
SeCond: A System for Epidemic Peer-to-Peer 
Content Distribution◊

                                                           

I. 

II. 

A. 

◊ This work is supported in part by TUBITAK (The Scientific and Technical Research Council of Turkey) under CAREER Award Grant 104E064. 
 

Ali Alagöz*, Öznur Özkasap°and Mine Çağlar^ 
* Department of Computational Sciences and Engineering 

° Department of Computer Engineering 
^ Department of Mathematics 

Koc University, Istanbul, Turkey 
{alialagoz|oozkasap|mcaglar}@ku.edu.tr 

 
Abstract—We propose an efficient cooperative content 
distribution protocol in which the cooperation among 
participants is based on a peer-to-peer (P2P) paradigm. Our 
main contribution to P2P content distribution is the use of 
an epidemic communication approach. Since epidemic 
algorithms are easy to use, robust and adaptive to dynamic 
conditions, they have found several application areas in 
distributed systems such as failure detection, data 
aggregation and database replication. However, they have 
not been used in cooperative content distribution before. In 
addition to the use of epidemic algorithms for state 
exchange among peers, we propose some methods in order 
to increase utilization of system resources during 
distribution of the files. We demonstrate effectiveness and 
scalability of the protocol through our simulation model. 

INTRODUCTION 
As the usage of the Internet grows up, the number of 

people preferring to share their contents increases. 
However, accessibility of the content is affected badly 
whenever there are lots of end systems retrieving that 
content simultaneously. It is well known that traditional 
client-server based solutions are not appropriate for 
distribution of popular files such as software updates or 
CD images. When several peers strive to achieve a file at 
the same time, the file server hence the overall system 
may fail easily. To avoid such failures, well designed 
protocols addressing content distribution should have the 
following properties: 
o Scalability: As the popularity of the released content 

increases, the number of users trying to achieve the 
file simultaneously also increases.  Hence, a well 
designed content distribution protocol should be able 
to handle large set of users at the same time. 

o Adaptive to dynamic arrivals and departures: During 
distribution of the content, for most of the cases 
users’ arrival rate and arrival times may not be 
anticipated before. Similarly, a user may leave the 
system without notice. An efficient protocol should 
be able to operate under dynamic conditions. 

o Easy to deploy: Although some of the protocols seem 
to operate well in theory, it is hard to deploy them in 
real life. That might be due to the requirement of 
router support or difficulties in the implementation of 
protocols.  

o Heterogeneity: Among millions of geographically 
distributed users, download and upload bandwidths, 
hardware properties (such as CPU speed) differ from 
one user to another. Similarly, different network 
conditions may be observed at different locations. In 
order to operate efficiently, the platform for content 
distribution has to take these differences into account. 

In this study, we propose a protocol that alleviates the 
load imposed on the file server while minimizing 
download times of users at the same time. Our cooperative 
content distribution protocol, called SeCond, disseminates 
the load of distribution among all peers in the system. 
Cooperation among system participants is based on a P2P 
paradigm similar to BitTorrent [1] and Slurpie [2]. 
Namely, while peers are downloading blocks of the file, 
they also upload the blocks they have downloaded before. 
However, informing other peers about available blocks is 
based on epidemic information dissemination. Moreover, 
partial views of the peers are continuously updated in 
order to increase utilization of system resources. By use of 
epidemic algorithms, dynamic arrivals and departures can 
be easily handled. Epidemic or probabilistic dissemination 
algorithms have many advantages. They are easy to 
implement and inexpensive to run. During propagation, 
load on the links and users is distributed uniformly. In 
case of dynamic user arrivals and departures, it does not 
require an extra effort in order to reconfigure itself. Most 
importantly, they are inherently scalable. 

Remaining part of the paper is organized as follows. 
Related work and comparison with our study are 
described in Section II. Details of our model SeCond is 
explained Section III. Simulation model and simulation 
results are given in Section IV and V, respectively. 
Section VI concludes the paper and states future work. 

