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Abstract 

Transport level multicast protocols providing reliability and scalability properties are certainly essential 
building blocks for several distributed group applications. We consider the effect of reliable multicast transport 
mechanisms on traffic characteristics and hence network performance.  Although self-similarity property of 
unicast traffic, in particular TCP, has been analyzed extensively, multicast traffic has not been incorporated 
from this perspective. In this study, we focus on traffic characterization of transport level reliable multicasting. 
In particular, we concentrate on two scalable and reliable multicast protocols as case studies, namely Bimodal 
Multicast and Scalable Reliable Multicast (SRM), and analyze the traffic generated by them. Our study consists 
of a complete simulation analysis supported by theoretical work, which shows that self-similarity is protocol 
dependent. We demonstrate that the Markovian character of Bimodal Multicast’s epidemic loss recovery 
distinguishes an inherently superior protocol. It discretely feeds well-behaved traffic and copes with the 
existing self-similarity. On the other hand, the feedback controlled loss recovery mechanism of SRM triggers 
self-similarity. Drawing upon both theoretical and simulation analysis, our results substantiate that transport 
level can induce long-range dependence even in the absence of application/user level causes.     

 
Keywords: Reliable scalable multicast transport, traffic characterization, self-similarity, long-range 
dependence, epidemic communication.  
 

I. INTRODUCTION 

Emerging large-scale distributed group applications such as videoconferencing, multimedia dissemination, 
instant messaging, and distributed cooperative work have the key requirement of distributing data among 
participants with application specific quality of service needs. Multicast protocols at the transport and 
application layers of the network architecture provide efficient communication services for such applications. 
Although there exist several studies investigating traffic characteristics of unicast communication, multicast 
traffic has not been examined extensively. Our approach in this article is to focus on scalable and reliable 
multicast communication through traffic properties. 
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Two important characteristics of network traffic, self-similarity and long-range dependence (LRD), are 
investigated over the last decade as a result of the pioneering work [1]. The existence of these characteristics in 
a variety of networked environments such as LAN, WAN and ATM as well as isolated traffic sources such as 
VBR video traffic and WWW traffic have been verified through fine-grained measurements [2]. The 
mechanisms and dynamics of the network can be related to the observations by theoretical analysis. A review 
of the theoretical models for unicast communication is given in [3]. The theory predicts that LRD is caused 
mainly by user and application characteristics; heavy tailed connection times and file sizes, respectively. This 
has been further confirmed with measurements to close the loop in the analysis. Larger time scales like minutes 
and hours are affected by application and human causes, whereas at the transport layer, TCP is capable of 
shaping the traffic at the time scales of few milliseconds to tens of seconds [4, 5].  

The interest for the identification of self-similarity in data traffic is driven by its adverse consequences on 
network performance [6]. Although the research in mathematical modeling of traffic has decelerated, network 
traffic measurements continue for observation of new characteristics. In recent studies, measurements are taken 
for wireless [7] as well as peer-to-peer traffic [8]. On the other hand, transport level multicast traffic is 
expected to increase its share in the Internet with increased availability of large-scale group applications. In this 
paper, we study traffic characterization of transport level reliable multicasting. For this purpose, we focus on 
two scalable and reliable multicast protocols as case studies, namely Bimodal Multicast and Scalable Reliable 
Multicast (SRM), and analyze the traffic generated by them through extensive simulations and theoretical 
work. The former is a reliable transport protocol based on peer-to-peer epidemic principles for loss recovery 
[9], and the latter is based on feedback suppression through timer parameters similar to TCP [10]. We analyze 
simulated traces to compare Bimodal Multicast with SRM at both transport and link level measurements. The 
present paper provides substantial evidence for the prediction in our preliminary studies [11,12,13] that 
Bimodal Multicast generates short-range dependent traffic whereas SRM causes long-range dependence. As 
preliminary work, only short sequences of delay have been analyzed in [11, 12]. 

Our present work consists of a complete analysis and a detailed extension of [13] to reveal the causes behind 
the protocol performances and different traffic behaviors. The delay sequences are now analyzed in detail for 
recovered and successful messages. In order to provide an explanation for the simulation results, theoretical 
delay analysis of Bimodal Multicast is accomplished. More importantly, detailed examination of traffic at the 
link level is carried out as LRD and self-similarity at the link level have direct consequences on network 
performance. Other performance measures such as throughput and overhead are also investigated. The effects 
of system-wide noise rate, background traffic, network topology and self-similar sources are explored. These 
all demonstrate that the Markovian character of Bimodal Multicast loss recovery distinguishes an inherently 
superior protocol for multicast communication. Bimodal Multicast feeds well-behaved traffic when isolated, 
and copes with the existing self-similarity through neither getting affected by nor altering any background 
traffic. On the other hand, we argue that the loss recovery mechanism of SRM triggers self-similarity. As a 
more general issue, our results substantiate that transport level can induce LRD even in the absence of 
application/user level causes.     

The article is organized as follows. Section II gives terminology and summarizes related work on traffic 
characterization in relation to transport level reliable multicasting. In Section III, multicast transport protocols 
under investigation are reviewed. We give our contributions in sections IV to VIII. In Section IV, theoretical 
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analysis of Bimodal Multicast delay and the simulation results for delay are described. Section V focuses on 
multicast traffic at the link level and studies traffic counts from simulations together with an analysis of 
interarrival distributions. Several performance measures and effect of network topology on the traffic 
characteristics are explored in Section VI. In Section VII, protocol traffic behavior is investigated in the 
presence of self-similar background traffic in the network. The case of self-similar sources and strict self-
similarity is discussed in Section VIII. Finally, Section IX states our overall conclusions. 

II. TERMINOLOGY AND RELATED WORK  

Self-similarity and long-range dependence (LRD) are two important traffic characteristics that we exploit for 
comparing the performance of the multicast transport protocols in this paper. For the aim of reliable 
performance analysis, traffic measurements are considered over time intervals where such measurements are 
statistically stationary. A stochastic process X = {X(t) : t≥ 0} is called stationary if its probability distribution, 
and hence all statistical properties, are invariant under its translations in time given by {X(t+s) : t≥ 0}, for each 
s R∈ . For example, X(t) can denote the traffic volume at time instant t passing through a link, measured in bits 
per second, and its distribution will be the same as the distribution of X(t+s), for every s, if the process X is 
stationary.  

Self-similarity can shortly be described as the scale invariance of the bursty behavior, observed ubiquitously in 
the network traffic. A stationary random process X = {X(t) : t≥ 0} with autocorrelation function r is said to be 
second-order self-similar with Hurst parameter H, H>0, if the process {a-H X(at) : t≥ 0} has the same 
correlation structure r as X, for all a>0. In the presence of self-similarity, an appropriate scaling in space 
compensates for a scaling in time. This can be illustrated as in Fig. 1 which shows one set of link counts 
obtained from the simulations of the present paper, given later in full length in Fig. 9 (d).  In this figure, the 
same data set is displayed over three different time scales while both x- and y-axis of the graphs are rescaled 
for visual purposes. Burstiness is apparent in all time scales and typically occurs from milliseconds to tens of 
seconds in the network traffic. In contrast, aggregation of throughput in larger time units would average out the 
bursts observed in the finest time unit if throughput was a Markov process [1]. This is not the case for self-
similar traffic.  

