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Abstract. We study a branching Brownian motion Z in R
d , among obstacles scattered according to a Poisson random measure with

a radially decaying intensity. Obstacles are balls with constant radius and each one works as a trap for the whole motion when hit by
a particle. Considering a general offspring distribution, we derive the decay rate of the annealed probability that none of the particles
of Z hits a trap, asymptotically in time t . This proves to be a rich problem motivating the proof of a more general result about the
speed of branching Brownian motion conditioned on non-extinction. We provide an appropriate “skeleton” decomposition for the
underlying Galton–Watson process when supercritical and show that the “doomed” particles do not contribute to the asymptotic
decay rate.

Résumé. On étudie un mouvement brownien branchant Z dans R
d qui se déplace parmi des obstacles qui sont dispersés par

rapport à une mesure aléatoire de Poisson d’une intensité déclinant radialement. Les obstacles sont des boules de rayon constant,
et lorsqu’une particule rencontre un tel obstacle, tout le mouvement s’arrête. En considérant une distribution générale pour le
nombre de descendants, on calcule le taux de décroissance de la probabilité «annealed» que toutes les particules de Z évitent les
pièges, asymptotiquement en temps. Cela se révèle être un problème riche qui motive la preuve d’un résultat plus général concer-
nant la vitesse du mouvement brownien branchant conditionné à survivre. Dans le cas sur-critique on fournit une décomposition
«en squelette» appropriée pour le processus de Galton–Watson sous-jacent, et on montre que les particules «condamnées» ne
contribuent pas au taux de décroissance asymptotique.
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1. Introduction

Branching Brownian motion (BBM) among random obstacles functioning as traps has been studied recently in [8,9,
11,18,22]. We study a BBM that evolves in R

d , where a radially decaying field of Poissonian traps is present. We are
mainly interested in the trap-avoiding probability of the system up to time t , where the underlying Galton–Watson
process (GWP) has a general offspring distribution. Investigation of this problem leads us to finding the speed of BBM
conditioned on non-extinction, which is of independent interest.

Let Z = (Z(t))t≥0 be a d-dimensional BBM with branching rate β > 0 and offspring distribution λ. The process
starts with a single particle at the origin, which performs a Brownian motion in R

d for a random time which is
distributed exponentially with constant parameter β . Then, the particle dies and simultaneously gives birth to a random
number of particles distributed according to the offspring distribution λ, which is a probability measure on N =
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{0,1,2, . . .}. Similarly, each offspring particle repeats the same procedure independently of all others, starting from
the position of her parent. In this way, one obtains a measure-valued Markov process Z = (Z(t))t≥0, where Z(t) can
be identified as a particle configuration for given t ≥ 0. By assumption, Z(0) = δ0. The total mass process |Z| =
(|Z(t)|)t≥0 is a continuous time branching process with rate β , and the number of particles in generation n of |Z| is
a GWP with offspring distribution λ. The initial particle present at t = 0 constitutes the 0th generation, the offspring
of the initial particle constitute the 1st generation, and so forth. We denote the extinction time of the process |Z| by τ ,
which is formally defined as τ = inf{t ≥ 0 : |Z(t)| = 0}, where we use the convention that inf∅ = ∞. We then denote
the event of extinction of the process |Z| by E , and formally write E = {τ < ∞}. We use the term non-extinction for
the event Ec. Let P be the probability corresponding to the process Z, and E the corresponding expectation.

The branching Brownian motion is assumed to live in a random environment consisting of Poissonian traps. Let
B(Rd) be the d-dimensional Borel sets, and let � denote the Poisson random measure on B(Rd), with a spatially
dependent locally finite mean measure ν such that dν/dx exists and is continuous on R

d and

dν

dx
∼ l

|x|d−1
, |x| → ∞, l > 0, (1)

where dx is for the Lebesgue measure. A random trap configuration K with radius a on R
d is defined as

K =
⋃

xi∈supp(�)

B̄(xi, a), (2)

where B̄(xi, a) is the closed ball of radius a > 0 centered at xi . Let P be the probability for the Poisson random
measure, and E the corresponding expectation.

For A ∈ B(Rd) and t ≥ 0, let | supp(Z(t)) ∩ A| be the number of particles located in A at time t . For t ≥ 0, let

R(t) =
⋃

s∈[0,t]
supp

(
Z(s)

)
(3)

be the range of Z up to time t . Now let T be the first time that Z hits a trap,

T = inf
{
t ≥ 0 : ∣∣supp

(
Z(t)

) ∩ K
∣∣ > 0

} = inf
{
t ≥ 0 : R(t) ∩ K �=∅

}
.

Then, the event of trap-avoiding up to time t of Z among the Poissonian traps is given by {T > t}.
We aim to analyze (E × P)(T > t), the annealed (averaged) trap-avoiding probability of the system up to time t ,

for a BBM with a general offspring distribution λ. In [9], the asymptotic decay of the annealed probability has been
found as t → ∞ in the strictly dyadic branching case, that is, λ(2) = 1. On the way to its generalization, we find
out that the problem proves to be rich enough to require several stand-alone results that we also contribute in this
paper. In particular, we find the speed of BBM conditioned on non-extinction as given in Theorem 3. The reader may
have the feeling that the result is expected and even ‘folklore,’ however we were unable to locate the result and its
proof in the existing literature, and feel that it is useful to state and prove it here in a self-contained way. When the
GWP is supercritical, the particles are grouped into those with infinite or finite line of descent, so-called “skeleton”
and “doomed” particles, respectively. In other words, a skeleton decomposition is performed to analyze the problem.
Our analysis indicates that the doomed particles do not contribute to the conditional speed. Here, the ‘speed’ of BBM
refers to the growth rate of the radius of the minimal ball containing the range of the BBM. It has first been studied by
McKean [20,21], later by Bramson [1,2] and Chauvin and Rouault [7], and is still subject to active research.

In Theorem 1, we prove the asymptotic decay of the annealed trap-avoiding probability as a large deviation result. It
is an important and non-trivial application of Theorem 3. The problem of trap-avoiding asymptotics for BBM among
Poissonian traps has been previously studied by Engländer [8] for the case d ≥ 2 and where the trap intensity was
uniform. Then, in search for extending the result to the case d = 1, Engländer and den Hollander [9] considered the
more interesting case where the trap intensity was radially decaying as given in (1). Both [8,9] assumed strictly dyadic
underlying GWP (precisely two offspring).

The reason the decay rate given in (1) is the ‘interesting’ one is that it is in fact the ‘borderline’ one. This is
explained in Theorem 1.3 in [9], which describes the optimal survival strategy, as it depends on the ‘fine tuning
constant’ � (we use l instead of � in the present paper). Namely, it was shown that
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– In the low intensity regime � < �cr, the system clears a ball of radius
√

2βt from traps, and until time t stays inside
this ball and branches at rate β .

– In the high intensity regime � > �cr:
d = 1: The system clears an o(t)-ball (i.e., a ball with radius > a but 
 t ), and until time t suppresses the branching

(i.e., produces a polynomial number of particles) and stays inside this ball.
d ≥ 2: The system clears a ball of radius

√
2β(1 − η∗)t around a point at distance c∗t from the origin, suppresses

the branching until time η∗t , and during the remaining time (1 − η∗)t branches at rate β .

(See Theorem 1.3 in [9] for the precise statements.)
Hence, the decay considered is indeed the ‘borderline’ one, where the behavior of the system, conditioned on

survival up to t , depends only on the constant �, and exhibits a change of behavior at the crossover. If one considers
a larger (smaller) decay order, the optimal strategy will simply follow the one exhibited when the decay is as in (1)
and � > �cr (� < �cr); although if the decay order is very large, then η∗ = 1 (complete suppression of branching) may
occur even for d ≥ 2, while 0 < η∗ < 1 is always the case in the high intensity regime studied in [9].

This ‘borderline property’ of the decay in (1) will remain the case in our paper, the main difference being that we
consider a general offspring distribution, and thus we have to take into account that extinction for the GWP may have
positive probability.

In Öz and Çağlar [22] already a general offspring distribution was studied, albeit with uniform Poisson intensity.
In the present work, we consider a radially decaying trap intensity as in (1), and a general offspring distribution for
the underlying GWP. We show that, conditioned on non-extinction, the doomed particles of the decomposition of
the supercritical GWP do not contribute to the asymptotic decay rate of the trap-avoiding probability. In comparison
with the strictly dyadic case, the mean and another functional of the offspring distribution appear as parameters in
the rate expression (see (5)). We refer the reader to [10] for an interesting survey article on the topic of BBM among
Poissonian traps, and to [11,18] for various related problems.

