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Abstract

We consider a single-item single-period joint inventory management and pricing problem of a

retailer selling an item that has selling price uncertainties. Unlike most of the literature on the

newsvendor problem, we assume that price-dependent demand arrives randomly according to a

stochastic arrival process whose rate depends on the fluctuating market input price process. The

retailer’s problem is to choose the order quantity and a proportional price markup over the input

price to maximize the expected profit. This setting is mostly encountered by retailers that trade

in different currencies or have to purchase and convert commodities for seasonal sales. For this

setting, we characterize both the optimal inventory and markup levels. We present monotonicity

properties of the expected profit function with respect to each decision variable. We also show

that more volatile input price processes lead to lower expected profits.

Keywords: inventory, markup pricing, stochastic processes

1



1 Introduction and Literature Review

Pricing is one of the most effective tools that a firm has to increase its revenues. The impact of a

successful pricing strategy lies in its effect on sales as price is one of most critical determinants of

customer demand. By effectively controlling the demand, firms have also the potential to enhance

revenues by managing the mismatch between supply and demand. Even more value can be created

by integrating pricing decisions with inventory, production and distribution decisions. It is well

known that integration of pricing and inventory decisions has the potential of thoroughly increasing

supply chain effectiveness (Chan et al., 2004).

In classical monopolistic inventory/pricing models, firms are assumed to control the selling

prices without any limitations. However, for some industries, firms also have to deal with input

price volatilities which constrain and determine the selling price to customers. This is usually the

case for exchange rate volatility if critical inputs are imported. Gold and jewelry retailers have to

consider price volatilities in making both ordering and pricing decisions as underlying commodity

prices are market-determined. Fresh grocery products are another example where customers expect

the selling prices to follow the supply market price. An efficient ordering-pricing policy should take

the expected future evolution of such volatile prices into account.

In this paper, we examine how a firm that sells a product with randomly fluctuating input

prices that directly impact selling prices coordinates its ordering and pricing decisions. In a single-

period, single-item setting, we explicitly model the stochastic behavior of the input price as a

general continuous price process. In addition, we model the individual customer demand arrival

process that is price dependent. This approach allows us to see the impact of volatile market and

selling prices on ordering and pricing policies. Rather than determining a fixed selling price that

is independent from the market input price, we assume that the retailer determines a proportional

markup on the market price to reflect the effect of prevailing input prices. We explicitly characterize

the form of optimal ordering quantity and markup rate. This enables us to obtain insights on how

market price volatility impacts expected sales revenue and profit.

Our model is within the long-standing literature on coordinated inventory management and

pricing research stream which is based on simultaneously finding the optimal ordering and pricing

policies. However, different than many pricing models, it also has components that is connected to
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the literature on inventory models involving stochastic input prices and changing selling prices.

Many models in the coordinated inventory-pricing literature, whether stochastic or determinis-

tic, customer demand is assumed to be a function of the selling price. Whitin (1955) was the first

to allow selling price to be set simultaneously with order quantity in the newsvendor model. His

method is to first determine the optimal ordering quantity as a function of price and then find the

corresponding optimal price. Petruzzi and Dada (1999) present a unified approach for this problem.

Yano and Gilbert (2005) present reviews of the early joint inventory/pricing literature. In a related

work to this paper, Xiao et al. (2015) consider a similar dual source model to Chen et al. (2013)

and investigate the joint replenishment and pricing policy. Gayon et al. (2009) present a model for

a production/inventory system that includes a joint pricing component where the purchase prices

are fixed but demand rates depend on the state-of-the world. Liu and Yang (2015) investigate a

multi-period joint pricing and inventory control model where raw material costs randomly fluctuate

in a Markovian fashion and show the optimality of base-stock-list-price type policies.

Focusing on the single-period newsvendor model, Petruzzi and Dada (1999) investigate the joint

ordering and pricing decisions for both additive and multiplicative demand models and provide

conditions that are sufficient to ensure monotonicity of the profit function. They also characterize

some important properties of optimal prices. There are many papers on the newsvendor problem

that follow Petruzzi and Dada (1999) to explore different pricing aspects and most of these papers

make the standard assumptions that only require using the total demand that arrives in the sales

horizon. In our model, the timing of individual arrivals over the horizon is critical because the

revenue from sales depends on the continuously fluctuating input price at the given instance. We

are aware of only a few papers that account for the timing of demand arrivals over the sales season

for a newsvendor. In Grubbström (2010), demand arrives according to a compound renewal process

and arrival times are critical since a net present value objective is taken and revenues are discounted.

Unlike our paper, the prices are fixed and there is no price optimization component. Hu and Su

(2018) consider a purchasing and pricing problem for a newsvendor. The price process fluctuates

continuously during the purchasing period but price-dependent demand occurs at a later time in one

shot. In our model, the price fluctuations have a direct effect on the process generating the demand

(and therefore the revenue) and markup pricing is assumed. Gürel and Güllü (2019) consider a

problem that is similar to ours with two classes of customers where one class of customers is priced
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at a constant markup above the market price and the other class that arrives later is charged a fixed

price. They characterize the expected revenue function and characterize the optimal replenishment

quantity but do not consider the price dependence and markup optimization aspects for customers

who arrive earlier in the season. We explore the joint replenishment and markup optimization

problem and present analytical results on the effects of price volatility. Finally, we also note that

Canyakmaz et al. (2015) present some preliminary numerical simulation findings that are consistent

with the theoretical results that are formally proven in this paper.