Second order self-similarity is more commonly used in characterizing self-similarity, in contrast to strict self-
similarity which is defined in terms of a nonstationary process. In the network traffic context, typically the 
cumulative traffic volume from time 0 up to time t, say Y(t), is an example of a nonstationary process [14]. Its 
increments in time, or the derivative process, denoted by X(t) above is typically assumed to be stationary. 
Formally, a random process Y = {Y(t) : t≥ 0} is said to be strictly  self-similar with Hurst parameter H, H>0, if 
the process {a-H Y(at) : t≥ 0} has the same probability distribution as Y, for all a>0. Strict self-similarity is a 
very strong statistical invariance property that holds for all finite dimensional distributions and moments of Y, 
not just the second-order properties. Besides, Y does not need to have a finite second (or higher) moment for 
this definition to hold. If it does though, second-order self-similarity definition is applicable for such a 
nonstationary process as well. If Y is a Gaussian process, then the two definitions are clearly equivalent. 
Throughout the paper, we work with stationary measurements and use self-similarity in the weaker, second-
order sense if not indicated otherwise.  
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On the other hand, long-range dependence, the close relative of self-similarity, is defined as the slow, 
hyperbolic decay of the correlation function r of a stationary process X with a finite second moment. The 
process X is said to be long-range dependent if r(k) ρ−∝ k as ∞→k , 0< ρ <1, in contrast to the 
autocorrelation function of a short-range dependent process which has the form r(k) kρ∝ , as k ∞→ ,  0< ρ <1. 
See Fig. 2 for an illustration of the two different forms of r. It can be seen that the correlation remains 
significant even for very large time lags, in the presence of LRD. Long-range dependence is characterized 
through the Hurst parameter H which takes values in (0.5,1). Analysis reveals that long-range dependence 
exists ubiquitously in the network traffic in addition to self-similarity with ρ =2-2H. However, if the second 
moments are infinite, only strict self-similarity should be investigated as self-similarity and LRD have separate 
adverse consequences on the network performance.  

In order to estimate the Hurst parameter H of LRD from measured traces, we apply the wavelet estimation 
method as given in [15] when finite variance (second moment) is indicated for the measurements. In the case of 
infinite variance, we follow the method of estimation given in [16] for the estimation of H of a strictly self-
similar process. LRD is inapplicable in the latter case due to infinite variance. Daubechies wavelets are used in 
both methods.  

The impact and therefore the relevance of self-similarity and LRD depend on the performance metric of 
interest. For example, it was shown in [17] that a Markov model can be appropriate when short-range 
dependence is strong, and hence only second-order statistics is sufficient for steady state queuing analysis. 
However, in certain infinite buffer fluid queues fed by long range dependent on/off sources, the stationary 
queuing distribution has infinite mean [14]. Such infinite moments disappear if the buffer is finite, intuitively 
because a finite reservoir cannot hold long memory, but the LRD of the traffic stream strongly affects the 
buffer overflow loss process. Markov chain models may give good estimates of loss rates and mean buffer 
sizes under the condition that there is strong short-range dependence in addition to LRD with a not very large 
Hurst parameter [18]. Similarly, in [19] a Markov model is considered for constant bit rate connections and rate 
adaptive services such as file transfers, when they share the same link in the network. Although applications 
such as file transfers can cause self-similarity and LRD [1], the assumptions of exponential connection holding 
time, or the time scale separation, namely fast set-up and tear down of the connections, of [19] would not yield 
LRD at the link level traffic. Different models based on a heavy tailed distribution for holding times are more 
appropriate when long-range dependence is observed in traffic measurements [3]. In particular, Markov 
modulated Poisson processes can be used to capture the behavior of self-similar traffic in the relevant time 
scales [20, 21]. 

Long-range dependence has been originally characterized through traffic counts at the link level [1]. Several 
mathematical models explain the emergence of LRD at the link level as a consequence of the user/application 
behavior.  On the other hand, it has been empirically shown that measurements such as interarrivals between 
packets, on and off periods, and delay of packets also show LRD when analyzed for Hurst parameter. 
Certainly, neither the mathematical models of translation of self-similarity from application to link layer nor 
the empirical results obtained from TCP dominated networks provide the complete picture. There exist recent 
efforts to incorporate the transport layer to mathematical models of traffic [5, 22].   
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Transport level multicast protocol support for distributed applications is essential due to the fact that large-
scale deployment of network level multicast on the Internet has still not been realized. As most of the efforts in 
multicast studies are focused on developing new protocols and applications, comparative study of multicast 
protocols can shed light on the effect of transport mechanisms on traffic characteristics and hence network 
performance.  Although self-similarity property of TCP traffic has been analyzed for unicast communication, 
multicast traffic has not been incorporated from this perspective. These are the main motivation of our work. 
Our preliminary studies [11,12,13] rely on the comparison of delay generated by two multicast transport 
protocols.  We see that SRM delay is long-range dependent whereas that of Bimodal Multicast is short-range 
dependent under identical settings. This is the basis of our further comparative study of traffic at the link level 
in the present paper for several parameters of the network. We select SRM for comparison to Bimodal 
Multicast first because SRM with a receiver-initiated approach to loss recovery is fundamentally different from 
the latter, which has peer-to-peer epidemic approach; second SRM is very similar to TCP, which is prevalent in 
the present networks. In this paper, we provide empirical evidence to our claim that self-similarity is protocol 
dependent and support it with theoretical analysis. The questions we ultimately aim to answer are as follows:  

o Which multicast protocol(s) can best cope with the existing self-similar traffic and its adverse 
performance consequences in the WAN/Internet? 

o What are the principles and mechanisms behind these protocols that qualify them to be superior/better 
and discretely feed well-behaved traffic into the existing networks? 

o Can these principles be also used for the improvement and/or design of protocols for unicast 
communication as well as wireless data communication? 

III. MULTICAST TRANSPORT PROTOCOL DESCRIPTIONS 

In this section, multicast protocols under investigation are reviewed. 

A. Bimodal Multicast 

Bimodal Multicast [9] is a novel option in the spectrum of multicast protocols. It is inspired by prior work on 
epidemic protocols [23], Muse protocol for network news distribution [24], and the lazy transactional 
replication method of [25]. The important aspects of Bimodal Multicast are peer-to-peer epidemic loss 
recovery mechanism, throughput stability guarantee which provides predictable and small variance in the data 
delivery rate, and a bimodal delivery guarantee. The protocol scales well as the number of participants 
increases, and in contrast to the other scalable reliable multicast protocols it gives predictable reliability even 
under highly perturbed conditions. The behavior of Bimodal Multicast can be predicted given simple 
information on how processes and the network behave most of the time. The protocol exhibits stable 
throughput under failure scenarios that are common on real large-scale networks [9]. In contrast, this kind of 
behavior can cause other reliable multicast protocols to exhibit unstable throughput. 

Bimodal Multicast consists of two sub-protocols, namely an optimistic dissemination protocol and a two-phase 
anti-entropy protocol. The former is a best-effort, hierarchical multicast used to efficiently deliver a multicast 
message to its destinations. This phase is unreliable and does not attempt to recover a possible message loss. If 
IP multicast is available in the underlying system, it can be used for this purpose. For instance, the protocol 



 6

model implemented on ns-2 network simulator [26] in this study is based on IP multicast. Otherwise, a 
randomized dissemination protocol can play this role. Fig. 3 illustrates the execution of Bimodal Multicast on a 
simple scenario where there is a 6-member multicast group, and node S is the source. As demonstrated in Fig. 3 
(a), as a result of the first phase that does not provide reliability, some group members may not get a multicast 
message disseminated by the source due to transient link and/or node failures in the system. In the figure, 
nodes Q and T fail to receive the initial multicast as indicated by dashed arrows.  

The second phase of Bimodal Multicast is responsible for providing reliability via message loss recovery. It is 
based on an epidemic anti-entropy protocol that detects and corrects inconsistencies in a system by continuous 
gossiping. The two-phase anti-entropy protocol progresses through unsynchronized rounds in a peer-to-peer 
manner. According to the terminology of epidemiology, a peer holding information or an update it is willing to 
share is called infective. A peer is called susceptible if it has not yet received an update. In the anti-entropy 
process, non-faulty peers are always either susceptible or infective. One of the fundamental results of epidemic 
theory shows that simple epidemics eventually infect the entire population. If there is a single infective peer at 
the beginning, updates will eventually be spread across all peers using anti-entropy. Full infection is achieved 
in expected time proportional to the logarithm of the group size. Therefore, as a result of the first phase of the 
protocol, Q and T are susceptible peers, and the other group members are infective since they received the 
initial multicast. In each round, every peer (group member) randomly selects another group member and sends 
a digest of its message history via gossiping. Fig. 3 (b) illustrates a sample loss recovery round initiated by peer 
P, where P randomly selects the peer Q, and sends a digest of its current message buffer contents. The digest 
includes the identifiers of messages in the buffer. The figure simplifies the execution by showing only the 
round initiated by P. In practice, every group member initiates its own round periodically. The receiving group 
member Q compares the digest with its own message history. Then, if it is lacking a message, it requests the 
message from the gossiping member via a request message (Fig. 3 (c)). Upon receiving the request, the 
gossiping member retransmits the requested message to the request owner (Fig. 3 (d)) that makes peer Q 
infective during this sample round. For further details on Bimodal Multicast, we refer interested reader to [9]. 