Theorem 2 is a technical result identifying the rate function of Theorem 1 through tedious analysis.
The annealed setting is interesting in that it provides a connection between the trapping problem and the ‘branching

Brownian sausage’ (see [8]). If Za
t denotes the a-neighborhood (a > 0), of the range R(t):

Za
t :=

⋃
x∈R(t)

B̄(x, a),

then, using the analogy of the well-known ‘Wiener-sausage,’ Za
t describes the ‘sausage’ for the branching process up

to t , called the branching Brownian sausage. The connection with the annealed obstacle problem is that

Ee−ν(Za
t ) = (E× P)(T > t),

or, alternatively, here P,E can be replaced by P( · | Ec), E( · | Ec), too.
If d = 1 and dν/dx is precisely l, then we get

Ee−l|Za
t | = (E× P)(T > t),

where |Za
t | is the volume of the sausage (or with P( · | Ec)). Since d = 1, Za

t is the same as the interval (mt −
a,Mt + a), where mt := minx∈R(t){x} and Mt := maxx∈R(t){x}. So, our asymptotics describes the large deviations
for Mt − mt . If d ≥ 2, then the difference is that instead of the volume |Za

t |, it yields a result on ν(Za
t ) (which is a

kind of ‘Riesz-potential’).
We have studied the first time a particle of BBM hits a trap rather than the time T̃ that all particles are absorbed

by the traps. The reason is that there is no tail for it is known that limt→∞(E × P)(T̃ > t) > 0 as shown in [12,
Theorem 5.4]. Heuristically, this follows from the fact that the system may survive by suppressing the traps in the ball
B(0,R) with R > R0, where B(0,R) is the open ball of radius R centered at the origin, and R0 is chosen such that
even the branching process with killing at ∂B(0,R) may survive forever.

The organization of the paper is as follows. In Section 2, we give the statements of Theorem 1 and Theorem 2 as
our main results. Section 3 includes the essential lemmas together with their proofs. In Section 4 , we state and prove
Theorem 3. In Sections 5 and 6, we prove Theorems 1 and 2, respectively.
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2. Main results

To formulate our main results, we introduce further notation. Let f be the probability generating function (p.g.f.) of
the offspring distribution, and μ be the mean number of offspring,

f (s) =
∞∑

j=0

λ(j)sj ,

μ =
∞∑

j=0

jλ(j),

and define

m = μ − 1.

Throughout this work, we assume that μ < ∞ and without loss of generality that λ(1) = 0 (see the proof of Lemma 4).
Now let q = P(E) be the probability of extinction for the underlying GWP, and let

α = 1 − f ′(q).

Note that λ(0) = 0 implies that q = 0 since two or more offspring is produced each time a particle branches. When
λ(0) = 0, it then follows that α = 1 as f ′(0) = λ(1), and λ(1) = 0 by assumption. Also, q = 1 when μ ≤ 1, and
q ∈ (0,1) when λ(0) > 0 and μ > 1.

For r, b ≥ 0, define

gd(r, b) =
∫

B(0,r)

dx

|x + be|d−1
,

where e = (1,0, . . . ,0) is the unit vector in the direction of the first coordinate. Next, let

l∗cr = l∗cr(m,β, d) = 1

sd

√
β

2m
, (4)

where sd is the surface area of the d-dimensional unit ball (s1 = 2, s2 = 2π , s3 = 4π , etc.).
We now state our main results. Recall that l is the constant in the definition of ν in (1), and a is the constant trap

radius given in (2).

Theorem 1 (Variational formula). Fix d , f , β , a. Define

I (l, f,β, d) = min
η∈[0,1],c∈[0,

√
2β]

{
βαη + c2

2η
+ lgd

(√
2βm(1 − η), c

)}
. (5)

(For η = 0, c = 0, set c2/2η = 0, and for η = 0, c > 0, set c2/2η = ∞.)

1. If λ(0) = 0, then

lim
t→∞

1

t
log(E× P)(T > t) = −I (l, f,β, d).

2. If λ(0) > 0 and m > 0, then

lim
t→∞

1

t
log(E× P)

(
T > t | Ec

) = −I (l, f,β, d).
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3. If λ(0) > 0 and m ≤ 0, then

lim
t→∞(E× P)(T > t) = (E× P)(T > τ) > 0,

where τ = inf{t ≥ 0 : |Z(t)| = 0} is the extinction time and E is the event of extinction for the BBM.

In comparison with the variational result given in [9, Theorem 1.1] for dyadic branching, Theorem 1 contributes
two extra factors, both naturally depending only on f , in the expression for the rate function (5). The extra factor
α in the first term appears when λ(0) > 0 (if λ(0) = 0, then α = 1). It is a consequence of the modified p.g.f. for
the offspring distribution of the skeleton particles, which are part of the decomposition of the supercritical GWP
conditioned on non-extinction. The extra factor m inside gd appears, because the speed of BBM is now no longer√

2β but
√

2βm. Since α = 1 = m for strictly dyadic branching, the result in [9] is recovered by (5) as a special case.
The next result is purely analytic, and solves the variational problem for the rate function I (l, f,β, d). We gener-

alize the corresponding result in [9].

Theorem 2 (Crossover). Fix f , β , a.

1. For d ≥ 1 and all l �= lcr, where lcr is defined below, the variational problem has a unique pair of minimizers,
denoted by η∗ = η∗(l, f,β, d) and c∗ = c∗(l, f,β, d).

2. For d = 1,

l ≤ lcr : I (l, f,β, d) = β
l

l∗cr
,

(6)
l > lcr : I (l, f,β, d) = βα

and

l < lcr : η∗ = 0, c∗ = 0,
(7)

l > lcr : η∗ = 1, c∗ = 0,

where lcr = αl∗cr = α
2

√
β

2m
.

3. For d ≥ 2,

l ≤ lcr : I (l, f,β, d) = β
l

l∗cr
,

(8)

l > lcr : I (l, f,β, d) < β

(
α ∧ l

l∗cr

)
and

l < lcr : η∗ = 0, c∗ = 0,
(9)

l > lcr : 0 < η∗ < 1, 0 < c∗ <
√

2β,

where lcr = γdl∗cr, with

γd =
−1 +

√
1 + 4mαM2

d

2mM2
d

∈ (0, α), (10)

where

Md = 1

2sdm
max

R∈(0,∞)

[
gd(R,0) − gd(R,1)

]
. (11)
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Furthermore, c∗ >
√

2βm(1 − η∗) when l > lcr.

Comparing this theorem to the corresponding one in [9], we see that in this case the extra factors α and m appear
ubiquitously in the formulas. Again, we note that the formulas above reduce to the corresponding ones in [9] upon
setting α = 1, m = 1.

3. Preparations

In this section we prove five preparatory lemmas. Lemma 1 is needed directly in the proof of Theorem 1. Lemma 2
and Lemma 3 are needed in the proof of Proposition 1, which, in turn, is needed for proving Theorem 3; the last two
results play central roles in the proof of Theorem 1. Lemma 4 is needed in the proof of both Theorem 1 and Theorem 3
(Lemma 5 is needed too to prove the latter one). Finally, Lemma 5 is also used in the proof of Proposition 1.

Lemma 1. Let r > 0 and b > 0. Then,

lim
t→∞

1

lt
ν
(
B(bte, rt)

) = gd(r, b).

Proof. By substituting y = x/t , we see that

gd(rt, bt) =
∫

B(0,rt)

dx

|x + bte|d−1
= t

∫
B(0,r)

dy

|y + be|d−1
= tgd(r, b). (12)

Recall that integrals of asymptotically equivalent positive continuous functions are asymptotically equivalent if one
of the integrals diverges. Apply this result to the radial integral. By assumption, dν/dx is continuous on R

d . As the
d-dimensional volume element has radial component |x|d−1d|x|, the integrands of both radial integrals below are
continuous on R+. Hence, we have

ν
(
B(bte, rt)

) =
∫

B(bte,rt)

dν

dx
dx ∼

∫
B(bte,rt)

l

|x|d−1
dx = lgd(rt, bt). (13)

Combining (12) and (13) yields limt→∞ ν(B(bte,rt))
ltgd (r,b)

= 1, which implies the result. �

Lemma 2 (Overproduction). Let δ > 0. Then for any t ≥ 0

P
(∣∣Z(t)

∣∣ > e(βm+δ)t
) ≤ e−δt .

Proof. Use the fact that E|Z(t)| = eβmt (see [14]) and then apply Markov inequality. �

Lemma 3 (Comparison). Suppose that λ(0) = 0. Let B ⊂ R
d be open or closed. Let x ∈ B . Let Px be the law of

Brownian motion, denoted by W , starting from x, and let Pδx be the law of BBM starting from δx . Define the first exit
times from B

ψB = inf
{
t ≥ 0 : W(t) ∈ Bc

}
,

ψ̂B = inf
{
t ≥ 0 : ∣∣supp

(
Z(t)

) ∩ Bc
∣∣ ≥ 1

}
.

