In this part, the underlying model and assumptions that

we used to simulate SeCond are described. The code is
implemented in Java and it is a time-discrete event-based
simulation.

Shared File
In our simulation model, the file is stored on a file

server and is broken into blocks of size b. Hence, the
number of blocks in a file, c, is equal to ceiling of s/b

where s is file size. Parameters b and s are set to 256 KB
and 700MB respectively. Thus, c is 2800. Whenever, a
peer completes downloading of a block successfully, it
starts sharing that block. At the beginning of the
simulation, there is only one seed which is the file server.
It is assumed that peers completing the download do not
leave the system. They stay in the system and serve as
seeds.

B.

C.

D. V.

Peer Arrival and System Size
In order to download the shared file, a peer should

register itself to the index server. After registration
process, the server returns a list of peers downloading the
file currently. Number of peers requesting the file is set to
1000 in the simulation unless another value is stated. For
scalability analysis, system size is increased up to 5000
peers. Peer arrivals occur with constant rate of 1 peer per
minute. Figure 1 Illustration of block dissemination in SeCond

File Distribution and Propagation States of Peers
In the beginning, file server is the only one containing

blocks of the file. As the simulation continues, peers
owning blocks of the file increase in the system. In order
to download blocks from other nodes instead of the server,
peers should be informed about the available blocks.
Propagation of available blocks is done by the help of
gossiping. At each predefined time interval called gossip
interval, each peer sends gossip messages to f distinct
peers chosen from its partial view. These gossip messages
contain Ids of downloaded blocks and f is called the fan-
out parameter. When a peer receives a gossip message
from another peer, it checks whether there is any block
that it does not have but the sender has. If it has available
download bandwidth, it tries to get missing blocks from
the sender. If a peer cannot download any block from a
peer or file server for a time interval called server visit
interval, it requests missing blocks from the server. If
server accepts another parallel downloading, it uploads the
least served block among the desired blocks. However, if
any block download is completed within the server visit
interval, counter for the server visit interval is set to zero.

Server, Peer and Link Properties
The file server and peers have maximum upload

bandwidth capacity that is maximum number of peers
served simultaneously, called upload capacity. Peers also
have maximum download capacity. Whenever a peer or
server reaches its maximum upload capacity, it does not
serve anyone else until a peer completes downloading.
Uploader peer shares out its bandwidth equally to
downloader peers.

An example to restrictions and calculations given above
is illustrated in Figure 1. The list indicated as B[block id
list] represents blocks downloaded by the corresponding
peer up to that time, P represents the number of peers that
can be served additionally, and [upload capacity,
download capacity] represents the download and upload
bandwidth of the peer. T#:[a,c] represents the
transmission of block a with transmission rate c. Unit of
bandwidth capacities is Kbps. In Figure 1, shared file
consists of 5 blocks. At round 1, peer 2 initiates
transmission of block 1 from peer 1. Bandwidth initially
reserved for this transmission is equal to, minimum of
upload capacity of peer 1 and download capacity of peer
2, 128 Kbps. Assuming that no block transmission is

completed, peer 1 can serve at most 1 other peer in the
remaining rounds. Similarly, a transmission of rate 128
Kbps from server is started in round 1. At round 2, peer 1
starts to download block 2 from peer 3 with rate 128
Kbps. However, peer 4 also initiates a transmission from
peer 1 at round 2. Since upload capacity of a peer is
shared out equally among downloaders, both of the rates
reserved for transmissions 1 and 3 are set to 64 Kbps. At
round 3, peer 2 initiates a block download from peer 4.
Reserved bandwidth for this transmission is equal to
minimum of download capacity of peer 2 and upload
capacity of peer 4, which is 192 Kbps. Remember that
peer 2 uses 64 Kbps of its download capacity for
transmission 1. Without completion of any block
transmission, no one can initiate a transmission after
round 3.

There is a loss probability for a message during
transmission over links. That probability is set to different
values for gossip packets and block packets. Since it is
assumed that block transmission is done over TCP and
gossip transmission is done over UDP, the probability of
loss in gossip packet transmission is set to a higher value.

SIMULATION RESULTS
Terminology of simulation evaluation is given below:
o Average File Download Time: File download time

of a peer is the time between the initiation of
download and completion of the download.
Average of all file download times of the peers in
the system is evaluated by this parameter.

o Number of Blocks Downloaded from Server: A
peer obtains blocks of the file either from the file
server or from another peer. This parameter counts
the number of blocks downloaded from the server.

o Total Download Time: Time between arrival of
the first peer and completion of last file download
is called as total download time.

Although this is a time-discrete simulation, we may
think one unit time as one second. System size is set to
1000 peers. It is assumed that all peers are identical. The
upload and download rates of the peers are 512 Kbps and
128 Kbps respectively. Upload capacity of the file server
is 1024 Kbps. A peer can serve at most 4 peers
simultaneously and partial view of the peer is set to 10. In
the calculation of transmission delay of a block,

propagation delay is ignored. We believe this assumption
has no significant effect on simulation results since
dissemination time of the file is dominated by block
transfers.

As it is mentioned in the model description, peers
propagate their states via gossip messages. At each gossip
round, a peer sends its state information to f different
neighbors randomly selected from its partial view. This
parameter, f, is called as fan-out parameter. To see the
effect of fan-out parameter, we have adjusted fan-out
parameter and left others unchanged. As shown in Figure
2, forwarding gossip messages to more peers have no
continuous positive effect on file distribution. Average file
download times stays approximately constant after some
point. Similarly, we have not seen any significant decrease
in total download times after that point as it can be seen
from Figure 3. We have to point out that forwarding
unnecessary gossip messages causes an additional load on
the network.

