
Message Buffering in Epidemic Data
Dissemination◊

I.

◊ This work is supported in part by TUBITAK (The Scientific and Technical Research Council of Turkey) under CAREER Award Grant 104E064.

Emrah Ahi*, Mine Çağlar** and Öznur Özkasap***
* Department. of Computational Science and Engineering

** Department. of Mathematics
*** Department. of Computer Engineering

Koç University, Istanbul, Turkey
{eahi|mcaglar|oozkasap }@ku.edu.tr

Abstract—In reliable group communication, epidemic or
probabilistic protocols gained popularity due to their
scalability to large number of peers and robustness
against network failures. Reliability properties of these
protocols are ensured via probabilistic guarantees. A key
issue to consider when offering reliability is the buffer
space used by individual peers of the group. Our aim is to
optimize the buffer space while providing reliability in
epidemic data dissemination protocols. We introduce a
novel randomized model and compare it with a hash-
based approach for buffer management. The effect of
short and long term buffering of peers and the buffer size
on delivery latency and reliability are considered. We
compute the performance measures through simulations
of large-scale application scenarios.

Keywords: Buffer Management, Epidemic, reliability

INTRODUCTION
Many distributed applications need dissemination of

data from a single source to a large group of peers.
Epidemic or gossip-based algorithms work with a
probabilistic guarantee in an efficient way. Some
application areas are failure detection [1], data
aggregation, resource discovery and monitoring [2], and
database replication [3]. In these protocols a single
down or slow receiver cannot affect the whole system
while the network load is distributed to all members.
The gossiping mechanism provides a high resilience to
problems like link failures or failure on a single node.

In an epidemic algorithm, every process of the
system is potentially involved in the dissemination of
messages [4]. Every process buffers every message
(information unit) it receives up to a certain buffer
capacity b, and forwards that message a limited number
of times t. The process forwards the message each time
to a randomly selected set of processes of limited size f,
called the fan-out of the dissemination. The reliability of
information delivery depends both on these values and
the size of the system n. Through epidemic
dissemination, eventually the message will be received
by all members with high probability in the order of

 rounds. The probabilistic guarantee of message
delivery in epidemic algorithms is directly related to the

value of the dissemination parameters. These
parameters can be tuned so that with arbitrarily high
probability, the algorithm meets the guarantees that
deterministic algorithms would provide.

nlog

In the simplest form of epidemic dissemination, if a
member receives a message it directly forwards the
message to a randomly chosen member. This scheme is
fast but has a problem. A message can be sent to a node
several times unnecessarily. The more sophisticated
approach used in recent algorithms as well as this study
is anti-entropy where the unnecessary transmission
problem is handled by introducing a request-transmit
procedure. Each member periodically chooses f random
members from its neighbors and sends its message
history. As a result, each peer detects the missing
messages and requests from the other peers.

In this study, we are interested in the buffer
management problem in epidemic information
dissemination. To understand the buffering problem,
recall the principle of a simple epidemic broadcast
algorithm: every process that receives a message
(information unit) has to buffer it up to a certain buffer
capacity, and forward it a limited number of times, each
time to a randomly selected set of processes of limited
size (fan-out). Depending on the rate of new
information production in the system, the buffer
capacity may be insufficient to ensure that every
message is buffered long enough so that it can be
forwarded a sufficient number of times to achieve an
acceptable reliability. Three complementary approaches
have been considered in earlier work on buffer
management. For reducing the memory usage,
mechanisms for message drop and the number of nodes
which buffer a given message are determined [5,6].
Another approach is network flow control where the
idea is to influence the application by regulating its rate
when processes do not have enough resources and
enough time to buffer [7,8]. In message stability
approach, the members inform the other peers in their
view about which messages they buffer. If the members
detect that all have received a specific message, they
drop it from their buffers [9, 10].