Then for any k ∈N and t ≥ 0

Pδx

(
ψ̂B > t | ∣∣Z(t)

∣∣ ≤ k
) ≥ [

Px(ψB > t)
]k

.

Proof. See the corresponding proof in [9], which is written for strictly dyadic branching, and note that the proof
can easily be extended to the case of general λ-GWP with λ(0) = 0, since the population does not decrease for such
processes, that is, for any t ≥ 0, |Z(s)| ≤ |Z(t)| for all s ∈ [0, t]. �
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Lemma 4 (Decomposition of the supercritical GWP). Let N = (N(n))n∈N be a supercritical GWP with offspring
distribution λ, where λ(0) > 0, and let f be the corresponding p.g.f. Let q be the probability of extinction for N , and
define q̄ = 1 − q . Let N∗ = (N∗(n))n∈N be the process, where N∗(n) is the number of particles in generation n that
have an infinite line of descent.

1. The law of N given extinction is the same as that of a GWP with p.g.f.

f̃ (s) := f (qs)/q. (14)

2. The law of N∗ given non-extinction is the same as that of a GWP with p.g.f.

f ∗(s) := [
f (q + q̄s) − q

]/
q̄. (15)

3. The law of N given non-extinction is the same as that of a processN generated as follows: To each particle of N∗
having n0 children, add n1 more children, that each start an independent GWP with p.g.f. f̃ , where n1 has the
p.g.f.

fn1(s) := (Dn0f )(qs)

(Dn0f )(q)
, (16)

where D is the differentiation operator, and all n1 and all GWPs added are mutually independent given N∗. The
resultant process isN.

4. Let X = (X(t))t∈R+ be a continuous time branching process with rate β such that the number of particles in
generation n of X is N(n) for n ∈ N. Let X∗(t) be the number of particles with infinite line of descent present at
time t . Then, the process X∗ = (X∗(t))t∈R+ given non-extinction is equal in law to a continuous time branching
process with rate β(1 − f ′(q)) and offspring distribution, whose p.g.f. is

f̄ := [
f ∗(s) − f ′(q)s

]/(
1 − f ′(q)

)
. (17)

Remark. The reader should note that in (15), positive mass on 1 is allowed. For example, if λ(0) = 1/3, λ(2) = 2/3,
f (s) = 1/3 + (2/3)s2, then q = 1/2 = q̄ , and f ′(q) = 2/3, while f ∗(s) = (2/3)s + (1/3)s2. This distribution still
has the same mean as originally (i.e., 4/3), but here we put 2/3 weight on 1.

What (17) says is that, equivalently (without putting mass on 1), it has rate β/3 and p.g.f. f̄ = s2.

Proof. See [19, Proposition 4.10] for a proof of parts 1, 2 and 3, and [3, Section 1.12] for further details on the
decomposition of supercritical GWPs. For a proof of part 4, observe that a continuous time branching process with
rate β and offspring distribution λ is equal in law to a continuous time branching process with rate β(1 − λ(1)) and
offspring distribution λ̄, where λ̄(1) = 0 and λ̄(j) = λ(j)/(1 − λ(1)) for j �= 1. To complete the proof, see the proof
of part 3 of [22, Theorem 1]. �

We note that the particles of infinite line of descent, which we refer to as the ‘skeleton particles’ in this work, have
been referred to as ‘prolific individuals’ in the past in [5]. Furthermore, the term ‘backbone’ has also been used for the
analogue of the term ‘skeleton’ in the context of continuous-state branching processes and superprocesses, see e.g.
[4,16,17].

Lemma 5 (Brownian hitting times in R
d ). Let B = (Bt )t≥0 be a Brownian motion in R

d starting at the origin, with
corresponding probability P

(d)
0 , and let k > 0. Then, as t → ∞,

P
(d)
0

(
sup

0≤s≤t

|Bs | ≥ kt
)

= exp

{
−k2t

2

(
1 + o(1)

)}
. (18)

Furthermore, for d = 1, even the following stronger statement is true. Let mt = inf0≤s≤t Bs and Mt = sup0≤s≤t Bs .
(The process Mt − mt is the range process of B .) Then, as t → ∞,

P
(1)
0 (Mt − mt ≥ kt) = exp

{
−k2t

2

(
1 + o(1)

)}
. (19)
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Proof. For d = 1, recall that [14, equation 7.3.3] for any a > 0,

P
(1)
0

(
sup

0≤s≤t

|Bs | ≥ a
)

=
√

2

π

∫ ∞

a/
√

t

exp
(−y2/2

)
dy.

Setting a = kt above, we see via l’Hôpital’s rule that

P
(1)
0

(
sup

0≤s≤t

|Bs | ≥ kt
)

= exp

{
−k2t

2

(
1 + o(1)

)}
.

We now extend this result to d ≥ 2. Note that the lower bound holds trivially since the projection of a d-dimensional
Brownian motion onto the first coordinate axis is a one-dimensional Brownian motion. In order to prove the upper
bound, we first prove (19).

Let d = 1. Define

θc = inf{s ≥ 0 | Ms − ms = c}.
According to [6, p. 199] and references therein, the Laplace transform of θc satisfies

E exp

(
−λ2

2
θc

)
= 2

1 + cosh(λc)
, λ > 0.

Hence, by exponential Markov inequality,

P
(1)
0 (θc ≤ t) ≤ exp

(
λ2

2
t

)
E exp

(
−λ2

2
θc

)
= exp

(
λ2

2
t

)
2

1 + cosh(λc)
.

Taking c = kt , one obtains

P
(1)
0 (Mt − mt ≥ kt) = P

(1)
0 (θkt ≤ t) ≤ exp

(
λ2

2
t

)
2

1 + cosh(λkt)
.

Optimizing over λ, we see that the estimate is the sharpest when λ = k, in which case, we arrive at the desired upper
bound. Since

P
(1)
0

(
sup

0≤s≤t

|Bs | ≥ kt
)

≤ P
(1)
0 (Mt − mt ≥ kt),

the lower bound coincides with the upper bound, which implies (19).
For d ≥ 2, let us consider more generally the Brownian motion started at x, denoted by Bx , x ∈ R

d , with law P
(d)
x ,

and let r = |x|. We will denote P
(d)
0 simply by P (d), that is, P (d) denotes d-dimensional Wiener measure. Then

the process Rr = (Rr
t )t≥0 with state space [0,∞), defined by Rr = |Bx | is called the d-dimensional Bessel process,

provided r > 0. We will use the well known fact [23, Example 8.4.1] that the process

Rr
t − r −

∫ t

0

d − 1

2Rr
s

ds (20)

is a standard one-dimensional Brownian motion for each r > 0; its law is thus P (1). Since Rr is the strong solution
to a stochastic differential equation (one gets an ω-wise solution by making the expression in (20) equal to a standard
Brownian motion), the probability distribution P (1)(Rr ∈ ·) is well defined.

Using the strong Markov property of Brownian motion, applied at τ , the first hitting time of the ρ-sphere by B ,
it is clear that in order to verify the lemma, it suffices to prove it when B is replaced by Bx , with |x| = ρ > 0. This
follows, since for every fixed ρ such that 0 < ρ < kt , we have

P (d)
(

sup
0≤s≤t

|Bs | ≥ kt
)

≤ P (d)
(

sup
0≤s≤t+τ

|Bs | ≥ kt
)

= P (1)
(

sup
0≤s≤t

Rρ
s ≥ kt

)
. (21)
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Define the sequence of stopping times 0 =: τ0 < σ0 < τ1 < σ1 < · · · with respect to the filtration generated by Rρ

as follows:

σ0 := inf
{
s > 0 : Rρ

s = ρ/2
}
,

and for i ≥ 1,

τi+1 := inf
{
s > σi : Rρ

s = ρ
}
, σi+1 := inf

{
s > τi+1 : Rρ

s = ρ/2
}
.

Let W
(ρ)
t := R

ρ
t − ρ − ∫ t

0
d−1
2R

ρ
s

ds (note that W
(ρ)
0 := 0). Then, for i ≥ 0 and s ∈ [τi, σi],

Rρ
s = ρ +

∫ s

τi

d − 1

2R
ρ
z

dz + W(ρ)
s − W(ρ)

τi
≤ ρ + ρ−1(d − 1)�s

i + W(ρ)
s − W(ρ)

τi
, (22)

where �s
i := s − τi .

Since Rs ≤ ρ for σi ≤ s ≤ τi+1 and i ≥ 0, it is also clear that for t > ρ/k, the relation sup0≤s≤t R
ρ
s ≥ kt is

tantamount to

sup
i≥0

sup
τi∧t<s≤σi∧t

Rρ
s ≥ kt.

