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Abstract— For large-scale peer-to-peer applications, bio-
inspired epidemic protocols have considerable advantages 
as they are robust against network failures, scalable and 
provide probabilistic reliability guarantees. While providing 
reliability, a key issue to consider is the usage of system wide 
buffer space. In this context, we introduce a novel scheme 
called stepwise probabilistic buffering that reduces the 
amount of buffering and distributes the load of buffering to 
the entire system where every peer does not have the 
complete view of the system. We compute the performance 
measures through simulations of large-scale application 
scenarios. 

Keywords-Buffering, epidemic, peer-to-peer, information 
dissemination, reliability, topology-aware. 

I.  INTRODUCTION 
Peer-to-peer (P2P) communication in large scale 

settings has many applications in today’s Internet and in 
these communication systems there is a need for a source 
to disseminate data to a large group of peers. Besides, a 
P2P dissemination system must be reliable, scalable and 
must provide a management of membership. Relying on 
these communication paradigms, epidemic or probabilistic 
protocols [1], [2] have significant advantages. They are 
simple to implement, inexpensive to run, robust and they 
impose a constant load on the links and receivers. The 
gossiping mechanism that is used to disseminate the data 
provides a high resilience to network problems like link 
failures, slow links or a failure on a single node. A 
significant issue is that these features of epidemic 
protocols are preserved as the scale of the system 
increases. However, during deployment of these protocols, 
real systems always have a limited capacity. Peers can 
exchange only the data messages they have buffered. 
Therefore, an efficient buffer management mechanism is a 
crucial issue in providing reliability for these protocols. 
Studies accomplished in this area emphasize several 
aspects of buffer management such as reducing memory 
usage, packet discarding policy and message stability. 

Our contribution in this area is a novel buffer 
management model that reduces the memory usage of the 

system and distributes the load of buffering evenly to the 
entire system where all peers have only partial knowledge 
of the participants. In this model, only a small subset of 
the peer population keeps a data message in its long-term 
buffer so that buffering load on each peer does not 
increase as the system size increases. The long-term 
bufferers are determined through a stepwise search 
algorithm which is inspired by the random forwarding 
encountered in epidemic algorithms.  The application area 
is P2P epidemic information dissemination where every 
peer has only a partial view of the system. Bufferer 
determination procedure is the novel part of our proposal 
which takes place concurrently with epidemic data 
dissemination. The major aim is to distribute the buffering 
load to the entire system evenly. We show that our 
Stepwise Probabilistic Buffering system facilitates the 
achievement of full reliability and faster data 
dissemination than a benchmark approach based on a hash 
function used for determining the bufferer nodes [3]. 

The rest of the paper is organized as follows. Section 2 
gives an overview of the related work in buffer 
management. In Section 3, we describe our approach in 
detail. In Section 4, its performance is evaluated through 
simulations. Finally, Section 5 concludes the paper and 
describes the future work. 

II. RELATED WORK AND DISCUSSION 
In order to achieve reliability in group communication, 

the error recovery mechanism must be well designed. An 
efficient buffer management scheme is an indispensable 
part of an error recovery mechanism. The existing 
approaches are designed for various aspects of buffer 
management, namely, flow control, optimization of the 
memory usage, providing message stability and the 
replacement of buffer items. In this section, we review the 
related work and compare with our approach.  

A. Network Flow Control 
Flow control is an adaptive mechanism that deals with 

varying resources such as CPU and bandwidth in the end 
hosts. In the NAK based retransmission control scheme 
given in [4], the sender reduces its transmission rate 
whenever it receives too many NAKs from the receivers. 
This mechanism helps to minimize the buffer overflows at 
the receivers. 
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A different idea explored in [5] requires every process 
to calculate the average buffer capacity among all 
processes it communicates with and transmit that 
information. When the rate is too high with respect to the 
average, the process reduces the rate locally. On the other 
hand, a source node reduces the rate of information 
production according to the process with the smallest 
buffer space. 