B. Feedback Controlled Scalable Reliable Multicast Protocols 

Various scalable reliable multicast solutions provide best-effort reliability in large-scale. Example systems are 
Internet Muse protocol for network news distribution [24], SRM protocol [10], the Pragmatic General 
Multicast (PGM) protocol [27], and the Reliable Multicast Transport Protocol (RMTP) [28]. These protocols 
overcome message loss and failures, but they do not guarantee end-to-end reliability. However, Bimodal 
Multicast provides a form of reliability that can be formally quantified by setting its parameters. It maintains 
approximate knowledge of the group membership, and does not involve the application in recovery process.  

Representative approaches of many existing solutions for providing loss recovery in scalable multicasting are 
nonhierarchical feedback control and hierarchical feedback control. The main aim is to reduce the number of 
feedback messages that are returned to the sender. In the former approach, a model that has been adopted by 
several wide-area applications is referred to as feedback suppression. In the latter approach, hierarchical 
methods are adopted for achieving scalability for very large groups of receivers [29]. Another alternative for 
ensuring reliability is forward error correction (FEC). The idea behind this approach is predicting losses and 
transmitting redundant data.  
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Next, we elaborate on well-known protocols that are based on feedback controlled approaches, and provide 
comparisons with the epidemic loss recovery. Our study focuses on comparative traffic properties and 
quantitative analysis of epidemic loss recovery as adopted by Bimodal Multicast and feedback controlled loss 
recovery as adopted by SRM. In this section, we present qualitative comparison of Bimodal Multicast with 
hierarchical feedback control approaches of PGM and RMTP as well. 

B.1 Scalable Reliable Multicast (SRM) 

SRM [10] is a well-known reliable multicast protocol based on feedback suppression. When a receiver detects 
a message loss, it multicasts its feedback to the rest of the group that in turn allows another group member to 
suppress its own feedback. A receiver lacking a message schedules a feedback with some random delay. Major 
novelty of SRM is its use of stochastic mechanisms for feedback suppression. The protocol is rooted in the 
principles of IP multicast group delivery, application level framing (ALF), adaptivity and robustness in TCP 
design. SRM dynamically adjusts its control parameters based on the observed performance within a multicast 
session, which is similar to TCP's adaptive mechanisms for setting timers or congestion control windows. It 
exploits a receiver-based reliability mechanism, and does not provide ordered delivery of messages. The 
protocol is designed according to the ALF principle that defers most of the transport level functionality to the 
application for the purpose of providing flexibility and efficiency in the use of the network.  

In SRM, each group member multicasts low-rate, periodic session messages that report the sequence number 
state for active sources, or the highest sequence number received from every member. In addition to state 
exchange, session messages contain timestamps that are used to estimate the distance from each member to 
every other to be used by the loss recovery mechanisms. Members also use session messages to determine the 
current participants of the session. Repair requests and retransmissions are always multicast to the whole 
group. A lost message ideally triggers only a single request from a host just downstream of the point of failure. 
However, SRM can easily encounter situations in which multiple repair messages are multicast in response to a 
single request. In fact, there is a trade-off in SRM between duplicate message flow and loss recovery speed.  

Group members detect message losses by means of gaps in the sequence numbers. When a group member A 
detects a message loss, it schedules a retransmission request, and sets a request timer to a value from the 
uniform distribution on  

[C1 x dS,A, (C1+C2) x dS,A] seconds 

where dS,A is member A’s estimate of the one-way delay to the original source S of the missing data and C1, C2 
are request timer parameters. If a member receives a request for the missing data before its own request timer 
for that data expires, then the member resets its request timer. In other words, it suppresses its own request 
feedback. 

When a group member B receives a request from A for a data message that B has a copy, B sets a repair timer 
to a value from the uniform distribution on 

[D1 x dA,B, (D1+D2) x dA,B] seconds 
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where dA,B is the B’s estimate of the one-way  delay to A, and D1, D2 are repair timer parameters. If B receives 
a repair for the missing data before its repair timer expires, then B cancels its repair timer for repair feedback 
suppression. 

B.2 Reliable Multicast Transport Protocol (RMTP) and Pragmatic General Multicast (PGM) 

RMTP [28] is based on a hierarchical feedback control approach in which receivers are grouped into local 
regions. In each local region, there is a special receiver called a Designated Receiver (DR) which is responsible 
for processing ACKs from receivers in its region, sending ACKs to the sender and retransmitting lost packets. 
The sender only keeps information on DRs and each DR keeps membership information of its region. This 
approach reduces the amount of state information kept at the sender, end-to-end retransmission latency due to 
local receivers taking part in a recovery process and the number of ACKs gathered by the sender. Since only 
the DRs send their ACKs to the sender, a single ACK is generated per local region and this method for 
feedback suppression prevents the ACK implosion problem. In addition, hierarchical approach of RMTP 
eliminates the possible problems of request or repair implosions that can be observed in an SRM session. 
RMTP uses local recovery by which the effect of a lossy sub-network can be restricted to a small region 
without affecting the other members of a multicast session. On the other hand, the extra cost of RMTP for 
providing scalability is additional state kept at the sender and at each DR. A limitation of the protocol 
especially for dynamic group applications is the static selection of DRs based on approximate location of 
members.  

PGM [27] is a more recent reliable multicast protocol based on a hybrid approach to achieve scalability. The 
protocol utilizes FEC together with a hierarchical approach as in RMTP and NAK suppression as in SRM. It 
offers ordered, duplicate-free multicast data delivery, and guarantees that a receiver delivers all data packets or 
is able to detect unrecoverable data packet loss. PGM is suitable for single source, multiple receiver 
applications. It employs a NAK-based loss recovery mechanism and similar to Bimodal Multicast it runs over a 
best effort datagram protocol such as IP multicast. But, PGM also requires router support for constructing 
hierarchy which would be a limitation for large-scale deployment of the protocol on the Internet. On the other 
hand, Bimodal Multicast does not require any router support and specific network element, and as a future 
optimization, the protocol could benefit from a hierarchical structure during epidemic loss recovery.  

Overall, SRM, RMTP, PGM and similar feedback controlled approaches are suitable for large-scale networks 
and they do scale beyond the limits of virtual synchrony protocols offering strong reliability guarantees. When 
the message loss probability is very low or uncommon, they can give a very high degree of reliability. But, 
failure scenarios such as router overload and system-wide noise which are known to be common in Internet 
protocols can cause these protocols to behave pathologically [30,31]. This type of behavior is especially 
triggered by low-level system-wide noise or transient and high message loss rates. Therefore, reliability 
properties that these protocols offer can not be guaranteed in such failure scenarios. On the other hand, Birman 
et al. establish that Bimodal Multicast scales well and provides predictable reliability with a steady throughput, 
even under highly perturbed network conditions [9].  
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IV. DELAY ANALYSIS  

Simulation results reported in [12,13] indicate empirically that both Bimodal Multicast and SRM generate 
short-range dependent delays for small group sizes, but SRM delays are long-range dependent when the group 
size is large. In this section, we substantiate our earlier prediction in [13] that the protocol mechanisms are 
behind this observation through both theoretical and simulation analysis. We theoretically show that Bimodal 
Multicast’s Markovian character is linked to an exponential delay distribution which indicates good network 
performance. We analyze simulated traces for successful and recovered messages separately to establish that 
the recovery mechanism of SRM not only causes the LRD of the delays, but also affects the successful 
message delay distribution. Hence, our simulation results imply degraded network performance for SRM and 
confirm our theoretical results for Bimodal Multicast. 

The delay of a packet or message is calculated as the difference of the deployment time at the sender from the 
receive time at the receiver. Packet delay measurements over the Internet are used to trace the conditions of the 
network between an origin and destination pair [32,33,34]. Delay analysis is important for performance 
evaluation of the network. There is a direct usage of end-to-end delay as well. For instance, the retransmission 
timeout parameter of TCP is determined dynamically by packet round-trip delay in the Internet. In our 
simulations, such measurements represent traffic at the transport level. The randomness in delays is due to 
noise and the traffic generated by the control and recovery mechanisms of the transport protocol. The 
measurements are taken after the protocol actions reach a steady state. Hence, the delay measurements form a 
stationary sequence in simulations below. 