Putting this together with (22), it follows that P (1)(sup0≤s≤t R
ρ
s ≥ kt) can be estimated from above by

P (1)
(∃i ≥ 0,∃τi ∧ t < s ≤ σi ∧ t : W(ρ)

s − W(ρ)
τi

≥ kt − ρ−1(d − 1)�s
i − ρ

)
.

This can be further estimated from above by

P (1)

(
Mt − mt ≥

[
k − d − 1

ρ
− δ

]
t

)
,

for any δ > 0, as long as t ≥ ρ/δ. To complete the proof, fix ρ, δ > 0, let t → ∞, and use the already proved relation
(19), along with (21). Finally let δ → 0 and ρ → ∞. �

We note that precise estimates for the tail of P
(d)
0 (sup0≤s≤t |Bs | ≥ kt) in Lemma 5 are given in [13, Theorem 2.1].

Nonetheless, the estimate (18), for which we have provided a self-contained proof, suffices for our purposes.

4. The speed of BBM

In this section, we extend the well-known convergence in probability result of McKean [20,21] regarding the speed
of BBM, which holds when the dimension is one, and when each particle is certain to give at least one offspring, i.e.,
λ(0) = 0. We first extend McKean’s result to any dimension, and finally to the case where λ(0) > 0. The results of
this section are central in proving Theorem 1.

Recall from (3) that
⋃

s∈[0,t] supp(Z(s)) denotes the range of Z up to time t , and define

M(t) = inf
{
r > 0 : R(t) ⊆ B(0, r)

}
for d ≥ 1, (23)

to be the radius of the minimal ball containing R(t). We define the speed at time t of a BBM as M(t)/t . Note
that this is slightly different from the classical notion of speed (see for example [7,15,20]), which is X(t)/t , where
X(t) := inf{r > 0 : supp(Z(t)) ⊆ B(0, r)} is the radius of the minimal ball containing the support of the BBM at time
t only. Although the two definitions of speed above are different, it is easy to prove that they should have the same
asymptotics as t → ∞.

Proposition 1 (Speed of BBM). Suppose that λ(0) = 0. For d ≥ 1, M(t)
t

converges to
√

2βm in P -probability as
t → ∞.
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Remark. It is easy to see that the quantity βm is invariant under changing the setting from the ‘canonical one’ (that
is, putting zero mass on 1) to a non-canonical one (that is, assigning positive mass to 1).

Proof. For d = 1, the reader is referred to [20,21] and [7]. Now let d ≥ 2. Since the projection of Z onto the 1st
coordinate axis is a one-dimensional BBM with branching rate β , the lower estimate for convergence in probability
follows from the result for d = 1 and the inequality

P

(
M(t)

t
>

√
2βm − ε

)
≥ P ∗

(
M(t)

t
>

√
2βm − ε

)
∀ε > 0 and ∀t , where P ∗ denotes the law of the one-dimensional projection of Z.

To prove the upper estimate for convergence in probability, let ε > 0 and let B = B(0, (
√

2βm + ε)t). Pick δ > 0
such that

1

2
(
√

2βm + ε)2 > βm + δ. (24)

Recall that ψB and ψ̂B are the first exit times from B for a single Brownian particle starting at the origin and for a
BBM, respectively. See that these events are identical: {M(t)

t
>

√
2βm + ε} = {ψ̂B ≤ t}. Estimate

P

(
M(t)

t
>

√
2βm + ε

)
≤ P

(∣∣Z(t)
∣∣ >

⌊
e(βm+δ)t

⌋)
+ P

(
ψ̂B ≤ t | ∣∣Z(t)

∣∣ ≤ ⌊
e(βm+δ)t

⌋)
. (25)

By Lemma 2, the first term on the right-hand side tends to zero exponentially fast. Now consider the second term.
Recall that Px is the law of Brownian motion starting from x, and Pδx is the law of BBM starting from δx . By
Lemma 3, we have the estimate

Pδ0

(
ψ̂B > t | ∣∣Z(t)

∣∣ ≤ ⌊
e(βm+δ)t

⌋) ≥ [
P0(ψB > t)

]�e(βm+δ)t �
.

By Lemma 5,

[
P0(ψB > t)

]�e(βm+δ)t � =
[

1 − exp

(
−[(√2βm + ε)t]2

2t

)
exp

(
o(t)

)]�e(βm+δ)t �
. (26)

By (24), using the binomial expansion, the right-hand side of (26) tends to 1 exponentially fast as t → ∞, so that (25)
yields the desired upper estimate

P

(
M(t)

t
>

√
2βm + ε

)
→ 0,

which completes the proof. �

Note. For the upper estimate, one can give another, equally simple proof, by exploiting the so-called Many-to-One
Lemma (Lemma 1.1.6 in [12]).

Next, we turn our attention to the speed, when conditioned on non-extinction.

Theorem 3 (Conditional speed of BBM). Suppose that the underlying GWP is supercritical, i.e., m > 0. Then, for
d ≥ 1, conditioned on non-extinction, M(t)

t
converges to

√
2βm in P -probability as t → ∞.

Regarding the speed of BBM, we refer the reader to [20,21] for the case d = 1, and where λ(0) = 0. We note that
almost sure speed results exist too (see e.g. [15]), but for our purposes, convergence in probability suffices. For d ≥ 2
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and λ(0) = 0, we have derived the speed in Proposition 1 above. Theorem 3, which will be proved below, covers the
general case where λ(0) can be nonzero. In Theorem 3, we see that conditioned on non-extinction of the underlying
GWP, the speed of BBM remains as

√
2βm compared to a BBM with the same offspring mean but with λ(0) = 0,

which can be explained as follows. When the supercritical GWP is conditioned on non-extinction, and decomposed
into skeleton and doomed particles (see Lemma 4), the doomed particles do not contribute to the speed, and the
skeleton particles alone form another GWP with the same mean as the original GWP.

4.1. Proof of Theorem 3

Lower bound: We emphasize that in this proof, the branching rate for all types of particles for all processes con-
sidered is constant and is equal to β , and all probabilities written should be understood as conditioned on the non-
extinction of the underlying GWP.

First, decompose the supercritical GWP into two sets of particles: particles with infinite line of descent, which,
following the terminology in [24], we call skeleton particles; and particles with finite line of descent, which we call
the doomed particles. By Lemma 4, each skeleton particle gives rise to a GWP consisting only of skeleton particles
with p.g.f.

f ∗(s) := [
f (q + q̄s) − q

]
/q̄, (27)

where q is the probability of extinction for the underlying GWP and q̄ = 1 − q . Also, by Lemma 4, each doomed
particle starts her own single-type GWP with p.g.f.

f̃ (s) := f (qs)/q. (28)

Observe that (f ∗)′(1) = f ′(1) = μ. Recall that m = μ − 1 > 0. It is clear that each skeleton particle produces at least
one skeleton particle, and can produce doomed particles as well, whereas a doomed particle only produces doomed
particles.

Now we translate this decomposition into the language of multi-type GWPs, see [3, Chapter 5]. We define the
skeleton particles to be of type 1, and the doomed particles to be of type 2, so that the underlying GWP is a two-type
GWP, and we have the following decomposition for the BBM:(

Z(t)
)
t≥0 = (

Z1(t),Z2(t)
)
t≥0,

where Z1 is the process consisting of the skeleton particles, and Z2 is the one consisting of the doomed particles. Note
that Z1 by itself is a BBM, however, Z2 is not. Let |Zj (t)|, j = 1,2 be the number of particles of type j existing at
time t . Observe that conditioning Z on non-extinction is equivalent to the initial condition (|Z1(0)|, |Z2(0)|) = (1,0),
which says that the process starts with one skeleton particle, hence never dies out. For d ≥ 1, let us define the range
of Z1 as R1, and the range of Z2 as R2. Similarly, define

M1(t) := inf
{
r > 0 : R1(t) ⊆ B(0, r)

}
,

M2(t) := inf
{
r > 0 : R2(t) ⊆ B(0, r)

}
.

Now since M(t) = max{M1(t),M2(t)}, f ∗(0) = 0, (f ∗)′(1) − 1 = m, and βm in the speed is invariant under how
one describes the branching (see the remark after Proposition 1), Proposition 1 immediately gives the desired lower
bound: ∀ε > 0,

P

(
M(t)

t
>

√
2βm − ε

)
→ 1 as t → ∞.

Upper bound: Recall that E denotes extinction and P(Ec) > 0. Clearly, ∀ε > 0,

P

(
M(t)

t
>

√
2βm + ε

)
= P

(
M(t)

t
>

√
2βm + ε

∣∣∣ Ec

)
P

(
Ec

)
+ P

(
M(t)

t
>

√
2βm + ε;E

)
.