Although we focus on a single-period model in this paper, we assume a backorder setting where

the firm needs to procure at the random market price at the end of sales period to satisfy back-

ordered customers. This aspect of our model is similar to inventory models with stochastic input

prices in the literature. A prominent example in this research stream is Kalymon (1971), who

incorporates random purchase prices that are modulated by a Markov process into a multi-period

inventory model with fixed costs. He proves that a price-dependent (s, S) ordering policy is op-

timal. Golabi (1985) considers a single-item deterministic demand inventory system. He assumes

that at the beginning of each cycle, the ordering price is determined according to a known dis-

tribution function. He derives a policy in which it is optimal to order for the next n periods if

the price falls into a certain interval. Assuming a deterministic demand setting with stochastic

purchase prices following a geometric Brownian motion process, Li and Kouvelis (1999) investi-

gate optimal purchasing strategies for different supply contract structures that differ depending on

the timing and quantity of the purchase. Yang and Xia (2009) consider a Poisson arrival process

in a continuous-review inventory model where purchase price is a discrete-state Markov process.

They find conditions that yield monotone optimal order-up-to levels in terms of purchase price.

More recently, Berling and Mart́ınez-de Albéniz (2011) investigate a Poisson demand system where

price is a continuous Markov process unlike Yang and Xia (2009). Specifically, they consider geo-

metric Brownian motion and Ornstein-Uhlenbeck processes for the price and characterize optimal

base-stock levels as a series of thresholds and provide an algorithm to calculate them. Berling

and Xie (2014) study the same model as in Berling and Mart́ınez-de Albéniz (2011) and propose

approximations to the optimal purchasing policy based on the decomposition approach.

In a similar manner, another research stream focuses on a randomly fluctuating spot market and

its effect on inventory replenishment decisions in the context of dual sourcing. For instance, Goel
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and Gutierrez (2012) consider a multi-period stochastic inventory model where a firm may purchase

from both spot and future markets by explicitly allowing spot and future prices as stochastic

processes. In Inderfurth and Kelle (2011), demand and market prices are independent random

variables in each period. Inderfurth et al. (2018) extend this to the case of correlated demand and

price processes. Chen et al. (2013) consider a dual source replenishment problem with lost sales

where the spot market price process follows a Markovian stochastic process and investigate the

optimal policy. Our model differs from these papers by assuming that fluctuations in stochastic

input prices pass to customers to a degree that can be controlled by a price markup.

There are also a number of inventory papers where model parameters (including purchase prices)

vary according to an external state of the world process which is Markov Chain. Examples include

Özekici and Parlar (1999) and Karabağ and Tan (2019). In these papers the optimal inventory

replenishment decision depends on the current state-of-the world. Unlike these papers, our model

assumes that the price process is a continuous random process which is appropriate for exchange

rates, commodities or spot markets.

Few papers consider the effect of changing selling prices on firm’s optimal inventory decisions.

Hariga (1995) extends economic order quantity (EOQ) model by incorporating the impact of in-

flation on selling price. Khouja and Park (2003) and Banerjee and Meitei (2009) consider the

impact of decreasing selling prices over the life cycle of technological products such as cell-phones.

Canyakmaz et al. (2019) analyze a multi-period replenishment problem under a random input price

process that also determines the selling prices which are also stochastic. The authors characterize

the optimal replenishment policy. In these papers, although selling prices are affected by external

factors in a deterministic or stochastic fashion, the firm is assumed to have no control over the

selling price. In our paper, we explicitly model the impact of exogenous stochastic input prices

as well as firm’s endogenous price markup decision on firm’s profit and characterize the optimal

inventory and markup pricing strategies.

With our model and analysis, we contribute to the literature by incorporating the effect of

fluctuating input prices into inventory and pricing decisions. This enables us to capture the effect of

price volatility during the sales season. We assume that the firm chooses a proportional markup over

the stochastic input price which directly impacts the customer arrival process. We also investigate

how the level of fluctuations in market prices affect optimal performance measures. The assumptions
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are fairly general and many similar cases in the literature can be addressed by looking at special

cases such as where input prices are constant or deterministic, price and demand processes are

independent etc. Under certain assumptions, we are able to characterize the optimal ordering

quantity and markup price and their interaction effect. In addition, using tools from stochastic

orderings of stochastic processes, we analytically characterize the effects of price monotonicity and

volatility.

The rest of the paper is organized as follows. We specify the basics of our model in §2, and the

form of optimal policy with several characterizations in §3. In §4, we analyze the impact of the

variability and monotonicity of the random prices on the optimal expected revenues and profits.

Finally, we present our concluding remarks in §5.