B. Reducing  the MemoryUsage 
The pioneering study [3] focuses on reducing the buffer 

requirement by buffering each message only over a small 
set of members. Upon receiving a message, a member 
determines whether it should buffer the message using a 
hash function based on its network address and the 
identifier of the message.  The hash function is devised so 
that the bufferers are chosen uniformly among the peers. 
However, when a new member joins the system it cannot 
become a bufferer as dynamic redefinition of the hash 
table is not considered.  

In the present study, the messages are buffered by only 
a limited number of peers as well. The bufferers are 
selected through an adaptive scheme in order to distribute 
the buffering load uniformly. As a result, if a new member 
joins the system, it is eligible to be a bufferer.  

A multicast protocol that reduces buffer requirements is 
Randomized Reliable Multicast Protocol [6] which uses 
epidemic error recovery. A message is kept in the long-
term buffer for a fixed amount of time. In our approach, 
the messages remain in the buffers until the capacity of a 
buffer is reached.  

Structured peer to peer networks such as Chord [7], 
CAN [8] and Tapestry [9] offer a management on 
participating peers and published data items. Chord is 
based on a ring, in Pastry and Tapestry hypercube is used, 
Tornado uses a tree structure. These systems name the 
participating peers and available data items with a 
distributed hash function. Chord [7] assigns keys to nodes 
with consistent hashing. With a high probability this 
function balances the load imposed on peers namely all 
nodes receive approximately the same amount of keys. 
Chord peers store a small amount of data and require 
partial membership information. A node resolves the hash 
function by communicating with other nodes because the 
hash function is distributed.  

Another buffer management scheme which reduces 
memory usage is [10] where the members are organized as 
regions. In every region, the nodes with the most reliable 
links are responsible for buffering the data.  

C. Achieving Stability 
A message is said to be stable when it is delivered to all 

members of the group. There are buffer management 
approaches which explicitly take stability into account. In 
[11], all members periodically exchange messages to 
inform each other about the messages they have received. 
When a member becomes aware of a message becoming 
stable, it safely discards the message. So the system wide 
buffer space is reduced. A drawback is the high traffic 
caused by frequent exchange of history messages. 

Search Party [12] is another protocol in which 
contribution of a timer helps to discard packets from the 
buffers. All the members discard packets after a fixed 
amount of time to achieve stability. 

A heuristic buffer management method based on both 
ACKs and NAKs is proposed in [10] to provide scalability 
and reliability. In every group of receivers, there are one 
or more members with higher error rates than the other 
members. These nodes are the ones with the least reliable 
and slowest links. The idea is that if a message is correctly 
received by these nodes, it has been probably received by 
all other nodes. In that case, the repair nodes that buffer 
the message can discard it.  

Our protocol adjusts several parameters such as the 
number of bufferers and the buffer size to achieve stability 
with a high probability.   

D. Replacement Policy for Buffer Items 
Network Friendly Epidemic Multicast [13] combines a 

standard epidemic protocol with a novel buffering 
technique that combines different selection techniques for 
discarding messages in case of a buffer overflow. The 
used selection strategies are random purging, age-based 
purging and semantic purging. Random purging refers to 
discarding an item from the buffer randomly. Age-based 
purging is simply discarding the oldest message and 
semantic purging means that a message which has been 
recognized as obsolete is discarded. Obsolescence relation 
is determined by the application.   

Least recently used (LRU) buffer replacement scheme 
is considered in [14] for epidemic information 
dissemination. In LRU scheme, a new coming message is 
placed on the first position and the message at the rear is 
discarded as in our case. However, when a request arrives 
for a message in the buffer, that message is placed into the 
first place by moving the items in front one position down. 
Hence, the least used item stays at the rear of the stack 
possibly next to be discarded. 

In this paper, a first-in-first-out policy equivalent to 
age-based purging is implemented in the case of a buffer 
overflow. We have run simulations also with LRU scheme 
and found no significant difference.  