Conditional speed of BBM and random obstacles 853

The last term converges to zero, by bounded convergence. Consequently, the limit

lim
t→∞P

(
M(t)

t
>

√
2βm + ε

∣∣∣ Ec

)
= 0

is tantamount to

lim
t→∞P

(
M(t)

t
>

√
2βm + ε

)
= 0.

When λ(0) = 0, then of course, we are immediately done by Proposition 1.
In the general case, we finish the proof as follows. Let N ∗

t denote the total progeny up to t , that is, all the particles
that have been born not later than t (but possibly not present at t ). Then, using the union bound, for γ > 0,

P
(
M(t) > γ t

) = P
(
∃u ∈ N ∗

t : sup
0≤s≤t

∣∣Xu(s)
∣∣ > γ t

)
≤ E

(∣∣N ∗
t

∣∣)P0

(
sup

0≤s≤t

∣∣B(s)
∣∣ > γ t

)
, (29)

where B is a generic standard Brownian particle starting at the origin, with probability P0. Now pick γ = √
2βm + ε.

By Lemma 5, the following estimate is sufficient to complete the proof of the upper bound: for any c > mβ ,

g(t) := E
(∣∣N ∗

t

∣∣) ≤ exp(ct) (30)

holds for all sufficiently large t . Indeed, then picking c ∈ (βm,γ 2/2), the right-hand side of (29) converges to zero.
To prove (30), condition on the first branching time, and obtain the functional equation for g:

g(t) = e−βt +
∫ t

0

[
p0 + μg(t − s)

]
βe−βs ds = e−βt +

∫ t

0

[
p0 + μg(s)

]
βe−β(t−s) ds.

(We include the p0 term as we describe the total progeny up to t .) That is,

G(t) := eβtg(t) = 1 +
∫ t

0

[
p0 + μg(s)

]
βeβs ds.

Differentiating,

G′(t) = [
p0 + μg(t)

]
βeβt = p0βeβt + μβG(t).

Comparing E(|N ∗
t |) with just the expected population size at t , obviously, g(t) ≥ emβt , that is, G(t) ≥ eμβt . Since

μ > 1, for any given δ > 0,

G′(t) ≤ (δ + μβ)G(t),

for t ≥ Tδ := log(p0β/δ)
mβ

. By Gronwall’s inequality, G(t) ≤ G(Tδ) ·e(δ+μβ)t and so g(t) ≤ G(Tδ) ·e(δ+mβ)t for t ≥ Tδ . �

Remark (Speed comparison). Using Jensen’s inequality, it is easy to show that if s ∈ [0,1], then f ∗(s) ≤ f̃ (s).
Exploiting this inequality, and using the notation of the lower bound in the previous proof, one can show then that for
any Borel set B , and any fixed time t ≥ s,

P 1
s,x

(
R1(t) ⊂ B

) ≤ P 2
s,x

(
R2(t) ⊂ B

)
, (31)

where P 1
s,x and P 2

s,x are the corresponding probabilities for processes that start at time s with a single particle at
position x ∈ R

d .
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We close this section with the following proposition, which will be used in the proof of the lower bound of Theo-
rem 1. Although the statement is not about the speed of the process, we included it here, as some machinery developed
in this section is being used.

Proposition 2. Let N be a supercritical Galton–Watson process with offspring p.g.f. f and extinction probability
0 < q < 1, and let N∗ be the process generated by the skeleton particles. Let q̄ = 1 − q . Then, the two-type Galton–
Watson process N = (N∗,N − N∗), where the particles of type 1 and type 2 are composed of skeleton and doomed
particles, respectively, has the mean matrix

M =
(

μ (μ − κ)
q
q̄

0 κ

)
, (32)

where μ := f ′(1), κ := f ′(q), and Mij = ENi
j (1), i, j = 1,2, are the expected number of offspring of type j that a

single particle of type i has.

Proof. Let f 1, f 2 be the offspring p.g.f.s for skeleton and doomed particles, respectively. The p.g.f. for doomed
particles was computed in part (1) of Lemma 4: f 2(s, t) = f (qt)/q . If we let ξ , ξ∗ be random variables that are
independent copies of N(1), N∗(1), respectively, then the p.g.f. for skeleton particles is the same as the joint p.g.f. of
ξ − ξ∗ and ξ∗ conditioned on the event {ξ∗ ≥ 1}. We have

f 1(s, t) = E
[
sξ∗

t ξ−ξ∗ | ξ∗ ≥ 1
] = E[sξ∗

t ξ−ξ∗
1{ξ∗≥1}]

P(ξ∗ ≥ 1)

= E[sξ∗
t ξ−ξ∗ ] − E[sξ∗

t ξ−ξ∗
1{ξ∗=0}]

q̄

= f (q̄s + qt) − f (qt)

q̄
, (33)

where we have used that E[sξ∗
t ξ−ξ∗ ] = f (q̄s + qt) (see [19, Proposition 4.10]), and part (1) of Lemma 4 in the last

equality.

The mean matrix M for a k-type GWP is defined to be the k × k matrix whose (i, j)th entry is Mij = ∂f i (s)
∂sj

|s=1,

where s = (s1, . . . , sk) ∈ [0,1]k , and f i(s) is the offspring p.g.f. for particles of type i.
As we have a two-type process, let us set s = (s, t). Setting s = 1 in (33) yields the p.g.f. for the number of doomed

offspring of a skeleton particle:

E
[
t ξ−ξ∗ | ξ∗ ≥ 1

] = f (qt + q̄) − f (qt)

q̄
. (34)

Differentiating (34) with respect to t and setting t = 1 gives the desired expectation

∂f 1(s)
∂t

∣∣∣
s=1

= (
f ′(1) − f ′(q)

)q

q̄
. (35)

It is clear from parts (1) and (2) of Lemma 4 that

∂f 1(s)
∂s

∣∣∣
s=1

= f ′(1),

∂f 2(s)
∂s

∣∣∣
s=1

= 0, (36)

∂f 2(s)
∂t

∣∣∣
s=1

= f ′(q).

This completes the proof. �
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5. Proof of Theorem 1

Part 3 of the theorem follows since τ < ∞ almost surely for a non-supercritical process. For a detailed proof of part 3,
see [22, Theorem 1]. Since λ(0) = 0 gives α = 1 and P(Ec) = 1, conditioning the process on Ec is the same as not
conditioning it when λ(0) = 0. Hence, we may extend part 2 to cover for the case λ(0) = 0, and prove the first two
parts of the theorem together. Note that the key ingredients in the proof are results concerning the decomposition of
supercritical GWPs and the speed of BBM, namely Lemma 4 and Theorem 3.

5.1. Proof of the lower bound

Let m > 0. Fix β , d , f and η, c. The scenario below yields the desired lower bound for the annealed survival proba-
bility conditioned on non-extinction, i.e., (E× P)(T > t | Ec).

1. Recall that the first particle must be of infinite line of descent once the process is conditioned on non-extinction.
Suppress the branching of the initial skeleton particle so that there is precisely one skeleton particle in the system
up to time ηt . This is equivalent to requiring that whenever the skeleton particle branches within the period [0, ηt],
it gives precisely one offspring of its own kind (and possibly some doomed offspring). Therefore, by the fourth
part of Lemma 4, this event has probability

exp[−βαηt].

2. For d ≥ 2, empty the two-sided cylinder (“tube”) Tt , defined by

Tt =
{
x = (x1, . . . , xd) ∈ R

d : |x1| ≤ kt + h(t),√
x2

2 + · · · + x2
d ≤ r(t) + h(t)

}
,

where k > c, and t �→ r(t) and t �→ h(t) are non-negative mappings that are picked such that limt→∞ r(t)/t = 0,
limt→∞ r(t) = ∞ and limt→∞ h(t)/t = 0, limt→∞ h(t) = ∞. By ‘emptying a region,’ we mean clearing a region
from trap points. By the upper bounds above on r(t) and h(t), Lemma 1 gives that the probability to empty Tt is
exp[o(t)] for d ≥ 2. For d = 1, empty the line T 1

t := {x1 ∈ R : |x1| ≤ 2h(t)}, which again costs a probability of
exp[o(t)].

