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Abstract—In reliable group communication, epidemic or 
probabilistic protocols gained popularity due to their 
scalability to large number of peers and robustness 
against network failures. Reliability properties of these 
protocols are ensured via probabilistic guarantees. A key 
issue to consider when offering reliability is the buffer 
space used by individual peers of the group. Our aim is to 
optimize the buffer space while providing reliability in 
epidemic data dissemination protocols. We introduce a 
novel randomized model and compare it with a hash-
based approach for buffer management. The effect of 
short and long term buffering of peers and the buffer size 
on delivery latency and reliability are considered. We 
compute the performance measures through simulations 
of large-scale application scenarios. 
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INTRODUCTION 
Many distributed applications need dissemination of 

data from a single source to a large group of peers. 
Epidemic or gossip-based algorithms work with a 
probabilistic guarantee in an efficient way. Some 
application areas are failure detection [1], data 
aggregation, resource discovery and monitoring [2], and 
database replication [3]. In these protocols a single 
down or slow receiver cannot affect the whole system 
while the network load is distributed to all members. 
The gossiping mechanism provides a high resilience to 
problems like link failures or failure on a single node. 

In an epidemic algorithm, every process of the 
system is potentially involved in the dissemination of 
messages [4]. Every process buffers every message 
(information unit) it receives up to a certain buffer 
capacity b, and forwards that message a limited number 
of times t. The process forwards the message each time 
to a randomly selected set of processes of limited size f, 
called the fan-out of the dissemination. The reliability of 
information delivery depends both on these values and 
the size of the system n. Through epidemic 
dissemination, eventually the message will be received 
by all members with high probability in the order of 

 rounds. The probabilistic guarantee of message 
delivery in epidemic algorithms is directly related to the 

value of the dissemination parameters. These 
parameters can be tuned so that with arbitrarily high 
probability, the algorithm meets the guarantees that 
deterministic algorithms would provide. 

nlog

In the simplest form of epidemic dissemination, if a 
member receives a message it directly forwards the 
message to a randomly chosen member. This scheme is 
fast but has a problem. A message can be sent to a node 
several times unnecessarily. The more sophisticated 
approach used in recent algorithms as well as this study 
is anti-entropy where the unnecessary transmission 
problem is handled by introducing a request-transmit 
procedure. Each member periodically chooses f random 
members from its neighbors and sends its message 
history. As a result, each peer detects the missing 
messages and requests from the other peers. 

In this study, we are interested in the buffer 
management problem in epidemic information 
dissemination. To understand the buffering problem, 
recall the principle of a simple epidemic broadcast 
algorithm: every process that receives a message 
(information unit) has to buffer it up to a certain buffer 
capacity, and forward it a limited number of times, each 
time to a randomly selected set of processes of limited 
size (fan-out). Depending on the rate of new 
information production in the system, the buffer 
capacity may be insufficient to ensure that every 
message is buffered long enough so that it can be 
forwarded a sufficient number of times to achieve an 
acceptable reliability. Three complementary approaches 
have been considered in earlier work on buffer 
management. For reducing the memory usage, 
mechanisms for message drop and the number of nodes 
which buffer a given message are determined [5,6]. 
Another approach is network flow control where the 
idea is to influence the application by regulating its rate 
when processes do not have enough resources and 
enough time to buffer [7,8]. In message stability 
approach, the members inform the other peers in their 
view about which messages they buffer. If the members 
detect that all have received a specific message, they 
drop it from their buffers [9, 10]. 

Our contribution is a novel buffer management 
approach which we compare with the hash-based buffer 
management given in [5]. We set the long term 



bufferers of a message at its origination instance. Then, 
the messages are disseminated epidemically through 
anti-entropy mechanism. Our model follows the FIFO 
scheme where in case of a buffer overflow the message 
that arrived earliest is dropped. In our scheme, not all 
nodes buffer all messages, instead a limited number of 
them buffer as many as their buffer space allows.  Our 
preliminary study [11] with simple epidemics has 
shown that our approach is scalable and the load on the 
nodes is well distributed. 