Our contribution is a novel buffer management
approach which we compare with the hash-based buffer
management given in [5]. We set the long term

bufferers of a message at its origination instance. Then,
the messages are disseminated epidemically through
anti-entropy mechanism. Our model follows the FIFO
scheme where in case of a buffer overflow the message
that arrived earliest is dropped. In our scheme, not all
nodes buffer all messages, instead a limited number of
them buffer as many as their buffer space allows. Our
preliminary study [11] with simple epidemics has
shown that our approach is scalable and the load on the
nodes is well distributed.

The paper is organized as follows. Section 2
summarizes the related work in message buffering.
Section 3 introduces our approach. In Section 4,
performance results of our scheme are examined.
Finally, Section 5 concludes the paper.

II.

A.

B.

C.

D.

RELATED WORK
In order to achieve reliability in group

communication, the error recovery mechanism must be
well designed. An efficient buffer management scheme
is indispensable part of an error recovery mechanism.

Approaches for buffer management can be classified
into three categories: optimizing the memory usage,
flow control and providing message stability. In
addition, different policies for the replacement of buffer
items are considered.

Reducing the Memory Usage
The pioneering study [5] focuses on reducing the

buffer requirement by buffering each message only over
a small set of members. Upon receiving a message, a
member determines whether it should buffer the
message using a hash function based on its network
address and the identifier of the message. However,
dynamic redefinition of the hash table is not considered
in this algorithm. In the present work, the long-term
bufferers of a message are randomly chosen when it is
created at the source. Hence, if a new member joins the
system, it is eligible to be a bufferer as chosen by the
source.

A multicast protocol that reduces buffer requirements
is Randomized Reliable Multicast Protocol [6] which is
an improvement over Bimodal Multicast [13]. Both
protocols use epidemic error recovery. The message is
kept in the long-term buffer for a fixed amount of time.
In our approach, the messages are kept in the short-term
and long-term buffers until the capacity of the buffers
are reached.

Network Flow Control
Flow control is an adaptive mechanism that deals

with varying resources such as CPU and bandwidth in
the end hosts. A NAK based retransmission control
scheme is given in [7]. The sender reduces its
transmission rate whenever it receives too many NAKs
from the receivers. It also keeps a log of its past
transmission rates to prevent high decrease in the rate.
This mechanism helps to minimize the buffer overflows
at the receivers.

A different idea explored in [8] requires every
process to calculate the average buffer capacity among
all processes it communicates with and transmit that
information. When the rate is too high with respect to
the average, the process reduces the rate locally.

Indirectly, the sources of the information get such a
feedback and they reduce the rate of information
production. The main drawback here is that the rate is
adjusted according to the process with the smallest
buffer space.

Achieving Stability
In [9], a stability detection algorithm is given for

discarding the messages from the buffers of the peers. A
message is said to be stable when it is delivered to all
members of the group. All the members periodically
exchange messages to inform each other about the
messages they have received. When a member becomes
aware of a message becoming stable, it safely discards
the message. So the system wide buffer space is
reduced. A drawback is the high traffic caused by
frequent exchange of history messages.

Search Party [10] is another protocol in which
contribution of a timer helps to discard packets from the
buffers. All the members discard packets after a fixed
amount of time to achieve stability.

Recently, a heuristic buffer management method
using both ACKs and NAKs is proposed in [12] to
provide scalability and reliability. In every group of
receivers there are one or more members with higher
error rates than the other members. These nodes are the
ones with the least reliable nodes and the ones with the
slowest links. The idea is that if a message is correctly
received by these nodes, it must have been received by
the other nodes. The nodes with the most reliable links
are selected to buffer the received messages for a fixed
amount of time.

Replacement Policy for Buffer Items
Network Friendly Epidemic Multicast [13] combines

a standard epidemic protocol with some complementary
mechanisms. A novel buffering technique that combines
different selection techniques is proposed to discard
messages in case of a buffer overflow. During the
network congestion periods these selection mechanisms
help to control the flow of the network. The used
selection strategies for discarding messages are random
purging, age-based purging and semantic purging.
Random purging is to discard an item from buffer
randomly. It can be helpful when the system is
congested for some time. Age-based purging is simply
discarding the oldest message. And semantic purging
means that a message which has been recognized as
obsolete is discarded. Obsolescence relation is
determined by the application.

