
 A Chain-Binomial Model for Pull and Push-Based 
Information Diffusion° 

                                                        
° This work is supported in part by TUBITAK (The Scientific and Technical Research Council of Turkey) under CAREER Award Grant 104E064. 

Mine Çağlar  
Department of Mathematics 

Koç University 
Istanbul, Turkey 

{mcaglar@ku.edu.tr} 

Öznur Özkasap 
Department of Computer Engineering 

Koç University 
Istanbul, Turkey 

{oozkasap@ku.edu.tr} 
 
 

 
Abstract—We compare pull and push-based epidemic 

paradigms for information diffusion in large scale networks. Key 
benefits of these approaches are that they are fully distributed, 
utilize local information only via pair-wise interactions, and 
provide eventual consistency, scalability and communication 
topology-independence, which make them suitable for peer-to-
peer distributed systems. We develop a chain-Binomial epidemic 
probability model for these algorithms. Our main contribution is 
the exact computation of message delivery latency observed by 
each peer, which corresponds to a first passage time of the 
underlying Markov chain.  Such an analytical tool facilitates the 
comparison of pull and push-based spread for different group 
sizes, initial number of infectious peers and fan-out values which 
are also accomplished in this study. Via our analytical stochastic 
model, we show that push-based approach is expected to 
facilitate faster information spread both for the whole group and 
as experienced by each member.  

Keywords—chain-binomial; epidemic algorithms; anti-entropy; 
peer-to-peer 

I. INTRODUCTION 
 
A low-overhead and scalable method for information 

spread is to use epidemic algorithms that involve pair-wise 
propagation of updates. Epidemic algorithms are based on the 
theory of epidemics which studies the spreading of infectious 
diseases through a population. Such protocols are simple, 
scale well, are robust against common failures, and provide 
eventual consistency as well. They combine benefits of 
efficiency in hierarchical data dissemination with robustness 
in flooding protocols. Epidemic communication allows 
temporary inconsistencies in shared data among participants, 
in exchange for low-overhead implementation. Information 
changes are spread throughout the participants without 
incurring the latency and bursty communication that are 
typical for systems achieving a strong form of consistency. In 
fact, this is especially important for large systems, where 
failure is common, communication latency is high and 
applications may contain a large number of participants. 

Epidemic communication mechanisms were first proposed 
for spreading updates in a replicated database [1]. The aim in 
this case is to infect all replicas with new updates as fast as 
possible. Later on, epidemic or gossip style of communication 
has been used in several contexts such as large-scale direct 
mail systems [2], group membership tracking [3], support for 
replicated services [4], deciding when a message can be 
garbage collected [5], failure detection [6], loss recovery in 
reliable multicast [7], and distributed information management 
[8]. Reference [9] gives an overview of epidemic information 
dissemination in which the focus is on four design constraints 
namely, membership, network awareness, buffer management, 
and message filtering. Another study offers reliability via 
epidemic algorithms in content-based publish-subscribe [10]. 
There are some recent adaptive mechanisms suggested in the 
context of epidemic communication as well. For example, [11] 
proposes an adaptive epidemic communication mechanism 
based on adjusting the fan-out parameter. The aim is to 
enhance resiliency of epidemic algorithms adaptively in case 
of perturbations such as node failures. 

Rather than using pull and push-based epidemic anti-
entropy as a background mechanism to recover from failures, 
we investigate its usage for spreading information via periodic 
state exchanges. Key benefits of these approaches are that they 
are fully distributed, utilize local information only via pair-
wise interactions, and provide eventual consistency, scalability 
and communication topology-independence. These properties 
make them suitable for peer-to-peer distributed systems. We 
develop a chain-Binomial epidemic probability model for 
push-based approach, similar to that used earlier for pull-
based approach [12,13]. For pull-based approach, we adjust 
the model for different values of fan-out, that is, the number of 
other peers that a member is allowed to send a digest message 
at each round. On the basis of these models, our main 
contribution is the exact computation of message delivery 
latency observed by each peer, which corresponds to a first 
passage time of the underlying Markov chain.  Such an 
analytical tool facilitates the comparison of pull and push-
based spread for different group sizes, initial number of 
infectious peers and fan-out values which are also 



accomplished in this study. Any earlier work on delay 
calculations based on chain-Binomial model has been about 
delivery to the whole group, mainly for pull policy and is only 
approximate.  

