
Stepwise Probabilistic Buffering for
Epidemic Information Dissemination

Emrah Ahi*, Mine Çağlar** and Öznur Özkasap***
* Computational Sciences and Engineering

** Department of Mathematics
***Department of Computer Engineering

Koç University, Istanbul, Turkey
{eahi| mcaglar|oozkasap }@ku.edu.tr

Abstract— For large-scale peer-to-peer applications, bio-
inspired epidemic protocols have considerable advantages
as they are robust against network failures, scalable and
provide probabilistic reliability guarantees. While providing
reliability, a key issue to consider is the usage of system wide
buffer space. In this context, we introduce a novel scheme
called stepwise probabilistic buffering that reduces the
amount of buffering and distributes the load of buffering to
the entire system where every peer does not have the
complete view of the system. We compute the performance
measures through simulations of large-scale application
scenarios.

Keywords-Buffering, epidemic, peer-to-peer, information
dissemination, reliability, topology-aware.

I. INTRODUCTION
Peer-to-peer (P2P) communication in large scale

settings has many applications in today’s Internet and in
these communication systems there is a need for a source
to disseminate data to a large group of peers. Besides, a
P2P dissemination system must be reliable, scalable and
must provide a management of membership. Relying on
these communication paradigms, epidemic or probabilistic
protocols [1], [2] have significant advantages. They are
simple to implement, inexpensive to run, robust and they
impose a constant load on the links and receivers. The
gossiping mechanism that is used to disseminate the data
provides a high resilience to network problems like link
failures, slow links or a failure on a single node. A
significant issue is that these features of epidemic
protocols are preserved as the scale of the system
increases. However, during deployment of these protocols,
real systems always have a limited capacity. Peers can
exchange only the data messages they have buffered.
Therefore, an efficient buffer management mechanism is a
crucial issue in providing reliability for these protocols.
Studies accomplished in this area emphasize several
aspects of buffer management such as reducing memory
usage, packet discarding policy and message stability.

Our contribution in this area is a novel buffer
management model that reduces the memory usage of the

system and distributes the load of buffering evenly to the
entire system where all peers have only partial knowledge
of the participants. In this model, only a small subset of
the peer population keeps a data message in its long-term
buffer so that buffering load on each peer does not
increase as the system size increases. The long-term
bufferers are determined through a stepwise search
algorithm which is inspired by the random forwarding
encountered in epidemic algorithms. The application area
is P2P epidemic information dissemination where every
peer has only a partial view of the system. Bufferer
determination procedure is the novel part of our proposal
which takes place concurrently with epidemic data
dissemination. The major aim is to distribute the buffering
load to the entire system evenly. We show that our
Stepwise Probabilistic Buffering system facilitates the
achievement of full reliability and faster data
dissemination than a benchmark approach based on a hash
function used for determining the bufferer nodes [3].

The rest of the paper is organized as follows. Section 2
gives an overview of the related work in buffer
management. In Section 3, we describe our approach in
detail. In Section 4, its performance is evaluated through
simulations. Finally, Section 5 concludes the paper and
describes the future work.

II. RELATED WORK AND DISCUSSION
In order to achieve reliability in group communication,

the error recovery mechanism must be well designed. An
efficient buffer management scheme is an indispensable
part of an error recovery mechanism. The existing
approaches are designed for various aspects of buffer
management, namely, flow control, optimization of the
memory usage, providing message stability and the
replacement of buffer items. In this section, we review the
related work and compare with our approach.

A. Network Flow Control
Flow control is an adaptive mechanism that deals with

varying resources such as CPU and bandwidth in the end
hosts. In the NAK based retransmission control scheme
given in [4], the sender reduces its transmission rate
whenever it receives too many NAKs from the receivers.
This mechanism helps to minimize the buffer overflows at
the receivers.

This work is supported in part by TUBITAK (The Scientific and
Technical Research Council of Turkey) under CAREER Award Grant
104E064.

A different idea explored in [5] requires every process
to calculate the average buffer capacity among all
processes it communicates with and transmit that
information. When the rate is too high with respect to the
average, the process reduces the rate locally. On the other
hand, a source node reduces the rate of information
production according to the process with the smallest
buffer space.

