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Abstract. We consider peer-to-peer anti-entropy paradigms for epi-
demic information diffusion, namely pull, push and hybrid cases, and
provide exact performance measures for them. Major benefits of the pro-
posed epidemic algorithms are that they are fully distributed, utilize
local information only via pair-wise interactions, and provide eventual
consistency, scalability and communication topology-independence. Our
contribution is the derivation of exact expressions for infection probabil-
ities through elaborated counting techniques on a digraph. Considering
the first passage times of a Markov chain based on these probabilities, we
find the expected message delay experienced by each peer and its overall
mean as a function of initial number of infectious peers. In terms of these
criteria, the hybrid approach outperforms pull and push paradigms, and
push is better than the pull case. Such theoretical results would be ben-
eficial when integrating the models in several peer-to-peer distributed
application scenarios.
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1 Introduction

An efficient approach for information diffusion in distributed systems is to utilize
epidemic algorithms that involve pair-wise propagation of updates. Epidemic al-
gorithms are fully distributed and randomized approaches such that every peer
in an information diffusion session picks a (subset of the other) peer(s) randomly
for efficient propagation of updates, that happens through periodic rounds. The
underlying epidemics theory for the biological systems study the spreading of
infectious diseases through a population [1]. When applied to an information
diffusion application, such protocols have beneficial features such as scalability,
robustness against failures and provision of eventual consistency. We investigate
variations of the epidemic algorithms used in the context of distributed infor-
mation diffusion and derive exact performance measures for them.
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One of the first studies that applies epidemic methods to computer systems
used the idea for spreading updates in a replicated database [2]. Several succeed-
ing work utilized epidemic (or sometimes so called gossip-style, to reflect rumor
propagation in a social network) communication in a variety of contexts such as
large-scale direct mail systems [3], group membership tracking [4], support for
replicated services [5], message garbage collection [6], failure detection [7], loss
recovery in reliable multicast [8], and distributed information management [9].
[10] gives an overview of epidemic information dissemination where the focus is
on four design constraints namely, membership, network awareness, buffer man-
agement, and message filtering.

There are different classes of epidemic processes one of which is referred to
as anti-entropy. In anti-entropy, information diffusion progresses periodically via
fixed length time periods, typically larger than the maximum round trip time
between peers, and called rounds. In each round, every peer picks another site
at random, and shares its state information. We study three approaches for
update-exchange; namely, pull, push and hybrid cases as particular models of
anti-entropy. When a peer holding information to be shared picks a peer lacking
that information and if this triggers dissemination from the holding peer to the
lacking peer, we say the dissemination occurs in pull fashion. In contrast, if infor-
mation dissemination is triggered when a peer lacking a particular information
picks a peer holding that information, it has occurred in push fashion. The third
approach is a hybrid of the two where information diffusion takes place in both
ways. In [11], pull and push anti-entropy approaches are compared through a
binomial probability distribution for information flow where push approach is
shown to be superior in terms of message latency.

In this study, we develop exact performance measures for the pull, push and
hybrid information diffusion models of anti-entropy. The number of peers lack-
ing information to be shared forms a Markov chain advancing in rounds. The
transition probabilities on the chain are derived through elaborated counting
techniques on a digraph exactly, with no resort to approximate probability dis-
tributions that rely on several independence assumptions. Indeed, we show that
the binomial model for the pull approach in [11] is only approximate, whereas
it is exact for the push approach. We analyze the exact dynamics through the
Markov chain with no assumptions on any parameters. In particular, we com-
pute the expected delay of each peer as well as per arbitrary peer with respect
to the initial number of members holding information in the population. The
hybrid approach outperforms pull and push paradigms, and push is better than
the pull case. Such results would be beneficial when integrating the models in
several distributed scenarios such as replicated servers, loss recovery, failure de-
tection and group membership management.

Previously, exact as well as asymptotical distributions have been studied for
different epidemic models. In [12, 13], the epidemic process is defined on a ran-
dom graph. In [14], the infection is spread through random contact in a manner
less structured than a random graph and simpler than anti-entropy.

The paper is organized as follows. In Sect. 2, our models for the pull, push



and hybrid anti-entropy are explained. The exact probability distributions are
derived in Sect. 3. In Sect. 4, the Markov chain formulation and delay com-
putations are given. Finally, Sect. 5 includes the conclusions and future work.

