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We consider a probabilistic model for workload input into a telecommunication system. It captures the dynamics
of packet generation in data traffic as well as accounting for long-range dependence and self-similarity exhibited
by real traces. The workload is found by aggregating the number of packets, or their sizes, generated by the
arriving sessions. The arrival time, duration, and packet-generation process of a session are all governed by a
Poisson random measure. We consider Pareto-distributed session holding times where the packets are generated
according to a compound Poisson process. For this particular model, we show that the workload process is long-
range dependent and fractional Brownian motion is obtained as a heavy-traffic limit. This yields a fast synthesis
algorithm for generating packet data traffic as well as approximating fractional Brownian motion.
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1. Introduction. We consider a probabilistic model for workload input into a telecom-
munication system. It is a tailored version of the general workload models studied in Kurtz
(1996) for packet data traffic. More recently, efforts have been directed to such struc-
tural models as opposed to black-box models (Willinger et al. 2001). The aim is to relate
self-similarity and long-range dependence observed in measured traffic to more elementary
properties. In this paper, we study a structural model that captures the dynamics of data
packet generation while accounting for the scaling properties of the traffic in high-speed
networks.

The model captures the packet dynamics in data traffic as well as accounting for long-
range dependence (LRD) and self-similarity exhibited by real traces. The workload is found
by aggregating the number of packets, or their sizes, generated by the arriving sessions.
The arrival time, duration, and packet-generation process of a session are all governed by a
Poisson random measure. The resulting packet traffic has stationary increments as observed
in high-speed data networks for time periods as long as an hour. We consider Pareto-
distributed session holding times where the packets are generated according to a compound
Poisson process. Hence, packets of fixed size—as in ATM networks, or variable size—as in
other packet-switched networks can be incorporated. The preliminary version of the present
paper, where packet generation is modeled by a Poisson process, has been presented in
Caglar (2001). Empirical evidence from TCP traffic supports the model of a compound
Poisson process for packet generation. On the basis of extensive traffic measurements, Cao
et al. (2001) report that packet arrivals tend to a Poisson process, and packet sizes become
independent as the rate of new TCP connections increases.

Heavy traffic limits exist for the general workload input models of this type, as shown
in Kurtz (1996). In particular, our workload process converges to a fractional Brownian
motion (FBM) as the number of session arrivals and the number of packet generations grow,
while the packet sizes and the lowest possible holding times shrink. However, for most time
scales, the correlation structure of the input process is as in FBM even before taking the
limit.

The present work is related to the traffic construction from finitely many sources of Taqqu
et al. (1997), called the on/off model. Because there is no restriction on the number of
arrivals in the Poisson case, our model is sometimes called an infinite-source Poisson model.
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Fractional Brownian motion is a good representation for data traffic aggregated from many
sources (Norros 1995). Both the on/off model and our infinite source model approximate
FBM under heavy traffic while capturing the data-generation dynamics. A generalization
of the on/off model is the superposition of renewal reward processes (Tagqu and Levy
1986). When the inter-renewal times have infinite variance and the rewards have finite
variance, FBM can be obtained as a limit. If the rewards also have infinite variance, then
the limit is a stable self-similar process as opposed to an FBM (Levy and Taqqu 2000).
According to the scaling chosen, the limit process is either a Lévy motion with stationary
and independent increments, or a long-range dependent process characterized through its
characteristic function (Pipiras and Taqqu 2000).

Other infinite-source Poisson models include a deterministic traffic-generation process
over sessions, in particular, fluid injection to the system. Konstantopoulos and Lin (1998)
study deterministic data traffic generation instead of the compound Poisson process of the
present study and show that a scaling that yields a Lévy motion in the limit exists. Resnick
and van den Berg (2000) prove the same convergence in the Skorohod’s M, topology. More
recently, Mikosch et al. (2002) have investigated the conditions for an FBM or Lévy motion
limit in the case of both on/off and infinite-source models. For unification and comparison
purposes, the data transmission to the system is assumed to be at a constant, more simply
at a unit, rate. They show that if session arrival rates are modest relative to session holding
time distribution tails, then stable Lévy motion is a good approximation. Otherwise, if
session arrival rates are large, then FBM is the appropriate approximation. These conditions
are valid for both on/off and infinite-source models.