B. Reducing the MemoryUsage
The pioneering study [3] focuses on reducing the buffer

requirement by buffering each message only over a small
set of members. Upon receiving a message, a member
determines whether it should buffer the message using a
hash function based on its network address and the
identifier of the message. The hash function is devised so
that the bufferers are chosen uniformly among the peers.
However, when a new member joins the system it cannot
become a bufferer as dynamic redefinition of the hash
table is not considered.

In the present study, the messages are buffered by only
a limited number of peers as well. The bufferers are
selected through an adaptive scheme in order to distribute
the buffering load uniformly. As a result, if a new member
joins the system, it is eligible to be a bufferer.

A multicast protocol that reduces buffer requirements is
Randomized Reliable Multicast Protocol [6] which uses
epidemic error recovery. A message is kept in the long-
term buffer for a fixed amount of time. In our approach,
the messages remain in the buffers until the capacity of a
buffer is reached.

Structured peer to peer networks such as Chord [7],
CAN [8] and Tapestry [9] offer a management on
participating peers and published data items. Chord is
based on a ring, in Pastry and Tapestry hypercube is used,
Tornado uses a tree structure. These systems name the
participating peers and available data items with a
distributed hash function. Chord [7] assigns keys to nodes
with consistent hashing. With a high probability this
function balances the load imposed on peers namely all
nodes receive approximately the same amount of keys.
Chord peers store a small amount of data and require
partial membership information. A node resolves the hash
function by communicating with other nodes because the
hash function is distributed.

Another buffer management scheme which reduces
memory usage is [10] where the members are organized as
regions. In every region, the nodes with the most reliable
links are responsible for buffering the data.

C. Achieving Stability
A message is said to be stable when it is delivered to all

members of the group. There are buffer management
approaches which explicitly take stability into account. In
[11], all members periodically exchange messages to
inform each other about the messages they have received.
When a member becomes aware of a message becoming
stable, it safely discards the message. So the system wide
buffer space is reduced. A drawback is the high traffic
caused by frequent exchange of history messages.

Search Party [12] is another protocol in which
contribution of a timer helps to discard packets from the
buffers. All the members discard packets after a fixed
amount of time to achieve stability.

A heuristic buffer management method based on both
ACKs and NAKs is proposed in [10] to provide scalability
and reliability. In every group of receivers, there are one
or more members with higher error rates than the other
members. These nodes are the ones with the least reliable
and slowest links. The idea is that if a message is correctly
received by these nodes, it has been probably received by
all other nodes. In that case, the repair nodes that buffer
the message can discard it.

Our protocol adjusts several parameters such as the
number of bufferers and the buffer size to achieve stability
with a high probability.

D. Replacement Policy for Buffer Items
Network Friendly Epidemic Multicast [13] combines a

standard epidemic protocol with a novel buffering
technique that combines different selection techniques for
discarding messages in case of a buffer overflow. The
used selection strategies are random purging, age-based
purging and semantic purging. Random purging refers to
discarding an item from the buffer randomly. Age-based
purging is simply discarding the oldest message and
semantic purging means that a message which has been
recognized as obsolete is discarded. Obsolescence relation
is determined by the application.

Least recently used (LRU) buffer replacement scheme
is considered in [14] for epidemic information
dissemination. In LRU scheme, a new coming message is
placed on the first position and the message at the rear is
discarded as in our case. However, when a request arrives
for a message in the buffer, that message is placed into the
first place by moving the items in front one position down.
Hence, the least used item stays at the rear of the stack
possibly next to be discarded.

In this paper, a first-in-first-out policy equivalent to
age-based purging is implemented in the case of a buffer
overflow. We have run simulations also with LRU scheme
and found no significant difference.

III. STEPWISE PROBABILISTIC BUFFERING
 In this section, we describe the system model,

epidemic approach used for data dissemination, overlay
topology, bufferer determination procedure and
optimizations incorporated to our approach for buffering.