The paper is organized as follows. In Section II, pull and 
push-based epidemic approaches that we utilize for scalable 
information spread are described. Our chain-Binomial model 
developed for the pull and push-based approaches is given in 
Section III, followed by the numerical results presented in 
Section IV. Concluding remarks and future work are given in 
Section V. 

II. PULL AND PUSH-BASED MODELS 
Anti-entropy is an epidemic communication strategy 

introduced for achieving and maintaining consistency among 
the sites of a widely replicated database. Compared to 
deterministic algorithms for replicated database consistency, 
this strategy also reduces network traffic [1]. Anti-entropy has 
been proposed as a mechanism that runs in background for 
recovering errors of direct mail in large network [2] and for 
loss recovery in Bimodal Multicast protocol [12] that utilizes 
this mechanism for probabilistically reliable multicast 
communication.  

In the anti-entropy process, non-faulty peers are always 
either susceptible or infectious. A site or peer holding 
information or an update it is willing to share is called 
infectious. A peer is called susceptible if it has not yet 
received an update. Periodically, each peer picks another site 
at random, and exchanges its state information with the 
selected one. For spreading information, we investigate pull 
and push-based approaches which are described next. 

A. Pull-based approach 
When an infectious peer holding information to be shared, 

picks randomly a susceptible peer lacking the specific 
information, this triggers information dissemination from 
infectious peer to the susceptible. If we consider a fixed 
population of size n, among which k peers are already 
infected, and infection occurs in rounds; the probability of 
infection can be formulated as follows. For the pull-based 
approach; assume that P

pull
(k,n) is the probability that a 

particular susceptible (uninfected) peer is infected in a round if 
k peers are already infected. The probability of infection for 
fan-out 1 is 
P

pull
(k,n)  =1 – P(nobody infects the susceptible peer) 
          = 1 – (1–1/n)k 

We will use this probability to track the total number of 
infected peers at each stage in the next section. In general, if 
the fan-out is f 

P
pull

(k,n)  =1 – (1–f/n)k 
Steps involved in the dissemination between two such 

peers is depicted in Fig.1(a) where infectious peer (on the left) 
has the data to be disseminated. In this scenario, (1) the 
infectious one picks a susceptible peer lacking data, and sends 
a digest (also referred to as gossip) message including its state. 
(2) On receiving digest and comparing it with its local 

information, the susceptible peer finds out it lacks data and 
sends a request for the data back to the infectious. (3) Upon 
getting request, infectious peer sends a retransmission of data 
which causes the other peer to be infectious for that data. In 
fact, each peer in the system performs state information 
exchange periodically and concurrently with the others. 
Moreover, each peer may have a set of information in its local 
buffer. Therefore, a digest message generated by a peer would 
consist of state information on the current contents of its 
message buffer. In that respect, the figure simplifies the 
scenario and illustrates the communication between two 
sample peers among the population of peers for one piece of 
information. Spreading updates is triggered by susceptible 
peers when they are picked as gossip destinations by 
infectious peers.  