Functional central limit theorems for Poisson shot-noise-type processes as in this study
have been proved previously in Kliippelberg and Mikosch (1995), where the workload
corresponds to cumulative payout of insurance claims. Recently, Kliippelberg et al. (2003)
studied the limiting behavior of Poisson shot noise when the limits are infinite-variance
stable processes. As applications, they specify several noise processes, corresponding to
our packet-generation process together with session duration, and discuss particular limits
including Lévy motion. Results in both the Gaussian and the stable case are quite general in
the sense that the limit is an unfamiliar self-similar process to be made precise by the choice
of the noise. Our choice of the packet-generation process and the accompanying session
duration is a special case, but our results do not follow immediately from the mentioned
work because one needs to demonstrate the sufficient conditions explicitly.

Empirical studies of data traffic show a multifractal behavior at small time scales, while
indicating the presence of long-range dependence at large time scales represented by a
single parameter. Maulik and Resnick (2001) model the packet-generation process, or the
transmission schedule, and the size of the files to be transmitted such that both small and
large time scaling behaviors are captured. Modeling file size could be more natural than
the length of transmission, or session duration, as the latter is determined by the file size.
A related work is Nuzman et al. (2002), in which a bi-Pareto distribution is fitted to session
durations in view of empirical evidence, and hence can account for both small and large
time scales. Our present study originates from the ideas in Chandramouli (1997) for TCP/IP
traffic. Another related model is the Markov-modulated Poisson process for construction of
traffic at the packet level (see, e.g., Heffes and Lucantoni 1986).

The implementation of our model as a traffic generator is also studied. We find that this
model lends itself to an accurate and fast synthesis algorithm similar to the micropulses
approach considered in Caglar (2000). The algorithm is O(¢) for the generation of traffic
for ¢ time units with a steady memory requirement throughout. Hence, it is comparable to a
wavelet synthesis of FBM, but the approach has superior qualities in terms of representing
the real traffic behavior.

We describe the workload input model in §2. In §3, we find the first- and second-order
properties of the workload increment process and show that it is long-range dependent. In
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§4, we provide the proof of the heavy-traffic limit. Finally, we study the use of this model
as a synthesis algorithm for traffic in §5.

2. Packet traffic model. General workload models of Kurtz (1996) represent data traf-
fic from a potentially large number of sources. The idea is similar to an M /G /oo queue,
but with a better abstraction and approximation of real traffic. At the highest level, one can
consider session arrivals originating from several sources. Then, each source remains active
for a duration that has a heavy-tailed distribution and leaves the system as in an M /G /oo
queue. When the session is active, an associated cumulative input process generates data
which are then aggregated to form the workload input. Here, we specify the input process
to be compound Poisson in order to represent packet data traffic.

Let (Q, #,[P) be a probability space. Let E = D(R — R, ) be the space of right contin-
uous functions on R taking values in R, with left limits where R, = [0, cc). Let N be a
Poisson random measure (Prm) on (R, x [b, ) x E, By ® B, ® B,),0 < b < 1, with
mean measure

(1) n(ds, dr, du) = A8b°r=°~'ds dru(du),

where 1 <6 <2 and u is the distribution of a compound Poisson process U in R, given
by

M(1)

2) U=Y B. 1R,

for positive-valued i.i.d. random variables B,, B,, ... and a Poisson process M with rate a.
Each atom (S;, R;, U;) represents a building block of the input traffic; the arrival time S; of
a session, its duration, or holding time R; and data-generation process U;. Then, the total
workload input to the system in [0, ¢] is given by

Y (1) = /OlfbmeN(ds, dr,duyu(r A(t =)= S Ui(R; A (1 = S,)).

S;<t

The sessions arrive in a Poisson fashion and stay alive for a period with an infinite-variance
Pareto distribution. Over an active session, the packets are generated according to a com-
pound Poisson process. Then, the work Y denotes the cumulative amount of traffic input
to the link under consideration. When the packets have a fixed size, as in ATM networks,
one can choose U to be a Poisson process by setting B =1 and have Y count the num-
ber of packets. Otherwise, we assume that the packet sizes are independent and identically
distributed.

In this paper, we assume that the link in consideration has been receiving traffic forever.
That is, we let N to be defined on (—oc, 00) X [b, 00) x E. Then,

Y(1) = /_i/bm/EN(ds,dr, d)[u(r A (t =) — u(r A (—s))]
+/OT[bOO/EN(ds, dr,du)u(r A(t —s)).

In this case, the traffic has stationary increments because the distribution of {Y (¢ + s) —
Y(t): s € R} does not depend on ¢ for each t € R.

3. Means, variances, and characteristic function. In this section, we compute the
first- and second-order properties of the process Y. We consider the workload increment
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process over unit intervals in R, defined by X, =Y (k) =Y (k—1), k=1,2,.... That is,
k—1 o0
X, = / / / N(ds, dr, du)[u(r A(k—s)) —u(r n(k—1—15))]
—0 b E

+/k: /bm/EN(ds, dr, duw)u(r A (k —s)).