A. System Model and Epidemic Dissemination
The system consists of peers connected through an

overlay reflecting the properties of the underlying network
topology. Each peer has a partial view of the system
which is a quite plausible assumption considering a large
scale distributed application scenario. A major aim of our
approach is to be able to choose bufferers uniformly
through the system so that the load of buffering would be
well balanced among participating peers and the
efficiency of content dissemination would be improved as
a result. The approach also reduces the buffer usage since
only a small subset of the peers is chosen as bufferers for
each message. Furthermore, it is applicable to large scale
scenarios, provides reliable delivery and is adaptable to
dynamic join and leaves to the system.

A popular distribution model based on the theory of
epidemics is the anti-entropy [15]. According to the
terminology of epidemiology, a peer holding information
or an update it is willing to share is called infectious. A

peer is called susceptible if it has not yet received an
update. In the anti-entropy process, non-faulty peers are
always either susceptible or infectious. In this model,
periodically, each peer picks f (fan-out) other peers at
random, and exchanges its state information with the
selected one. For spreading information, our system uses a
pull-based approach in which data dissemination is
triggered by susceptible peers when they are picked as
gossip destinations by infectious peers.

In our model, every message is originated from a source
peer. In this protocol, each peer periodically selects f
random peers from its partial view and sends them a
digest including its recent message history. Digest of a
peer contains the state information for the last d messages
the peer has received so far and identifiers of their
bufferers. Upon receiving a digest, a peer may determine
the messages that it lacks and can request them from the
bufferers indicated in the digest for retransmission. If a
bufferer has crashed or cannot retransmit the message, the
request can be forwarded to another bufferer.

Each peer has a short-term and long-term buffer. Once
a data message is received by a peer, it is kept in its
limited short-term buffer until it becomes old enough to
discard. The short-term buffer is useful during epidemic
dissemination intervals. On the other hand, when a peer
becomes bufferer for a particular data, the data is kept in
its long-term buffer. The long-term buffer is useful for
achieving reliability in data dissemination. For both short
and long-term buffers, either FIFO or LRU drop policy is
employed. Message discarding policy is not time
dependent like in [11].

B. Overlay Topology
We assume the existence of an overlay among peers

reflecting the properties of the underlying network
topology, and consider a transit-stub model as a good
approximation of the Internet topology. The Internet can
be viewed as a set of interconnected routing domains
where each domain can be classified as either a stub or a
transit domain. Stub domains correspond to
interconnected local area networks and the transit domains
model wide or metropolitan area networks. A transit
domain is composed of backbone nodes which are well
connected to each other with high bandwidth links. Every
transit node is connected to one or more stub domains.

C. Bufferer Determination Procedure
The process of determining the bufferers of a data

message is initiated by the source. When the bufferers are
determined their ids are piggybacked to the data message
and sent to the bufferers firstly. Bufferer determination
procedure is the novel part of our proposal which takes
place concurrently with epidemic data dissemination. The
major aim is to distribute the buffering load to the entire
system evenly. As bufferers are distributed evenly among
the peers, the load of cooperative data dissemination
would also be well distributed among the peers.

For determining the bufferers of a data message, the
source sends buffering request messages to randomly
selected b peers in its partial view. Parameter b is the
number of bufferers per message. For a data message, if b
> 1 then its bufferers are determined in parallel. Buffer
fullness ratio of a peer (BF) is the ratio of the number of
messages that are stored in the peer’s buffer to its long-
term buffer capacity. Steps-to-Live (STL) value attached to

a buffering request message indicates the maximum
number of times that request message can be forwarded
among peers. When a peer receives a buffering request
message for a particular data, it accepts the request with
probability (1 – BF). Otherwise, it forwards the message
to a randomly selected peer from its partial view with a
probability equal to BF. For example, if 90% of the long-
term buffer is full, then the peer becomes the bufferer of
the message with probability of 0.1 and sends the
buffering request to one of its neighbors with probability
of 0.9. Fig. 1 shows the steps of bufferer selection
mechanism. Initially, assuming that all buffers are empty,
peers that are in the partial view of the source will accept
the buffering requests with higher probabilities. Then, as
the buffer level of these neighboring peers will approach
their capacity, they will begin to forward the buffering
requests with higher probabilities to their neighboring
nodes. Likewise, as the data dissemination continues, the
peers with one or more hops away from the source will
begin to reach their buffer capacities and forward the
buffering requests to their neighbors. Thus, a stepwise
probabilistic buffering takes place. When a peer becomes
bufferer of a message it announces that back to the source.
When the entire bufferer announcement messages return
to the source, the source includes the ids of these bufferers
in the data, sends data to the bufferers firstly, and the
epidemic data dissemination takes place.