3. For d ≥ 2, move the single skeleton particle (see the remark after Lemma 4) during the period [0, ηt] so that it is
at a specific site at distance ct + o(t) from the origin at time ηt (assume without loss of generality that the specific
site has first coordinate ct + o(t) and all other coordinates zero), and confine it to the smaller tube T̂t , defined by

T̂t =
{
x = (x1, . . . , xd) ∈ R

d : |x1| ≤ kt,

√
x2

2 + · · · + x2
d ≤ r(t)

}
,

up to time ηt .
Let P0 be the d-dimensional Wiener measure, W 1 be the projection of the d-dimensional Brownian motion onto

the first coordinate axis, and decompose the Brownian motion into an independent sum W = W 1 + Wd−1, where
Wd−1 is hence implicitly defined. Define the events

At = {
ct ≤ ∣∣W 1

ηt

∣∣ ≤ ct + o(t)
}
,

Bt = {∣∣W 1
s

∣∣ ≤ kt ∀0 ≤ s ≤ ηt
}
,

Ct = {∣∣Wd−1
s

∣∣ ≤ r(t) ∀0 ≤ s ≤ ηt
}
.

Note that the event At ∩ Bt ∩ Ct is exactly the desired scenario for this part. The formula for the transition

density for d-dimensional Brownian motion gives P0(At ) = exp[− c2

2η
t + o(t)], and Lemma 5 gives P0(B

c
t ) =



856 M. Öz, M. Çağlar and J. Engländer

exp[− k2

2η
t + o(t)], so it follows that

exp

[
− c2

2η
t + o(t)

]
= P0(At ) ≥ P0(At ∩ Bt) ≥ P0(At ) − P0

(
Bc

t

)
= exp

[
− c2

2η
t + o(t)

]
− exp

[
− k2

2η
t + o(t)

]

= exp

[
− c2

2η
t + o(t)

]
,

which yields

P0(At ∩ Bt) = exp

[
− c2

2η
t + o(t)

]
. (37)

Since r(t) → ∞, we have P0(Ct ) = exp[o(t)]. Combining this with (37) and using the independence of W 1 and
Wd−1, we find

P0(At ∩ Bt ∩ Ct) = exp

[
− c2

2η
t + o(t)

]
.

For d = 1, note that the function in (5) is minimized when c = 0 (see the proof of Theorem 2). Confine the
single skeleton particle to the one-dimensional tube T̂ 1

t := {x1 ∈ R : |x1| ≤ h(t)} up to time ηt . Since the length of
the tube tends to infinity as t tends to infinity, the probability of this event is exp[o(t)].

4. Confine all the doomed particles that are created within the period [0, ηt] to the larger tubes Tt and T 1
t for d ≥ 2

and d = 1, respectively, up to time t . Since the number of occurrences of branching up to time t along a single
ancestral line is a Poisson process with mean βt , and a skeleton particle on average produces (μ − κ)q/(1 − q)

doomed particles every time it branches (see Proposition 2), it follows that at most �βηt(μ−κ)q/(1−q)� doomed
particles are produced along the single skeletal line up to time ηt with probability exp[o(t)]. Let the radii1 of
the subtrees initiated by these �βηt(μ − κ)q/(1 − q)� =: n(t) doomed particles be ρ1, ρ2, . . . , ρn(t). If K(t) :=
max{ρ1, ρ2, . . . , ρn(t)}, then

P
(
K(t) < h(t)

) = P
(
ρ1 < h(t)

)n(t)
. (38)

Now, since a doomed subtree is almost surely finite, limt→∞ h(t) = ∞ implies that P(ρ1 < h(t)) → 1, which in
turn implies that the probability in (38) is exp[o(t)]. To see this, note that n(t) is in the form Ct , C > 0, and the
right-hand side of (38) is exp[n(t) logP(ρ1 < h(t))] where log(P (ρ1 < h(t)) → 0 as t → ∞. We have already
confined the single skeleton particle to the smaller tube T̂t for d ≥ 2 (T̂ 1

t for d = 1). Since each doomed particle
that is produced along the single skeletal line within the period [0, ηt] must be produced within the smaller tube
T̂t (T̂ 1

t ), and the dimensions of the larger tube Tt (T 1
t ) all exceed the corresponding dimensions of the smaller tube

by h(t), we conclude that all of the doomed particles that are created within the period [0, ηt] stay inside the larger
tube with probability exp[o(t)].

5. Empty a (
√

2βm + ε)(1 − η)t-ball around the position of the single skeleton particle at time ηt . By Lemma 1, this
event has probability

exp
[−lgd

(
(
√

2βm + ε)(1 − η), c
)
t + o(t)

]
.

6. Require the branching system initiated by the single skeleton particle present at time ηt to stay inside the (
√

2βm+
ε)(1 − η)t-ball during the remaining time (1 − η)t , where ε > 0. The probability of this event conditioned on non-
extinction is exp[o(t)]. To see this, note that when m > 0, by Theorem 3, for every ε > 0, P(M(t) > (

√
2βm+ε)t |

Ec) → 0 as t → ∞.

1By radius we mean the radius of the smallest ball centered at the root of the subtree, containing the (finite) range of the subtree.
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Since the motion, branching and trap formation mechanisms are independent of each other, minimizing the cost of
all these events over the parameters η and c, and letting ε → 0 in part 5 provides us with the desired lower estimate
for (E× P)(T > t | Ec). Note that the survival scenario described above is composed of three large deviation events:
suppressing the branching for a linear time, moving the Brownian particle to a linear distance, and emptying a ball
with linear radius. The remaining three components, namely parts two, four and six are not large deviation events and
do not give exponential costs.

5.2. Proof of the upper bound

Our approach is as follows. We first split the time interval [0, t] into two pieces at the point ηt , η ∈ [0,1], which is the
instant when the population of skeleton particles exceed �td+ε�. We discretize the interval to pinpoint the optimal η.
In order to obtain an upper bound, we ignore the possibility of trapping in the first piece, but take into account the cost
of polynomial growth rather than the expected exponential growth of particles. In the second piece, given that we now
have at least �td+ε� + 1 particles in the system, we argue that at least one of these particles should have a trap-free
ball of certain radius, say ρt , around it. For an upper bound, this gives us the combined cost of moving a Brownian
particle to a distance ct , c ≥ 0, during [0, ηt] and clearing the ρt -ball around it. To find the optimal c, we discretize
the space. We note that this approach yields a double sum of terms, of which only the largest one contributes on an
exponential scale.

Fix β , d , f . Let 0 < ε < 1. Recall that |Z(t)| is the number of particles in the system at time t , |Z∗(t)| of which
are skeleton particles. For t > 1, define

ηt = sup
{
η ∈ [0,1] : ∣∣Z∗(ηt)

∣∣ ≤ ⌊
td+ε

⌋}
. (39)

Before we proceed, we prove the following lemma:

Lemma 6. For n ∈ {1,2,3, . . .} and i ∈ {0,1,2, . . . , n − 1},

P

(
i

n
< ηt | Ec

)
= exp

[
−βα

i

n
t + o(t)

]
.

Proof. Let n ∈ {1,2,3, . . .} and i ∈ {0,1,2, . . . , n − 1}. By part 4 of Lemma 4, we know that the process |Z∗| condi-
tioned on non-extinction of |Z| is equal in law to a continuous time branching process with rate β(1 − f ′(q)) = βα

and offspring distribution λ̄, where λ̄(0) = λ̄(1) = 0. On the event Ec, since the first particle is of infinite line of
descent and t > 1, in view of { i

n
< ηt } = {|Z∗( i

n
t)| ≤ �td+ε�}, it follows that P( i

n
< ηt | Ec) ≥ P(|Z∗( i

n
t)| = 1) =

exp(−βα i
n
t).

Now consider a strictly dyadic branching Brownian motion Z̃. We have P(|Z̃(t)| = k) = e−βt (1 − e−βt )k−1 for
every k ∈ {1,2,3, . . .} and for every t ≥ 0, see [14]. It follows that P(|Z̃(t)| > k) = (1 − e−βt )k . Using the binomial
expansion (1 − x)n = 1 − nx + (

n
2

)
x2 + · · · + (−1)nxn, we obtain

P
(∣∣Z̃(t)

∣∣ ≤ ⌊
td+ε

⌋)
= 1 − (

1 − e−βt
)�td+ε�

= e−βt

(⌊
td+ε

⌋ −
(⌊

td+ε
⌋

2

)
e−βt + · · · + (−1)�td+ε�−1e−βt (�td+ε�−1)

)
≤ e−βt

⌊
td+ε

⌋
= exp

[−βt + o(t)
]
.

The result follows by comparison with the strictly dyadic case, since λ̄(0) = λ̄(1) = 0. �
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Henceforth, all probabilities written should be understood as conditioned on Ec. Now, for every n ∈ {1,2,3, . . .},
(E× P)(T > t)

=
n−1∑
i=0

(E× P)

(
{T > t} ∩

{
i

n
≤ ηt <

i + 1

n

})
+ (E× P)

({T > t} ∩ {ηt = 1})

≤
n−1∑
i=0

exp

[
−βα

i

n
t + o(t)

](
E× P

(i,n)
t

){T > t} + exp
[−βαt + o(t)

]
, (40)

where we use Lemma 6, and introduce the conditional probabilities

P
(i,n)
t (·) = P

(
·
∣∣∣ i

n
≤ ηt <

i + 1

n

)
, i = 0,1, . . . , n − 1.