Defining u(s) =0 for s < 0, we can simplify the notation above. Then, the expected
number of packets in [k —1,k], k=1,2,..., is given by

EX, = [E[k /w/ N(ds, dr, du)[u(r A (k = 5)) —u(r A (k= 1 — 5))]
— Yb E
- A/k ds/mdrﬁb‘Sr“s‘l/ w(d)[u(r A (k=) —u(r A (k—1—5))]
— 0 b E

= /\/—; ds/boo dréb®r=°" /E,LL(du)[u(r A(1=5))—u(r A(=s))],

where we made a change of variable s —k 41 to s. Now consider u to be the distribution of
a compound Poisson process as in (2). The integrals with respect to u above are expectations
of the increments of this process given by EU () = atEB over [0, t]. Recalling u(s) =0 for
s <0, we get

—b l—s 0 e
(3) EX, = ASbSa[EB{/ ds/ drr°'(r+ys) +/ ds drr=°7!
—0 —s —© I—s
1-b 1-s 1-b o
- —6—1 _
_|_/0 ds/b drr ~|—/0 ds lﬂdrr (1—13%)

1 o 0 1—s
+/ 4 drr* ' 1=s)+ | d drr'(r+ }
- sfb rr ( s) /4: sfb rr (r+s)

= )\aa—b[EB,
o—1
which does not depend on k because the increments are stationary. Note that the expected
increment of traffic per time unit is the product of the arrival rate of sessions, the arrival
rate of packets over a session, the mean duration of a session, and the mean packet size.
In the variance and covariance calculations, the following formula will be useful
(Kallenberg 1983). If N is a Prm on D with mean measure v, then

4) E / N(dx) / N (dx') £ (x)g(x) = / v(dx) f(x)e(x'),

where N =N —v.
The variance of the incremental workload in each time unit is given by

(5) Var(X,) = [E{/_I;/bw/Eﬁ(ds,dr,du)[u(r/\(k—s))—u(r/\(k—1—s))]}2

- A8b5/k ds/wdr r_B_I/ w(du)[u(r A (k= )) —u(r Ak —1—$)]
—o00 b E

in view of (4). Taking u to be the distribution of a compound Poisson process as in (2),
we get
&b

b !
AD2S(EB): LI WPV )
FAabo( )<3(3—5) 2—5>+ 51

21a?b? (EB)>
(6—1)(2-98)(3-9)

(6) Var(X,)=
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The details of this calculation, being similar to the expectation calculation in (3), are omitted.
Here, the second moment of the increment of a compound Poisson process as needed in
(5) is found through its expectation and variance given, respectively, by EU(¢) = atEB and
Var(U(t)) = atEB?. We assume the packet size B has a finite second moment.

Let r denote the autocovariance function of X; that is,

r(j) =Cov(X,, Xyj) j=0,1,2,..., k=1,2,....

We calculate the autocovariance function r of X for larger time lags, namely j > 2. The
computation and the result are relatively simple in this case because the cutoff value b does
not appear compared with j < 2. For convenience of this computation, we have imposed
the restriction » < 1 in the definition of N. Besides, the large time lags are relevant for
long-range dependence. Then, for j > 2

0 G =E[ [ [ N(ds. dudn)lutr A (1=5) = u(r A (=5))
./_j+1 /bw/Eﬁ(dS’ du, dr)[u(r A(G+1=5)) —u(r A(j —s))]

= /;ofbw/En(ds, dr,du)[u(rn(1—=s)) —u(r A(—=s)][u(rA(j+1—1))
- ft(" A =5))]
= )\Sbﬁ{/(; dsvéjjls dr %1 / pw(du)[u(l—s) —u(—=s)][u(r) —u(j—s)]

+ fjo ds /j:ﬂ drr=°! / p(du)[u(l —s) —u(—s)]
u(j+1—=5)—u(j—s)]

[ Cas [ e [ @t - 9lu) - - o)

+/Olds/j:_sdrr_5_1/,u(du)u(l—s)[u(j+1—s)—u(j—s)]},

where we used (4) and the independence of a Prm on nonoverlapping regions.
Recall that fractional Brownian motion (FBM) is a mean zero Gaussian process Z on R
with Z(0) =0 and covariance

c
Cov(Z(1), Z(1) = 5 (1" + 557 = |t — 1, ")

for some ¢ > 0 and Hurst parameter 0 < H < 1 (Samorodnitsky and Taqqu 1994). The
increment process, defined as {Z(k+ 1) —Z(k): k=...,—1,0,1,...} and called frac-
tional Gaussian noise (FGN), is a stationary Gaussian process. Its covariance at time lag j,
Jj €Z is given by

8)  Cov(Z(k+1)—Z(K), Z(k+ j+1) — Z(k+ j)) = §(|j+1|2H+|j— 12— o)

for all k € Z. In the following proposition we show that the autocovariance of X is not far
from that of an FGN.