D. Optimizations
There is a trade-off in the decision for the STL value of

bufferer request messages. If the STL value is chosen
large enough, uniform selection of bufferers would be
easily achieved since the request message will be able to
visit more peers in the overlay and find a suitable buffer
place for itself. However, there is the cost of higher delays
caused due to the bufferer determination rounds. In order
to provide uniform selection of bufferers, we integrate the
following optimizations to our approach.

1) Last Forwarders:
In this optimization, the ids of the last n forwarders are
included in the buffering request messages. Via this

Figure 1: Flow chart for determining bufferers

information, a bufferer request is not resent to the last n
forwarders and the STL mechanism is used more
efficiently. The idea is that the peers that have forwarded
the request have probably approached their buffer
capacities. Therefore, resending the buffering request to
such a peer is a redundant task.

Fig. 2 illustrates the mechanism with a simple example
for the case n = 3. Assume that the partial views of the
peers include one hop neighbors. P1 invokes the buffering
mechanism for a particular data, writes its id to the
buffering request and forwards it to P2. Similarly, P2
writes its id to the buffering request and sends it to P3.
Next, P3 does the same process and forwards the request
to P4. Since P2 and P3 are in the last forwarders list, P4
does not send the buffering request to these nodes and
sends it to P5. In the same way, P5 does not send the
request to P3 or P4, but to P6.

2) Considering Overlay Topology:

This optimization is also incorporated for providing
uniform bufferer selection. The idea is to assign different
forwarding probabilities to peers according to their
topological properties on the overlay. Therefore, this
mechanism provides topology-awareness. Forwarding
probability of a peer corresponds to the probability of
sending a buffering request to a neighbor node. According
to the types of neighbor nodes, the probability of
forwarding a buffering request at a peer would differ.

We define three types of nodes according to their
location on the transit-stub overlay, namely transit (T),
intermediate (I) and stub (S). An intermediate node
connects a transit node to a stub domain. For example, the
nodes labeled r and t in Fig. 3 are intermediate nodes.
Two transit nodes are connected by high-delay intra-
transit links (TT). A transit and an intermediate link are
connected via intermediate delay stub-transit links (TI,
and IT). Likewise, there exist low delay intra-stub (SS, IS,
and SI) links in stub domains of the overlay. In our model,
we assign forwarding probabilities Pxy to peers according
to their topological properties as follows:

For a T node: PTT > PTI
For an I node: PIT > PIS
For a S node: PSI > PSS

As an example, assume that node p in Fig. 3 is the
message source. If the transit source p sends the buffering
request with equal probabilities to the nodes in its partial
view (i.e. one-hop neighbors), then the nodes in stub-
domains 3, 4 and 5 will accept the buffering requests less
than the nodes in the stub-domains 1 and 2 that are

directly connected to the source. Considering topology-
awareness, if the source is a transit node then we assign a
higher probability of forwarding the request to transit
neighbors than forwarding the request to stub neighbors.

Non-source transit nodes also send the request to their

transit neighbors with a higher probability. An
intermediate node sends the request to the transit node
with a higher probability than its other neighbors, namely
stub nodes. A node in stub-domain forwards the request to
one of its neighbors with equal probabilities. In Fig. 3,
when node q receives the buffering request from node p, it
sends the request to node s with a higher probability than
sending it to its neighbor in stub-domain 5. If node t
receives a buffering request from a node in its stub
domain, then it sends the request to p with a higher
probability.

IV. SIMULATION RESULTS
The simulation is implemented in Java where a discrete

time event based model is used. For the network
topology, we use the gt-itm internetwork topology
modeling tool [16] for generating transit-stub topologies.
The optimizations mentioned in the previous section are
integrated to the simulations and last forwarders value is
set to 20.