Recall that {ηt < (i + 1)/n} ⊆ {|Z∗(t (i + 1)/n)| > �td+ε�}. Let A
(i,n)
t , i = 0,1, . . . , n− 1 be the event that among the

|Z∗(t (i + 1)/n)| skeleton particles alive at time t (i + 1)/n, there are ≤ �td+ε� particles such that the ball with radius

ρ
(i,n)
t := (1 − ε)

√
2βm

(
1 − i + 1

n

)
t (41)

around the particle is non-empty (i.e., contains a trap point). Estimate(
E× P

(i,n)
t

)
(T > t) ≤ (

E× P
(i,n)
t

)(
A

(i,n)
t

)
+ (

E× P
(i,n)
t

)(
T > t | [A(i,n)

t

]c)
. (42)

On the event [A(i,n)
t ]c there are > �td+ε� balls containing a trap, and by Theorem 3 and (41), the sub-BBM emanating

from the center of each ball exits this ball in the remaining time (1 − (i + 1)/n)t with a probability tending to 1 as
t → ∞. Abbreviate mt := �td+ε� + 1. With negligible error, we may assume that more than half of the mt sub-BBMs
exit their respective balls that each contain a trap point, in the remaining time. More precisely, the probability that at
least � 1

2mt� of them stay inside their respective balls, is not more than2

2mt · p�mt/2�
t = exp

(
mt log 2 + �mt/2� logpt

) = SES,

where pt is the probability that a single tree stays inside the ball, and SES stands for ‘superexponentially small in t .’
(In the exponent, the second term dominates, because pt → 0.) Clearly, the probability that all trees avoid traps can
be upper estimated by the probability that those trees that are exiting the balls avoid traps. Now, on the event that the
number of exiting trees is more than �mt/2�, we estimate as follows.

Upon exiting, each one of the (at least �mt/2�+1) sub-BBMs hits a trap inside this ball with a probability at least
C1/[ρ(i,n)

t ]d−1, where we have assumed that the trap point is on the boundary of the ρ
(i,n)
t -ball for an upper bound on

the trap-avoiding probability. Note that C1/[ρ(i,n)
t ]d−1 is just the ratio of the surface area of the ball that intersects the

trap (given that the trap point is on the boundary) to the total surface area of the ball, and C1 is a constant that depends
on the dimension d and the trap radius a. Hence, the second term on the right-hand side of (42) is bounded above by[

1 − C1

[ρ(i,n)
t ]d−1

]�mt/2�+1

≤ exp
[−C2t

1+ε
] = SES

2Here we used the trivial estimate(
m

�m/2�
)

≤ 2m.
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uniformly in all parameters, where C2 > 0 is another constant. Hence, the second term on the right-hand side of (42)
is superexponentially small.

Now consider the first term on the right-hand side of (42). Since gd(rt, bt) = tgd(r, b) for r, b > 0, the cost of
clearing a ball with radius linear in t is exponentially small in t as t → ∞. Then, for large t , we have(

E× P
(i,n)
t

)(
A

(i,n)
t | ∣∣Z∗(t (i + 1)/n

)∣∣ = ⌊
td+ε

⌋ + j
)

≥ (
E× P

(i,n)
t

)(
A

(i,n)
t | ∣∣Z∗(t (i + 1)/n

)∣∣ = ⌊
td+ε

⌋ + (j + 1)
)

for every j ∈ {1,2, . . .}. It follows that(
E× P

(i,n)
t

)(
A

(i,n)
t

) ≤ (
E× P

(i,n)
t

)(
A

(i,n)
t | ∣∣Z∗(t (i + 1)/n

)∣∣ = ⌊
td+ε

⌋ + 1
)
. (43)

We continue to estimate from above as follows. Each skeleton particle alive at time t (i + 1)/n is at a random point,
whose spatial distribution is identical to that of W(t(i + 1)/n), where W denotes the standard Brownian motion. Let
x0 be the center of the empty ball at time t (i + 1)/n that is closest to the origin. Let 0 ≤ c < ∞, δ > 0, and define Bj ,
j = 1, . . . , �td+ε� + 1 to be the event that j th skeleton particle at time t (i + 1)/n is at a distance ct ≤ r < (c + δ)t

from the origin and that the ρ
(i,n)
t -ball around it is empty. Then,(

E× P
(i,n)
t

)(
A

(i,n)
t ∩ {

ct ≤ |x0| < (c + δ)t
} | ∣∣Z∗(t (i + 1)/n

)∣∣ = ⌊
td+ε

⌋ + 1
)

≤ (
E× P

(i,n)
t

)
(B1 ∪ · · · ∪ B�td+ε�+1)

≤ (⌊
td+ε

⌋ + 1
)(
E× P

(i,n)
t

)
(B1)

= (⌊
td+ε

⌋ + 1
)

exp

[
− c2

2(i + 1)/n
t + o(t)

]
× exp

[
−lgd

(
(1 − ε)

√
2βm

(
1 − i + 1

n

)
, c

)
t + O(δ)t + o(t)

]
, (44)

where we have used the independence of BBM and trap mechanisms, and Lemma 1 in passing to the last equality.
Indeed, on the event A

(i,n)
t conditioned on |Z∗(t (i + 1)/n)| = �td+ε� + 1, there is at least 1 skeleton particle with an

empty ball around it. From (42), (43) and (44), we obtain(
E× P

(i,n)
t

)
(T > t)

≤
n−1∑
j=0

(
E× P

(i,n)
t

)({
j

n

√
2βt ≤ |x0| < j + 1

n

√
2βt

}
∩ A

(i,n)
t

)

+ (
E× P

(i,n)
t

)({|x0| ≥
√

2βt
} ∩ A

(i,n)
t

) + SES

≤
n−1∑
j=0

(⌊
td+ε

⌋ + 1
)

exp

[
− βj2/n2

(i + 1)/n
t + o(t)

]

× exp

[
−lgd

(
(1 − ε)

√
2βm

(
1 − i + 1

n

)
,
j

n

√
2β

)
t + O(1/n)t + o(t)

]
+ exp

[−βt + o(t)
] + SES. (45)

Here, the SES comes from the second term on the right-hand side of (42). Also, in passing to the last inequality, we
have used that the probability of the event {|x0| ≥ √

2βt} is bounded above by the probability that a single Brownian
particle is at a distance ≥ √

2βt at time t , which is exp[−βt + o(t)].
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Substituting (45) into (40), and optimizing over i, j ∈ {0,1, . . . , n − 1} gives

lim sup
t→∞

1

t
log(E× P)(T > t)

≤ − min
i,j∈{0,1,...,n−1}

{
βαi

n
+ βj2/n2

(i + 1)/n
+ lgd

(
(1 − ε)

√
2βm

(
1 − i + 1

n

)
,
j

n

√
2β

)}
.

Now let η = i/n, c = j/n
√

2β , let n → ∞, use the continuity of the functional form from which the minimum is
taken, and finally let ε → 0 to obtain the desired upper bound,

lim sup
t→∞

1

t
log(E× P)(T > t) ≤ −I (l, f,β, d).

Note that c >
√

2β cannot minimize{
βαη + c2

2η
+ lgd

(√
2βm(1 − η), c

)}
(46)

since this makes (46) greater than β , which can be improved by setting c = 0 and η = 1. �

6. Proof of Theorem 2

Let

Gd(η, c) = βαη + c2

2η
+ lgd

(√
2βm(1 − η), c

)
(47)

so that

I (l, f,β, d) = min
η∈[0,1],c∈[0,

√
2β]

Gd(η, c). (48)

To see the existence of the minimizers η∗, c∗ of (48), note that Gd is lower semicontinuous on the compact subset
[0,1] × [0,

√
2β] of R2 since

lim
(η,c)→(0,0)

(
βαη + lgd

(√
2βm(1 − η), c

)) = lsd
√

2βm

and c2/(2η) ≥ 0.
We refer the reader to [9] for the proof of their uniqueness when l �= lcr.
Consider d = 1. Since g1(r, b) = 2r , the minimum over c in (48) is taken at c∗ = 0, so that (48) reduces to

I (l, f,β, d) = min
η∈[0,1]

{
βαη + 2l

√
2βm(1 − η)

} = min
η∈[0,1]

{
η(βα − 2l

√
2βm) + 2l

√
2βm

}
.