A. Theoretical Analysis of Bimodal Multicast Delay  

We aim to characterize the delay distribution of a typical message at a fixed receiver of Bimodal Multicast in 
this subsection. We show that the marginal delay distribution decays exponentially as expected from Markov 
property of the epidemic mechanism of Bimodal Multicast. Such a behavior can be modeled through an 
appropriate chain-binomial framework [35]. Previous analysis in [9] relies on this fact. However, it 
oversimplifies the delay computations, which are only approximate. Here, we rigorously derive upper bounds 
for the tail probabilities of the delay distribution.  

The gossip stage for a given message of Bimodal Multicast implemented in our simulations goes for 10 rounds 
before garbage collection, equivalently 1 second. In the analysis below, we assume that the gossip goes forever 
rather than a fixed number of rounds for a simplification. If gossip stops before the message is delivered to all 
receivers, there is a possibility that a receiver may not get this particular message. That is why, the delay 
distribution analyzed here can be considered as that of the received messages.  

Consider a fixed message multicast to all group members with an optimistic dissemination protocol from a 
fixed sender. If it is not received by a group member, it will be repaired through the epidemic mechanism of 
the protocol. Let N denote the group size and Rt denote the number of receivers that have not received the 
message at round t. In the epidemic terminology, these are susceptible processes, and equivalently N-Rt 
corresponds to the number of infectious processes.  
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At each round, the probability of infection depends on the number of infectious processes present at that time. 
Let p denote the probability that a particular susceptible process j receives a gossip and the following 
retransmitted message from a given infectious process i successfully. Then, pq −= 1  is the probability of 
failure of an infection by that infectious process. Let  ε  be an upper bound for the probability of message loss 
for each pair of processes in the network. That is, εε ≤≤ ij0  where ijε  is the probability that a message from 
i to j experiences a send omission failure. Let f denote the fanout defined as the number of processes a process 
gossips to at each round. Then, the probability that the infectious process i gossips to the susceptible process j 
is Nf /=β . For a successful retransmission of the data message, the gossip from i to j, the request message 
from j to i and the retransmission message from i to j, all associated with the recovery process, must be 
transmitted successfully. We assume that message loss occurs independently at each stage. It follows that  

32 )1()1()1( εβεεβ −≥−−= jiijp  

and equivalently  

 3)1(1 εβ −−≤q . 

We will use 3)1(1 εβ −−  as a pessimistic value for q. Since each process sends a gossip message to a 
randomly chosen group member, it is also reasonable to assume that processes get infected independently. 
Then, the probability that none of the infectious processes at round t infects a susceptible process is tRNq − . 
Therefore, the number of susceptible processes in the next round Rt+1 is Binomially distributed with parameters 
Rt and tRNq − . Letting rt+1 and rt be the realizations of   Rt+1 and Rt, respectively, we have  
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and this probability is 0 if rt+1 > rt . As the worst case, it is possible that none of the other group members 
receive the initial multicast and we have R0 = N-1. In general, it is conditionally a Markov chain on {0, 1, … , 
R0} given R0. 

Now, let D denote the delay of a message to a fixed receiver, say i. At any round t, we can decide whether the 
event }{ tD ≤  occurred or not by examining the partitions of susceptible and infectious processes. If receiver i 
is among the infectious processes, then the event has occurred. Due to the homogeneity of the mechanism, its 
probability is the same for all processes given the current status; it only depends on the number of processes in 
each partition. That is,  

N
RN

RtDP t
t

−
=≤ }|{  K,2,1,0=t                         (2) 

By taking expectations of both sides, the complementary probability is found as 

N
R

tDP tE
}{ =>   K,2,1,0=t  

Here, }0{ =DP  corresponds to the probability that the initial multicast is successful and }{ tDP = , 
K,2,1=t , is the distribution of the delay of the retransmitted messages up to a normalization constant. The 
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delay distribution is hence a mixture of the two distributions as observed in our simulations. Of course, the 
delay of the successfully transmitted initial multicast has a continuous distribution within the first round 
depending on the deterministic network parameters. The traffic generated by the retransmitted messages could 
interfere with this distribution. However, we assume they do not for simplicity and as the simulation results of 
the previous section indicate noninterference and a mixture type distribution for delay.  

We are interested in the distribution of the delay D’ of a retransmitted message. That is, the message to receiver 
i was lost in the initial multicast and is to be repaired through the epidemic mechanism. This is the 
renormalized distribution given by  
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from Equation (2). Equivalently, the complementary cumulative distribution function is found as 

     
0E

E
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R
R

tDPtF t=>≡  K,2,1=t  

Now, since Rt+1 is Binomial with parameters Rt and tRNq −  when given Rt, we have tRN
ttt qRRR −

+ =]|[E 1 , 
and hence ][EE 1

tRN
tt qRR −

+ = . But, q<1 and Rt is decreasing in t. It follows that qq tRN ≤− almost surely and 
][EE 1−≤ tt RqR , K,2,1=t . That is, ][EE 0RqR t

t ≤  and hence 
tqtF ≤)(  K,2,1=t  

which proves that )(tF  decays faster than a geometric distribution with parameter p = 1- q.  

It is possible to derive a stricter upper bound for the tail probability of the delay D’. Note that the transition 
probability matrix P of R with entries given in (1) is lower triangular and has 1 in the first position in the 
diagonal, as .1}0|0{ 100 ==== + tRRPP t  Clearly, the eigenvalues of P reside on its diagonal. Since all 
entries are probabilities, the largest eigenvalue 0λ  is 1. It can be shown that the tail probability of the 
absorption time τ  of the Markov chain R to the absorbing state 0 can be approximated using the second largest 
eigenvalue 1λ  as  

ttP 1constant)(}{ λτ ≈>     for large t.  

The derivation is similar to that in [36, pg.158]. We sketch the proof. With the pessimistic assumption R0=N-1, 
we have  
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where i is an arbitrary initial state, V = (vij) is the matrix of eigenvectors of P and 1−V = (vij) is its inverse. Since 
the coefficient of the largest eigenvalue 10 =λ  must be zero due to the fact that )( tP >τ  goes to zero as 

∞→t , we can write 
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for large t, irrespective of the starting value i. In our case, 1λ  is the entry in the second position in the diagonal, 
namely P11, which is equal to 1−Nq . In fact, all the eigenvalues can be found explicitly as 

2)2/()3(3)2(21 ,,,,,1 NNNN qqqq K−−− from largest to smallest. Therefore, we get 
tNqtPtDP )1(constant)(}{}'{ −≈>≤> τ     for large t 

where the first inequality follows from the fact that the delay of a retransmitted message is less than the time it 
takes all processes to receive that particular message and hence the time to bring the state of R to 0. As a result, 
the tail probability decays exponentially fast like that of a geometric distribution with parameter 1−Nq . Note 
that geometric distribution is the discrete analogue of an exponential distribution. Both geometric and 
exponential distributions have light tails, whereas many statistics in network traffic have heavy-tails in the 
presence of long-range dependence and self-similarity. An exponential type marginal delay distribution and a 
Markovian recovery mechanism show that LRD is not expected for Bimodal Multicast.  

B. Delay from Simulations 

We use the implementation of Bimodal Multicast formerly developed over ns-2 and the available ns-2 module 
of SRM in simulations. We compare SRM and Bimodal Multicast in the same simulation settings with the 
same sequence of random numbers. Initially, several independent runs of simulations were obtained to observe 
the effect of randomness in our results. For the statistical precision of our results for long-range dependence, 
each run lasts for 35000 ~ 215 messages where each message is 210 bytes. With such a long sequence, 
independent runs with different seeds show almost no random variation in the estimated Hurst parameters and 
other statistics of performance. That is why the results are obtained from a single long stationary sequence of 
measurements for each parameter set. Our focus is on the scalability of each performance measure with respect 
to group size. The system wide message drop rate is set to 1% and higher drop rates are elaborated. The 
message rate seems to have no significant impact on the results. That is why it is fixed at 50 messages per 
second as a typical high-speed rate, unless stated otherwise.   