Although peers cooperate with each other to obtain
blocks of the file, original source for the file is the server.
Taking the probability of nonexistence of another seed in
the system into consideration, peers have to visit the
server. The question is at which periods peers should go to
the server. In SeCond, if the time passing through the
initiation of the last block transmission from any source
exceeds server visit interval, that peer tries to obtain a

block from the server. However, since the number of peers
served by the server simultaneously is limited, visiting the
server frequently may not have additional benefit for the
peer. Additionally, these unnecessary requests may lead to
a bottleneck in the server. On the contrary, setting the
server visit interval to a large number may decrease the
utilization of the server resources. To see how the
performance of the distribution of the file is affected, we
have run simulations for different server visit intervals.

An interesting result that can be observed in Figure 4 is
that requesting blocks from the server more frequently
decreases the system performance after some point. As we
know, in order to make use of system resources, blocks
should be uploaded to the system as fast as possible.
However, whenever we increase the number of peers
downloading blocks from the server simultaneously,
average upload times of those blocks may increase.
Hence, until peers obtain blocks they can share, their
resources may remain idle. The reason for the decrease in
average file download time until some point may be the
utilization of system resources. On the contrary, we see
from the Figure 4 that if server visit interval is increased
after a certain point, average file download time increases
because the peers wait too long to download a block from
the server although they cannot initiate any block
transmission for a long time.

For a well designed peer-to-peer file distribution
protocol, it is important to handle large number of requests
simultaneously. In fact, this issue is the base of our
motivation for this work. In order to see scalability, we
increase the number of peers requesting the file. As shown
in Figure 5, when we increase the number of peers
requesting the file from 500 to 5000, average file
download time increases only 13% of its initial value.
Moreover, if classical client-server based approach was
used, number of blocks uploaded from the server would
increase linearly with respect to the system size. However,
as depicted in Figure 6, there is an 18% increment in
number of blocks uploaded by the server as the system
size scales up. Another inference is that there is a positive
correlation between average file download time and
number of blocks uploaded by the server. In fact, this
inference has been obtained in all simulation settings.

Initiation of a block download after the arrival of a
request message depends on the upload capacity of the
source at that time. If the number of peers served by that
source has reached its maximum value, any download
request will be added to the queue of the uploader peer.
Whenever a continuing download is completed, it initiates
a block upload selected from the queue. In real life
implementation some priorities may be given to some

requesters, but in simulation settings we applied first in
first out policy. Figure 7 shows that increasing length of
queues affects the file dissemination positively until some
point. Actually, we may expect that setting maximum
queue size to large numbers may have negative affect
since a peer may wait too long in the queue to download a
block although it can download that block from another
source. Moreover, in real life waiting in the queue does
not guarantee initiation of the download, since in a
dynamic environment the source may leave the system
any time.

CONCLUSION AND FUTURE WORK VI.
In this paper, we have described our protocol SeCond

that that alleviates the load imposed on the file server
while minimizing download times of users at the same
time. It targets distribution of large contents especially in
flash crowded scenarios. We have developed a simulation
model of SeCond and analyzed its behavior via several
simulations. As ongoing work, we analyze the
performance of the protocol for different peer arrival and
departure rates. Moreover, we aim to develop an
analytical model for our protocol.

REFERENCES
[1] B. Cohen, “Incentives build robustness in BitTorrent,” P2P

Economics Workshop, Berkeley, CA, 2003.
[2] R. Sherwood, R. Braud, and B. Bhattacharjee, “Slurpie: A

cooperative bulk data transfer protocol,” IEEE Infocom 2004,
Hong Kong.

[3] Akamai: http://www.akamai.com.
[4] Squid: http://www.squid-cache.org.
[5] R. van Renesse, “Why bother with CATOCS?” ACM SIGOPS

Oper. Syst. Rev. 28, pp. 22–27, Jan. 1994.
[6] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y.

Minsky, “Bimodal multicast,” ACM Trans. Comput. Syst., vol.
17, pp. 41–88, May 1999.

[7] KaZaA: http://kazaa.com/.
[8] Gnutella: http://gnutelliums.com/.
[9] E-donkey: http://edonkey2000.com/.
[10] Pablo Rodriguez-Rodriguez and Ernst Biersack, “Dynamic

parallelaccess to replicated content in the internet,” IEEE/ACM
Transactions on Networking, vol. 10, no. 4, pp. 455–465, 2002.

[11] E. Adar and B. Huberman, “Free riding on gnutella,” First
Monday 5, October 2000.

[12] Ashwin R. Bharambe, Cormac Herley, and Venkata N.
Padmanabhan, “Analyzing and improving BitTorrent
performance”, Technical Report MSR-TR-2005-03, Microsoft
Research, February 2005.

[13] Dongyu Qiu and R. Srikant, “Modeling and performance analysis
of bittorrent-like peer-to-peer networks,” ACM SIGCOMM 2004.

[14] M. Izal, G. Urvoy-Keller, E. W. Biersack, P. Felber, A. Al Hamra,
and L. Garces-Erice, “Dissecting bittorrent: Five months in a
torrent’s lifetime,” Passive and Active Measurements (PAM),
2004.

[15] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, X. Zhang,
“Measurements, Analysis, and Modeling of BitTorrent-like
Systems”, IMC 2005.

[16] M. Jelasity and M. van Steen. “Large-Scale Newscast Computing
on the Internet”, Technical Report IR-503, Vrije Universiteit,
Department of Computer Science, Oct. 2002.