2 Model Descriptions

A popular distribution model based on the theory of epidemics is the anti-entropy
[1]. According to the terminology of epidemiology, a peer holding information or
an update it is willing to share is called infectious. A peer is called susceptible if
it has not yet received an update. In the anti-entropy process, non-faulty peers
are always either susceptible or infectious. Data diffusion progresses periodically
via rounds of epidemics. In each round, every peer picks another site at random,
and exchanges its state information with the selected one. We study the follow-
ing approaches for update-exchange that execute in a fully distributed manner.

Pull Approach: When an infectious peer (holding data to be shared) picks a
susceptible peer (lacking the specific data) randomly, this triggers data dissemi-
nation from infectious peer to the susceptible. Steps involved in the dissemination
between two such peers is depicted in Fig.1(a) where infectious peer (on the left)
has data labelled A. The infectious peer sends a digest (also referred to as gossip)
message including its state information. On receiving digest and comparing it
with its local data, the susceptible peer finds out it lacks A and sends a request
for A back to the infectious. Upon getting request, infectious peer sends a re-
transmission of data A which causes the other peer to be infectious for A. In
fact, each peer in the system performs state exchange periodically and concur-
rently with the others. Moreover, each peer may have a set of data in its local
buffer. Therefore, a digest message generated by a peer would consist of the state
information on the current contents of its message buffer. Spreading updates is
triggered by susceptible peers when they are picked as gossip destinations by
infectious peers.
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Push Approach: If a susceptible peer picks an infectious peer randomly, and
sends its state information, this triggers information dissemination from infec-
tious peer to the susceptible. Steps involved in the dissemination between two
such peers is depicted in Fig.1(b) where infectious peer (on the left) has data la-
belled A. The infectious peer on receiving digest and comparing it with its local
data finds out that the digest owner lacks A and directly retransmits, or pushes
data A which causes the other peer to become infectious for A. As illustrated
in the figure, in the push approach, no request messages are used. Spreading
updates is triggered by infectious peers when they are selected as gossip targets
by susceptible peers.

Hybrid Approach: This is a hybrid of two approaches described above. As il-
lustrated in Fig.1(c), when a peer sends its digest to a randomly selected peer in
the population, this may trigger data dissemination at both peers. Consider the
case where a peer has data A and the other has data B. When the former selects
the latter as the digest target in a given round, information A and B would be
disseminated to the peer that lack it using pull-based or push-based approaches
together. This approach is useful for delay sensitive applications since it de-
creases overall delay during data dissemination at the cost of possible duplicate
data transmissions.

3 Exact Diffusion Probabilities

In this section, we will restrict our attention to the processes of distributing a
single data message. Therefore, a peer with a copy of the data message is referred
to as infectious; otherwise, it would be susceptible. Each step of this diffusion
process can be represented by a digraph D where a peer in the population
corresponds to a node of the digraph (We will assume there are n peers in the
population). If the node u chooses to communicate with the node v then there
will be an arc with the tail u and the head v in D. Since each node chooses exactly
one node at each step the out degree of each node will be 1 in D. The number
of all possible such digraphs with n nodes is (n− 1)n. All of these digraphs are
equally likely for each step of this process. Therefore, we will count the number
of digraphs that infect i more nodes and take the ratio of this number with
the number of all possible digraphs to find the probability of infecting i more
nodes. Note that if there are k infectious nodes, after one step there will be k + i
infectious nodes, where k + i = 1, 2, . . . , n.

Let S be the set of all susceptible nodes and I be the set of all infectious
nodes with |I| = k and |S| = n − k. For simplicity, we will denote arcs with
susceptible heads and infectious tails by IS-arcs, similarly arcs with infectious
heads and susceptible tails, infectious heads and infectious tails, and susceptible
heads and susceptible tails will be represented by SI-arcs, II-arcs, and SS-arcs,
respectively. Note that D is the disjoint union of four subgraphs formed by IS-
arcs, SI-arcs, II-arcs, and SS-arcs. Let S(n, k) denote the Stirling number of
second kind defined as the number of all partitions of an n-element set into k
nonempty subsets. For further information on these numbers see [15].



Pull Case: We form the digraph D as above. In the pull case, a susceptible
node s will be infected if and only if there exists a IS-arc in D with the head
s. Therefore, SI-arcs, II-arcs, and SS-arcs will not contribute to the number of
new infectious nodes. Fig.2 (a) illustrates the pull case. We will determine the
number digraphs representing a step that results in i more infectious nodes.
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Fig. 2. (a) Pull Case (b) Push Case (c) Hybrid Case

The number of different possible subgraphs formed by SI-arcs and SS-arcs
is (n−1)n−k, since each of the n−k nodes in S can be adjacent to n−1 different
nodes.