Simulation scenario consists of transit-stub topologies with 40 to 120 nodes where every node is a group 
member. The sender is located on a central node and the receiver analyzed is located as far as possible on the 
network. The Internet can be viewed as a collection of interconnected routing domains where each domain can 
be classified as either a stub or a transit domain. Stub domains correspond to interconnected LANs and the 
transit domains model WAN or MANs [37]. We use gt-itm topology generator for producing transit-stub 
topologies [38]. A certain drop rate is set on every link forming a system-wide noise. We vary two operating 
parameters, namely group size and system-wide noise rate. This scenario primarily focuses on the impact of 
randomized message loss over the traffic. We obtain our results from a sequence of 35000 multicast data 
messages transmitted by the sender, and their timestamps logged at each receiver. This can be considered as a 
large file being multicast at constant bit rate to all receivers. We have reported in [12,13] that both protocols 
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generate short-range dependent delays with H values around 0.5 up to the group size 80, but SRM delays show 
long-range dependence when the group size increases to 100 or more in these simulation settings.  

In this section, we scrutinize the delays obtained from simulations for the aim of relating LRD characteristics 
to protocol recovery mechanisms. The delay histogram indicates that it is a mixture of two distributions, which 
are naturally the distributions of successful and recovered messages. The histograms of these for the largest 
group size N=120 are given separately in Fig. 4 for Bimodal Multicast and in Fig. 5 for SRM. The delay of the 
messages transmitted successfully in the network shows almost no variation in the case of Bimodal Multicast in 
Fig. 4 (a), and only a small portion of the messages have delays greater than 0.02 seconds. The recovered 
messages, which are relatively few in comparison to successful multicast messages, follow approximately an 
exponential distribution consistent with theoretical analysis above as shown in Fig. 4 (b). The successful 
messages are transmitted almost with no random variation as in Fig. 4 (a) maybe due to the fact that the 
recovered messages have no adverse effect on the randomness in the network. On the contrary, delay of 
successful messages in the case of SRM being affected by the uncertainty in the network follow a Normal 
distribution as shown in Fig. 5 (a). The recovered messages follow a heavy right-tailed distribution as shown in 
Fig. 5 (b).  

To check if LRD originates from the recovered messages, hence the loss recovery mechanism of a protocol, we 
have estimated H from the delay of only recovered messages. The results are shown in Fig. 6. Indeed, the 
recovered messages for SRM show LRD for group sizes over 100. Bimodal Multicast generates random delays 
for recovered messages, but certainly in a short-range dependent manner with H around 0.5. We have estimated 
H using the delay of successful messages for SRM as well. Also successful messages show self-similar scaling 
with LRD in the case of SRM for N=100 and N=120 where H is 0.778 with a 95% confidence interval [0.693, 
0.863] and 0.754 with a 95% confidence interval [0.685, 0.824], respectively.  

It is striking that a transport level mechanism can induce self-similarity and LRD in the message delay 
sequence. The mean delay, a first order measure, increases linearly at a constant rate until group size 100, then 
picks up at N=120 with a sharper increase, which is not shown here. On the other hand, LRD which is 
characterized through second order properties, namely correlations, appears at N=100 and is sustained at 
N=120. The scaling diagrams for recovered messages are similar to those for the complete delay sequence that 
are reported in [13]. As the group size increases from 100 to 120, the small time scaling becomes linear rather 
than nonlinear. This difference is very similar to the difference in the graphs of only TELNET and FTP traffic 
of 1990 Bellcore traces and 1994 Bellcore traces, respectively. In [4], this difference has been attributed to the 
increasing WWW traffic from 0% to 10% in 4 years, that is, to the application types. In our case, it is due to 
increasing group size and directly affected by the protocol [13]. The pattern change occurs at octave 6 in the 
scaling diagram, corresponding to about 26 = 64 messages, that is, about the order of 1 second in view of the 
message rate 50/sec. This is in accordance with the results of TCP traffic examined in [4]. The smaller time 
scales might represent the effect of SRM’s control actions at the granularity of time-to-live, and request and 
repair timers (in analogy to RTT and retransmission timer in the case of TCP), spanning time scales from 0.04 
seconds to 1 second. In contrast, the larger scales show the propagated effect of the protocol mechanism on the 
network due to congestion. Although simulated delay sequences span over an hour (up to octave 15), the last 
octaves have not been considered to ensure a reliable Hurst parameter estimation. As a result, LRD detected 
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from the larger scales spanning 1 second to a minute is a consequence of the transport protocol, as 
application/user level causes are absent in our simulations and the source is constant bit rate (cbr).  

The scalability of Bimodal Multicast is remarkable at almost no cost in reliability. There are at most 1 or 2 
messages lost among 35000 messages in a run. The Hurst parameter is very stable in response to the increase of 
the group size. SRM makes utmost effort for reliability as no losses have been encountered in our simulations. 
This comes at a cost of longer delays and more importantly self-similar traffic patterns.  

C. Comparison of Analytical and Simulation Results for Bimodal Multicast 

For a numerical comparison of our analytical upper bounds with simulations, we compute ε  using the 
simulation settings above where every link has a fixed drop rate δ . Let the receiver be n hops away from the 
sender. Then the probability that there will not be a loss in any of the n links is n)1( δ−  and the probability of 
a message loss on this path is n)1(1 δε −−= . Taking n to be as large as possible in a given configuration 
would yield a pessimistic estimate ofε .   

In Fig. 7 (a) and (b), the upper bounds tq  and q(N-1) t are plotted with 3)1(1 εβ −−=q  for N = 120. 
Accordingly, the values of the parameters are as follows. The fanout probability 120/1=β  is found by the 
uniform choice of a single member of the group at each gossip stage. The maximum number of hops n is 6, and 
the constant drop rate at each link is %1=δ . As a result, the failure probability q is computed to be 0.9926. 
The bound tq  turns out to be a very loose bound when we plot it together with the empirical estimate of 

}'{ tDP >  from simulated delay sequence in Fig. 7. On the other hand, the bound q(N-1) t  is strict enough for 
the tail probabilities. Indeed, the tail of the empirical distribution decays exponentially fast.  

V. TRAFFIC AT THE LINK LEVEL  

The initial identification of long-range dependence and self-similarity in the network has been through 
extensive analysis of traffic at the link level [1]. Numerous studies have verified this result through traffic 
counts, and some have analyzed delay and interarrivals for LRD as related statistics [2]. However, physical 
models, which explain LRD are devised only for traffic counts [3]. If LRD is detected at the link level, its 
implications such as buffer provisioning, link speeds, and in general, queuing performance are clear [39,40]. 
That is why self-similarity characteristics of the traffic generated by a transport protocol can be conclusive only 
after the study of the link level traffic. In this section, we study traffic counts from simulations and complete 
the statistical picture with an analysis of interarrival distributions.  

Delay has been studied by itself as an important performance measure in previous work [12,13], the predictions 
of which are substantiated with further analysis in the present study. As a matter of fact, the delay distribution 
that we have established in Section IV can be considered as mainly queuing delay, which is a result of the link 
level counting process. The delay of a message between a sender-receiver pair in the network can be 
interpreted as the total delay of tandem queues along its route [34].  Since queuing behavior is determined by 
the traffic counts, the presence or absence of LRD for delay gives only an indirect indication for the link level, 
which we analyze next.  
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A. Traffic counts  

At the link level, we analyze the number of messages addressed to a fixed receiver in the network from 
simulations. This constitutes the sequence of traffic counts per time unit, which are data and overhead 
messages. The simulation settings are the same as in Section IV and the traffic between the sender and receiver 
pair is now considered at the link level. Since the messages are sent at a rate of 50 per second, tracing them at 
200 msec. intervals yields a sufficient resolution. Physically, the traffic stream does not flow over a single link, 
but it is aggregated from a few incoming links to the receiver and is worth characterizing for comparison with 
the delay properties studied for the same receiver. 