2 The Model

We consider a retailer that sells a single product which has an intrinsic commodity price value

that continuously evolves through time. The retailer determines a single inventory level y at the

beginning of a selling season of length T where all orders are received immediately at t = 0 (i.e.,

there is no lead time). We assume that the retailer sets a proportional markup α at t = 0 to

be applied to the market price of the commodity which together determine the selling price at

each time. We employ a general modeling approach for stochastic evolution of the market price

process that determines the input price and assume that it evolves according to a stochastic process

P = {Pt ; t ≥ 0} with state space R+ = [0,+∞). There are many examples of such price processes

that have been used in the extant literature. Below, we present some examples. (We assume

0 ≤ t ≤ T , and p0 ≥ 0):

Pt = p0 : a constant price process

Pt = e−rtp0 : a discounted price process

Pt = g(t) where g(t) is a deterministic function of time

Pt = pi if Xt = i where Xt is a continuous-time Markov chain starting at X0 = 0

Pt = p0 + µt+ σBt where Bt is a standard Brownian motion (Wiener process)

Pt = p0e
µt+σBt where Bt is a standard Brownian motion (Berling and Mart́ınez-de Albéniz, 2011)

More sophisticated two-level processes that are known to be good models of commodity prices
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(Schwartz and Smith, 2000, Canyakmaz et al., 2019)

Note that under a fluctuating price process and a proportional markup α, the effective selling

price of the product is αPt at time t. This implies that the selling prices are driven by the purchase

price process.

To model the individual customer demand process, we assume that customer arrival rates are

modulated by the price process that we consider. More specifically, we assume that individual

customers arrive according to a doubly-stochastic Poisson process with a stochastic arrival rate

process Λ = {Λt = λ (αPt) ; t ≥ 0} where λ (.) is a nonnegative deterministic function of random

selling price.

We denote the customer arrival process as N = {Nα
t ; t ≥ 0} where superscript α denotes its

connection to price markup α. Analogously, we use T = {Tn : n ≥ 1} to denote the random arrival

times of customers where Tn is arrival time of nth customer. Stochastic processes N and T are tied

via P{Tn ≤ t} = P{Nt ≥ n}.

We remark that doubly stochastic Poisson processes are generalizations of non-homogeneous

Poisson processes where customer arrival rates change in time in a deterministic fashion. In other

words, if Λt = λ(t) is deterministic, then the customer arrival process reduces to a non-homogeneous

Poisson process with arrival rate λ(t) at time t. Furthermore, the case where Λt = λ gives the

ordinary Poisson process with arrival rate λ.

Besides modulating customer arrivals, we assume that stochastic market price process also

affects customers’ individual demand quantities. In particular, we let X = {Xn;n ≥ 1} denote

the individual demand process that depends on the selling prices. This dependence is through a

price-dependent deterministic mean demand function µ and a random shock ξ with E [ξ] = 0 and

distribution function F which is independent of the price process P and arrival process N . More

specifically, we assume that Xn = µ (αPTn) + ξ where αPTn is the selling price at the time of nth

customer arrival. We use Dk to denote the cumulative demand by kth arriving customer so that

Dk =
k∑

n=1

Xn.

Using this notation, total random demand during the sales season can be denoted as DNα
T
.

Without any loss of generality, we assume that the purchase price of the item is the initial market
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price P0 since one can always reflect any differences in purchase price by shifting the market price

process appropriately. We allow backorders and assume that in case of shortage, newly arrived

customers are charged at the prevailing selling price and satisfied at time t = T. This is a plausible

assumption for cases where the retailer sells exclusive products such that arriving customers may

be unable to find elsewhere. Jewelry stores, for instance, usually take orders for diamond rings etc.

to be supplied later, yet their selling prices are determined considering the current market prices

of diamond and gold at the time of customer order, not the market prices at the time of delivery.

Justification of this setting through real life examples encourages us to focus on this particular

backorder model since it also provides a rather tractable analysis.

We assume that the retailer incurs a penalty cost of b for each unit of unsatisfied demand

and needs to replenish the inventory until all backorders are satisfied by purchasing at the market

price PT at the end of sales season. To avoid the uninteresting case where the retailer chooses to

backorder all customers, we assume that b + E[PT ] − P0 > 0 (i.e., unit underage cost is positive).

Without loss of generality, we do not assume any physical holding cost or salvage revenue in our

analysis, yet by discounting all future cash flow, we are capturing the opportunity costs associated

with the retailer’s capital investment. We remark here that our results carry over to the case where

the repurchase price PT is independent of the price process and our characterizations simplify in

most cases. This case could be especially relevant if the retailer contracted repurchases in advance

at a fixed cost or possesses financial securities such as futures or call options contingent on the

market price at time T in sufficient amounts.

Next, we construct the total customer demand variable along with its distribution, revenues from

sales and ultimately the expected profit function for our subsequent optimization and comparison

analyses.

2.1 Distribution of Demand and Expected Sales

As customers arrive according to a doubly stochastic Poisson process, total number of individual

customers Nα
T who arrive during the sales season is Poisson with random mean

Mα
T = E [Nα

T | P] =

T∫
0

λ(αPt)dt.
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Here, Mα
T is the expected number of individual arrivals given all price realizations during the sales

season. As each arriving customer demands a random amount of the item, total demand DNα
T

is a

modified version of compound Poisson with dependent demand quantities (where the dependence

is through the price process P). In the Appendix, we show that expected total demand dT (α) as

a function markup α reduces to

dT (α) = E
[
DNα

T

]
=

∫ T

0
E
[
λ (αPt)

]
dt (1)

where λ (x) = λ (x)µ (x) . We call λ the modified intensity function. Note that it contains both

customers’ arrival intensity λ as well as their mean demand function µ. An interesting implication

of this result is that in expectation, the demand process behaves as if customers arrive according to

a doubly stochastic process with the modified intensity process λ and demand one unit of the item.