A. Uniform Bufferer Selection
In the first part of the experiments, we investigate how

well Stepwise Probabilistic Buffering achieves uniform
bufferer selection on a controlled topology. The messages
are generated from a single source where the total number
of messages generated is equal to the total long-term
buffer capacity of the system. Our aim is to observe
whether the messages are distributed evenly to the long-
term buffers or not. There are 100 nodes in the system
where 4 of them are transit and every transit node is
connected to 2 stub domains on the average. The mean
number of nodes in each stub-domain is 12. The transit
nodes are connected to each other with the probability of
0.8 and each node in a stub-domain is connected to
another node in its domain with the probability of 0.5. Fig.
4 shows the sketch of the topology where node numbers
are indicated. The long-term buffer capacity of a node is

Figure 3: Overlay topology and forwarding probabilities

p

1

2
3

4

r

q

5

s

t

Stub domains

Transit domain

Figure 2: Illustration of last forwarders mechanism

100 messages. We let the source node generate 10,000
messages just equal to the capacity of all long term buffers
in a network of 100 nodes. The performance metrics for
these set of simulations are as follows:

• Retention ratio is the ratio of the number of

messages retained in all long-term buffers to the
total number of messages generated.

• Scattering ratio is the ratio of the number of
distinct sub-domains a message is buffered to the
total number of bufferers of the message.

In Figures 5 through 7, the source node is varied in
terms of its position in the overlay. Fig. 5 shows the total
number of messages buffered by each peer when a transit
node, id 2, is chosen to be the message source. Initial
forwarding probability values and improvements over
these values are used to obtain the two set of buffer levels.
The standard deviation of the messages buffered among
all nodes is given as a distinguishing metric for
comparison of uniformity over all buffers. In our
experiments, when a forwarding probability distribution
leads to buffering of larger number of messages in certain
domains such as those close to the source, the probability
of bouncing back to the transit nodes from those domains
is increased. Several trials have yielded a more uniform
buffer load.

As a stub node, node 72 is chosen to be the source in Fig.
6. In this case, the variance is somewhat higher than the
transit source. This can be explained by the larger
variation in the number of peers connected in a stub
domain. In Fig. 7, the message source is an intermediate
node, node 93, which is directly attached to a transit node.
The uniformity of the buffer load distribution is close to
that in Fig. 5 where the source is a transit node. In all
cases, some nodes belonging to the domain of the nodes
72-87 buffer fewer messages. The reason for this is the
relatively higher number of nodes in this domain, namely
16, compared to the expected value 12. Besides, it is
connected to transit node 2 which has 3 stub domains, a
higher number than the average number 2. As a result, the
buffering requests reach to this domain less frequently.

We investigate the transient behavior of the uniformity
of buffer fullness by monitoring the standard deviation of
the buffer levels as the message generation proceeds. For
this purpose, the standard deviation scaled by the mean of
the used buffer space of all nodes is plotted against the
proportion of messages generated in Fig. 8. When the
generated messages approach the full long-term buffer
capacity of the system, the variability decreases which
indicates a more uniform buffer load distribution.

In Fig. 9, we observe the effect of varying the source
node on retention ratio. Recall that the total number of

0 20 40 60 80 100
40

60

80

100

120

140

Node id

N
um

be
r o

f M
es

sa
ge

s
B

uf
fe

re
d Initial

Improved

Figure 7: Source is a stub node that has a transit neighbor
Std. initial = 14.52, Std. improved = 12.64

0 20 40 60 80 100
40

60

80

100

120

140

Node id

N
um

be
r o

f M
es

sa
ge

s
B

uf
fe

re
d Initial

Improved

Figure 6: Source is a stub node
Std. initial = 19.78, Std. improved = 14.34

Figure 5: Source is a transit node
Std. initial = 13.97, Std. improved = 12.72

0 20 40 60 80 100
40

60

80

100

120

140

Node id

N
um

be
r o

f M
es

sa
ge

s
B

uf
fe

re
d Initial

Improved

Figure 4: Simulation Topology

39-51

16-27 4-15

2

3

1

0

88-99

64-71

28-38

52-63

72-87

59

64

13 22
75

93

39

32

messages generated equals the total capacity of all buffers
in the overlay network. Therefore, retention ratio can be at
most 1 and the closer is the better. The retention ratio is
quite uniform for different locations of the source which
shows that our scheme is robust in this respect. What is
more, the retention ratio is above 97%, that is,
approximately only 3% of the messages is discarded due
to buffer overflows.