III. STEPWISE PROBABILISTIC BUFFERING 
 In this section, we describe the system model, 

epidemic approach used for data dissemination, overlay 
topology, bufferer determination procedure and 
optimizations incorporated to our approach for buffering. 

A. System Model and Epidemic Dissemination  
The system consists of peers connected through an 

overlay reflecting the properties of the underlying network 
topology. Each peer has a partial view of the system 
which is a quite plausible assumption considering a large 
scale distributed application scenario. A major aim of our 
approach is to be able to choose bufferers uniformly 
through the system so that the load of buffering would be 
well balanced among participating peers and the 
efficiency of content dissemination would be improved as 
a result. The approach also reduces the buffer usage since 
only a small subset of the peers is chosen as bufferers for 
each message. Furthermore, it is applicable to large scale 
scenarios, provides reliable delivery and is adaptable to 
dynamic join and leaves to the system. 

A popular distribution model based on the theory of 
epidemics is the anti-entropy [15]. According to the 
terminology of epidemiology, a peer holding information 
or an update it is willing to share is called infectious. A 



peer is called susceptible if it has not yet received an 
update. In the anti-entropy process, non-faulty peers are 
always either susceptible or infectious. In this model, 
periodically, each peer picks f (fan-out) other peers at 
random, and exchanges its state information with the 
selected one. For spreading information, our system uses a 
pull-based approach in which data dissemination is 
triggered by susceptible peers when they are picked as 
gossip destinations by infectious peers. 

In our model, every message is originated from a source 
peer. In this protocol, each peer periodically selects f 
random peers from its partial view and sends them a 
digest including its recent message history. Digest of a 
peer contains the state information for the last d messages 
the peer has received so far and identifiers of their 
bufferers. Upon receiving a digest, a peer may determine 
the messages that it lacks and can request them from the 
bufferers indicated in the digest for retransmission. If a 
bufferer has crashed or cannot retransmit the message, the 
request can be forwarded to another bufferer.  

Each peer has a short-term and long-term buffer. Once 
a data message is received by a peer, it is kept in its 
limited short-term buffer until it becomes old enough to 
discard. The short-term buffer is useful during epidemic 
dissemination intervals. On the other hand, when a peer 
becomes bufferer for a particular data, the data is kept in 
its long-term buffer.  The long-term buffer is useful for 
achieving reliability in data dissemination. For both short 
and long-term buffers, either FIFO or LRU drop policy is 
employed. Message discarding policy is not time 
dependent like in [11].  

B. Overlay Topology 
We assume the existence of an overlay among peers 

reflecting the properties of the underlying network 
topology, and consider a transit-stub model as a good 
approximation of the Internet topology. The Internet can 
be viewed as a set of interconnected routing domains 
where each domain can be classified as either a stub or a 
transit domain. Stub domains correspond to 
interconnected local area networks and the transit domains 
model wide or metropolitan area networks. A transit 
domain is composed of backbone nodes which are well 
connected to each other with high bandwidth links. Every 
transit node is connected to one or more stub domains.  

C. Bufferer Determination Procedure 
The process of determining the bufferers of a data 

message is initiated by the source. When the bufferers are 
determined their ids are piggybacked to the data message 
and sent to the bufferers firstly. Bufferer determination 
procedure is the novel part of our proposal which takes 
place concurrently with epidemic data dissemination. The 
major aim is to distribute the buffering load to the entire 
system evenly. As bufferers are distributed evenly among 
the peers, the load of cooperative data dissemination 
would also be well distributed among the peers. 