RELATED WORK 
We group existing solutions for alleviating the load on 

the source of the file in a distributed system as follows: 

Infrastructure-based Solutions  
One type of solution in this category is mirroring or 

replication of the server. Akamai [3] is the best example 
deployed in the Internet for years which runs tens of 
thousands of servers. Although mirroring seems to be the 
best solution for increasing server’s resources, in order to 
reply large number of requests in flash-crowded scenarios, 



serving capacity of the file server should be increased 
linearly with the number of requests which is impossible 
in most of the cases.  

Another approach is caching hierarchies. One example 
to this kind of solutions is Squid [4]. It stores the 
requested Internet objects on a system closer to the 
requesting site than to the source in order to reduce load 
on the server and client return time.   

All the solutions under this category require 
infrastructure support which is usually an expensive 
supply. Moreover, demand on the content should be 
predictable so that content providers can make provision 
against bottlenecks in data distribution. However, it is not 
possible to anticipate the demand accurately all the time.  
Misconstructions may lead to waste of resources. 

B. Cooperative Content Distribution Solutions 
Instead of only requesting blocks of files from server, 

nodes may also be involved in the distribution of a 
popular file. Although the idea lying behind the 
cooperative solutions seems very simple, implementing 
such a protocol organizing nodes effectively in a dynamic 
system where arrival and departure of nodes occurs very 
frequently is a challenging topic.  Cooperative solutions 
can be classified as follows:  

1) Multicast: Multicast solutions strive to deliver the 
information to a group of destinations using the most 
efficient strategy to deliver the messages over each link of 
the network only once and only create copies when the 
links to destinations split. A criterion to classify multicast 
schemes is the degree of reliability they offer. First group 
of protocols offering strong reliable multicast schemes 
such as atomicity and message delivery ordering suffer 
from scalability. Moreover, their performance can become 
unstable under stressed conditions [5]. Other group of 
protocols offers better scalability, but best-effort 
reliability. For instance, Bimodal Multicast is a protocol 
offering scalability and probabilistic reliability as stated in 
[6]. Although it provides a high level of reliability and 
scalability, it is not adaptable to dynamic systems. In fact, 
most of the multicast solutions do not intend to operate 
well under conditions where node arrivals and departures 
occur frequently. Moreover, nodes do not decide from 
where they download a block dynamically taking network 
conditions into consideration. 

2) Peer-to-Peer Cooperative Protocols:  P2P systems 
create a platform where people find lots of files to 
transfer, but generally they do not intend to disseminate a 
popular file. Popular file sharing applications such as 
KaZaA [7], Gnutella [8], and e-donkey/e-mule [9] are 
good examples of this kind of systems where peers are 
organized together so that they can exchange different 
files. However, the main goal of these applications is 
locating sources for the desired files. Two important 
examples of P2P protocols whose main goal is organizing 
the peers sharing and requesting the same file into an 
overlay network are BitTorrent and Slurpie. Peer-to-peer 
cooperative protocols let the end systems decide the 
source for the data they strive to achieve locally. This 
locality increases the utilization of the system resources 
and enables parallel downloading [10].  

Similar to SeCond, both BitTorrent and Slurpie 
construct meshes among the end systems trying to obtain 
copies of the file. While peers continue the download, 

they also upload the blocks of the file they have obtained. 
This cooperation alleviates the load on the original source 
for the file.  

BitTorrent executes a rarest-first block selection policy 
in order to decrease the sparsity of blocks in the system. 
Whenever, a block cannot be obtained from the other 
peers in the system, peers try to get that block from the 
original seed. However, while peers are approaching the 
end of the download, simultaneous requests for missing 
blocks may cause a bottleneck on the seed. Slurpie avoids 
this problem by using a random back off policy. 
Whenever a peer cannot obtain a block from the other 
peers, it goes to the server with some probability. Our 
SeCond algorithm deploys a different back off policy. If a 
peer has initiated a block download from any source in a 
given time interval recently, it does not strive to obtain a 
block from the server. This allows the other peers, which 
cannot obtain a block for the same time interval, to initiate 
a block download from the server with an acceptable 
download rate. Moreover, since the main goal of our 
protocol is to make copies of the blocks available in the 
system as fast as possible, we limit the number of parallel 
downloads from the file server also. Otherwise, especially 
for flash crowded scenarios, download rates of 
transmissions for the blocks obtained from the file server 
may decrease below an acceptable lower bound. As a 
result, replication of the blocks in the system may take 
longer times. 