Recently, least recently used (LRU) buffer
replacement scheme is considered in [14] for epidemic
information dissemination. The buffer hit rate of the
system, defined as the probability of retrieving
requested item matching the key of request either from
the local buffer, the origin device, or the buffer of a
remote device, is also determined. In LRU scheme, a
new coming message is placed on the first position and
the message at the rear is discarded as in our case.
However, when a request arrives for a message in the
buffer, that message is placed into the first place by
moving the items in front one position down. Hence, the
least used item stays at the rear of the stack possibly
next to be discarded.

For all gossip rounds
 Choose random f destinations
 Send digest msg to each destination
Event digest arrives
 Compare msg history with digest
 Determine missing messages
 If missing msg is contained in source of digest
 Send request msg to source of digest
 Else if the source of digest does not contain the msg
 Send request to one of the bufferers
 Event request arrives
 If short term or long term buffer contains data
 Send requested data to request source
 Event data arrives
 Add data to buffer
 Add data information to msg history
 If the node is data source
 Create data msg
 Choose bufferers for that message randomly
 Send the message to the bufferers

III.

A.

B.

C.

IV.

A.

OUR MODEL
We propose an efficient buffering algorithm that

ensures reliability in epidemic information
dissemination, adaptable to dynamic groups and reduces
the system wide buffer space. In our scheme, every
node has a short-term and a long-term buffer for
retransmissions. Message discarding policy is not time
dependent like [10]. We use FIFO ordering for
messages in the buffer. A new coming message is
placed on the first position in the buffer stack. The
oldest message in the buffer which is at the rear of the
stack is discarded in case the capacity of the buffer is
reached. Another aim of the algorithm is to reduce the
number of bufferers in the system, but it has no use of a
hash function like [5] to determine the bufferers.
Typical applications include those where messages
originate from a single source and all data is to be
distributed to all peers. Our aim is to disseminate the
data as quickly as possible and efficiently by uniform
buffer usage.

Determining Bufferers
When a message is generated, a set of long-term

bufferers for the message is determined by the source
and the ids of these bufferers are piggybacked to the
message. The message is directly forwarded to bufferer
processes. The bufferer nodes for a message are
determined randomly from the peers known to the
message source. In addition, the number of bufferers
must be chosen large enough to handle failures in some
bufferers and small enough not to give rise to overhead
in the traffic. The number of bufferers is an important
parameter for the system efficiency. The bufferer
processes may hold the corresponding messages in their
long-term buffers for ever if there is space. If a process
detects that it has missed a message, it can request the
message from one of the long-term bufferers of that
message. The aim is to keep the probability of a
message being removed from the long-term buffers of
all bufferers very small when there are members
missing that message.

Dissemination
The messages are disseminated to all members

epidemically by the anti-entropy model. Periodically, all
members choose f peers randomly and then send the
information of the messages received up to that time.
This process is called gossiping and the parameter f is
the fan-out. This history information of received
messages is called a digest message. In our scheme, the
digest message also contains the ids of the long-term
bufferers and the information that whether the node that
sent the digest message has discarded the corresponding
message or it has the message in the short-term buffer.
Relying on this information, the node that has received
the digest message requests the data from the source of
the digest or from one of the long-term bufferers. The
short-term buffer is preferred. If the owner of the digest
cannot serve the request from its short-term buffer, then
the requester can ask one of the long-term bufferers for
the missing message. The aim is to distribute the load of
buffering over the network. If the long-term bufferer
fails to retransmit the message, the request can be
forwarded to another bufferer.

When a member receives a new message, it takes the
message to its short-term buffer. If the short-term buffer
is full, the oldest message is removed.