For determining the bufferers of a data message, the 
source sends buffering request messages to randomly 
selected b peers in its partial view. Parameter b is the 
number of bufferers per message. For a data message, if b 
> 1 then its bufferers are determined in parallel. Buffer 
fullness ratio of a peer (BF) is the ratio of the number of 
messages that are stored in the peer’s buffer to its long-
term buffer capacity. Steps-to-Live (STL) value attached to 

a buffering request message indicates the maximum 
number of times that request message can be forwarded 
among peers. When a peer receives a buffering request 
message for a particular data, it accepts the request with 
probability (1 – BF). Otherwise, it forwards the message 
to a randomly selected peer from its partial view with a 
probability equal to BF. For example, if 90% of the long-
term buffer is full, then the peer becomes the bufferer of 
the message with probability of 0.1 and sends the 
buffering request to one of its neighbors with probability 
of 0.9. Fig. 1 shows the steps of bufferer selection 
mechanism. Initially, assuming that all buffers are empty, 
peers that are in the partial view of the source will accept 
the buffering requests with higher probabilities. Then, as 
the buffer level of these neighboring peers will approach 
their capacity, they will begin to forward the buffering 
requests with higher probabilities to their neighboring 
nodes. Likewise, as the data dissemination continues, the 
peers with one or more hops away from the source will 
begin to reach their buffer capacities and forward the 
buffering requests to their neighbors. Thus, a stepwise 
probabilistic buffering takes place. When a peer becomes 
bufferer of a message it announces that back to the source. 
When the entire bufferer announcement messages return 
to the source, the source includes the ids of these bufferers 
in the data, sends data to the bufferers firstly, and the 
epidemic data dissemination takes place.  

 

D. Optimizations 
There is a trade-off in the decision for the STL value of 

bufferer request messages. If the STL value is chosen 
large enough, uniform selection of bufferers would be 
easily achieved since the request message will be able to 
visit more peers in the overlay and find a suitable buffer 
place for itself. However, there is the cost of higher delays 
caused due to the bufferer determination rounds. In order 
to provide uniform selection of bufferers, we integrate the 
following optimizations to our approach.  

1) Last Forwarders:  
In this optimization, the ids of the last n forwarders are 
included in the buffering request messages. Via this 

 
Figure 1: Flow chart for determining bufferers 



information, a bufferer request is not resent to the last n 
forwarders and the STL mechanism is used more 
efficiently. The idea is that the peers that have forwarded 
the request have probably approached their buffer 
capacities. Therefore, resending the buffering request to 
such a peer is a redundant task. 

Fig. 2 illustrates the mechanism with a simple example 
for the case n = 3. Assume that the partial views of the 
peers include one hop neighbors. P1 invokes the buffering 
mechanism for a particular data, writes its id to the 
buffering request and forwards it to P2. Similarly, P2 
writes its id to the buffering request and sends it to P3. 
Next, P3 does the same process and forwards the request 
to P4. Since P2 and P3 are in the last forwarders list, P4 
does not send the buffering request to these nodes and 
sends it to P5. In the same way, P5 does not send the 
request to P3 or P4, but to P6. 

 
2) Considering Overlay Topology:  

This optimization is also incorporated for providing 
uniform bufferer selection. The idea is to assign different 
forwarding probabilities to peers according to their 
topological properties on the overlay. Therefore, this 
mechanism provides topology-awareness. Forwarding 
probability of a peer corresponds to the probability of 
sending a buffering request to a neighbor node. According 
to the types of neighbor nodes, the probability of 
forwarding a buffering request at a peer would differ.   

We define three types of nodes according to their 
location on the transit-stub overlay, namely transit (T), 
intermediate (I) and stub (S). An intermediate node 
connects a transit node to a stub domain. For example, the 
nodes labeled r and t in Fig. 3 are intermediate nodes. 
Two transit nodes are connected by high-delay intra-
transit links (TT). A transit and an intermediate link are 
connected via intermediate delay stub-transit links (TI, 
and IT). Likewise, there exist low delay intra-stub (SS, IS, 
and SI) links in stub domains of the overlay. In our model, 
we assign forwarding probabilities Pxy to peers according 
to their topological properties as follows: 

For a T node: PTT > PTI 
For an I node: PIT > PIS 
For a S node: PSI > PSS 

As an example, assume that node p in Fig. 3 is the 
message source. If the transit source p sends the buffering 
request with equal probabilities to the nodes in its partial 
view (i.e. one-hop neighbors), then the nodes in stub-
domains 3, 4 and 5 will accept the buffering requests less 
than the nodes in the stub-domains 1 and 2 that are 

directly connected to the source. Considering topology-
awareness, if the source is a transit node then we assign a 
higher probability of forwarding the request to transit 
neighbors than forwarding the request to stub neighbors. 