Another point that SeCond differs from Slurpie and 
BitTorrent is the propagation of states during the 
dissemination of the file. Instead of multicasting available 
blocks whenever a new block is obtained, we deploy a 
gossiping mechanism to propagate peers’ states during the 
dissemination of the content.  

BitTorrent deploys a rate based “tit-for-tat” mechanism 
to avoid free riding [11].  However, as stated in [12], that 
policy is not effective in preventing unfairness especially 
for heterogeneous systems. In SeCond, instead of forcing 
peers upload to peers from where they can download, each 
peer utilizes its upload bandwidth independently. This 
leads to an increase in utilization of system sources. In 
return, it increases the performance of the file distribution. 
However, peers give priorities to peers from where they 
have downloaded more. The details of this procedure are 
given in the description of our model in the next section.   

There are studies examining the performance of 
BitTorrent-like systems. In [13], the performance of 
BitTorrent is studied by representing the system with a 
fluid model. The study given in [14] investigates real life 
performance of BitTorrent by collecting data for a five 
month period. Another analysis for BitTorrent [15] shows 
how the performance of the system is affected in case of 
exponential decrease in peer arrival rate. Similar to [11], it 
is stated that fairness cannot be achieved for 
heterogeneous systems.  

Another protocol using epidemics in order to 
disseminate information and manage the membership is 
Newscast [16].  In Newscast, caches of peers hold 
neighbors’ descriptors. A descriptor for a peer consists of 
peer address, creation time of that descriptor and 
information of the corresponding peer. At predefined time 
intervals, each peer creates its own descriptor. Since cache 
has a fixed size, that descriptor is replaced with the oldest 
one. After that, a peer is selected from cache and an 



exchange of states occurs with the selected peer.   Then 
views are merged and old entries are removed to keep 
cache fresh. By this way, dynamic joins and leaves are 
handled easily by the protocol. However, this protocol 
does not directly target distribution of large files 
especially in flash-crowd scenarios.   
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MODEL DETAILS 
There are two servers in SeCond, namely index server 

and file server. Index server is responsible for holding Ids 
of peers currently downloading the file. File server is the 
place where the complete file is stored initially.  To 
initiate a download, a peer should register itself to index 
server.  After registration, index server returns a list of 
peers currently downloading the file which is called view 
of the peer.  At predefined time intervals, peers send 
gossip messages containing Ids of available blocks to 
randomly selected peers from their view. By the help of 
these gossip messages, peers upload and download blocks 
of the file from other peers and update their views as well. 
Each peer continues updating its partial view during 
dissemination in order to maximize utilization of system 
sources. Below we give details of our protocol. 

Mesh Construction 
As mentioned, index server is responsible for helping 

peers to find each other. It is similar to the tracker of 
BitTorrent. The list returned by the index server contains 
peers randomly selected among the ones registered before. 
To update global view of the index server, active peers 
report their state to the server periodically. Moreover, if a 
peer realizes that one of the peers in its partial view is not 
active, it reports that dead peer also. A peer containing all 
blocks of the file is called a seed. Although a peer has 
become a seed, it may not continue remaining in the 
system. In order to alleviate load of the server, we have to 
utilize resources of existing seeds in the system 
efficiently. To achieve this aim, upon becoming a seed, 
peer reports its state to the index server. Since propagating 
available blocks of other peers to seeds is meaningless, 
mesh of a recently joined peer is constructed among the 
ones which are not seeds.  However, index server asks the 
seeds to add new peers to their partial view. Mechanism 
for adding a peer to the partial view of another peer is 
explained in the Section III D below.  

Structure of the File 
File server is the original source for the file. In order to 

enable parallel downloading, the file is broken into blocks. 
Since small block sizes increase the TCP overhead, the 
size of a block is set to 256KB. File server refuses 
uploading if the number of peers served simultaneously 
reaches a particular value. This value may be adjustable 
with respect to upload capacity of the file server and 
average download capacities of the peers. Refused peer 
does not try to download a block from the server for a 
given duration. 