 

B. Push-based approach 
In this model, if a susceptible peer picks an infectious peer 

randomly, and sends its state information, this triggers 
information dissemination from infectious peer to the 
susceptible. For the push-based approach; assume that 
P

push
(k,n) is the probability that a particular susceptible 

(uninfected) peer is infected in a round if k peers are already 
infected out of a peer population with size n. In this case, a 
susceptible member’s selecting an infectious peer will be 
sufficient for infection. Therefore, the probability of infection 
for fan-out 1 is  
P

push
(k,n)  =1 – P(the susceptible peer is not infected) 

           =1 – (n-k)/n = k/n 
When the fan-out is f in general, note that the susceptible peer 
must choose all f peers to gossip from the susceptible group in 
order not to get infected. Hence, the probability of infection 
becomes 

),(/),(1),(push fnCfknCnkP −−=  
where C refers to combination.  

Steps involved in the dissemination between two such 
peers is depicted in Fig.1(b) where infectious peer (on the left) 
has information labeled A. In this scenario, (1) on receiving 
digest and comparing it with its local information, the 
infectious peer finds out that the digest owner lacks the data 
and (2) directly retransmits, or pushes the data which causes 
the other peer to become infectious. As illustrated in the 
figure, in the push-based approach, no request messages are 
used. Spreading updates is triggered by infectious peers when 
they are selected as gossip targets by susceptible peers. Push-

Figure 1. Illustration of (a) pull-based (b) push-based approaches. 
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based approach may be beneficial due to its low overhead 
since it does not require request messages to initiate 
dissemination. 

 
III. DELAY THROUGH CHAIN-BINOMIAL MODEL 

We use the chain-Binomial model introduced earlier for 
epidemics [12,14]. Let tI denote the number of infectious 
peers at time t, which is convenient to track for our purposes 
rather than susceptible ones as in [15].   

The probability that there are j infectious peers or holders 
of the message at the next stage when there are k infectious 
peers at present can be computed by first considering the 
number of susceptible peers. The probability p of success, 
namely getting infected, for a particular susceptible process 
depends on k. The value of p depends on the type of approach 
and the fan-out f as given in Section II. In the chain-Binomial 
model, the susceptible peers are assumed to get infected 
independently from each other. Therefore, the number of 
susceptible peers which get infected in the next round is 
distributed Binomially with parameters n-k and p. Having j 
infectious peers in the next round, when there are k at present 
is equivalent to getting (j-k) susceptible peers infected, which 
can occur in ),( kjknC −−  different combinations. As a 
result, the transition probability is 

jnkj
ttkj ppkjknCckIjIPP −−

+ −−−==== )1(),(}{ 1   (1) 

where c is a normalizing constant in the case of pull-based 
approach for ensuring 1=∑ j kjP  as 

},2min{,,1, nkkkj K+= . This is a slight variation of the 
chain-Binomial model for representing the true process in a 
more realistic way. If there are i infectious peers, then they can 
infect at most i susceptible peers with 1=f  resulting in at 
most 2i infectious ones. When the fan-out f is arbitrary, i 
infectious peers can infect at most if  susceptible peers 
resulting in at most if )1( +  infectious peers in the next stage. 
On the other hand, for the push model nkkj ,,1, K+=  as 
one infectious peer can infect several susceptible peers at a 
time with no upper limit. In this case, the constant c is equal to 
1, as kjP  form a full set of Binomial probabilities. In view of 

Eq.(1), it is clear that the process },2,1,0:)({ K=ttI  is a 
Markov chain.   

Using this model, we analyze the performance of pull and 
push policies in epidemic dissemination. An important 
performance measure is the mean delay per user from user 
perspective. On the other hand, the total latency for 
dissemination to all group members gives an overall measure 
for the system. We exactly find both quantities.  

The states of the Markov chain are illustrated in Fig.2 
where arcs are present only if there is a positive probability to 
go from one state to another. Let jis  denote the first passage 

time from state i to the set of states },,1,{ Njjj K+= , for 
1,,1 −= ji K . If the Markov chain enters the set j  by taking 

a value l which is different from j, there will be at least j 
infectious peers in the system and the jth infection will occur 
only at the time of transition to l, since jl > . Therefore, we 

can interpret jis  as the expected time for the jth infection to 

occur, which is the same as the mean delay that the jth member 
to receive the message experiences. There is a positive 
probability that this delay may be the same as the lth member 
experiences for some jl > , in view of the argument above 
and due to the discreteness of time in our model. However, the 
mean delays will be different.  