Now we need to count the number of different possible subgraphs that can be
formed by IS-arcs and II-arcs. Let k1 be the number of IS-arcs. Note that k1

has to be at least i since each IS-arc infects at most one new node in S also there
are

(
k
k1

)
such k1-subsets of I. We have k − k1 II-arcs. The number of different

possible subgraphs formed by these arcs is (k−1)k−k1 . Finally we will count the
number of different subgraphs that can be formed by IS-arcs. Among n − k
susceptible nodes there are

(
n−k

i

)
different i-subsets of S that may be infected.

There are S(k1, i)i! different ways for k1 nodes to infect exactly i new nodes.
So Therefore, the number of different subgraphs that can be formed by IS-arcs

and II-arcs is
k∑

k1=i

(
k

k1

)
(k−1)k−k1

(
n− k

i

)
S(k1, i)i! . Hence, the probability of

infecting i more nodes in the next step given |I| = k is

p(i|k) =

(n− 1)n−k
(
n−k

i

)
i!

k∑

k1=i

(
k

k1

)
(k − 1)k−k1S(k1, i)

(n− 1)n

=

(
n−k

i

)
i!

k∑

k1=i

(
k

k1

)
(k − 1)k−k1S(k1, i)

(n− 1)k
·



where k = 2, 3 . . . , n− 1 and i = 0, 1, . . . , n− k.
For the case k = 1, we can easily see that p(0|1) = 0 and p(1|1) = 1.
In [11], a binomial probability distribution model is assumed for the infection

probabilities at each step. It turns out that this is only approximate since the
distribution found above is not binomial.

Push Case: In the push case, a susceptible node s will be infected if and only
if there exists a SI-arc with the tail s. Therefore, IS-arcs, II-arcs, and SS-arcs
will not contribute to the number of new infectious nodes.

Fig.2 (b) illustrates the push case. The number different possible subgraphs
formed by IS-arcs and II-arcs is (n − 1)k. Since i new nodes will be infected
there are i SI-arcs and

(
n−k

i

)
different i-subsets of S. For each SI-arc there are

k different choices for the head of the arc, therefore there are
(
n−k

i

)
ki different

possible subgraphs formed by these arcs. Finally, as there are n−k− i SS-arcs,
the number different possible subgraphs formed by SS-arcs is (n− k− 1)n−k−i.
Hence, the probability of infecting i more nodes after the step given |I| = k is

p(i|k) =
(n− 1)k

(
n−k

i

)
ki(n− k − 1)n−k−i

(n− 1)n
=

(
n−k

i

)
ki(n− k − 1)n−k−i

(n− 1)n−k
·

where k = 1, 2, . . . , n− 2 and i = 0, 1, . . . , n− k.
Clearly, when k = n − 1, we get p(0|k) = 0 and p(1|k) = 1. The probability

distribution above can be rewritten as
(

n− k

i

)(
k

n− 1

)i (
n− k − 1

n− 1

)n−k−i

which can now be recognized as binomial distribution with parameters n − k
and success probability k/(n− 1). This coincides with the distribution modeled
in [11] through probabilistic arguments. The only difference is that the number
of possible nodes among which an infectious node chooses to communicate is
rounded as n in [11]. In fact, it is n− 1 as given in the present analysis.

Hybrid Case: In the hybrid case, a susceptible node s will be infected if and
only if there exists either a SI-arc with the tail s or an IS-arc with the head
s. Therefore, II-arcs and SS-arcs will not contribute to the number of new
infectious nodes.

Fig.2 (c) illustrates the hybrid case. There are i new infectious nodes and(
n−k

i

)
different i-subsets of S. Let S1 be the set of the tails of SI-arcs where

|S1| = i1. There are
(

i
i1

)
i1- subsets of each i-set. The number different possible

subgraphs formed by SI-arcs and SS-arcs is
(

n− k

i

)(
i

i1

)
ki1(n−k− 1)n−k−i1 .

Let K1 be the set of nodes that are the tails of the IS-arcs whose heads are
in S \S1, where |K1| = k1. There are

(
k
k1

)
different ways to choose K1. These k1

arcs will infect i− i1 new nodes and there are S(k1, i− i1)(i− i1)! different ways
to do this. Finally the remaining k − k1 arcs can be chosen in (k − 1 + i1)k−k1

different ways. Therefore, the number of different possible subgraphs formed by



IS and II-arcs can be calculated as

Θk,i(k1, i1) =
k∑

k1=i−i1

(
k

k1

)
(k − 1 + i1)k−k1S(k1, i− i1)(i− i1)!.