The effect of steps to live and the number of forwarders
parameters on retention ratio is examined in Fig. 10. The
maximum value is obtained when STL is 40 and the
number of forwarders is 35. Also we can infer that an
increase in steps to live value has a positive effect on the
retention ratio and the number of forwarders affects
positively after the value of 30.

The number of bufferers b of a message has been set to
1 in the results given above. If b is set to a value greater
than 1, we use the metric scattering ratio to evaluate the
performance. In this case, a key aim of Stepwise
Probabilistic Buffering is to minimize the average number
of hops from all peers to the nearest bufferer for each
message. In the simulation, we generate 2000 messages
from a single source and b is set to 5. So, after the
generation of all messages, 10,000 messages pass through
the long-term buffers of the members. In the best case, the
scattering ratio is 1 when 5 copies of the message are
buffered in 5 different domains. We conclude from Fig. 11
that for more than half of all 2000 messages, the scattering
ratio is 0.8 or 1. Namely, the 5 bufferers are selected from

4 or 5 different domains which should help in the data
dissemination phase.

B. Data Dissemination and Comparative Results
Comparison of Stepwise Probabilistic Buffering with

the hash-based approach [3] and our preliminary work
Random Buffering [17] in terms of distribution of the
buffering load among peers is performed. In this set of
simulations, the number of peers is set to 1000, long-term
buffer size of each peer is equal to 50, and 50,000
messages are generated which is equal to the system-wide
long-term buffer capacity. The number of messages
buffered by each peer is depicted in Fig. 12. In the hash-
based and random buffering approaches, all peers have the
full membership information of all the other peers so
uniform distribution of buffering load is expected. In
Stepwise Probabilistic Buffering, although every member
has a partial view, buffering load is distributed uniformly.

We evaluate the behavior of Stepwise Probabilistic
Buffering in terms of message dissemination metrics as a
function of parameters of the model. We use the following
performance metrics for this purpose:

• Reliability is the ratio of total number of received
messages by peers over the total generated
messages. Namely it shows how reliable the
generated messages are delivered by the receivers.

Figure 8: Std. Dev. over Mean Used Buffer Space

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

Message Percentage

S
td

. D
ev

. /
 M

ea
n

U
se

d
B

uf
fe

r S
pa

ce

Figure 11: Scattering of bufferers to different domains

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

800

900

Scattering ratio

Fr
eq

ue
nc

y

Figure 9: Effect of source change on the retention ratio

0 20 40 60 80 100
90

92

94

96

98

100

Source

R
et

en
tio

n
ra

tio

First 4: transit nodes

Figure 10: Effect of steps to live and number of forwarders
on the retention ratio

• Long-term / Short-term Buffering Time is the
mean time that a message is stored on a peer’s
long-term / short-term buffer.

• Dissemination Time is the time that passes for
dissemination of the content to all peers.

First, we examine the effect of message dissemination
rate on the reliability of the message dissemination. In
these set of simulations, the number of peers is set to
1000. For each peer, short-term buffer size is 20 messages
and long-term buffer size is 50 messages. Gossip interval
is set to 100 msec. 10,000 messages are generated from a
single source.

As the message generation rate is increased, the buffers
of the peers are loaded and unloaded faster. Since the
gossip interval stays constant for each message generation
rate, the number of messages entered to the system in each
gossip round grows up. Digest message size is constant
for each generation rate as well. Thus, if the generation
rate is raised to a certain value, state information that
passes through the digest messages is updated too fast.
Because of these facts, peers may not get timely
information on the bufferers of some messages that they
lack, or some messages may be removed from the buffers
of the bufferers before they are received by some
receivers. Therefore, if the message generation rate is
increased keeping the other parameters constant, the
reliability of dissemination is reduced. Fig. 13 shows the
results of our simulations which support these facts.