For each j, we form a set of equations to solve for jis  

using one step analysis of the Markov chain. Recall that 
0≠ikP  only if ik ≥  as P is upper triangular. For 2=j ,  

211121 1 sPs +=  

as the chain has to make at least one transition, equivalent to 
one gossip round to enter the states { }n,,3,2 K . If it remains 

in state 1 which occurs with 11P  probability, then the process 

restarts itself and has to wait 21s  amount of time again on 

average. As a result, )1/(1 1121 Ps −= , the mean of a 

geometric random variable as expected. Similarly,  

3212311131 1 sPsPs ++=  

322232 1 sPs +=  

Solving these equations, we get 
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For finding 41s , three equations have to be set up as 

43134212411141 1 sPsPsPs +++=  

4323422242 1 sPsPs ++=  

433343 1 sPs +=  
Figure 2. Transition probability graph for Markov chain. 
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where P13 is 0 in pull-based approach when f=1. These 
equations are equivalent to the system  

1)( 44 =− SPI  

where I is a 3x3 identity matrix, 1  is a vector of 1’s of length 

3, ],,[ 4342414 sssS =  and 4P  is the upper left 3x3 part of 

the matrix P given by
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In general, for nj ≤≤3 , 

jk

n

ik
ikji sPs ∑

=
+= 1          1,,2,1 −= ji K . 

which is equivalent to the system 

1)( =− jj SPI  

where jP  is the upper left )1()1( −×− jj  part of the matrix P 

and ],,,[ ,121 jjjjj sssS −= K . The system being an upper 

triangular system of linear equations can be solved very 
efficiently. The kth row of the solution matrix S provides 
information on expected number of rounds for the jth infection 
to occur starting with k infectious peers, for kj ≥ . As the 
model is a Markov chain, we can obtain the performance of a 
group having k infectious members initially from this 
information.  
 

IV. NUMERICAL RESULTS  
In this section, the analytical models of pull and push-

based approaches are evaluated numerically for different 
performance and system parameters. Each approach is 
compared within itself and also with respect to the other.  

 
 

 
In Fig.3, a set of simulated data for a group of size 80 are 

plotted together with results of our theoretical model for pull 
and push epidemic approach evaluated at n=80. The plot 
shows the group members (in the order of receiving time) 
versus time (in units of rounds) that they receive the message. 
The simulations are performed on TinyOS TOSSIM simulator 
for an ad hoc information spread scenario using algorithms of 
our pull and push-based approaches described. Results are 
only for one run and for dissemination of a single message. 
Hence, several members may become infected at one round.  
The theoretical curves include expected time that is why they 
can take continuous values for rounds. The qualitative 
behavior is quite similar in both simulation and the theory for 
the push model. However, simulated curve for the pull model 
is sharper than the theory predicts. That might be due to the 
fact that the chain-Binomial model may not be as adequate for 
the pull approach. The push approach delivers the message 
faster than the pull approach. Although this study does not aim 
to fit parameters of the chain-Binomial model over simulated 
values, scaling the parameter p can serve this purpose.  

 An interesting further study would be investigating the 
effect of network conditions such as node/link failures, 
congestion that may occur in bottleneck links when spreading 
large amount of data and the associated overhead of both 
models. In fact, as reported in the empirical results of [15], 
push model becomes inefficient in terms of average delay 
observed by peers when spreading large amount of data even 
in the lack of network failures. The chain-Binomial model for 
multiple data could be extended to reflect any network 
congestion in this case. A single infectious peer may attempt 
to infect several members at once in push model and cause 
congestion especially during continuous data dissemination.  