Fig.s 1 and 2 illustrate our idea with a simple
scenario. The columns next to the nodes represent the
long-term and the short-term buffers of the members
respectively. The list written in curly braces is the
message history, that is, the messages received up to
that time by the node. There are 6 messages sent to the
group.
In Fig. 1, node 4 gossips to 2 and node 3 to 1. When
node 2 gets the digest message of node 4, it realizes
that it has not received message 1 which node 4
received. Then it requests message 1 from node 4, but
since node 4 dropped message 1 from its short-term
buffer it cannot handle that request. Then, since the
digest message contains the bufferers of the messages,
node 2 requests the message from the bufferer of
message 1 which is node 3 as shown in Fig. 2.
Similarly, node 1 also detects that it missed messages 3
and 5. It gets message 5 from node 3, but cannot
retrieve message 3 which it requests from the bufferer,
namely node 2.

Algorithm for a Node
The point of view for a node in the system is given by

the following algorithm.

SIMULATION

Simulation Model
The simulation is implemented in Java where all the

nodes in the system can perform their tasks
simultaneously because each node is individually a
thread. In our simulations, we use a system with 100
peers where we assume that all members have the
information of full membership. All the members have
links to all other members. In other words, we have a
fully connected graph. The links are symmetric and
identical. Each link allocates a bandwidth and there is a
configurable latency for sending a message from one
node to another. Our aim is to disseminate 1000

messages. At every 10 milliseconds the source
generates a message and immediately sends it to the
bufferers. At every 100 milliseconds, all the members
do gossiping. The fan-out parameter is set to 5.

The size of the data messages is assumed to be 1024
bytes. The size of the request messages is 1 byte. Also
the size of the digest messages is assumed as k bytes
where k is the number of entries in the digest message.

Links in the network is bidirectional and each

direction has a bandwidth of 1 M bps. The propagation
delay on a link is assumed as p=5 milliseconds. So, the
time needed to send a packet from a node to another is t
= p + s/b where s is the number of bytes the message
has and b is the bandwidth. So, time needed to send a
data message is 5+8000/106 millisecond. Therefore, the
time needed to send a request message is approximately
5 msec. The time for digest messages is variable
according to the number of messages that the node
received. The size of the digest message can vary from
1 to 1000 bytes. So the delay for a digest message
ranges from 5 msec to 13 msec. On the other hand, the
data messages take 13 msec to forward. The queuing
delays and the processing delays are ignored during
simulations.

B.

C.

Simulation Parameters
Fan-out is the number of nodes that are chosen for

sending the digest message during a gossip round.
Gossip-round is the time period of gossiping. Long-term

buffer size denotes the maximum number of messages
that the long-term buffer of a node can hold and short-
term buffer size denotes the maximum number of
messages that the short-term buffer of a node can hold.
Message origination rate is the number of messages
generated by the source node in one sec. Average used
long buffer space is the mean number of messages in
the long term buffer of all the nodes in the system.
Average used short buffer space is the mean number of
messages in the short term buffer of all the nodes in the
system. Average long buffering time is the mean time
that a message spends in the long term-buffer of a node
is the average short buffering time is the time that a
message spends in the short term-buffer of a node.
Message dissemination time is the time that passes until
a node receives all generated messages. Message
receiving time denotes the time that passes from
origination of a message to its reception by a node.
Lastly, Percentage of Short-Term is the percentage of
the received messages that are sent from short-term
buffers of the nodes.

Figure 1. Gossiping

Simulation Results
In this section, we compare performance results of

our model and the protocol where the hash-based
buffering approach described in [5] is used for
epidemic information dissemination. Originally in [5],
the messages are multicast and then the error recovery
is performed. A node finds the bufferers of the missed
messages by the use of a hash function and sends
requests. The values for parameters are 50 msg for
long-term buffer size and 20 for short-term buffer size.

To compare our model with the hash based
approach, we consider the situation where the number
of messages kept in the long-term buffer of a node is
approximately equal in both cases, in particular about
80. So, the number of long-term bufferers in our model
is set to 8 as 1000 messages are received by 100
members to have 8*1000/100=80. On the other hand,
the parameters of the hash function are adjusted
accordingly to have approximately 80 different
messages passing through each long-term buffer in the
hash based approach.