Hence, the probability of infecting i more nodes in the next step given |I| = k is

p(i|k) =

(
n−k

i

)

(n− 1)n

i∑

i1=0

(
i

i1

)
ki1(n− k − 1)n−k−i1Θk,i(k1, i1)

where k = 2, 3 . . . , n− 2 and i = 0, 1, . . . , n− k.
Now, we will consider the end points. If k = n−1, p(0|k) = 0 and p(1|k) = 1.

If k = 1, p(0|1) = 0 and p(i|1) =

(
n−1

i

)
i(n− 2)n−i−1(n− 1)

(n− 1)n
for all i ≥ 1. There

can be
(
n−1

i

)
different i-subsets of S and i different possibilities for the head of

the SI-arc, call this node u. There are n − 1 possibilities for the arc with the
tail u. The arcs coming out of the rest of the i − 1 nodes will have heads in I
and there is a unique way to do this. Finally the remaining n − i − 1 arcs can
be chosen in (n− 2)n−i−1 different ways.

4 Expected Delay per Peer

Many stochastic models of epidemic processes are based on the fact that the
number of infectious peers, equivalently the number of susceptibles as the popu-
lation size n is fixed, forms a Markov chain [1]. In existing models, the transition
probabilities are modeled according to a probability distribution or left as rates
to be estimated from the network due to the complexity of the problem. What is
accomplished in Sect. 3 is that we have analyzed the true dynamics taking place
at each transition of the Markov chain with no assumptions on any parameters.
Using the analytical expressions derived for the transition probabilities, we find
the message delay in this section.

The Markov chain under consideration is {It : t = 0, 1, 2, . . .} where It de-
notes the number of infectious processes at time t. The transition probabilities
Pkj = P{It+1 = j |It = k} can be obtained from p(i|k) given in the previous
section by

Pkj = p(j − k|k) j = k, k + 1, . . . , n

where j − k is the number of newly infected peers. Clearly, Pkj = 0 if j < k. In
[11], the authors show that the delay experienced by each peer can be found by
considering the first passage time of It to a specific set of states. Let sij̄ denote
the first passage time from state i to the set of states j = {j, j + 1, . . . , n} , for
i = 1, 2, . . . , j − 1. The expected time for the jth infection to occur, or the mean
delay that the jth member to receive the message experiences, is given by skj̄

when the initial number of infectious peers I0 is k. In order to find skj̄ even for
a single k value, one needs to solve the set of equations

(I − Pj)Sj = 1 (1)



where Pj is the upper left j− 1× j− 1 portion of matrix P , I is the j− 1× j− 1
identity matrix, Sj = [s1j , s2j , . . . , sj−1,j ]

T and 1 is a vector of 1’s [11]. Since P
is upper triangular, solving system (1) does not pose any numerical difficulties.

The delay experienced by each peer is an important performance measure
from user perspective. In Fig.3, the peers in the order they receive the message
are plotted against expected number of rounds for different starting number
k of infectious peers, for k=1,25,75 and n=100. That is, skj̄ appears in the
x-coordinate for j = k, k + 1, . . . , n and I0 = k. Hybrid approach performs
significantly better than the others. Although push approach is only slightly
better than pull case in terms of mean delay when k = 1, its total time to
disseminate to the whole population is much lower than the other. The delay
is clearly lower for push case when k > 1. On the other hand, some peers have
lower expected delay in the course of the information diffusion process when
k = 1 such as the 10th to 15th peers in the order of receiving the message.
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Fig. 3. Peers ordered according to their expected delays given in rounds, for 1, 25 and
75 starting number of infectious peers and n=100.

Mean delay experienced per susceptible peer is depicted in Fig.4. In terms
of this performance measure, the pull and push approaches behave similarly for
small k, and the hybrid approach behaves like push case as k increases to n.

In [11], binomial distribution is used for modeling one step of epidemics for
pull and push approaches. This happens to be the exact distribution for only
push case as indicated in section 3.2. On the other hand, the model of pull case
estimates the true probabilities pessimistically in [11]. The pull approach does
not behave as poorly as predicted by the binomial model there.

The advantage of epidemic dissemination, in particular the anti entropy
paradigm, is its scalability with respect to population size. That is why the
foregoing analysis is repeated for n=200. The results being similar to n = 100
are not given here. In order to demonstrate scalability, we have tabulated the
expected time of dissemination to the whole population and the mean delay per



peer in Tab. 1. These values are consistent with the prediction of asymptotical
results for epidemic processes that the delay values increase only logarithmically
as n increases.
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Fig. 4. Mean delay per susceptible versus initial number of infectious peers for n=100.