ProPOSITION 1. Let w be the distribution of a compound Poisson process with arrival
rate o and square integrable random variable B. Then, the autocovariance function of the
increment process X coincides with the autocovariance function of an FGN for lags j > 2,
given by
Aa?b®(EB)?

G- na-sE Ut HU-DT -2

r(j)=
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Proor. From (7), we get

0
ds
oo

©) r(j):A6b5a2([EB)2{/ /'i+1_sdrr—3—1(r—j+s)+/lds/w drr'(1—5)

J=s

0 ) 1 Jjt+l—s
—5-1 —5-11_ .
—l—/ioods/HH.drr +/0 ds/jis drr (1=s5)(r ]—i-s)}

Aa?b®(EB)?

= GonE=9G_p Ut T HI=DT =2

which is the autocovariance function of a fractional Gaussian noise as given in (8) with
H=(3-09)/2,for j>2. O

Due to the form of r in (9), the process X is long-range dependent according to Beran
(1994, Definition 2.1). To see this, apply the binomial series to relevant terms in r for
large j to get
~  Aa?b®(EB)?
r()=—5"7
That is, limjﬁoop(j)/(cpjl‘ﬁ) =1 where p is the autocorrelation function of X and ¢, is a
constant determined by those in Equations (6) and (9). Also note that the variance of X|,
given in (6), is equal to r in (9) evaluated at O plus some extra terms due to cutoff b.
Because 1 < 6 < 2, the covariance r(j) tends to 0 as j — oo. Still, this convergence is
so slow that 3>77r(j) diverges; see the discussion in Samorodnitsky and Taqqu (1994,
p- 335) for FGN. For more general definitions in terms of slowly varying functions and
other characterizations of LRD, see Beran (1994).

Finally, the characteristic function for the distribution of X,, k =1,2,..., the number
of packets arriving in each time unit, is given by

PP+ 03G™).

1 o
EeiéXe — exp/\/ ds/ dr §b2r—- / (du)[ErA =D =ura] )
—o0 b E
= exp)\/o ds/wdr 87 =01 [ 1= AC9B@-1] _ 1]
—o0 b

1 o
+expA / ds / dr 860 =31 [eelrA1=9lds(@-11 _ 1],
0 b
where £ € R and ¢ is the characteristic function of B.

4. Heavy-traffic limit. We consider the limit of the workload input process as the
number of session arrivals and the number of packet generations increase while the packet
sizes and the lowest possible holding times decrease. The limit is fractional Brownian
motion (FBM), which is a good fit for data traffic aggregated from many sources (Norros
1995). Although it has no physical interpretation, it can be considered as the fluctuations
of traffic after the mean is subtracted. The characterization of FBM essentially by a single
parameter, namely the Hurst parameter H, makes it a parsimonious choice.

4.1. Fractional Brownian motion as a limit. It is noted in Kurtz (1996) that the
following scaling is sufficient for an FBM limit. In this subsection, we supply a detailed
proof of this fact in the case of compound Poisson packet generation. Let n € Z . Let the
arrival rate of the sessions be A, =n®*'A and the mean measure of N, be

N
(10) n,(ds, dr, du):)\,ﬁ(—) 2 Vdsdrw,(du) r=>b/n,
n

where w, is the distribution of (1/n)U(n-). Note that the mean measure (10) is a product
of A, the Lebesgue measure, and the distribution of ((1/n)U(n-), R/n). That is, both time

n’
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and workload measurements are rescaled. Note that (1/n)U(n-) is a compound Poisson
process with rate na and packet size B/n. Then, at each session more and more packets
arrive in unit time, but with smaller sizes as n — oo. Indeed, there is empirical evidence
that the traffic consists of many small-size packets under heavy traffic (Heyman 2001). In
addition, more and more sessions arrive, possibly with very small durations as n — co due
to the form of 7,.

Let Y,(¢) be the workload process generated by N,; that is,

(11) Yn(z)=/_; /b:/ENn(ds,dr, du)[u(r A (1 = 5)) —u(r A (=5))],

with the convention u(s) =0 for s < 0. The following lemma shows that the covariance
function of Y, converges to that of an FBM when properly scaled. A sufficient condi-

tion for this would be a uniform integrability condition. This is indicated in Kurtz (1996,
Theorem 3.1). We choose the direct approach here.