In Fig. 3, we examine the dissemination time,
namely the time needed to send all 1000 messages to
all 100 peers, in each approach. We see that the
dissemination of all data is completed in the hash-based
approach approximately 1.5 sec later than our model.
In our model, the bufferers are determined at the
generation of the message and the messages are
directly sent to the bufferers. However, in the hash-
based approach a node decides to be a bufferer for a
message when it receives the message through
gossiping eventually.

Comparison of the mean time that a message spends
in the long term buffer of a node in both approaches is
given in Fig. 4. We can see that the time spent in the
long term buffer in our approach is 0.1 sec (100 msec)
higher than the hash-based one. This means that in our
model a node serves a message for a longer time. So,
during dissemination the availability of a message is
more likely in our model. This affects also the whole
dissemination time given in Fig. 3.

Similarly, the time for a message that a node holds in
its short-term buffer is higher in our approach. This can

Figure 2. Requesting missed messages from bufferers

be observed from Fig. 5. The mean short-term
buffering time is 0.61 sec in our random model and
0.54 sec in the hash-based one.

The mean time that passes from origination to
receiving of a message is another important measure in
dissemination of data. If a node receives a message
earlier, this means that the corresponding message can
be reached from the other nodes earlier for repair. So,
this will make an important effect on the dissemination
time. Message receiving times in both approaches are
given in Fig. 6. The mean receiving time is 1.6 second
in our approach and 2.4 second in the hash-based one.

The utilization of the bufferers is another
performance measure that we consider. In our model,
the load imposed on the bufferers of a message and the
nodes holding the corresponding message is equal.
From Fig. 7, we can observe that approximately 500 of
the messages are received from short-term buffers of
the nodes holding the messages. The remaining 500
messages are received from the bufferers of the
messages. On the other hand in the hash-based
approach, only %10 of messages is received from the
bufferers of the corresponding messages. The
remaining 90% comes from the short-term buffers of
the peers. In our approach the messages are directly
forwarded to the bufferers. So, during a gossip round if
a member fails to receive a message, it can request the
message from one of the bufferers. On the other hand,
in the hash-based approach, it is likely that the
bufferers have not received the message during earlier
times of the dissemination. This is due to the fact that
even the long-term bufferers of a message obtain it
through the gossip and request mechanism.

Another measure that must be taken into account is
reliability. In Fig. 8, the effect of reliability in both
approaches can be examined. We can clearly observe
that the short-term buffer size is not an important factor
that affects the reliability in our approach. But the
hash-based approach is very sensitive to the size of the
short-term buffer due to the reasons explained for Fig.
8. For example, if the short-term buffer size is 5, about
20% of the messages are lost. If we increase it 3 folds,
the number of missed messages decreases by 10 folds.

 In Fig. 9, we investigate the effect of the long-term
buffer size. We increase the long-term buffer size from
2 to 30 in both approaches. In our model after the long-
term buffer size is 10 messages, the dissemination time
becomes almost constant which is 10.2 sec. In the
hash-based approach, reliability is obtained when the
long-term buffer size is greater than 4 messages. The
dissemination time decreases steadily, but remains
higher than our model.

Up to this point in the simulations, we have
investigated performance measures with the number of
nodes equal to 100. In Fig. 10, we examine the number
of different messages stored in the long-term buffer per
peer while the size of the group increases. Note that the
long-term buffer space is 50 for all sizes.

We implemented LRU buffering scheme in our
simulations as well and repeated all the analysis above.
However, we could not observe any significant effect
on the performance measures.

Figure 5: Comparison of short-term buffering times

Short-term size: 20 Long-term size: 50
Figure 6. Comparison of message receiving times
Short-term size: 20 Long-term size: 50

Figure 3. Comparison of dissemination times

Short-term size: 20 Long-term size: 50
Figure 4. Comparison of long-term buffering times
Short-term size: 20 Long-term size: 50

a
n
r
d
in
d
a

Figure 7. Number of messages received from short term
Short-term size: 20 Long-term size: 50

REFERENCES
[1] R. van Renesse, Y. Minsky, and M. Hayden, “A Gossip-Style

Failure Detection Service,” Middleware 98: IFIP Int’l Conf.
Distributed Systems and Platforms and Open Distributed
Processing, N. Davies, K. Raymond, and J. Seitz, eds.,
Springer, 1998, pp. 55-70.