Moreover, the whole price path impacts the demand distribution and consequently the expected

demand. Finally, note that in the backorder case, the total demand is equal to the total sales.

2.2 Expected Revenue from Sales

Similar to total demand, we let RαT denote the total discounted revenue until time T and generate it

by summing all individual discounted revenues collected from arriving customers. More specifically,

RαT =

Nα
T∑

n=1

e−rTnαPTnXn

where Tn denotes the arrival time of nth customer and, as stated before, Nα
T is the total number of

individual customers arrived by time T when markup is α. Also, αPTnXn is the random revenue

obtained from the nth customer. Note that both selling price and demand amount are random at

each customer arrival. We also discount all individual revenues to time 0 by factor e−rTn where r is

the interest rate per unit time. Risk-neutral retailer is concerned with the expected total revenue by

time T which we denote as rT (α) = E [RαT ] as a function of markup α. Note that total revenue from

sales is independent of the stocking decision y in the backorder setting. We show in the Appendix
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that rαT can be written in a compact form as

rT (α) =

T∫
0

e−rtE
[
αPtλ (αPt)

]
dt. (2)

As in the case of expected sales function in (1), expected revenue depends on the whole price path

between [0, T ] and is modulated by the modified intensity rate λ.

The way we form customer demand and revenues by explicitly modeling arrival times is not

common in inventory literature. Most existing models take demand as a random variable to be

realized at the end of the sales period. We specifically use this particular setup to investigate the

effect of price fluctuations at the time of customer arrivals. A similar approach with fixed prices

can be seen in Grubbström (2010) who investigates a different version of the newsvendor problem

where demand is generated by a compound renewal customer arrival process with no fixed selling

horizon and sales continue until the retailer runs out of inventory.

2.3 Expected Total Profit

Assuming that there is no initial inventory, we can write the expected total profit as a function of

markup α and order-up-to level y as

g(y, α) = −P0y + rT (α)− E
[
(b+ PT ) (DNα

T
− y)+

]
(3)

where x+ ≡ max{x, 0}. Here the first term denotes the total purchase cost, the second term denotes

the expected total discounted revenue and the last term denotes the backorder and repurchase costs.

The objective of the decision maker is to solve

max
α∈R+,y∈R+

g(y, α)

by choosing a proportional markup α ∈ R+ and an order-up-to level y ∈ R+. In the next section,

we present a characterization of the form of the optimal inventory-markup pricing policy.
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3 Optimal Order Quantity & Markup Price

In this section, we analyze the behavior of the expected profit function g (y, α) with respect to y

and α and corresponding optimal inventory and markup pricing strategies. We begin by analyzing

the optimal inventory policy for a fixed markup decision α.

3.1 Optimal Order Quantity for a Given Markup

In the following, we will use P
{
DNα

T
= y
}

to denote the probability distribution function of DNα
T

evaluated at y.

Theorem 1 Given markup α, g (y, α) is concave in y and an order-up-to (base-stock policy) is

optimal, i.e., it is optimal to order up to the optimal base-stock level

y∗ (α) = inf

{
y : E

[
(b+ PT ) 1{

DNα
T
≤y

}] ≥ b+ E [PT ]− P0

}
(4)

if initial inventory is less than y∗(α); otherwise, it is optimal not to order.

Proof. The first and second derivatives of g(y, a) with respect to y are given by

gy(y, α) = −P0 + E
[
(b+ PT ) 1{

DNα
T
≥y

}] = −P0 + b+ E [PT ]− E
[
(b+ PT ) 1{

DNα
T
<y

}]

and

gyy(y, α) = −E
[
(b+ PT )

∂

∂y
E
[
1{

DNα
T
<y

} | P
]]

= −E
[
(b+ PT )

∂

∂y
P
{
DNα

T
< y | P

}]
= −E

[
(b+ PT )P

{
DNα

T
= y | P

}]
. (5)

As (5) is negative for all y for given markup, expected profit function is concave and a base-stock

policy is optimal. For each markup level α, the optimal base-stock level is the maximizer of g(y, α)

which is found by,

y∗ (α) = inf

{
y : −P0 + b+ E [PT ]− E

[
(b+ PT ) 1{

DNα
T
<y

}] ≤ 0

}
= inf

{
y : E

[
(b+ PT ) 1{

DNα
T
≤y

}] ≥ b+ E [PT ]− P0

}
.
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The concavity of the objective function ensures that an order-up-to inventory policy is optimal

given markup α and the optimal base-stock level is given by (4). Note that this is a different version

of the newsvendor critical fractile solution where the cumulative distribution of demand cannot be

separated from the random purchase costs at time T since total demand DNα
T

and final price PT are

dependent. If one can take alternative assumptions that break this dependence (such as demand

being independent from price), the critical fractile would appear clearly.