When the gossip interval is increased, we observe
similar effects. As we have discussed above, when the
generation rate is increased the peers may not retrieve
some missed messages. When the gossip interval is
reduced, peers begin to inform each other about their
message history more frequently. In larger gossip
intervals, peers begin to discard the messages from their
buffers more rapidly. Besides, probability that the
bufferers remove the same messages also increases.
Therefore, the reliability of the system decreases if the
gossip interval is increased.

We also compare our model with the hash-based
approach [3] and Random Buffering [17] in terms of
dissemination time in a 1000 node scenario. In these
simulations, 500,000 messages are generated from a single
source. Message generation rate is 10 msgs /sec. and
gossip interval is 1 sec. As shown in Fig. 14, when
Stepwise Probabilistic Buffering is used, lower
dissemination times than the hash-based approach are
achieved. In Stepwise and Random, the bufferers are
determined when a message is generated and the message
is directly sent to the bufferers. However, in the hash-
based approach, a peer decides to be a bufferer for a
message when it receives the message through gossiping
eventually. The smallest dissemination time occurs with
Random which serves as a baseline for comparison. The
bufferers are selected at random immediately in this
approach because the sender is assumed to have a full
knowledge of the overlay network.

Figure 12: Number of messages buffered
by each peer

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

80

90

100

Node id

N
um

be
r o

f M
es

sa
ge

s
Bu

ffe
re

d

Hash
Random
Stepwise

10 20 30 40 50 60 70 80 90 100
40

50

60

70

80

90

100

Message Generation Rate (msg/sec)

R
el

ia
bi

lit
y

(%
)

Buffer size = 50
Buffer size =100

Figure 13: Message Generation Rate - Reliability

Figure 14: Content dissemination times

0 200 400 600 800 1000
5.02

5.025

5.03

5.035

5.04

5.045

5.05

5.055

5.06

5.065
x 104

Node id

D
is

se
m

in
at

io
n

tim
e

(s
ec

)

Stepwise
Hash
Random

Figure 15: Long-term buffering times

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3
x 104

Node id

Lo
ng

-te
rm

 b
uf

fe
rin

g
tim

es
 (s

ec
)

Stepwise
Hash
Random

Comparison of the mean long-term buffering time of
each peer is given in Fig. 15. These results indicate that in
Stepwise, a peer serves for a message for a longer time
close to the average time that Random achieves.
Therefore, during dissemination the availability of a
message is more likely in Stepwise than the hash-based
approach.

V. CONCLUSION
We have proposed a novel buffer management scheme

Stepwise Probabilistic Buffering that distributes the load
of buffering to the entire system where all peers have
partial knowledge of the overlay. Our approach reduces
the memory usage; it is applicable to dissemination of data
to a large group of peers where epidemic dissemination
idea is used. We have shown that Stepwise Probabilistic
Buffering scheme distributes the buffering load uniformly
to all peers, reduces the dissemination time and the buffer
space of all data, improves the utilization of buffers and
the reliability of dissemination. As further study, we plan
to work on an analytical model to determine the optimal
probability distribution for forwarding the buffering
requests. In addition, multiple-source information
dissemination scenarios, the behavior of our model in the
case of failures as well as an adaptive buffer size
mechanism that handles multiple sources and link failures
will be investigated.

In this study, our assumption was the existence of an
overlay among peers reflecting the properties of the
underlying network topology, and we considered a transit-
stub model as a good approximation of the Internet
topology. As future work, we plan to integrate a module
for topologically-aware overlay construction among the
peers.

As an ongoing work, we are currently investigating
another mechanism for bufferer selection in order to
improve uniformity of buffer usage among peers. When a
buffering request is received by a peer, it checks the
current number of messages buffered by its neighbors.
Then, it sends the request to the peer with the minimum
number of messages. If the forwarding peer has the
minimum value then it accepts the request and becomes
the bufferer of the message. In this approach, there is no
last forwarders mechanism and forwarding probabilities.
Our initial results show that it leads to more uniform
buffer usage among peers.