State Propagation 
Peers propagate their states via gossiping. A gossip 

message holds the Ids of the downloaded blocks of the 
peer. Targets for that gossip message are uniformly 
chosen from the partial view of the peer. Upon receiving a 
gossip message, receiver peer looks for the blocks that it 
does not have but the sender has. If there are such blocks, 

that peer requests them from the sender. It should be noted 
that sometimes requesting blocks may not initiate block 
downloads. Another important point is that gossiping is 
not reciprocal. Namely, holding some peer in the partial 
view and sending gossip messages to that peer does not 
necessitate that destination peer also sends gossip 
messages to counterpart.  

View Update 
In order to increase the performance of content 

distribution, cooperation among the peers should be 
maximized.  Hence, peers should be able to upload and 
download blocks. However, the peers given by index 
server at registration may have left the system or 
approximately all of the block transmissions among the 
peers might have been done. This leads to waste of link 
capacities of the peers. In such a case, a peer is forced to 
download blocks from the server. To avoid this situation, 
peers update their partial views during dissemination. This 
is done again via gossiping. When a peer receives a gossip 
message from an unknown peer, it looks for a place in its 
partial view in order to add sender. If there is a free space, 
it directly adds the unknown peer to its view. However, if 
the capacity of the list is full, then it looks for a passive 
peer.  A peer in the partial view that has not downloaded 
any block in a given time interval is said to be a passive 
peer. If there is a passive peer, it is replaced with the new 
one and the partial view is updated. 

Downloading Decisions 
Whenever a peer is able to download blocks from other 

peers, it prefers downloading blocks from them, not from 
the server. However, if it cannot initiate any block 
download for a while, it has to visit the server. Since peers 
are asynchronous, it is not expected that all peers try to 
download a block from the server simultaneously. 
Moreover, similar to a file server, number of peers that a 
peer serves at the same time is limited.  

Whenever a peer realizes a source holding some blocks 
of the file that it has not, it tries to obtain missing blocks 
from that source. In order to increase density of the blocks 
in the system, the source prefers to forward the least 
uploaded blocks. The decision for the density of the 
blocks is given locally. Same uploading policy is also 
applied on the original file server. 

Requesting some blocks from a source does not 
guarantee the initiation of block download. Since the 
concurrent upload capacity of the peers is limited, the 
request may be refused. In such a case, not to refuse a 
request, peers put the received requests into their upload 
queues.  However, these are not first in first out queues. A 
priority is given to peers that upload more to the owner of 
the queue.    

SIMULATION MODEL 
In this part, the underlying model and assumptions that 

we used to simulate SeCond are described. The code is 
implemented in Java and it is a time-discrete event-based 
simulation.  

Shared File 
In our simulation model, the file is stored on a file 

server and is broken into blocks of size b. Hence, the 
number of blocks in a file, c, is equal to ceiling of s/b 



where s is file size. Parameters b and s are set to 256 KB 
and 700MB respectively. Thus, c is 2800.  Whenever, a 
peer completes downloading of a block successfully, it 
starts sharing that block. At the beginning of the 
simulation, there is only one seed which is the file server. 
It is assumed that peers completing the download do not 
leave the system. They stay in the system and serve as 
seeds. 

B. 

C. 

D. V. 

Peer Arrival and System Size 
In order to download the shared file, a peer should 

register itself to the index server. After registration 
process, the server returns a list of peers downloading the 
file currently. Number of peers requesting the file is set to 
1000 in the simulation unless another value is stated. For 
scalability analysis, system size is increased up to 5000 
peers. Peer arrivals occur with constant rate of 1 peer per 
minute.  Figure 1 Illustration of block dissemination in SeCond 