The structure of the optimal order-up-to level allows us to see the impact of customer demand

process. First, the larger the intensity function λ for a given price process P , the larger the optimal

order quantity. This is due to the fact that the total demand increases in a stochastic sense for a

given price process and inventory level y. Hence, the left hand side of the inequality in (4) decreases

and the smallest y that satisfies it increases. The same is true for customers’ mean demand function

µ. That is, the more customers demand (in expectation) at each arrival, the larger inventory the

retailer should hold.

3.2 Optimal Markup for a Given Inventory Level

In this section, we analyze the behavior of the expected profit function and find the optimal markup

policy for a given inventory level. First, we make some reasonable assumptions and prove a series

of results that will lead to our main characterization. Analogues of these assumptions in models

without price volatilities are quite common in pricing literature (see Ziya et al., 2004).

Assumption 1 The revenue rate xλ (x) is concave.

Assumption 1 is standard in price optimization literature which ensures that the revenue func-

tion is well-behaved. In our case, we assume that it holds for the revenue rate function. This

assumption supports one of the most important models: the linear case where λ(p) = Λ(1− bp)+.

It also supports many other plausible models.

Assumption 2 λ (x) is non-increasing and convex.

The first part of Assumption 2 states that the demand arrival rate is non-increasing in price

which is the standard starting assumption in price optimization literature. For the convexity of
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the demand arrival rate, many standard models starting with the linear case and the exponential

case (λ(p) = Λe−bp) also satisfy this assumption. This also would be the case if the price response

function is estimated from data by a linear regression or a log-regression.

The next two lemmas establish that the total expected revenue is concave and expected total

sales is convex in markup for a given inventory level.

Lemma 1 Expected total discounted revenue rT (α) is concave in markup α.

Proof. Since xλ (x) is concave, αPtλ (αPt) is concave in α for each Pt which makes e−rtE [αPtλ (αPt)] ,

hence rT (α) given in (2) concave in α.

Lemma 1 asserts that the expected total discounted revenue has decreasing marginal returns in

α implying that the markup price optimization should have a reasonable solution.

Lemma 2 Expected total demand (sales) dT (α) is non-increasing and convex in markup α.

Proof. Since λ (.) is non-increasing and convex, λ(αPt) is also non-increasing and convex for each

Pt which makes E
[
λ (αPt)

]
, hence dT (α) given in (1) non-increasing and convex in α.

Lemma 2 presents an analogous result to Lemma 1, this time in terms of the expected total

demand. The two lemmas establish that the assumptions on the demand (modified intensity) and

the revenue rates propagate to expected demand and expected revenue.

From now on, we use the notation 4E
[
(y −Dk)

+] = E
[
(y −Dk+1)

+ − (y −Dk)
+] and

42E
[
(y −Dk)

+] = E
[
(y −Dk+2)

+ − 2 (y −Dk+1)
+ + (y −Dk)

+] to denote the first and second

order forward differences of the expected leftover inventory function with respect to the number of

customer arrivals. We will also make use of the following lemma in our subsequent analysis.

Lemma 3 E
[
(y −Dk)

+] and E
[
(Dk − y)+

]
are integer convex in k.

Proof. For any discrete function to be integer convex, second order forward differences should be

positive. Note that,

4E
[
(y −Dk)

+] = E
[
(y −Dk+1)

+ − (y −Dk)
+] = E

[
(y −Dk −Xk+1)

+ − (y −Dk)
+] .
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Using (a− b)+ = a−min {a, b} for any a, b ∈ R, we can write

4E
[
(y −Dk)

+] = −E
[
min

{
Xk+1, (y −Dk)

+}] . (6)

As k increases, −min
{
Xk+1, (y −Dk)

+} increases so that the second order difference with respect

to k is nonnegative, i.e., 42E
[
(y −Dk)

+] ≥ 0. Similarly, E
[
(Dk − y)+

]
= E

[
Dk − y + (y −Dk)

+]
is also integer convex in k.

In the following theorem, we show the concavity of the expected profit function with respect

to markup variable α using these two lemmas. For this, we assume that mean demand function is

constant at µ. This implies that demand quantity X is independent of the price with E[Xn] = µ for

every n ≥ 1. In the following characterizations, (Mα
T )′ = ∂

∂αM
α
T , (Mα

T )′′ = ∂2

∂α2M
α
T , r

′
T (α) = ∂

∂αr
α
T

and r′′T (α) = ∂2

∂α2 r
α
T denote first and second order derivatives of Mα

T and rαT , respectively.