Table 1. Expected time to dissemination and mean delay when I0 = 1

Time to dissemination Mean delay per peer

n=100 n=200 n=100 n=200

Pull 12.30 14.05 6.76 7.75

Push 9.79 11.03 6.75 7.75

Hybrid 6.53 7.40 4.33 4.96

5 Conclusions and Future Work

We have derived the exact probability distributions for the pull, push and hybrid
information diffusion models of anti-entropy. To the best of our knowledge, this
study is the first one deriving exact distributions which would be helpful in
performance analysis of these epidemic diffusion models. In contrast, previous
results rely on simplified models of epidemics usually requiring estimation of
several parameters. Our findings show that the binomial model used previously
for pull case is not accurate whereas the model for push case is exact. There
exists no previous probability model for the hybrid case, the exact distribution
of which is derived in this paper.

We have computed the expected delay of each peer as well as per arbitrary
peer exactly, depending on the initial number of infectious members in the pop-
ulation. The hybrid approach outperforms pull and push paradigms, and push
is better than pull case. Such results would be beneficial when integrating the
models in several distributed scenarios such as replicated servers, loss recov-
ery, failure detection and group membership management. Since the probability



distributions found in this paper are exact, any possible discrepancies with real
measurements of networks or their simulations can lead us to scrutinize other as-
pects such as overhead associated with each approach. For instance, the duplicate
messages associated with the hybrid case due to both pull and push deliveries
are worth counting in order to determine any trade off with the superiority of
this case.

Dissemination of only one message has been considered. Initialization with
a bigger volume of content such as in file sharing applications can be analyzed,
the possibility of gossiping to more than one peer and partial knowledge of
membership could also be incorporated as future work. Finally, evaluating the
probabilities p(i|k) are not computationally intensive, but accuracy is a concern
for large group sizes although can be handled with the state of the art computing
abilities. On the other hand, asymptotic expressions for large n would be useful.

References

1. N. T. J. Bailey. The Mathematical Theory of Infectious Diseases and its Applica-
tions. Charles Griffin and Compan, London, 1975.

2. A. Demers, D.Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis,
D. Swinehart, and D. Terry. Epidemic algorithms for replicated database mainte-
nance. In Proc. of the Sixth ACM Symp. on Principles of Distributed Computing,
1–12, 1987.

3. A. Birrell, R. Levin, R. Needham, M. Schroeder. Grapevine: Providing availability
using lazy replication. ACM Transactions on Computer Systems, 10(4):360–391,
1992.

4. R. Golding and K. Taylor. Group Membership in the Epidemic Style. Technical
Report, UCSC-CRL-92-13, University of California at Santa Cruz, 1992.

5. R. Ladin, B. Lishov, L. Shrira, and S.Ghemawat. An exercise in distributed com-
puting. Communications of the ACM, 25(4):260–274, 1982.

6. K. Guo. Scalable Message Stability Detection Protocols. Ph.D. dissertation, Cornell
University, Dept. of Computer Science, 1998.

7. R. van Renesse, Y. Minsky, and M. Hayden. A gossip-style failure detection service.
In Proceedings of Middleware98, 55–70, 1998.

8. K. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky. Bimodal
multicast. ACM Transactions on Computer Systems, 17(2):41–88, 1999.

9. R. van Renesse, K. Birman, W. Vogels. Astrolabe: A robust and scalable tech-
nology for distributed system monitoring, management, and data mining. ACM
Transactions on Computer Systems, 21(2):164–206, 2003.

10. P. Eugster, R. Guerraoui, A.-M. Kermarrec, and L. Massoulie. Epidemic informa-
tion dissemination in distributed systems. IEEE Computer, 60–67, May 2004.

11. M. Çağlar, Ö. Özkasap. A chain-binomial model for pull and push-based informa-
tion diffusion. Proc. of IEEE ICC, 2006.

12. I. B. Gertsbakh. Epidemic Process on a Random Graph: Some Preliminary Results.
J. Appl. Prob., 14:427–438, 1977.

13. Jerzy Jaworski. Epidemic Processes on Digraphs of Random Mappings. J. Appl.
Prob., 36:780–798, 1999.

14. Boris Pittel. On Spreading a Rumor. SIAM Journal on Applied Mathematics,
47(1):213–223, 1987.

15. J. H. van Lint and R. M. Wilson. A Course in Combinatorics. Cambridge Univer-
sity Press, 1992.