 
 

 
Non-source transit nodes also send the request to their 

transit neighbors with a higher probability. An 
intermediate node sends the request to the transit node 
with a higher probability than its other neighbors, namely 
stub nodes. A node in stub-domain forwards the request to 
one of its neighbors with equal probabilities. In Fig. 3, 
when node q receives the buffering request from node p, it 
sends the request to node s with a higher probability than 
sending it to its neighbor in stub-domain 5. If node t 
receives a buffering request from a node in its stub 
domain, then it sends the request to p with a higher 
probability. 

IV. SIMULATION RESULTS 
The simulation is implemented in Java where a discrete 

time event based model is used. For the network 
topology, we use the gt-itm internetwork topology 
modeling tool [16] for generating transit-stub topologies. 
The optimizations mentioned in the previous section are 
integrated to the simulations and last forwarders value is 
set to 20.   

A. Uniform Bufferer Selection 
In the first part of the experiments, we investigate how 

well Stepwise Probabilistic Buffering achieves uniform 
bufferer selection on a controlled topology. The messages 
are generated from a single source where the total number 
of messages generated is equal to the total long-term 
buffer capacity of the system. Our aim is to observe 
whether the messages are distributed evenly to the long-
term buffers or not. There are 100 nodes in the system 
where 4 of them are transit and every transit node is 
connected to 2 stub domains on the average. The mean 
number of nodes in each stub-domain is 12. The transit 
nodes are connected to each other with the probability of 
0.8 and each node in a stub-domain is connected to 
another node in its domain with the probability of 0.5. Fig. 
4 shows the sketch of the topology where node numbers 
are indicated. The long-term buffer capacity of a node is 

Figure 3: Overlay topology and forwarding probabilities 
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100 messages. We let the source node generate 10,000 
messages just equal to the capacity of all long term buffers 
in a network of 100 nodes. The performance metrics for 
these set of simulations are as follows: 

 
• Retention ratio is the ratio of the number of 

messages retained in all long-term buffers to the 
total number of messages generated. 

• Scattering ratio is the ratio of the number of 
distinct sub-domains a message is buffered to the 
total number of bufferers of the message. 

In Figures 5 through 7, the source node is varied in 
terms of its position in the overlay. Fig. 5 shows the total 
number of messages buffered by each peer when a transit 
node, id 2, is chosen to be the message source. Initial 
forwarding probability values and improvements over 
these values are used to obtain the two set of buffer levels. 
The standard deviation of the messages buffered among 
all nodes is given as a distinguishing metric for 
comparison of uniformity over all buffers. In our 
experiments, when a forwarding probability distribution 
leads to buffering of larger number of messages in certain 
domains such as those close to the source, the probability 
of bouncing back to the transit nodes from those domains 
is increased. Several trials have yielded a more uniform 
buffer load. 

 
 
As a stub node, node 72 is chosen to be the source in Fig. 
6. In this case, the variance is somewhat higher than the 
transit source. This can be explained by the larger 
variation in the number of peers connected in a stub 
domain. In Fig. 7, the message source is an intermediate 
node, node 93, which is directly attached to a transit node.  
The uniformity of the buffer load distribution is close to 
that in Fig. 5 where the source is a transit node. In all 
cases, some nodes belonging to the domain of the nodes 
72-87 buffer fewer messages. The reason for this is the 
relatively higher number of nodes in this domain, namely 
16, compared to the expected value 12. Besides, it is 
connected to transit node 2 which has 3 stub domains, a 
higher number than the average number 2.  As a result, the 
buffering requests reach to this domain less frequently. 