Theorem 2 For any fixed order-up-to level y, g(y, a) is concave in α and optimal markup α∗ (y)

is found by solving

r′T (α)− µE
[
(b+ PT ) (Mα

T )′
]

+ E
[
(b+ PT ) (Mα

T )′min
{(
y −DNα

T

)+
, XNα

T+1

}]
= 0. (7)

Proof. It is shown in the Appendix that the first and second order partial derivatives of g(y, a)

with respect to α are given by

gα (y, α) = r′T (α)− µE
[
(b+ PT ) (Mα

T )′
]

+ E
[
(b+ PT ) (Mα

T )′min
{(
y −DNα

T

)+
, XNα

T+1

}]

and

gαα(y, α) = r′′T (α)− µE
[
(b+ PT ) (Mα

T )′′
]
− E

[
(b+ PT ) (Mα

T )′′ E
[
4
(
y −DNα

T

)+ | P]]
−E

[
(b+ PT )

(
(Mα

T )′
)2 E [42

(
y −DNα

T

)+ | P]] ,
respectively. By Lemma 1 and Lemma 2, r′′T (α) ≤ 0 and (Mα

T )′′ ≥ 0. Additionally, by Lemma 3,

the last term is also negative. Observe also that,

E
[
4
(
y −DNα

T

)+ | P] = −E
[
min

{
XNα

T+1,
(
y −DNα

T

)+} | P] ≥ −E [XNα
T+1

]
= −µ.
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Then the following inequality holds:

gαα(y, α) ≤ r′′T (α)− µE
[
(b+ PT ) (Mα

T )′′
]

+ µE
[
(b+ PT ) (Mα

T )′′
]

−E
[
(b+ PT )

(
(Mα

T )′
)2 E [42

(
y −DNα

T

)+ | P]]
= r′′T (α)− E

[
(b+ PT )

(
(Mα

T )′
)2 E [42

(
y −DNα

T

)+ | P]] ≤ 0.

The last inequality is due to Lemma 3 and r′′T (α) ≤ 0. Since gαα(y, α) ≤ 0, expected total profit

is concave in markup α for each inventory level y. We can find the optimal markup by setting the

first partial derivative with respect to α equal to zero, i.e., gα(y, α) = 0, which is given in (7) .

Establishing concavity (in terms of α) is not a trivial issue in pricing and Theorem 2 proves

that this can be done in fairly general terms based solely on some standard pricing assumptions on

the demand arrival rate function in the case where demand quantities are independent of the price.

Unfortunately, concavity is not guaranteed in the fully general case where both customers’ arrival

rate and demand depend on the continuous price process and when the markup α is assumed to

be continuous. We should however note that if the markup is chosen from a finite discrete set

of options (i.e 5%, 10% or 20%), the markup optimization problem for the general model where

the demand quantity also depends on the price can be solved by evaluating each of these markup

options for the corresponding optimal order quantity using Theorem 1.

By Theorems 1 and 2, we characterize the optimality equations for the base-stock level y and

markup level α. An interesting issue is to understand how the two decisions interact. The next

proposition proves that the expected profit function is submodular in the two decision variables

which leads to useful monotonicity properties for the optimal decisions.

Proposition 1 g (y, a) is submodular. Moreover, optimal inventory level y∗ (α) is decreasing in α

and optimal markup α∗ (y) is decreasing in y.

Proof. We show the submodularity of g (y, α) by showing that gyα (y, α) < 0. Note that

gyα(y, α) = −E
[
(b+ PT ) (Mα

T )′
(
P
{
DNα

T
+ 1 < y | P

}
− P

{
DNα

T
< y | P

})]
as shown in the Appendix. Since (Mα

T )′ ≤ 0 and P
{
DNα

T+1 ≤ y | P
}
≤ P

{
DNα

T
≤ y | P

}
, deriva-

tive of the expected profit function with respect to each variable is negative, i.e., gyα(y, α) < 0.
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Moreover, in (4), as α increases 1{
DNα

T
<y

} increases for fixed y which results in lower y∗ (α). Sim-

ilarly, since gyα (y, α) < 0, gα (y, α) is lower for higher values of y that is gα (y, α) is decreasing in

y. Therefore, α∗ (y) is lower for higher values of y.

Proposition 1 establishes that the optimal base-stock level is decreasing in the markup and the

optimal markup is decreasing in the base-stock level. Both properties are known to be true for

simpler inventory/pricing models (Petruzzi and Dada, 1999). Here, we show that they continue to

hold for the more complicated case of fluctuating prices.

This section focused on the optimal ordering and markup decisions for a given price process.

In the next section, we analyze the effect of volatile market prices on the expected revenues, sales

and profits.

4 The Impact of Price Process on Performance: Monotonicity and

Variability

In our model, we use a general stochastic price process which is assumed to have non-negative price

paths. We now analyze how different performance metrics of the inventory system change with

respect to the monotonicity as well as the variability of the price process. Our goal is to obtain

general results with few specifications. To this end, to make comparisons, we use some tools from

the stochastic and convex ordering of random variables and stochastic processes. The following

definitions were taken from Müller and Stoyan (2002).

Definition 1 Let X and Y denote two generic random variables. X is said to precede Y in convex

(stochastic, increasing convex) order if E [f (X)] ≤ E [f (Y )] for all convex (increasing, increasing

convex) functions f, i.e.,

X ≤
cx(st,icx)

Y ⇔ E [f (X)] ≤ E [f (Y )]

for all convex (increasing, increasing convex) functions f .

Similar to convex (stochastic) ordering of random variables, two stochastic processes are said to

be convexly (or stochastically) ordered if random values at each time are convexly (stochastically)

ordered as the next definition states.
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Definition 2 Let X = {Xt; t ≥ 0} and Y = {Yt; t ≥ 0} denote two stochastic processes. Then,

X ≤
cx(st,icx)

Y ⇔ E [f (Xt)] ≤ E [f (Yt)]

for all t ≥ 0 and for all convex (increasing, increasing convex) functions f.