LEMMA 1. For ti, b € R, we have
Cov(Y, (1)), Y, (1)) Aa?b®(EB)?
nom n T G-D2-9)(3-9)
Proof. Fix ¢; <1,. We can assume ¢; > b/n and 1, —t; > b/n for sufficiently large n.

To find covariances, we subtract their respective means from Y, (¢;) and Y,(#;), and take
expectation. Using Formula (4), we get

(2 + 672+, — 1 70).

Cov(¥, (1)), n(tk))_n)\Sb‘Sf ds [ drro lf,un(du) u(r At —5)) —u(r A(=s))]

Qu(r Aty =9)) —u(r n(=s))].
The integral with respect to u, involves covariances of the compound Poisson process
U (n-). Substituting these covariances and considering the proper limits of integration, we get

Cov (¥, (1;). %, (1)) _ )\61)5{/0 ds/’f“‘ drr_a-l[@[Eguaz(rﬂ)mw)z}

n ax(b/n,—s)

b/n

1,
+/ ds/ o [ ’[EBZ—I—az(r—i—s)t (EB) ]
at;
+/_wds/t _Ydrr_‘s_l[7][E32+a2tjtk([EB)2i|
a(t;—s
+/ ds/ -0 1|:M[E82—i—ozzr(tj—s)(EB)zi|
max(b/n,t; s) n

t; b/n
—I—f / rr_‘s_l[ﬂ[EBz—l—azrz([EB)z}
b/n n

+/0’ids/°j drr—a—l[@[EBLF&Z(Q—S)(tk_s)([EB)z]}'

We split and evaluate the integrals that involve the factor EB*/n in their integrands. All of
these tend to 0 as n — oo with rate n°~2, 1 <& < 2. The remaining terms, which do not
involve the factor 1/n, are all bounded by

0 tj—s 0 ty—s 0 o
/ ds/ ' drr"s’l(r—i—s)z—i—/ ds/ drr"s’l(r—i—s)tj—i—/ ds/ drr’s’ltjtk
—00 —S —00 tj-fs —00 tp—s
t t—s £ tj—s 1 00
—}—/ dsf a’rr’ﬁ(ti—s)—i—/ ds/ drr=*! +/ ds/ drr=®7(t;— ) (1, —s5)
0 ti—s ’ 0 0 0 t—s

3 H04 70+ =1 P
T 8(6—1)(2—8)(3—0)
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after o®>(EB)? is factored out. The result follows by bounded convergence theorem. [

LEMMA 2. Suppose E@(B?) < oo for some nonnegative and convex function ¢ on (0, 0o)
with ¢(0) =0 and lim,_,  ¢(x)/x = oo. Then, for each € > 0,

A [u(r A(t—5)) —u(r A (=s)]?
'}Ln; ~/;oo-/(; /Enn(ds’ dr’ dl/l) 1[u(rA(tfs))fu(rA(fs))>\/ﬁE] =0.

n

ProoOE. We sketch the proof. Using the hypothesis, we can show that

swp [ [ mas.ar. du)qo([”(’ A= 9) —ulrn (—s>>]2> .

n

by evaluating the integrals as in Lemma 1. This implies the uniform integrability condition

. tore [u(r A(t—s)) —u(r A(—s))]?
lim sup /700‘/0 /Enn(ds’ dr’ du) 1[u(rA(r—s))—u(rA(—s))>a] =0.

a—oo n

Then, the result (being the Lindeberg condition) follows immediately as in Resnick (1992,
p. 522). O

The Lindeberg condition is essential for proving the central limit theorem (below). An
example of ¢ is ¢(x) = x*? so that one could require B to have a finite third moment.

We are ready to prove the heavy-traffic limit. In the following theorem, we provide a
specific representation for the limiting FBM. A different representation in terms of a white
noise on (R x R, , %Br ® QBRJ could be provided. Instead, we give a representation in
Theorem 1 that is based on a white noise in a generalized sense, to make the convergence
of the mean measure 7, more visible. We elaborate on this convergence and the specific
scaling we have chosen subsequently.

DEFINITION 1. Let { be a Borel measure on R xR, which is absolutely continuous with
respect to the Lebesgue measure m. A random signed measure W on (R xR, %z ® %)
is called a white noise with variance measure ¢ if

W([a, b] x [c, d]) = fh /dB(ds, drWf(s.r) abeR,c,deR,,

where B is a Brownian sheet on R x R and f is the Radon-Nikodym derivative of { with
respect to m.