The mean number of messages per second and the Hurst parameter obtained from traffic counts addressed to a 
fixed receiver are given in Fig. 8. The stress on the network can be observed at group size 120 for both mean 
traffic and the Hurst parameter for SRM. For N=100, the traffic counts are short-range dependent in contrast to 
corresponding delay sequence. In any case, Bimodal Multicast is not affected by the increase of N and it 
generates short-range dependent traffic counts.  

The traffic count sequences addressed to a fixed receiver for N=120 are plotted in Fig. 9 (a) and (b) for 
Bimodal Multicast and SRM, respectively. The beginning 20 seconds of the SRM sequence looks 
nonstationary, which we exclude from analysis while estimating the Hurst parameter. The bursty behavior of 
SRM is clear. On the other hand, the traffic generated by each protocol at a single link has direct implications 
on traffic engineering such as buffer and link capacity provisioning. That is why we have monitored a single 
link connecting to the same fixed receiver for all traffic going through it for a duration of about 700 seconds. 
The traffic sequences analyzed for Bimodal Multicast and SRM for N=120 are given in Fig. 9 (c) and (d), 
respectively. We see that LRD is sustained, as H values are qualitatively similar to those plotted in Fig. 6 with 
the same octaves corresponding to the same time scales. This is due to the fact that it takes 700 seconds for 
35000 messages to be sent in view of the sending rate of 50 per second. The exact H values are reported 
elsewhere [41] for comparison purposes. Here, we show that the link level traffic for SRM also has a rich 
scaling as ubiquitously found in the Internet traffic. It is almost exactly self-similar [14] due to a linear scaling 
diagram over almost all octaves for the cumulative counts given in Fig. 10 (a). In parallel to this observation, 
the plot of multiscale diagram [42] given in Fig. 10 (b) is almost linear in the moments q. If it was exactly 
linear, the traffic counts could be identified as monofractal. Slight nonlinearity indicates that it could be a 
multifractal process. In the Internet, multifractality is attributed to TCP’s control of window size, which has a 
multiplicative behavior. Although SRM does not have such a congestion control, its timing mechanism works 
similar to TCP. The protocol actions yield a fractal behavior at all scales in view of logscale diagrams for 
several moments, which are not shown here.  

An H value of 0.5 for Bimodal Multicast indicates independence of the increments of traffic counts plotted in 
Fig. 9 (a) and (c). Poisson process or Brownian motion can model the cumulative process obtained from these 
counts.  For the cumulative of SRM traffic counts given in Fig. 9 (d), a fractional Brownian motion could be a 
good fit. This is an strictly self-similar, monofractal model with long-range dependent increments and a 
symmetric, namely Normal, marginal distribution. On the other hand, the distribution of traffic counts in Fig.9 
(c) is skewed. A stable process with long-range dependence having non-Gaussian marginals could fit well in 
this case. Hence, we have established the properties of LRD and self-similarity for the traffic generated by 
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SRM and short-range dependence for Bimodal Multicast, as predicted by the delay distributions and recovery 
mechanisms studied in the previous section.  

The anti-entropy protocol of Bimodal Multicast uses gossiping, which is a spatial mechanism in contrast to 
temporal timer mechanism of SRM. Resembling TCP that adaptively sets timers or congestion control 
windows, SRM algorithms dynamically adjust their control parameters based on the observed performance 
within a multicast session. The adaptive nature and the window mechanism of TCP are discussed in [43] as a 
means of generating self-similarity. This helps explaining the difference in the traffic patterns. Temporal 
behavior such as heavy-tailed session durations (as a result of user behavior, like off times, or heavy-tailed file 
size distributions) directly translates to long-range dependence. In the case of Bimodal Multicast, the burden is 
distributed spatially by the gossiping mechanism, which results in a Markovian temporal structure. Markov 
dependence in time is much weaker and hence does not lead to LRD. See [44] for a similar space versus time 
stretching analogy established for UDP and TCP, respectively. UDP shows less self-similar characteristic due 
to lack of reliability compared to TCP. On the other hand, Bimodal Multicast provides high level of 
probabilistic reliability guarantees as well as producing short-range dependent traffic. In SRM, a process 
multicasts request message to the whole group when it detects a message loss in order to guarantee reliable 
delivery. Request and repair timers are exploited to suppress duplicate requests and repairs for the same 
message loss. A corresponding repair message in response to a request is also in the form of multicast to the 
whole group. This feature of SRM’s loss recovery mechanism makes its background overhead and bandwidth 
requirements to increase as a function of group size. As a result, there is zero loss in our simulations but at the 
expense of self-similar traffic with long-range dependence. The delays are high, loss recovery mechanism 
works, but imposes a self-similar pattern that implies low performance.  

B. Interarrival Distributions 

The interarrival distributions reflect the performance implications of the traffic patterns from another point of 
view. For example, message interarrival distribution of a protocol is related to its throughput stability. As 
discussed in [9], throughput stability is a critical requirement for several distributed applications. Our 
simulations show that the interarrival distribution of only the data messages is approximately normally 
distributed when the network is not pressured. This is true for Bimodal Multicast in all cases and for SRM in 
smaller group sizes up to 100. For SRM, as the group size increases, the distribution becomes more right 
skewed (long right tail) and ultimately an exponential distribution fits well at N=120. This is verified with a 
probability plot, which is not shown here.  Although an exponential interarrival distribution is associated with 
short-range dependence, in particular a Poisson process, such a model would be applicable to data messages 
only.  When overhead messages are included in addition to data messages, the total link traffic is long-range 
dependent for SRM as reported in Fig. 8 b). The means of the distributions also increase as the skewness gets 
more pronounced. Basically, the means are around 20 msec. as the message multicast rate is 50 per second. The 
standard deviation increases gradually in SRM to 0.0217, whereas it is stable for Bimodal Multicast around 
0.006.  

We also scrutinize the interarrival distribution at a single link as it is relevant for performance prediction such 
as buffer overflow probabilities. We obtain the interarrival sequences from the monitored link. In this case, the 
mean and standard deviation of interarrivals are not comparable for Bimodal Multicast and SRM because the 
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first has a lower amount of overhead traffic whereas the latter suffers from excessive overhead for N=120. 
However, SRM having a higher standard deviation of 3.752 msec. than its mean, namely 2.458 msec., is much 
more right skewed than Bimodal Multicast which has a mean of 13.558 msec. and a standard deviation of 
9.898 msec. A proper probability plot is harder to obtain in this case, as the link monitor module of ns-2 reports 
the timestamps with a fixed number of significant digits not decimal places by default. So, some of the distinct, 
especially smaller, interarrival times are aliased to be the same by round off. Nevertheless, we provide a 
Weibull probability plot in Fig. 11 in order to illustrate that the tail of the distribution is heavier than 
exponential. For larger quantiles of the Weibull distribution given in y-axis, we see a linear alignment in the 
probability plot when aliasing around 10-3 and 10-2 seconds are ignored. This is not observed in an exponential 
probability plot. Besides, a Pareto probability plot shows that the tails are not as heavy as coming from a Pareto 
distribution. This is an approximate analysis due to aliasing, but consistent with LRD identified from traffic 
counts. Note that the analysis of traffic counts is not affected by the round off in the time stamps because the 
time unit 200 msec. is coarse enough compared to the interarrivals given in the x-axis of Fig. 11. Nevertheless, 
this resolution is sufficient for the scaling analysis.  

VI. PERFORMANCE MEASURES AND EFFECT OF TOPOLOGY  

In order to link the traffic behavior to the protocol recovery mechanisms, we study other performance 
measures, namely throughput, overhead and duplicates, as well as effects of system-wide drop rate and 
network topology on traffic characteristics in this section.  

A. Throughput, Overhead and Duplicates 

We report throughput, mean number of data messages received per second, as well as the overhead messages 
received per second are given in Fig. 12 (a) and (b), respectively. Note that the throughput is expected to be 50 
due to the message multicast rate at the sender. Similar to the mean delay, the throughput decreases and the 
overhead increases sharply at N=120 for SRM whereas both are scalable for Bimodal Multicast. Besides, 
although the mean throughput is the same, the variance is significantly smaller for Bimodal Multicast for 
smaller group sizes, not shown here. The behavior of the overhead until N=100 has been documented in [9, 45] 
indicating that the increase is linear for SRM. We have hence detected that the performance fades further for 
N=120 although LRD starts even earlier at N=100 at the 1% system wide drop rate. The number of duplicate 
messages received per each data message is shown in Fig. 13 which also demonstrates that Bimodal Multicast 
is scalable. For SRM the behavior is in accordance with that of the mean delay rather than the Hurst parameter; 
there is a significant change after N=100. 