A practical implication of convex orders is that if a random variable Y is greater than X in

terms of convex order, Y has a higher variance then X while having the same expected value.

This is particularly important for our purposes in investigating the impact of price volatility on

the inventory system. In particular, in our analysis, we will use two market price processes, which

we denote as P(1) =
{
P

(1)
t ; t ≥ 0

}
and P(2) =

{
P

(2)
t ; t ≥ 0

}
, to compare the expected revenues,

profits and sales. Assuming that one price process is larger in terms of convex order ensures that

the prices for both processes are equal in expectation at each time point so that effects due to

the drift of prices are isolated and we can focus solely on the impact of price variability. This is

especially important as the entire price path during the sales season modulates customers’ arrival

frequency as well as their demand amount.

The convex ordering condition in Definition 2 is generally straightforward to check for many

widely used stochastic price processes. In many cases, it is sufficient to compare the respective

process parameters. For instance, consider two Brownian motions P(1) and P(2) where P
(i)
t =

p
(i)
0 + µ(i)t + σ(i)B

(i)
t with drift µ(i) and volatility σ(i) for i = {1, 2}. B(i)

t is a standard Brownian

motion (Wiener) process with E[B
(i)
t ] = 0 and V ar(B

(i)
t ) = t. As P

(i)
t is Normally distributed

with mean p
(i)
0 + µt and variance (σ(i))2t, P

(1)
t ≤

cx
P

(2)
t if p

(1)
0 = p

(2)
0 , µ(1) = µ(2) and σ(1) ≤ σ(2)

(Müller and Stoyan, 2002). Since this is true for any t ≥ 0, P(1) ≤
cx
P(2) by Definition 2. In other

words, if two Brownian motions have the same initial price and drift, then the one with the larger

volatility parameter is also larger in terms of convex order (i.e., more variable). This comparison

technique is also valid for the geometric Brownian motion process where prices at each time point

are Lognormally distributed.

To make comparisons across several performance measures based on price processes P(1) and

P(2), we denote the corresponding arrival rate (intensity) processes as Λ(i) where Λ(i) = {Λ(i)
t =

λ(αP
(i)
t ); t ≥ 0} and corresponding individual customer arrival processes as N (i) = {N (i)

t ; t ≥ 0}

for i = {1, 2}. We also use r
(i)
T (α) , d

(i)
T (α) and g(i)(y, α) to denote the expected revenue, expected
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sales and expect profit functions under market price process P(i).

4.1 The Effect of Price Process Monotonicity

We start our analysis with the impact of price monotonicity and establish first that stochastically

higher prices lead to lower expected sales for a fixed markup α.

Proposition 2 If P(1) ≤
st
P(2), then d

(1)
T (α) ≥ d

(2)
T (α) for each α ∈ R+.

Proof. As λ is non-increasing, by Definition 1 we have E
[
λ
(
αP

(1)
t

)]
≥ E

[
λ
(
αP

(2)
t

)]
for each

t ≥ 0. Then it follows that

d
(1)
T (α) =

∫ T

0
E
[
λ
(
αP

(1)
t

)]
dt ≥ d(2)T (α) =

∫ T

0
E
[
λ
(
αP

(2)
t

)]
dt

The basic intuition behind Proposition 2 is that as market prices are more likely to be higher

during the sales season, total customer demand will more likely be lower as the modified intensity

rate λ is non-increasing in price. However, this does not necessarily mean that customers will arrive

less frequently as prices rise. Note that other than nonnegativity, we do not make any other specific

assumptions on the arrival intensity function λ and the mean demand function µ. An interesting

implication of this is that, Proposition 2 may still hold if customers arrive more (less) frequently but

individually demand less (more) in expectation when prices are high. The only required condition

is the modified arrival rate (λµ) being non-increasing in price.

Although stochastically higher input prices lead to lower expected demand (hence sales), this

does not necessarily translate to lower optimal order quantities for the retailer. This is due to

stochastically higher repurchase cost at the end of the sales season which induces the retailer to

order more. The conflicting effects of prices on the total demand and the repurchase cost can be

seen in the optimal order quantity condition given in (4). It is not clear which impact is dominating

in this general setting where demand is influenced by the entire price path during the sales season.

On the other hand, in the special case where the repurchase cost is fixed and independent of the

price process, a stochastically larger price process leads to lower optimal order quantities. This

could be especially relevant if the retailer has made an agreement (such as an option contract) with
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the supplier to repurchase items at a fixed price at the end of sales season.

4.2 The Effect of Price Process Variability

We now analyze the impact of price variability on different performance measures. We start with

expected revenues and expected sales.

Proposition 3 If P(1) ≤
cx
P(2), then d

(1)
T (α) ≤ d(2)T (α) and r

(1)
T (α) ≥ r(2)T (α) for each α ∈ R+.

Proof. Since λ (αPt) is convex in Pt by Assumption 2, for any t ≥ 0, P
(1)
t ≤

cx
P

(2)
t implies

E
[
λ
(
αP

(1)
t

)]
≤ E

[
λ
(
αP

(2)
t

)]
. Then, it follows that

d
(1)
T (α) =

T∫
0

E
[
λ
(
αP

(1)
t

)]
dt ≤

T∫
0

E
[
λ
(
αP

(2)
t

)]
dt = d

(2)
T (α) .