We investigate the transient behavior of the uniformity 
of buffer fullness by monitoring the standard deviation of 
the buffer levels as the message generation proceeds. For 
this purpose, the standard deviation scaled by the mean of 
the used buffer space of all nodes is plotted against the 
proportion of messages generated in Fig. 8. When the 
generated messages approach the full long-term buffer 
capacity of the system, the variability decreases which 
indicates a more uniform buffer load distribution. 

In Fig. 9, we observe the effect of varying the source 
node on retention ratio. Recall that the total number of 
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Figure 7: Source is a stub node that has a transit neighbor 
Std. initial = 14.52, Std. improved = 12.64 
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Std. initial = 19.78, Std. improved = 14.34 

Figure 5: Source is a transit node 
Std. initial = 13.97, Std. improved = 12.72 
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Figure 4: Simulation Topology 
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messages generated equals the total capacity of all buffers 
in the overlay network. Therefore, retention ratio can be at 
most 1 and the closer is the better. The retention ratio is 
quite uniform for different locations of the source which 
shows that our scheme is robust in this respect. What is 
more, the retention ratio is above 97%, that is, 
approximately only 3% of the messages is discarded due 
to buffer overflows. 

The effect of steps to live and the number of forwarders 
parameters on retention ratio is examined in Fig. 10. The 
maximum value is obtained when STL is 40 and the 
number of forwarders is 35. Also we can infer that an 
increase in steps to live value has a positive effect on the 
retention ratio and the number of forwarders affects 
positively after the value of 30. 

The number of bufferers b of a message has been set to 
1 in the results given above. If b is set to a value greater 
than 1, we use the metric scattering ratio to evaluate the 
performance. In this case, a key aim of Stepwise 
Probabilistic Buffering is to minimize the average number 
of hops from all peers to the nearest bufferer for each 
message. In the simulation, we generate 2000 messages 
from a single source and b is set to 5. So, after the 
generation of all messages, 10,000 messages pass through 
the long-term buffers of the members. In the best case, the 
scattering ratio is 1 when 5 copies of the message are 
buffered in 5 different domains. We conclude from Fig. 11 
that for more than half of all 2000 messages, the scattering 
ratio is 0.8 or 1. Namely, the 5 bufferers are selected from 

4 or 5 different domains which should help in the data 
dissemination phase. 
 

B. Data Dissemination and Comparative Results 
Comparison of Stepwise Probabilistic Buffering with 

the hash-based approach [3] and our preliminary work 
Random Buffering [17] in terms of distribution of the 
buffering load among peers is performed. In this set of 
simulations, the number of peers is set to 1000, long-term 
buffer size of each peer is equal to 50, and 50,000 
messages are generated which is equal to the system-wide 
long-term buffer capacity. The number of messages 
buffered by each peer is depicted in Fig. 12. In the hash-
based and random buffering approaches, all peers have the 
full membership information of all the other peers so 
uniform distribution of buffering load is expected. In 
Stepwise Probabilistic Buffering, although every member 
has a partial view, buffering load is distributed uniformly.   

We evaluate the behavior of Stepwise Probabilistic 
Buffering in terms of message dissemination metrics as a 
function of parameters of the model. We use the following 
performance metrics for this purpose: 

• Reliability is the ratio of total number of received 
messages by peers over the total generated 
messages. Namely it shows how reliable the 
generated messages are delivered by the receivers. 

Figure 8: Std. Dev. over Mean Used Buffer Space
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Figure 11: Scattering of bufferers to different domains 
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• Long-term / Short-term Buffering Time is the 
mean time that a message is stored on a peer’s 
long-term / short-term buffer. 

• Dissemination Time is the time that passes for 
dissemination of the content to all peers. 

First, we examine the effect of message dissemination 
rate on the reliability of the message dissemination. In 
these set of simulations, the number of peers is set to 
1000. For each peer, short-term buffer size is 20 messages 
and long-term buffer size is 50 messages. Gossip interval 
is set to 100 msec. 10,000 messages are generated from a 
single source.  