B. Effect of system-wide drop rate   

We have also run simulations with higher system wide drop rates, namely 2%, 5% and 10% at each link. The 
results are similar to 1% case. In particular, the initial analysis of [12,13] includes 2% comparatively with 1%. 
As an adverse effect at 10% system wide drop rate, the interarrival distribution is Exponential also for Bimodal 
Multicast. Otherwise, Bimodal Multicast’s performance is scalable with high drop rates as well. SRM’s 
performance decreases until N=100 gradually, thereafter sharply. Surprisingly, at higher rates 5% and 10%, 
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SRM delay does not show LRD at N=100, but only for N=120. The sharp increase in the mean delay and 
decrease in throughput also occur at N=120, similar to 1% and 2% cases. A possible explanation could be as 
follows. In general, LRD occurs due to the slow decay of the autocorrelation of delay. The bursts related to 
self-similarity may, in a sense, be prevented with higher drop rates. When a drop occurs, the message is to be 
recovered. By the time it is resent by a group member, the dependence structure of the consecutive messages is 
destroyed. A similar situation to high drop rates is small buffers leading to overflow of messages. In this case, 
H turns out to be relatively small [44]. Vice versa, larger buffers allow for more messages to be in-waiting and 
hence increase the dependence in the traffic and H.  

Heterogeneous network characteristics such as different links having different drop rates can also be 
considered. The current results are likely to hold in that case as well, since quite a random loss rate arises 
between a sender and receiver through a random number of links in transit-stub topology. For example, three 
different random topologies have been considered in [13] for each group size and the results obtained are 
similar.  

C. Effect of topology 

In another scenario where clusters are connected by a bottleneck link, we study both the transport level delays 
and the link level traffic counts. Such multi-cluster topologies might be considered as local area networks 
connected by long distance links where routers with limited bandwidth connect group members. We simulate a 
clustered network with variable size consisting of two fully connected clusters, and a single link connects those 
clusters. All nodes are members of the multicast group among which there is one multicast sender. There is 1% 
intracluster noise formed in both clusters, and a varying high noise rate is injected on the link connecting the 
clusters which behaves as a bottleneck link. The sender and the receiver are located across clusters. Message 
rate is 100 messages per second, and the bottleneck link is monitored. Two different levels of bottleneck drop 
rate and group size are considered. The results are reported in Tables I and II.  

We do not observe LRD in either Bimodal Multicast or SRM in this topology. In comparison to previous 
topologies, the overhead is higher in Bimodal Multicast because the gossip rate in this case is taken to be twice 
every 100 msec. rather than once. This is needed as buffer overflows occur in this setting. Consequently, the 
delays are lower for Bimodal Multicast. Throughput decreases slightly with higher drop rate at the bottleneck, 
but is not affected by the increasing group size in Bimodal Multicast.  In SRM, it decreases significantly with 
the increase of bottleneck noise or group size. All the interarrival distributions are Exponential. We have 
observed that even Bimodal Multicast, in addition to SRM, generates Exponential interarrivals when the drop 
rate is as high as 10% for all group sizes. Here, the high bottleneck noise might be the reason for a skewed 
interarrival distribution.  

We have in fact also considered larger group sizes for both topologies. In the version of ns-2 used in this study, 
the simulations do not take some of the queuing delays into account for group sizes larger than 128. Delay 
streams truncated in this manner produce better performance mistakenly, and hence are not comparable to the 
results here. If a cluster size could be increased to 100 or 120 without affecting the simulation approach, the 
topology would be comparable to transit stub in each cluster. In this case, we would expect LRD for SRM. For 
present settings of cluster topology, the bottleneck link having a high noise rate causes packet drops and may 
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have destroyed the correlation structure. This is similar to the effect of high system-wide noise rate for transit-
stub topology. We conclude that the topology is a factor in traffic behavior when combined with the size of the 
network. 

VII. SELF-SIMILAR BACKGROUND TRAFFIC  

In order to detect the interaction of multicast traffic with the existing self-similar traffic, we generate 
background traffic via multiple long-lived TCP flows during simulations. In particular, a total of 30 on/off 
sources send TCP packets to 30 other receivers on group sizes varying from 60 to 120. It is well known that 
when sufficiently many of traffic streams from such sources are aggregated, LRD arises at the link level [46]. 
We sample on and off times from a Pareto distribution with shape parameter 1.5 and mean 500 msec. each. In 
order to make sure that self-similar background traffic is obtained when there is no multicast traffic, we 
monitor an inner link on the network and estimate the Hurst parameter. The result is depicted in Fig. 14 (a) as 
Background series. The Hurst parameter varies around 0.7 for all group sizes indicating LRD. This is 
consistent with the on/off source model of data traffic where H is predicted to be (3-  α )/2 = 0.75.  

After detecting the link that carries self-similar traffic, we monitor it again this time superimposing multicast 
and TCP traffic flows on the same network. Fig. 15 (a) shows Hurst estimates from three link counts in this 
case, simultaneously with the TCP traffic stream indicated as Background above. Bimodal-total and SRM-total 
refer to total link counts from the monitored link and hence include both multicast and background traffic. The 
characteristics of each of the multicast streams (denoted as Bimodal-only and SRM-only) as well as background 
streams (denoted as Bimodal-background and SRM-background) are also established through their Hurst 
parameters. When we compare the three estimates, namely, total, only and background for each protocol, we 
see that Bimodal Multicast neither restricts nor gets affected by the background traffic. Hurst estimates of 
Bimodal-only are all around 0.5 indicating short range dependence as in Fig. 8 (b). Similarly, Hurst estimates 
of the background traffic accompanying Bimodal Multicast (Bimodal-background) are also very close to those 
estimates obtained from Background. There is a slight, but not significant difference only for N=80. The Hurst 
estimates of the total traffic are between these background and protocol only values. As a result, the total traffic 
is well behaved in terms of LRD with the addition of Bimodal Multicast to the self-similar background traffic. 
In Fig. 14 (b), Hurst parameters estimated from delay sequence are given. Bimodal Multicast generates short 
range dependent traffic for all group sizes and SRM streams yield similar Hurst parameters as in Fig. 6 (a).                    

SRM itself remains unaffected by the background traffic, but has an adverse effect on it at the link level. The 
Hurst parameters as depicted in Fig. 14 (a) are low in SRM-only streams for group sizes up to 100, but indicates 
LRD for N=120 as in Fig. 8 (b). For N=120, the monitored link carries only a negligible amount of background 
traffic. That is why it is not possible to estimate H for background traffic in this group size. In fact, as the 
group size increases, less and less background traffic is carried over the monitored link compared to earlier 
background measurements, as shown in Fig. 15. This behavior might be due to the rerouting of TCP streams or 
the activation of TCP congestion control in response to SRM traffic. 
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VIII. SELF-SIMILAR SOURCES AND STRICT SELF-SIMILARITY 

We have characterized the traffic generated by two multicast protocols in the isolated case when only multicast 
communication takes place and also when self-similar background traffic is present in the same networking 
environment. In both cases, the sender is assumed to multicast at a constant bit rate. However, when the 
network is congested and flow control is imposed, the multicast sender can behave like a self-similar source 
although constant bit rate is aimed.  In this section, we characterize the traffic generated by SRM for larger 
group sizes 100 and 120 with a self-similar source. This is an exact solution replacing the preliminary results 
about the larger group sizes reported elsewhere [41,47]. We put the self-similar behavior of SRM in theoretical 
perspective with respect to the previous sections.  

We have shown in [41] that when a self-similar source, namely an on/off sender that transmits with Pareto on 
and off times, is considered, traffic becomes worse for SRM in terms of both transport delays and at the link 
level. On the other hand, Bimodal Multicast generates desirable delays; however long-range dependence arises 
in the link level due to on/off source as expected. The Hurst parameter of link counts is consistent with the 
shape parameter of the on/off source. Bimodal Multicast translates the self-similar behavior at the source to the 
link level with no further addition. 