Note that we obtain white noise in the usual sense when f is the identity function, as a
special case. Also,

E[W([a, b] x [¢, d])> = { ([a, b] X [¢, d]) = f ds f dr f(s, r)

and W(A) and W(C) are independent mean zero Gaussian random variables when A, C €
P ® By, are disjoint. Let

Y, (1) —EY, (1) 1 ' >~
V(= = ﬁ/_w /b/n/ENn(ds, dr, du) [u(r A (t = 5)) = u(r A (=s))]

be the scaled and centered traffic counts.

THEOREM 1. Let w be the distribution of a compound Poisson process with arrival
rate a and packet size B. Suppose E@(B?) < oo for some nonnegative and convex function ¢
on (0,00) with ¢(0) =0 and lim,_,  ¢(x)/x = co. Then, as n — oo, the process V,(t)
converges to a fractional Brownian motion with representation

V(1) = a([EB){/_: /Om W (ds, dr)[r A (t—s) —r A (=5)] +/0[/0w W (ds, dr)[r A (t —s)]}

in the Skorohod topology on D(R — R, ), where W is a white noise on (R xR, Bz ® By )
with variance measure

{(ds, dr) = A8b°r—°"dsdr.
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ProoOE. The Hurst parameter H and the variance parameter ¢ of the fractional Brownian
motion V are given by
3-6 2Aa?b? (EB)?
c= ,
2 6—-12-06)(3-9)

with 1/2 < H < 1 by the following computation of its covariance. We have

Cov(V(1)). V(1))
= az([EB)z)\8b3{/0 ds/m drr [ At — ) =1 A (=)][F A (6 —5) = 7 A (=9)]

+/O’f ds/owdrrféfl[r/\(tj_s)][r/\(lk —s)]}

B Aa?b®(EB)?
T (5-1)(2-86)(3-9)

-5 -5 -5
(67 + 67+ = al),

where we assumed ¢; < f,. Note that Cov(V,(¢;), V,(,)) = Cov(Y,(t;), Y,(#,))/n. Hence,
the covariances of V, converge to those of V by Lemma 1. The Lindeberg condition holds
by Lemma 2. Then, convergence of the finite-dimensional distributions of V, to V follows
from the Lindeberg-Feller central limit theorem (see, for example, Kurtz 1996, Theorem 6.1,
or Jacod and Shiryaev 1987, Theorem VIL.5.2). For each 4 > 0 and for all n > n, such that
b/ny < h, we have

2Aa2BP(EB)* 0 Aa?S(EB)*DH
(12) BV, (1) = (65— 1)(2(_ 5;(3 —9) 3n35((3 —) 5)
Aa?S(EB)*b*h  \ad(EB*)bh
252 —08) | no(6—1)
2Aa2b? (EB)*h—0
BRCEDFEDIEED
<ozz([EB)2b6 *(EB)*b®  a(EB?)b%~!
3(3-9) 2-6 51
=: Ch*79,

>/\6h3‘5

where we used b/n < h. It follows that lim,_,sup, E(V,(h))*> =0, and hence for each
€ >0, we get

(13) %in})supP{|Vn(h)| >€}=0

by Chebyshev’s inequality. On the other hand, for 0 < h <1, we have

(14)
E(V, (t + 1) =V, () (V,(t) = V,,(t = 1))* = E(V, (t + h) = V,())’E(V, (1) =V, (t = b)),

as the compound Poisson process U has independent increments. By the stationarity of V,
and Equation (12), we get

E(V, (4 h) = V, () (V,(1) = V, (t = b))* < C?h2C2),

where 3 — 06 > 1 because 1 < 6 < 2. In view of (13) and (14), convergence in distribution in
the Skorohod topology follows from Kurtz (1996, Theorem 6.2) or Ethier and Kurtz (1986,
Theorems 3.8.6 and 3.8.8), characterizing relative compactness. [
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This limit arises as a result of heavy-tailed distributions for session holding times and the
ergodicity of the compound Poisson process in charge of packet generation. For the latter,
we have (1/n)U(nt) — at almost surely and in L?. Therefore, we get

A, [ b\ 5
(15) lim —/0 dr6<;> — 11{,>b/n}/EM"(du)h(u,r)

n—oo m

= lim AnﬁrE[hGU(n.), 5)} =)\6b5/ drr°"'h(a-, r)
n—oo n n 0
for all bounded continuous functions 4 on E x R, for which there exists an r, > 0 such
that A(u,r) =0 for all r <, and u € E. Hence, 7, converges as a measure. This is the
essence of convergence of the covariances of Y, as n — oo, as given in Lemma 1.
REMARK 1. In general, let V,(¢) = o, '[Y,(t) —EY,(7)]. We have taken o, = \/n in addi-
tion to the particular scaling of 77, in (10). Other scalings are also possible for Theorem 1.
Equation (15) will hold as long as o, %A, = n°A. For instance, one can choose A, =n?A
with y > 8 and o, = n¥=9/2,

4.2, Comparison with Lévy motion limits. A similar formulation is considered in
Mikosch et al. (2002), where the data generation occurs at a constant rate and the session
durations are heavy tailed. By providing Lévy motion and FBM limit theorems, the authors
recover many previous results for both the on/off model and infinite-source Poisson model.
For the session arrival rate, if a slow-growth condition holds, then the limit is a Lévy
motion; if a fast-growth condition holds, then the limit is an FBM.