The paper is organized as follows. Section 2 
summarizes the related work in message buffering. 
Section 3 introduces our approach. In Section 4, 
performance results of our scheme are examined. 
Finally, Section 5 concludes the paper. 

II. 

A. 

B. 

C. 

D. 

RELATED WORK 
In order to achieve reliability in group 

communication, the error recovery mechanism must be 
well designed. An efficient buffer management scheme 
is indispensable part of an error recovery mechanism. 

Approaches for buffer management can be classified 
into three categories: optimizing the memory usage, 
flow control and providing message stability. In 
addition, different policies for the replacement of buffer 
items are considered.  

Reducing  the Memory Usage 
The pioneering study [5] focuses on reducing the 

buffer requirement by buffering each message only over 
a small set of members. Upon receiving a message, a 
member determines whether it should buffer the 
message using a hash function based on its network 
address and the identifier of the message.  However, 
dynamic redefinition of the hash table is not considered 
in this algorithm. In the present work, the long-term 
bufferers of a message are randomly chosen when it is 
created at the source. Hence, if a new member joins the 
system, it is eligible to be a bufferer as chosen by the 
source.  

A multicast protocol that reduces buffer requirements 
is Randomized Reliable Multicast Protocol [6] which is 
an improvement over Bimodal Multicast [13]. Both 
protocols use epidemic error recovery. The message is 
kept in the long-term buffer for a fixed amount of time. 
In our approach, the messages are kept in the short-term 
and long-term buffers until the capacity of the buffers 
are reached.  

Network Flow Control 
Flow control is an adaptive mechanism that deals 

with varying resources such as CPU and bandwidth in 
the end hosts. A NAK based retransmission control 
scheme is given in [7]. The sender reduces its 
transmission rate whenever it receives too many NAKs 
from the receivers. It also keeps a log of its past 
transmission rates to prevent high decrease in the rate. 
This mechanism helps to minimize the buffer overflows 
at the receivers. 

A different idea explored in [8] requires every 
process to calculate the average buffer capacity among 
all processes it communicates with and transmit that 
information. When the rate is too high with respect to 
the average, the process reduces the rate locally. 

Indirectly, the sources of the information get such a 
feedback and they reduce the rate of information 
production. The main drawback here is that the rate is 
adjusted according to the process with the smallest 
buffer space. 

Achieving Stability 
In [9], a stability detection algorithm is given for 

discarding the messages from the buffers of the peers. A 
message is said to be stable when it is delivered to all 
members of the group. All the members periodically 
exchange messages to inform each other about the 
messages they have received. When a member becomes 
aware of a message becoming stable, it safely discards 
the message. So the system wide buffer space is 
reduced. A drawback is the high traffic caused by 
frequent exchange of history messages. 

Search Party [10] is another protocol in which 
contribution of a timer helps to discard packets from the 
buffers. All the members discard packets after a fixed 
amount of time to achieve stability.  

Recently, a heuristic buffer management method 
using both ACKs and NAKs is proposed in [12] to 
provide scalability and reliability. In every group of 
receivers there are one or more members with higher 
error rates than the other members. These nodes are the 
ones with the least reliable nodes and the ones with the 
slowest links. The idea is that if a message is correctly 
received by these nodes, it must have been received by 
the other nodes. The nodes with the most reliable links 
are selected to buffer the received messages for a fixed 
amount of time.  

Replacement Policy for Buffer Items 
Network Friendly Epidemic Multicast [13] combines 

a standard epidemic protocol with some complementary 
mechanisms. A novel buffering technique that combines 
different selection techniques is proposed to discard 
messages in case of a buffer overflow. During the 
network congestion periods these selection mechanisms 
help to control the flow of the network. The used 
selection strategies for discarding messages are random 
purging, age-based purging and semantic purging. 
Random purging is to discard an item from buffer 
randomly. It can be helpful when the system is 
congested for some time. Age-based purging is simply 
discarding the oldest message. And semantic purging 
means that a message which has been recognized as 
obsolete is discarded. Obsolescence relation is 
determined by the application. 