The delay time experienced by each peer to receive the 
message is an important performance measure, from user 
perspective. In Fig.4, the group members in the order they 
receive the message are plotted against expected number of 
rounds for different starting number k of infectious processes, 
for k=1,10,25,90 and n=100. The message is received much 
faster for larger k and also with clear bursts even for the mean 
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delivery time which takes continuous values. For larger k, 
several members have very close expected delivery time 
which is the reason of the bursts. An analogous plot is given in 
Fig.5 for the case of a group of size n=1000. Similar 
conclusions can be drawn as in n=100. The mean time to 
receive a message as experienced by a peer is given in tables I 
and II, respectively for n=100 and n=1000. These are 
summary measures for the complete information given in 
Figs.4 and 5. It is interesting that for group sizes 100 and 1000 
the mean number of rounds to receive the message per user is 
almost the same for comparable ratios of initial number of 
infectious members. The numbers are different only for k=1, 
which clearly has different ratio in different n. Push policy 
delivers the message faster per member as also evident from 
the previous figures.  

 
TABLE I. EXPECTED NUMBER OF ROUNDS PER PEER FOR n=100. 

  k=1 k=25  k=50 k=90  
Pull 8.8 2.78 2.12 1.65 
Push 6.7 2.33 1.64 1.10 

 
TABLE II. EXPECTED NUMBER OF ROUNDS PER PEER FOR n=1000. 

  k=1 k=250 k=500 k=900 
Pull 12.4 2.78 2.12 1.65 
Push 10.1 2.32 1.63 1.10 

 
For comparison purposes, we depict the cases of n=100 

and n=1000 together in Fig.6 for k=1. Although the curves are 
similar, the time it takes to reach 100 is shorter for n=1000 
due to the efficiency gained from larger group size.  

In Figs. 1 to 5, we have taken fan-out f to be 1, that is, a 
member gossips to one member at each round. To see the 
effect of f for both pull and push approaches, we change f as 
1,2 and 4. The results are given in Figs. 7 and 8, respectively 
for n=100 and n=1000 and initial number of infectious peers 
k=1. The qualitative behavior is similar for both group sizes. 
Certainly, increasing f decreases the average delay 
experienced by each member. However, doubling f from 1 to 2 
is more effective than doubling it from 2 to 4. Moreover, the 
difference between pull and push based approaches become 
almost indistinguishable for f=4. The mean time to receive a 
message as experienced by a peer summarized in table III for 
different f starting with k=1 confirm these conclusions.  

TABLE III. EXPECTED NUMBER OF ROUNDS PER PEER FOR VARIOUS f 

f=1 f=2 f=4  
Pull Push Pull Push Pull Push 

n=100 8.8 6.7 5.1 4.3 3.3 3.0 
n=1000 12.4 10.1 7.3 6.4 4.9 4.5 
 

 

 

V. CONCLUSION 
We have developed analytical models for pull and push-

based approaches in anti-entropy/epidemic protocols to 
compare their performance. These approaches are fully 
distributed, utilize local information only via pair-wise 
interactions, and provide eventual consistency, scalability and 
communication topology-independence which make them 
suitable for peer-to-peer distributed systems. In the analytical 
model, our use of the underlying Markov chain for exact delay 
computations is novel. This approach replaces any 
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Figure 5. Group member versus message delivery time starting 
with 1, 10, 25, 50 and 90 infectives at time 0, for n=100.  
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approximate approaches of earlier studies and has made it 
possible to evaluate the delay performance observed by each 
peer.  

Our numerical investigations predict that push-based 
approach inherently facilitates faster information spread both 
for the whole group and as experienced by each member. This 
theoretical result is confirmed by network simulations for one 
message, whereas it is in contradiction when multiple 
messages are released.  Incorporation of the latter case into the 
models developed in this paper will be future work.  

We will further improve the pull model by modifying the 
probability of infection. Based on these probabilities, the 
independence property used in Binomial distribution is just an 
approximation for the pull case whereas it is exact for the push 
case. 
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