For comparison purposes, we will simplify the assumptions in Mikosch et al. (2002). In
general, the session durations have the complementary distribution function P{R > r} =
r~°L(r), where L is a slowly varying function. Let us take L to be a constant by assuming
a Pareto distribution for R. The arrival rate A, is specified as a nondecreasing function of #;
let us take A, = n”"'A, where y > 1. Let N, be a Prm with mean measure A,B(dr)ds,
where (8 is the Pareto distribution. The total accumulated work A is considered at large
times nt, then centered and scaled to obtain an FBM limit. Explicitly,

Ant) =[i/()le(ds, Ar)[r A (nt—5)—r A (—s)]+/0m/0°°1vn(ds, dr)[r A (nt — ).

By change of variables s to s’ =s/n and r to ¥ = r/n, we obtain a process A’ such that
nA’(-) has the same probability law as A(n-) above. We have

nA’(t)::n/_(;/oooN,;(ds’,dr/)[r’/\(t—s’)—r’A(—s/)]—i—n/ot/()wN,;(ds',dr’)[r’/\(t—s’)],

where N/ is a Prm with mean measure nA,f3,(dr)ds = nYAB,(dr)ds and B, is the dis-
tribution of R/n. As a result, the scaled and centered workload is equal in distribution
to

nA'(t) —EnA'(t)
(AnY'n3n—9)1/2°

(16)

which is shown to converge to an FBM in Mikosch et al. (2002, Theorem 3), where
we omitted some of the constants. After simplification, the expression (16) is equal to
o '[A'(t) —EA'(¢)] with o, =nY=9/2. What is more, the fast-growth condition sufficient
for FBM limit reduces to y > 6 (Mikosch et al. 2002, Lemma 1). As a result, the scalings
of A’ and Y, are equivalent in view of Remark 1. This is as expected because in both
cases the packet-generation or data-transmission process essentially remains the same. In
our case, we have (1/n)U(n-) = -, where a corresponds to a constant transmission rate
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in the limit. Also, the session durations are scaled as R/n, the session arrival rate is scaled
as n?A, and the scaling coefficient o, is the same. On the other hand, if a slow-growth
condition equivalent to y < & holds, the scaled and centered process

nA'(t) —EnA'(t)
(17) BT

converges to a O-stable Lévy motion (Mikosch et al. 2002, Theorem 1). Note that the
denominator is proportional to n(Y~=%/? after simplification. Analogously, one would expect
a similar scaling to yield a Lévy motion in the case of compound Poisson packet generation
of the present study.

A similar construction is given in Maulik and Resnick (2001), where the cumulative
traffic has the form

DUt =S) AR,
S;<t

and R represents the size of the files to be transferred. The form of U is left quite general
but with several assumptions, such as being multifractal with stationary increments and
having a certain limit behavior after scaling. A scaling of the form (17) is shown to yield
a Lévy motion. For Poisson shot-noise processes in general, Kliippelberg et al. (2003)
show a sufficient condition, which they call regular variation in the mean, for convergence
to an infinite-variance stable process. A process X is called a Poisson shot-noise process
if X(1) =35 Y(t—S;), where S;, i=1,2,... are arrival times of a Poisson process.
Several speciaf cases for Y are considered as applications in Kliippelberg et al. (2003). For
example, if the shots Y; are compound Poisson processes given by Z?i(f) B;, and B, are
strictly stable random variables, then there exists a scaling that yields a stable limit. The
authors also demonstrate their sufficient condition for convergence to a stable limit in the
case of the teletraffic construction of Mikosch et al. (2002). As a result, although a similar
result is expected, the details need to be worked out to establish the conditions for a Lévy
motion or a stable limit in general for our model.