Recently, least recently used (LRU) buffer 
replacement scheme is considered in [14] for epidemic 
information dissemination. The buffer hit rate of the 
system, defined as the probability of retrieving 
requested item matching the key of request either from 
the local buffer, the origin device, or the buffer of a 
remote device, is also determined. In LRU scheme, a 
new coming message is placed on the first position and 
the message at the rear is discarded as in our case. 
However, when a request arrives for a message in the 
buffer, that message is placed into the first place by 
moving the items in front one position down. Hence, the 
least used item stays at the rear of the stack possibly 
next to be discarded. 



For all gossip rounds 
      Choose random f destinations 
      Send digest msg to each destination 
Event digest arrives 
      Compare msg history with digest 
      Determine missing messages  
      If missing msg is contained in source of digest 
           Send request msg to source of digest 
      Else if the source of digest does not contain the msg 
           Send request to one of the bufferers 
 Event request arrives 
      If short term or long term buffer contains data 
           Send requested data to request source 
 Event data arrives 
      Add data to buffer 
      Add data information to msg history 
 If the node is data source 
      Create data msg 
      Choose bufferers for that message randomly 
      Send the message to the bufferers 
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OUR MODEL 
We propose an efficient buffering algorithm that 

ensures reliability in epidemic information 
dissemination, adaptable to dynamic groups and reduces 
the system wide buffer space. In our scheme, every 
node has a short-term and a long-term buffer for 
retransmissions. Message discarding policy is not time 
dependent like [10]. We use FIFO ordering for 
messages in the buffer. A new coming message is 
placed on the first position in the buffer stack. The 
oldest message in the buffer which is at the rear of the 
stack is discarded in case the capacity of the buffer is 
reached. Another aim of the algorithm is to reduce the 
number of bufferers in the system, but it has no use of a 
hash function like [5] to determine the bufferers. 
Typical applications include those where messages 
originate from a single source and all data is to be 
distributed to all peers. Our aim is to disseminate the 
data as quickly as possible and efficiently by uniform 
buffer usage. 

Determining Bufferers 
When a message is generated, a set of long-term 

bufferers for the message is determined by the source 
and the ids of these bufferers are piggybacked to the 
message.  The message is directly forwarded to bufferer 
processes. The bufferer nodes for a message are 
determined randomly from the peers known to the 
message source. In addition, the number of bufferers 
must be chosen large enough to handle failures in some 
bufferers and small enough not to give rise to overhead 
in the traffic. The number of bufferers is an important 
parameter for the system efficiency. The bufferer 
processes may hold the corresponding messages in their 
long-term buffers for ever if there is space. If a process 
detects that it has missed a message, it can request the 
message from one of the long-term bufferers of that 
message. The aim is to keep the probability of a 
message being removed from the long-term buffers of 
all bufferers very small when there are members 
missing that message. 

Dissemination 
The messages are disseminated to all members 

epidemically by the anti-entropy model. Periodically, all 
members choose f peers randomly and then send the 
information of the messages received up to that time. 
This process is called gossiping and the parameter f is 
the fan-out. This history information of received 
messages is called a digest message. In our scheme, the 
digest message also contains the ids of the long-term 
bufferers and the information that whether the node that 
sent the digest message has discarded the corresponding 
message or it has the message in the short-term buffer. 
Relying on this information, the node that has received 
the digest message requests the data from the source of 
the digest or from one of the long-term bufferers. The 
short-term buffer is preferred. If the owner of the digest 
cannot serve the request from its short-term buffer, then 
the requester can ask one of the long-term bufferers for 
the missing message. The aim is to distribute the load of 
buffering over the network. If the long-term bufferer 
fails to retransmit the message, the request can be 
forwarded to another bufferer.  

When a member receives a new message, it takes the 
message to its short-term buffer. If the short-term buffer 
is full, the oldest message is removed. 

Fig.s 1 and 2 illustrate our idea with a simple 
scenario. The columns next to the nodes represent the 
long-term and the short-term buffers of the members 
respectively. The list written in curly braces is the 
message history, that is, the messages received up to 
that time by the node. There are 6 messages sent to the 
group.     
In Fig. 1, node 4 gossips to 2 and node 3 to 1. When 
node 2 gets the digest message of node 4, it realizes 
that it has not received message 1 which node 4 
received. Then it requests message 1 from node 4, but 
since node 4 dropped message 1 from its short-term 
buffer it cannot handle that request. Then, since the 
digest message contains the bufferers of the messages, 
node 2 requests the message from the bufferer of 
message 1 which is node 3 as shown in Fig. 2. 
Similarly, node 1 also detects that it missed messages 3 
and 5. It gets message 5 from node 3, but cannot 
retrieve message 3 which it requests from the bufferer, 
namely node 2.  