This proves (6) and (7), and identifies lcr as the solution to βα = 2l
√

2βm.
Now consider d ≥ 2. We have

Gd(η, c) − Gd(0,0) = βαη + c2

2η

+ l
[
gd

(√
2βm(1 − η), c

) − gd(
√

2βm,0)
]
, (49)

where the last term on the right-hand side is less than or equal to zero, with equality if and only if (η, c) = (0,0) (this
follows from the definition of gd ). Suppose that (η, c) = (0,0) is a minimizer when l = l0. Then, by uniqueness of
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minimizers, the right-hand side of (49) is strictly positive for all (η, c) �= (0,0) when l = l0. As the last term in the
right-hand side of (49) is strictly negative for all (η, c) �= (0,0), it follows that for all l < l0, the right-hand side of (49)
is zero when (η, c) = (0,0) and strictly positive otherwise. Therefore, there must exist lcr ∈ (0,∞) such that

1. (η, c) = (0,0) is the minimizer when l < lcr;
2. (η, c) = (0,0) is not the minimizer when l > lcr.

Henceforth, we will take this as the definition of lcr for d ≥ 2. This proves the first parts of (8) and (9). Note that
lcr ∈ (0,∞), because the last term on the right-hand side of (49) decreases without bound as l → ∞ and tends to zero
as l → 0 for fixed (η, c) �= (0,0).

Now let d ≥ 2 and l > lcr. We know that (η, c) = (0,0) is not a minimizer. The combination η∗ = 0, c∗ > 0 is not
possible because G(0, c) = ∞ for all c > 0. The combination η∗ > 0, c∗ = 0 is ruled out as well because G(η,0)

takes its minimum either at η = 0 or η = 1, so η∗ > 0 would imply that η∗ = 1. However, η∗ = 1 can be excluded via
[9, Lemma 4.1]. Also, c∗ = √

2β is not possible since this yields Gd > β , whereas (η, c) = (1,0) is not a minimizer
yet yields Gd ≤ β since α ∈ (0,1]. Hence, we conclude that the minimizers for d ≥ 2 and l > lcr appear in the interior
of [0,1] × [0,

√
2β]. This proves the second parts of (8) and (9).

In the rest of the proof, we find lcr for d ≥ 2. For R ≥ 0, let

gd(R) =
∫

B(0,R)

dx

|x + e|d−1
. (50)

Then, we may write (47) as

Gd(η, c) = βαη + c2

2η
+ lcgd

(√
2βm(1 − η)

c

)
. (51)

The stationary points are the solutions of the equations ∂Gd

∂η
= 0 and ∂Gd

∂c
= 0, which yield

0 = βα − βmv2 − l
√

2βmg′
d(u),

(52)
0 = √

2βmv + l
[
gd(u) − ug′

d(u)
]

upon setting

u =
√

2βm(1 − η)

c
, v = c√

2βmη
. (53)

Eliminating g′
d in (52) gives

l√
2βm

gd(u) = −v + 1

2m
u
(
α − mv2). (54)

It follows by (51), (53) and (54) that for d ≥ 2 and l > lcr,

I (l, f,β, d) = Gd

(
u∗, v∗) = β

(
α − mv∗2). (55)

Since the minimizer (u∗, v∗) must satisfy (54) (note that there may be more than one pair (u, v) that satisfies (54)),
we conclude by (55) that v∗ is the maximal value of v > 0 on the curve in the (u, v)-plane given by (54).

Recall the following lemma from [9], where a proof is given as well.

Lemma 7. R �→ g′
d(R) is strictly increasing on (0,1), infinite at 1, and strictly decreasing on (1,∞).

Using (4), we may write (54) as

gd(u)l

2sdml∗cr
= −v + 1

2m
u
(
α − mv2). (56)
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0 u

�

1
−v

(1)

(2)

Fig. 1. Qualitative plot of: (1) u �→ gd (u)l

2sdml∗cr
, (2) u �→ −v + 1

2m
u(α − mv2). The dotted line is u �→ 1

2m
l

l∗cr
u.

Since gd(u) ∼ sdu as u → ∞ by (50), we obtain from Lemma 7 that the left-hand side of (56) is strictly convex on
(0,1), has infinite slope at 1, is strictly concave on (1,∞), and has limiting derivative l/(2ml∗cr) (see Figure 1).

Firstly, see that lcr ≤ αl∗cr. Indeed, assume the contrary. Then, there exists l̄ ∈ (αl∗cr, lcr), which implies that (η, c) =
(0,0) is the unique minimizer for Gd when l = l̄. However, Gd(0,0) = βl̄/ l∗cr > βα = Gd(1,0), which contradicts
(η, c) = (0,0) being the minimizer. This implies that lcr ≤ αl∗cr. We claim that lcr can be identified by the following
formula

l0 := sup

{
l > 0 : l

lcr∗
1

2sdm
gd(u) > −

√
1

m

(
α − l

lcr∗

)
+ 1

2m

l

lcr∗
u ∀u ∈ (0,∞)

}
. (57)

In order to prove our claim, i.e., l0 = lcr, we need to show that (η, c) = (0,0) is the minimizer for Gd when l < l0,
and (η, c) = (0,0) is not the minimizer when l > l0. Equivalently, as Gd(0,0) = βl/ l∗cr, we need to show via (55) that
for l > l0 there exists a v >

√
1/m(α − l/ lcr∗) such that v satisfies (56) for some u > 0, and that for l < l0 there is no

such v. As we know that lcr > 0 and (η, c) = (0,0) is the unique minimizer when l < lcr, there must exist an l1 > 0
such that the inequality in (57) holds for all u ∈ (0,∞) when l = l1, hence 0 < l1 < l0. Now take any 0 < l2 < l1, and
see that the inequality in (57) holds for all u ∈ (0,∞) also for l = l2. This implies that if l < l0, then the curve on the
left-hand side of (56) and the line on the right-hand side do not touch when v = √

1/m(α − l/ lcr∗). As both terms
on the right-hand side of (56) decrease as v increases and the left-hand side of (56) does not depend on v, the curve
on the left-hand side of (56) and the line on the right-hand side do not touch for v >

√
1/m(α − l/ lcr∗) as well when

l < l0.
Now consider l > l0. By definition of l0, there exists u ∈ (0,∞), say ū, such that

l0

lcr∗
1

2sdm
gd(u) = −

√
1

m

(
α − l0

lcr∗

)
+ 1

2m

l0

lcr∗
u. (58)

Note that since gd(u) < sdu for all u ∈ (0,∞), (58) implies that we have the strict inequality l0 < αl∗cr. Now take
any l1 ∈ (l0, αl∗cr), and observe that at u = ū, the right-hand side of (58) becomes greater than the left-hand side if
we replace l0 by l1. Also, since gd(u) ∼ sdu, the left-hand side of (58) must be greater than the right-hand side for
large u if we replace l0 by l1. As the functions on both sides of (58) are continuous with respect to u, it follows by
the intermediate value theorem that there exists u ∈ (0,∞), say ũ, such that (58) holds, with l0 replaced by l1. This
in turn implies that Gd(u, v) = Gd(ũ,

√
1/m(α − l1/lcr∗)) = βl1/l∗cr, but since the minimizer is unique, this shows

that (η, c) = (0,0) is not the minimizer for l0 < l1 < l∗cr. As we have shown that (η, c) = (0,0) is not the minimizer
when l ∈ (l0, l

∗
cr), we conclude by definition of lcr that (η, c) = (0,0) is not the minimizer for Gd for all l > l0. Hence,

l0 = lcr.
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Now put

ĝd (u) = sdu − gd(u), Md = 1

2sdm
max

u∈(0,∞)
ĝd .

Then, (57) reads

lcr = sup

{
l > 0 :

√
1

m

(
α − l

l∗cr

)
>

l

l∗cr
Md

}
. (59)

This implies that√
1

m

(
α − lcr

l∗cr

)
= lcr

l∗cr
Md,

which completes the proof of (10) and (11).
We finally show that u∗ ∈ (0,1) when l > lcr. Note that for a fixed v, if the line on the right-hand side of (56) cuts

the curve on the left-hand side at more than one point, then by (55), this v cannot be v∗ since the minimizer is unique.
Hence, we are looking for a v value such that (56) is satisfied for exactly one u value, and this pair is (u∗, v∗). This
implies that when v = v∗, the line on the right-hand side of (56) is tangent to the curve on the left-hand side at u = u∗.
Since v∗ >

√
1/m(α − l/ lcr∗), the slope of the line on the right-hand side of (56) is < 1/(2m)(l/ l∗cr). Then, since the

left-hand side of (56) has infinite slope at u = 1, is concave on (1,∞), and decreases asymptotically to 1/(2m)(l/ l∗cr),
it follows that u∗ ∈ (0,1). By (53), we conclude that c∗ >

√
2βm(1 − η∗). This completes the proof of Theorem 2.
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