4.3. Application in queuing. An important application of Theorem 1 is in queuing.
Suppose traffic modeled by (11) arrives at a switch with an infinite buffer and the contents
of the buffer is released continuously, as in a fluid queue. Then, the queue-length process,
or the content of the queue, is given by

L) = Y,(1) — eyt — A(X(5) — cy9).

where ¢, is a release rate. Resnick and van den Berg (2000) show that the queue content
converges to that of the limiting process for their model. Similarly, the queue content in our
case behaves like the content process of FBM input for large n, as given in Corollary 1.
Note that EY,(¢) is linear in ¢ and is given by EY, () = Aa8(8 — 1)"'bEBn°t in view of (3).

Let LN denote convergence in distribution.
COROLLARY 1. Suppose that
. ¢,—Aad(8 —1)"'bEBR®
lim

=0.
n—oo ﬁ

Then,

L"T(nt)—d)V(t)—/[\V(s) as n— oo

s=0
in the Skorohod topology on D(R — R,).
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The proof follows along the same lines as in Resnick and van den Berg (2000, §5), with
Skorohod M, topology replaced with J; in our case. Basically, because the reflection map-
ping x(t) — x(r) — A!_,x(s) is continuous, the continuous mapping theorem (Billingsley
1999, Theorem 2.7) applies.

As a matter of fact, the tail of the queue-length distribution is found to behave like a
Weibull distribution with FBM input (Norros 1995). With the on/off model, Heath et al.
(1998) show that the content process has heavy tails. The tail of the queue length in the
case of Lévy input is much heavier than a Weibull-like tail corresponding to the FBM case.
Also, the marginal distributions are quite different, being Gaussian in FBM and heavy right
tailed in Lévy motion. From an application point of view, both the empirical queue length
and the marginal distributions determine which regime is valid.

5. A fast-traffic generator. Analytical queuing results in the presence of self-similar
traffic, as modeled in this paper, are few in comparison to traditional Markovian traffic
models. Therefore, simulation studies are crucial for further performance analysis. In this
section, we show that a fast-traffic-generation algorithm can be implemented with our traffic
model. The approach is very similar to the synthesis of FBM traffic, with micropulses given
by Cioczek-Georges and Mandelbrot (1996) and considered in Caglar (2000). The steps
consist of simulation of Poisson arrivals, association of a Pareto-distributed session with
each arrival, generation of a Poisson process over each session, and keeping track of all
these as long as the session is active at the current time. The method is fast and accurate
with a steady requirement of memory.

One technical issue is the representation of the infinite past, which guarantees stationarity.
It can be accounted for by replacing —oo by a sufficiently small 7 < 0. Let Y; denote the
traffic counts in this case. For traffic generated on [0, 7], # > 1, the expected difference due
to truncation of the infinite past is given by

(18) E|Y () =Y, ()| = /\517601{/T dsftv_sdrrf's*l(r+s)+t/T ds/oidrrﬁ'}

AP a[t?(t—=T) 0 —2T(t—=T) O+ T*(t —T)° — (=T)>?]
(6—1)(2-9)

_ APa(2t—8)(—T)'° -
= T o-D2-9) +0((=1)7).

The error increases linearly with 7 for fixed T as in the micropulses-generation method. On
the other hand, the algorithm is not adversely affected by the large magnitude of 7. The
number of sessions that last until time O or longer is small. Consider the discretization of the
interval [T, —1] by intervals of length At > 0. The number of arrivals on (7 + (k — 1)At,
T + kAt] that have widths greater than a, = —(T 4+ kAt) is a Poisson random variable with
mean AfAP{R > a,} = AtAb®a;°. The computational cost for the method is proportional
to the total number of sessions generated. For each Ar > 0, the expected number of all
sessions generated on [T, —1] is given by

1=AtAD® Y (—(T +kAt) ™2,
k=1

where m = (—1 — T)/At is assumed to be an integer through the choice of Ar. We can
approximate [/ by

A
(6-1)

m)\b‘*ffl(—x)-ﬁ dx = (1—(=7)"?
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as At — 0. The upper bound in (18) suggests the choice of T ~ —t51 when we evaluate Y
on [0, t]. That is, / =~ O(1). Therefore, the total number of sessions generated is O(¢) when
the sessions generated over [—1,¢] are also included. The expected number of packets
generated is just a multiple of this requirement with «.

For an FBM limit, the value of b is scaled with 1/n, which results in a higher number
of short sessions and more packet generations in each session. Nevertheless, the resulting
computational burden is of O(z) because the mean of a Poisson process is linear in ¢.
Therefore, our packet traffic model lends itself to a fast synthesis algorithm for FBM, as in
the case of micropulses approach. The two models are similar in mathematical construction.
However, the current model provides a better abstraction of packet traffic. For synthesizing
an FBM, it is as fast as wavelet synthesis like the micropulses algorithm and can be made
as accurate as needed with the modification of the scaling parameter n and the truncation
parameter 7.
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