Algorithm for a Node 
The point of view for a node in the system is given by 

the following algorithm. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

SIMULATION 

Simulation Model 
The simulation is implemented in Java where all the 

nodes in the system can perform their tasks 
simultaneously because each node is individually a 
thread. In our simulations, we use a system with 100 
peers where we assume that all members have the 
information of full membership. All the members have 
links to all other members. In other words, we have a 
fully connected graph. The links are symmetric and 
identical. Each link allocates a bandwidth and there is a 
configurable latency for sending a message from one 
node to another. Our aim is to disseminate 1000 



messages. At every 10 milliseconds the source 
generates a message and immediately sends it to the 
bufferers. At every 100 milliseconds, all the members 
do gossiping. The fan-out parameter is set to 5.  

The size of the data messages is assumed to be 1024 
bytes. The size of the request messages is 1 byte. Also 
the size of the digest messages is assumed as k bytes 
where k is the number of entries in the digest message. 

 

 
Links in the network is bidirectional and each 

direction has a bandwidth of 1 M bps. The propagation 
delay on a link is assumed as p=5 milliseconds. So, the 
time needed to send a packet from a node to another is t 
= p + s/b where s is the number of bytes the message 
has and b is the bandwidth. So, time needed to send a 
data message is 5+8000/106 millisecond. Therefore, the 
time needed to send a request message is approximately 
5 msec. The time for digest messages is variable 
according to the number of messages that the node 
received. The size of the digest message can vary from 
1 to 1000 bytes. So the delay for a digest message 
ranges from 5 msec to 13 msec. On the other hand, the 
data messages take 13 msec to forward. The queuing 
delays and the processing delays are ignored during 
simulations. 

B. 

C. 

Simulation Parameters 
Fan-out is the number of nodes that are chosen for 

sending the digest message during a gossip round. 
Gossip-round is the time period of gossiping. Long-term 

buffer size denotes the maximum number of messages 
that the long-term buffer of a node can hold and short-
term buffer size denotes the maximum number of 
messages that the short-term buffer of a node can hold. 
Message origination rate is the number of messages 
generated by the source node in one sec. Average used 
long buffer space is the mean number of messages in 
the long term buffer of all the nodes in the system. 
Average used short buffer space is the mean number of 
messages in the short term buffer of all the nodes in the 
system. Average long buffering time is the mean time 
that a message spends in the long term-buffer of a node 
is the average short buffering time is the time that a 
message spends in the short term-buffer of a node. 
Message dissemination time is the time that passes until 
a node receives all generated messages. Message 
receiving time denotes the time that passes from 
origination of a message to its reception by a node. 
Lastly, Percentage of Short-Term is the percentage of 
the received messages that are sent from short-term 
buffers of the nodes.  

 
Figure 1. Gossiping 

Simulation Results 
In this section, we compare performance results of 

our model and the protocol where the hash-based 
buffering approach described in [5] is used for 
epidemic information dissemination. Originally in [5], 
the messages are multicast and then the error recovery 
is performed. A node finds the bufferers of the missed 
messages by the use of a hash function and sends 
requests.  The values for parameters are 50 msg for 
long-term buffer size and 20 for short-term buffer size. 

To compare our model with the hash based 
approach, we consider the situation where the number 
of messages kept in the long-term buffer of a node is 
approximately equal in both cases, in particular about 
80. So, the number of long-term bufferers in our model 
is set to 8 as 1000 messages are received by 100 
members to have 8*1000/100=80. On the other hand, 
the parameters of the hash function are adjusted 
accordingly to have approximately 80 different 
messages passing through each long-term buffer in the 
hash based approach. 