[2] R. van Renesse, K.P. Birman, and W. Vogels, “Astrolabe: A
Robust and Scalable Technology for Distributed Systems
Monitoring, Management, and Data Mining,” ACM Trans.
Computer Systems, vol. 21, no. 2, 2003, pp. 164-206.

[3] A.J. Demers et al., “Epidemic Algorithms for Replicated
Database Maintenance,” Proc. 6th Ann. ACM Symp. Principles
of Distributed Computing, ACM Press, 1987, pp. 1-12.

[4] Patrick T. Eugster, Rachid Guerraoui, Anne-Marie Kermarrec,
Laurent Massoulie, “Epidemic information dissemination in
Distributed Systems”, IEEE,Computer, May 2004.

[5] O. Ozkasap, R. van Renesse, K.P. Birman, and Z. Xiao,
“Efficient Buffering in Reliable Multicast Protocols,” Proc. of
the First Int’l Workshop on Networked Group Communication
(NGC’ 99), Pisa, Italy, Nov. 1999, pp. 188-203.

[6] Z. Xiao, K.P. Birman, and R. Renesse, “Optimizing Buffer
Management for Reliable Multicast,” Proc. of the Int’l Conf. on
Dependable Systems and Networks (DSN’02), Washington,
D.C.

[7] Yamamoto, M. Yamamoto, and H. Ikeda, “Performance
Evaluation of ACK-Based and NAK-Based Flow Control
Mechanisms for Reliable Multicast Comm.,” IEICE Trans. on
Comm., vol. E84-B, no. 8, Aug. 2001, pp. 2313-2316K.

[8] L. Rodrigues, S. Handurukande, J. Orlando, R. Guerraoui, and
A.-M. Kermarrec. “Adaptive gossip-based broadcast”. In IEEE
International Conference on Dependable Systems and Networks
(DSN), 2003.

[9] K. Guo and I. Rhee, “Message Stability Detection for Reliable
Multicast,” Proc. of the 19th IEEE Conf. on Computer Comm.
(INFOCOM 2000), New York, USA, Mar. 2000, pp. 814-823.

[10] M. Costello and S. McCanne, “Search Party: Using
Randomcast for Reliable Multicast with Local Recovery,”

th
Figure 9. Long-term buffer size versus dissemination time
Short-term size: 20
Figure 8. Short-term buffer size versus reliability
Long-term size: 50

V. CONCLUSION [1

We have proposed a buffer management scheme
pplicable to dissemination of data to a large group of
odes where epidemic dissemination idea is used. The
esults have shown that our approach reduces the
issemination time and the receiving time of all data,
creases the utilization of buffers and reliability of

issemination. As future work, we will work on an
nalytical model of our approach.

[1

[1

[1

Figure 10. Number of nodes – Mean long-term buffering
Proc. of the 18 IEEE Conf. on Computer Comm. (INFOCOM
‘99), New York, USA, Mar. 1999, pp. 1256-1264.

1] A. Alagöz, E. Ahi., O. Ozkasap, “Network Awareness and
Buffer Management in Epidemic Information Dissemination”
(poster paper), ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing (PODC 2005), July, 2005,
Las Vegas

2] Jean François Paris, Jinsun Baek, “A Heuristic Buffer
Management and Retransmission Control Scheme for Tree-
Based Reliable Multicast” ETRI Journal, Volume 27, Number
1, February 2005.

3] J. Pereira, L. Rodrigues, M. Monteiro, R. Oliviera, A. M.
Kermarrec, “Network Friendly Epidemic Multicast”, 22nd
International Symposium on Reliable Distributed Systems, 2003
IEEE.

4] C. Lindemann and O. Waldhorst. “Modelling Epidemic
Information Dissemination on Mobile Devices with Finite
Buffers.”,SIGMETRICS'05.