File Distribution and Propagation States of Peers  
In the beginning, file server is the only one containing 

blocks of the file. As the simulation continues, peers 
owning blocks of the file increase in the system. In order 
to download blocks from other nodes instead of the server, 
peers should be informed about the available blocks.  
Propagation of available blocks is done by the help of 
gossiping. At each predefined time interval called gossip 
interval, each peer sends gossip messages to f distinct 
peers chosen from its partial view. These gossip messages 
contain Ids of downloaded blocks and f is called the fan-
out parameter. When a peer receives a gossip message 
from another peer, it checks whether there is any block 
that it does not have but the sender has. If it has available 
download bandwidth, it tries to get missing blocks from 
the sender. If a peer cannot download any block from a 
peer or file server for a time interval called server visit 
interval, it requests missing blocks from the server. If 
server accepts another parallel downloading, it uploads the 
least served block among the desired blocks. However, if 
any block download is completed within the server visit 
interval, counter for the server visit interval is set to zero. 

Server, Peer and Link Properties 
The file server and peers have maximum upload 

bandwidth capacity that is maximum number of peers 
served simultaneously, called upload capacity. Peers also 
have maximum download capacity. Whenever a peer or 
server reaches its maximum upload capacity, it does not 
serve anyone else until a peer completes downloading. 
Uploader peer shares out its bandwidth equally to 
downloader peers. 

An example to restrictions and calculations given above 
is illustrated in Figure 1. The list indicated as B[block id 
list] represents blocks downloaded by the corresponding 
peer up to that time, P represents the number of peers that 
can be served additionally, and [upload capacity, 
download capacity] represents the download and upload 
bandwidth of the peer. T#:[a,c] represents the 
transmission of block a with transmission rate c. Unit of 
bandwidth capacities is Kbps. In Figure 1, shared file 
consists of 5 blocks. At round 1, peer 2 initiates 
transmission of block 1 from peer 1. Bandwidth initially 
reserved for this transmission is equal to, minimum of 
upload capacity of peer 1 and download capacity of peer 
2, 128 Kbps. Assuming that no block transmission is 

completed, peer 1 can serve at most 1 other peer in  the 
remaining rounds. Similarly, a transmission of rate 128 
Kbps from server is started in round 1. At round 2, peer 1 
starts to download block 2 from peer 3 with rate 128 
Kbps. However, peer 4 also initiates a transmission from 
peer 1 at round 2. Since upload capacity of a peer is 
shared out equally among downloaders, both of the rates 
reserved for transmissions 1 and 3 are set to 64 Kbps. At 
round 3, peer 2 initiates a block download from peer 4.  
Reserved bandwidth for this transmission is equal to 
minimum of download capacity of peer 2 and upload 
capacity of peer 4, which is 192 Kbps. Remember that 
peer 2 uses 64 Kbps of its download capacity for 
transmission 1. Without completion of any block 
transmission, no one can initiate a transmission after 
round 3.  

There is a loss probability for a message during 
transmission over links. That probability is set to different 
values for gossip packets and block packets. Since it is 
assumed that block transmission is done over TCP and 
gossip transmission is done over UDP, the probability of 
loss in gossip packet transmission is set to a higher value. 

SIMULATION RESULTS 
Terminology of simulation evaluation is given below: 
o Average File Download Time: File download time 

of a peer is the time between the initiation of 
download and completion of the download. 
Average of all file download times of the peers in 
the system is evaluated by this parameter. 

o Number of Blocks Downloaded from Server:  A 
peer obtains blocks of the file either from the file 
server or from another peer. This parameter counts 
the number of blocks downloaded from the server. 

o  Total Download Time: Time between arrival of 
the first peer and completion of last file download 
is called as total download time. 

Although this is a time-discrete simulation, we may 
think one unit time as one second. System size is set to 
1000 peers.  It is assumed that all peers are identical. The 
upload and download rates of the peers are 512 Kbps and 
128 Kbps respectively. Upload capacity of the file server 
is 1024 Kbps. A peer can serve at most 4 peers 
simultaneously and partial view of the peer is set to 10. In 
the calculation of transmission delay of a block, 



propagation delay is ignored. We believe this assumption 
has no significant effect on simulation results since 
dissemination time of the file is dominated by block 
transfers. 