Acknowledgement. The authors would like to thank Ali
Alagöz for fundamental discussions on the approach of
this paper.

REFERENCES
[1] Birman, K., Hayden, M., Ozkasap, O., Xiao, Z., Budiu, M., and

Minsky, Y.,“Bimodal Multicast” ACM Trans. Comput. Syst. 17,
May 1999, 41–88.

[2] Eugster, P. T., Guerraoui, R., Kermarrec, A.-M., and Massoulie,
L. “From Epidemics to Distributed Computing” IEEE Computer
Society, 2003

[3] O. Ozkasap, R. van Renesse, K.P. Birman, and Z. Xiao, “Efficient
Buffering in Reliable Multicast Protocols,” Proc. of the First Int’l
Workshop on Networked Group Communication (NGC’ 99), Pisa,
Italy, Nov. 1999, pp. 188-203.

[4] Yamamoto, M. Yamamoto, and H. Ikeda, “Performance
Evaluation of ACK-Based and NAK-Based Flow Control
Mechanisms for Reliable Multicast Comm.,” IEICE Trans. on
Comm., vol. E84-B, no. 8, Aug. 2001, pp. 2313-2316K.

[5] L. Rodrigues, S. Handurukande, J. Orlando, R. Guerraoui, and A.-
M. Kermarrec. “Adaptive gossip-based broadcast”. In IEEE
International Conference on Dependable Systems and Networks
(DSN), 2003.

[6] Z. Xiao, K.P. Birman, and R. Renesse, “Optimizing Buffer
Management for Reliable Multicast,” Proc. of the Int’l Conf. on
Dependable Systems and Networks (DSN’02), Washington, D.C.

[7] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H.
Balakrishnan. Chord: A Scalable Peer-to-peer Lookup Service for
Internet Applications. In Proc. of the 2001 ACM SIGCOMM
Conference, San Diego, CA, USA, August 2001.

[8] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
Scalable Content-Addressable Network. In Proc. of the 2001
ACM SIGCOMM Conference, San Diego, CA, USA, August
2001.

[9] B. Zhao, J. Kubiatowicz, and A. Joseph, “Tapestry: An
infrastructure for fault-tolerant wide-area location and routing,”
Comput. Sci. Div., Univ. California, Berkeley, Tech. Rep.
UCB/CSD-01-1141, 2001.

[10] Jean François Paris, Jinsun Baek, “A Heuristic Buffer
Management and Retransmission Control Scheme for Tree-Based
Reliable Multicast” ETRI Journal, Volume 27, Number 1,
February 2005 K.

[11] Guo and I. Rhee, “Message Stability Detection for Reliable
Multicast,” Proc. of the 19th IEEE Conf. on Computer Comm.
(INFOCOM 2000), New York, USA, Mar. 2000, pp. 814-823.

[12] .M. Costello and S. McCanne, “Search Party: Using Randomcast
for Reliable Multicast with Local Recovery,” Proc. of the 18th
IEEE Conf. on Computer Comm. (INFOCOM ‘99), New York,
USA, Mar. 1999, pp. 1256-1264.

[13] J. Pereira, L. Rodrigues, M. Monteiro, R. Oliviera, A. M.
Kermarrec, “Network Friendly Epidemic Multicast”, 22nd
International Symposium on Reliable Distributed Systems, 2003
IEEE.

[14] C. Lindemann and O. Waldhorst. “Modelling Epidemic
Information Dissemination on Mobile Devices with Finite
Buffers.”, SIGMETRICS'05

[15] Bailey, N.T.J., The Mathematical Theory of Infectious Diseases
and its Applications, second edition, Hafner Press, 1975

[16] http://www-static.cc.gatech.edu/fac/Ellen.Zegura/graphs.html
[17] A. Alagöz, E. Ahi., O. Ozkasap, “Network Awareness and Buffer

Management in Epidemic Information Dissemination” (poster
paper), ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing (PODC 2005), July, 2005, Las Vegas