As the message generation rate is increased, the buffers 
of the peers are loaded and unloaded faster. Since the 
gossip interval stays constant for each message generation 
rate, the number of messages entered to the system in each 
gossip round grows up. Digest message size is constant 
for each generation rate as well. Thus, if the generation 
rate is raised to a certain value, state information that 
passes through the digest messages is updated too fast. 
Because of these facts, peers may not get timely 
information on the bufferers of some messages that they 
lack, or some messages may be removed from the buffers 
of the bufferers before they are received by some 
receivers. Therefore, if the message generation rate is 
increased keeping the other parameters constant, the 
reliability of dissemination is reduced. Fig. 13 shows the 
results of our simulations which support these facts. 

When the gossip interval is increased, we observe 
similar effects. As we have discussed above, when the 
generation rate is increased the peers may not retrieve 
some missed messages. When the gossip interval is 
reduced, peers begin to inform each other about their 
message history more frequently. In larger gossip 
intervals, peers begin to discard the messages from their 
buffers more rapidly. Besides, probability that the 
bufferers remove the same messages also increases. 
Therefore, the reliability of the system decreases if the 
gossip interval is increased.  

We also compare our model with the hash-based 
approach [3] and Random Buffering [17] in terms of 
dissemination time in a 1000 node scenario. In these 
simulations, 500,000 messages are generated from a single 
source.  Message generation rate is 10 msgs /sec. and 
gossip interval is 1 sec. As shown in Fig. 14, when 
Stepwise Probabilistic Buffering is used, lower 
dissemination times than the hash-based approach are 
achieved. In Stepwise and Random, the bufferers are 
determined when a message is generated and the message 
is directly sent to the bufferers. However, in the hash-
based approach, a peer decides to be a bufferer for a 
message when it receives the message through gossiping 
eventually. The smallest dissemination time occurs with 
Random which serves as a baseline for comparison. The 
bufferers are selected at random immediately in this 
approach because the sender is assumed to have a full 
knowledge of the overlay network. 

Figure 12: Number of messages buffered 
by each peer 
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Figure 14: Content dissemination times 
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Figure 15: Long-term buffering times 
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Comparison of the mean long-term buffering time of 
each peer is given in Fig. 15. These results indicate that in 
Stepwise, a peer serves for a message for a longer time 
close to the average time that Random achieves. 
Therefore, during dissemination the availability of a 
message is more likely in Stepwise than the hash-based 
approach. 

V. CONCLUSION 
We have proposed a novel buffer management scheme 

Stepwise Probabilistic Buffering that distributes the load 
of buffering to the entire system where all peers have 
partial knowledge of the overlay. Our approach reduces 
the memory usage; it is applicable to dissemination of data 
to a large group of peers where epidemic dissemination 
idea is used. We have shown that Stepwise Probabilistic 
Buffering scheme distributes the buffering load uniformly 
to all peers, reduces the dissemination time and the buffer 
space of all data, improves the utilization of buffers and 
the reliability of dissemination. As further study, we plan 
to work on an analytical model to determine the optimal 
probability distribution for forwarding the buffering 
requests. In addition, multiple-source information 
dissemination scenarios, the behavior of our model in the 
case of failures as well as an adaptive buffer size 
mechanism that handles multiple sources and link failures 
will be investigated.  

In this study, our assumption was the existence of an 
overlay among peers reflecting the properties of the 
underlying network topology, and we considered a transit-
stub model as a good approximation of the Internet 
topology. As future work, we plan to integrate a module 
for topologically-aware overlay construction among the 
peers.  

As an ongoing work, we are currently investigating 
another mechanism for bufferer selection in order to 
improve uniformity of buffer usage among peers. When a 
buffering request is received by a peer, it checks the 
current number of messages buffered by its neighbors. 
Then, it sends the request to the peer with the minimum 
number of messages. If the forwarding peer has the 
minimum value then it accepts the request and becomes 
the bufferer of the message. In this  approach, there is no 
last forwarders mechanism and forwarding probabilities. 
Our initial results show that it leads to more uniform 
buffer usage among peers. 
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