In Fig. 3, we examine the dissemination time, 
namely the time needed to send all 1000 messages to 
all 100 peers, in each approach. We see that the 
dissemination of all data is completed in the hash-based 
approach approximately 1.5 sec later than our model. 
In our model, the bufferers are determined at the 
generation of the message and the messages are 
directly sent to the bufferers. However, in the hash-
based approach a node decides to be a bufferer for a 
message when it receives the message through 
gossiping eventually.  

Comparison of the mean time that a message spends 
in the long term buffer of a node in both approaches is 
given in Fig. 4. We can see that the time spent in the 
long term buffer in our approach is 0.1 sec (100 msec) 
higher than the hash-based one. This means that in our 
model a node serves a message for a longer time. So, 
during dissemination the availability of a message is 
more likely in our model. This affects also the whole 
dissemination time given in Fig. 3. 

Similarly, the time for a message that a node holds in 
its short-term buffer is higher in our approach. This can 

 
Figure 2. Requesting missed messages from bufferers 



be observed from Fig. 5. The mean short-term 
buffering time is 0.61 sec in our random model and 
0.54 sec in the hash-based one. 

The mean time that passes from origination to 
receiving of a message is another important measure in 
dissemination of data. If a node receives a message 
earlier, this means that the corresponding message can 
be reached from the other nodes earlier for repair. So, 
this will make an important effect on the dissemination 
time. Message receiving times in both approaches are 
given in Fig. 6. The mean receiving time is 1.6 second 
in our approach and 2.4 second in the hash-based one. 

The utilization of the bufferers is another 
performance measure that we consider. In our model, 
the load imposed on the bufferers of a message and the 
nodes holding the corresponding message is equal. 
From Fig. 7, we can observe that approximately 500 of 
the messages are received from short-term buffers of 
the nodes holding the messages. The remaining 500 
messages are received from the bufferers of the 
messages. On the other hand in the hash-based 
approach, only %10 of messages is received from the 
bufferers of the corresponding messages. The 
remaining 90% comes from the short-term buffers of 
the peers. In our approach the messages are directly 
forwarded to the bufferers. So, during a gossip round if 
a member fails to receive a message, it can request the 
message from one of the bufferers. On the other hand, 
in the hash-based approach, it is likely that the 
bufferers have not received the message during earlier 
times of the dissemination. This is due to the fact that 
even the long-term bufferers of a message obtain it 
through the gossip and request mechanism.  

Another measure that must be taken into account is 
reliability. In Fig. 8, the effect of reliability in both 
approaches can be examined. We can clearly observe 
that the short-term buffer size is not an important factor 
that affects the reliability in our approach. But the 
hash-based approach is very sensitive to the size of the 
short-term buffer due to the reasons explained for Fig. 
8. For example, if the short-term buffer size is 5, about 
20% of the messages are lost. If we increase it 3 folds, 
the number of missed messages decreases by 10 folds.   

  In Fig. 9, we investigate the effect of the long-term 
buffer size. We increase the long-term buffer size from 
2 to 30 in both approaches. In our model after the long-
term buffer size is 10 messages, the dissemination time 
becomes almost constant which is 10.2 sec. In the 
hash-based approach, reliability is obtained when the 
long-term buffer size is greater than 4 messages. The 
dissemination time decreases steadily, but remains 
higher than our model.  

Up to this point in the simulations, we have 
investigated performance measures with the number of 
nodes equal to 100. In Fig. 10, we examine the number 
of different messages stored in the long-term buffer per 
peer while the size of the group increases. Note that the 
long-term buffer space is 50 for all sizes. 

We implemented LRU buffering scheme in our 
simulations as well and repeated all the analysis above. 
However, we could not observe any significant effect 
on the performance measures. 

 

 

 

 

 

 
Figure 5: Comparison of short-term buffering times 

Short-term size: 20 Long-term size: 50 
Figure 6. Comparison of message receiving times 
Short-term size: 20 Long-term size: 50
 
Figure 3.  Comparison of dissemination times 

Short-term size: 20 Long-term size: 50 
Figure 4. Comparison of long-term buffering times 
Short-term size: 20 Long-term size: 50 



 
 

a
n
r
d
in
d
a

Figure 7. Number of messages received from short term 
Short-term size: 20 Long-term size: 50 
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