As it is mentioned in the model description, peers 
propagate their states via gossip messages. At each gossip 
round, a peer sends its state information to f different 
neighbors randomly selected from its partial view. This 
parameter, f, is called as fan-out parameter. To see the 
effect of fan-out parameter, we have adjusted fan-out 
parameter and left others unchanged. As shown in Figure 
2, forwarding gossip messages to more peers have no 
continuous positive effect on file distribution. Average file 
download times stays approximately constant after some 
point. Similarly, we have not seen any significant decrease 
in total download times after that point as it can be seen 
from Figure 3. We have to point out that forwarding 
unnecessary gossip messages causes an additional load on 
the network. 

Although peers cooperate with each other to obtain 
blocks of the file, original source for the file is the server. 
Taking the probability of nonexistence of another seed in 
the system into consideration, peers have to visit the 
server. The question is at which periods peers should go to 
the server. In SeCond, if the time passing through the 
initiation of the last block transmission from any source 
exceeds server visit interval, that peer tries to obtain a 

block from the server. However, since the number of peers 
served by the server simultaneously is limited, visiting the 
server frequently may not have additional benefit for the 
peer. Additionally, these unnecessary requests may lead to 
a bottleneck in the server. On the contrary, setting the 
server visit interval to a large number may decrease the 
utilization of the server resources.  To see how the 
performance of the distribution of the file is affected, we 
have run simulations for different server visit intervals. 

An interesting result that can be observed in Figure 4 is 
that requesting blocks from the server more frequently 
decreases the system performance after some point. As we 
know, in order to make use of system resources, blocks 
should be uploaded to the system as fast as possible. 
However, whenever we increase the number of peers 
downloading blocks from the server simultaneously, 
average upload times of those blocks may increase. 
Hence, until peers obtain blocks they can share, their 
resources may remain idle. The reason for the decrease in 
average file download time until some point may be the 
utilization of system resources.  On the contrary, we see 
from the Figure 4 that if server visit interval is increased 
after a certain point, average file download time increases 
because the peers wait too long to download a block from 
the server although they cannot initiate any block 
transmission for a long time. 



For a well designed peer-to-peer file distribution 
protocol, it is important to handle large number of requests 
simultaneously. In fact, this issue is the base of our 
motivation for this work. In order to see scalability, we 
increase the number of peers requesting the file. As shown 
in Figure 5, when we increase the number of peers 
requesting the file from 500 to 5000, average file 
download time increases only 13% of its initial value. 
Moreover, if classical client-server based approach was 
used, number of blocks uploaded from the server would 
increase linearly with respect to the system size. However, 
as depicted in Figure 6, there is an 18% increment in 
number of blocks uploaded by the server as the system 
size scales up. Another inference is that there is a positive 
correlation between average file download time and 
number of blocks uploaded by the server. In fact, this 
inference has been obtained in all simulation settings.  

Initiation of a block download after the arrival of a 
request message depends on the upload capacity of the 
source at that time. If the number of peers served by that 
source has reached its maximum value, any download 
request will be added to the queue of the uploader peer. 
Whenever a continuing download is completed, it initiates 
a block upload selected from the queue. In real life 
implementation some priorities may be given to some 

requesters, but in simulation settings we applied first in 
first out policy. Figure 7 shows that increasing length of 
queues affects the file dissemination positively until some 
point. Actually, we may expect that setting maximum 
queue size to large numbers may have negative affect 
since a peer may wait too long in the queue to download a 
block although it can download that block from another 
source. Moreover, in real life waiting in the queue does 
not guarantee initiation of the download, since in a 
dynamic environment the source may leave the system 
any time. 

CONCLUSION AND FUTURE WORK VI. 
In this paper, we have described our protocol SeCond 

that that alleviates the load imposed on the file server 
while minimizing download times of users at the same 
time. It targets distribution of large contents especially in 
flash crowded scenarios. We have developed a simulation 
model of SeCond and analyzed its behavior via several 
simulations. As ongoing work, we analyze the 
performance of the protocol for different peer arrival and 
departure rates. Moreover, we aim to develop an 
analytical model for our protocol.     
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