For N=100 and 120 in SRM, we have simply reported H=1 as the log-scale diagram yields an H value greater 
than 1 for both the delay sequence over the network and the traffic counts at the link. This is in view of the fact 
that H must take values in (0.5,1) in presence of LRD. Since the estimates do not fall into (0.5,1), we see that 
the traffic does not behave like a process with LRD. However, there is no reason to suspect nonstationarity for 
the increments of traffic as the other performance measures are quite stationary, and more concretely, log-scale 
diagrams from partitions of the sequence show similar characteristics. Strict self-similarity may occur with or 
without LRD [14]. It can be characterized through the cumulative process, namely cumulative traffic counts 
over time as we have already done for the link counts with a cbr source. The main difference here is that H is 
now greater than 1, which indicates that an infinite variance self-similar process can adequately describe the 
traffic. Although used in previous sections, the logscale diagram [15] which is based on second moments may 
not be used in this case. Due to the indication of infinite variance, a scaling diagram especially devised for 
infinite variance stable processes is given in Fig. 16, which is a result of our implementation of the estimation 
method described in [16]. The variable y is different from the logscale diagram and the slope yields H+1/2. As 
a result, Fig. 16 which is obtained from the cumulative traffic counts of SRM for N=120 yields H=1.1, a  value 
slightly larger than 1. The only self-similar stable process with H>1 is α -stable Levy motion. On the other 
hand, if only the mid-octaves of 5 to 10 are used in the estimation due to concerns described in [16], we get 
H=0.78, but under the assumption of infinite variance. A linear fractional stable motion is such a stochastic 
process. It shows long-range statistical dependence, which is like LRD but has a different definition due to 
infiniteness of second moments. For our purposes, the implications of infinite variance is more important than 
the exact value of the self-similarity parameter H because in that case, the queuing behavior at a link is 
expected to be worse than self-similarity with LRD. For a comparison of queuing implications of FBM, which 
is a self-similar model with LRD, and α -stable Levy motion, which is a model with infinite variance, see [48]. 
Hence, the characterization of the stochastic process that can model the traffic generated by SRM provides us 
with the prediction of performance. When going from a cbr to on/off source, we see that performance degrades 
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even further. From stochastic modeling point of view, it is also interesting that SRM yields almost all important 
models of self-similarity under various scenarios.   

IX. CONCLUSION   

This article focuses on traffic characterization of transport level reliable multicasting, and contributes to 
identifying better protocol components for multicast transport. In particular, we concentrate on two scalable 
and reliable multicast protocols as case studies, namely Bimodal Multicast and SRM, and analyze the traffic 
generated by them through extensive simulations and theoretical work. We have analyzed the protocols first 
under a cbr source to isolate the traffic that they generate, and also in realistic network environments, namely 
in the presence of background traffic, and separately when the source is self-similar. This article conclusively 
studies the link level traffic, substantiates delay characteristics with precise theoretical analysis, studies 
background traffic, and compares with the case of self-similar sources for which theoretical characterization of 
SRM traffic is accomplished as an extension of preliminary work.  

Bimodal Multicast is based on peer-to-peer epidemic paradigm for loss recovery. If a process detects a message 
loss in the end of a gossip round, it requires a unicast request and repair message to recover the loss. Bimodal’s 
background overhead is scalable and does not increase with the group size. We have analyzed the marginal 
delay distribution for Bimodal Multicast and shown that it decays exponentially. This substantiates that LRD is 
not expected intrinsically due to the Markovian character of the protocol. Hence, its traffic does not manifest 
self-similarity with long-range dependence in the absence of application level causes, namely under a cbr 
source. 

The same load is offered to the network, but the resulting traffic patterns are different with the two reliable 
multicast protocols. We have shown empirically that long-range dependence can be induced by transport level. 
SRM traffic at the link level becomes long-range dependent with H>0.7 when the group size is over 100 to 120 
in our settings, which is common to many current distributed applications. While long-range dependence is 
induced on the network traffic at large time scales, the link level traffic has a fractal characteristic spanning 
almost all scales. SRM’s having a similar loss recovery mechanism to TCP implies that ubiquitous presence of 
self-similarity in data networks might be due to wide spread availability of TCP. Although we have not proven 
how exactly the timing mechanism of SRM shapes a self-similar traffic at the link level, we have identified 
several instances where various theoretical models of self-similar traffic are applicable. Such an identification 
has been useful for the prediction of network performance under such a transport protocol. As future work, the 
distribution of time-out parameters can be investigated for heavy-tails to figure out any causal relationship with 
LRD. 

A concern in the deployment efforts of multicast model on large-scale is that it might flood the network. 
Bimodal Multicast discretely feeds well-behaved traffic and copes with the existing self-similarity. The 
epidemic mechanism facilitates this outcome due to its Markovian structure. In contrast, SRM suppresses the 
background flow and imposes self-similarity. Self-similar sources have even worse consequences on SRM. 
Because this time it is an α -stable Levy motion and its queues decay even more slowly.  
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Figure 2. Examples of correlation functions of a long-range 
dependent and a short-range dependent process 
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Figure 1. Illustration of self-similarity: burstiness 
preserved over a wide range of time scales 
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Figure 4. Delay distribution for the farthest receiver in a group of size 120 in the case of Bimodal 
Multicast (a) Successful messages (b) Recovered messages 
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Figure 5. Delay distribution for the farthest receiver in a group of size 120 in the case of SRM  

(a) Successful messages (b) Recovered messages.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 6. Hurst parameter of delay versus group size for Bimodal Multicast and 
SRM for recovered messages 
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Figure 8. (a) Mean (per sec.) (b) Hurst parameter of the traffic counts versus the group size at a receiver for 
Bimodal Multicast and SRM 
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Figure 9. Sequence of link counts 
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Figure 11. Probability plot for interarrivals of SRM’s link monitor, N =120. 
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Figure 10. (a) Logscale and (b) Multiscaling diagram of SRM cumulative link counts 
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Figure 14. Hurst parameter of (a) link counts, and (b) delay with background traffic 
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Figure 16. Scaling diagram of SRM cumulative link counts with an on/off 
source, for estimation of H of an α -stable process 
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TABLE I 
HURST PARAMETER AND PERFORMANCE MEASURES IN CLUSTERS – BIMODAL MULTICAST 

Drop N
Rate Mean Std. Dev. H Mean Std. Dev. H Loss Ratio Throughput Interarrival

25% 60  701 240 0.528 0.057 0.064 0.552 2.857E-05 99.9857 Exp(0.01)
[0.466, 0.590] [0.536, 0.568]

50% 60  786 221 0.495 0.122 0.111 0.534 3.43E-04 99.9171 Exp(0.01)
[0.433, 0.557] [0.518, 0.550]

25% 120 1309 332 0.511 0.0674 0.0668 0.572 8.571E-05 99.9657 Exp(0.01)
[0.449, 0.573] [0.556, 0.588]

50% 120 1400 361 0.550 0.120 0.102 0.570 1.71E-04 99.9600 Exp(0.01)
[0.488, 0.612] [0.554, 0.586]

Link Level (messages) Performance Transport Level (delay in seconds)

 

 
TABLE II 

HURST PARAMETER AND PERFORMANCE MEASURES IN CLUSTERS – SRM  

Drop N
Rate Mean Std. Dev. H Mean Std. Dev. H Loss Ratio Throughput Interarrival

25% 60  404 218 0.529 0.066 0.137 0.481 0 99.9829 Exp(0.01)
[0.467, 0.591] [0.464, 0.497] 

50% 60  368 162 0.585 0.226 0.744 0.490 5.714E-05 99.1445 Exp(0.01)
[0.486, 0.684] [0.474, 0.506]

25% 120 547 257 0.499 0.191 0.252 0.585 0 99.7151 Exp(0.01)
[0.399, 0.598] [0.569, 0.602]

50% 120 421 190 0.557 0.237 0.704 0.513 5.714E-05 99.1445 Exp(0.01)
[0.458, 0.657] [0.497, 0.529] 

Link Level (messages) Performance Transport Level (delay in seconds)
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