Similarly, since αPtλ (αPt) is concave in Pt by Assumption 1, P
(1)
t ≤

cx
P

(2)
t implies E

[
αP

(1)
t λ

(
αP

(1)
t

)]
≥

E
[
αP

(2)
t λ

(
αP

(2)
t

)]
for any t ∈ [0, T ]. Then it follows that

r
(1)
T (α) =

T∫
0

e−rtE
[
αP

(1)
t λ

(
αP

(1)
t

)]
dt ≥

T∫
0

e−rtE
[
αP

(2)
t λ

(
αP

(2)
t

)]
dt = r

(2)
T (α) .

Proposition 3 establishes an interesting result that a more volatile price process leads to lower

(weakly) expected revenues and higher (weakly) expected total sales for a given markup level. The

intuition is directly related to how revenue and sales functions react to price variations at different

price levels. More specifically, marginal changes in prices when they are low have a larger impact

on sales compared to the case where prices are high. This is since the sales function is convex

and non-increasing in markup level (hence in price for a given markup level). As prices at both

ends are more likely to be realized for a more volatile price process (compared to a less volatile

price process), what is gained on the lower end of prices in terms of sales outweighs what is lost

on the higher end of prices. This leads to higher sales in expectation. A similar intuition holds for

the expected revenues, but the effects are reversed. As revenue is concave in prices, larger price

variations lead to lower revenues in expectation.

In the following, we prove a series of results that, along with Proposition 3, enable us to state
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our main theorem in this section. The next lemma proves that if two market price processes

are convexly ordered, their corresponding rate processes are also convexly ordered, however only

directionally. For this part, we assume that rate function λ is convex.

Lemma 4 If P(1) ≤
cx
P(2), then Λ(1) ≤

icx
Λ(2).

Proof. Let t ≥ 0 be fixed and f be an increasing convex function. Then, f (λ) is convex since

f (λ)′′ = λ′′f ′ (λ) + (λ′)2 f ′′ (λ) ≥ 0 as λ is convex and f ′ ≥ 0 by assumption. Since f (λ) is convex,

E
[
f
(

Λ
(1)
t

)]
= E

[
f
(
λ
(
αP

(1)
t

))]
≤ E

[
f
(
λ
(
αP

(2)
t

))]
= E

[
f
(

Λ
(2)
t

)]
.

Since this is true for any convex increasing f and t ≥ 0, Λ(1) ≤
icx

Λ(2).

Lemma 4 connects the volatility of the price processes to that of arrival rate functions. In

particular, it states that a more variable price process leads to a more variable customer arrival

rate process with a (weakly) higher expected value at each time point (by Definition 2)1. Similar

to the result in Proposition 2, this is mainly due to the convexity of the rate function.

We next use the following proposition from B laszczyszyn and Yogeshwaran (2009) that links

the convex ordering of intensity measure Λ of a doubly-stochastic Poisson process to the counting

measure N .

Proposition 4 Λ(1) ≤
cx,icx

Λ(2) implies N (1) ≤
cx,icx

N (2).

Proposition 4 states that a more variable rate process yields a more variable arrival process in

terms of the convex order. A direct result of this together with Lemma 4 is that a more variable

price process leads to a more variable arrival process which is also weakly faster in expectation.

This is stated in the following immediate corollary.

Corollary 1 P(1) ≤
cx
P(2) implies N (1) ≤

icx
N (2).

Corollary 1 ties the convex ordering of price process to a convex order of arrival counts. This

is critical to extend the comparisons to expected profits where we need to handle the newsvendor

mismatch cost functions. This is addressed in the following lemma.

1To see this, take f(x) = x. Then E[λ(αP
(1)
t )] ≤ E[λ(αP

(2)
t )] for all t ≥ 0 since Λ(1) ≤

icx
Λ(2).
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Lemma 5 P(1) ≤
cx
P (2) implies E

[
P

(1)
T (D

N
α(1)
T

− y)+
]
≤ E

[
P

(2)
T (D

N
α(2)
T

− y)+
]
.

Proof. Assume that P(1) ≤
cx
P(2). Then by Corollary 1, N (1) ≤

icx
N (2). Together with this rela-

tionship, we will use the relationship between convex ordering of conditional random variables and

convex ordering of their unconditional counterparts. It is known that if two random variables are

convex ordered, so their conditional counterparts, Leskelä et al. (2017). Then, we can write

P(1) ≤
cx
P(2) ⇒

{
P

(1)
t ; t ∈ [0, T )

}
| PT ≤

cx

{
P

(2)
t ; t ∈ [0, T )

}
| PT ⇒ N

(1)
T | PT ≤

icx
N

(2)
T | PT .

Now assume that PT is given. Then,

E
[
(D

N
α(1)
T

− y)+ | PT
]

= E
[
E
[
(D

N
α(1)
T

− y)+ | Nα(1)
T

]
| PT

]
≤ E

[
E
[
(D

N
α(2)
T

− y)+ | Nα(2)
T

]
| PT

]
= E

[
(D

N
α(2)
T

− y)+ | PT
]
.

This is due to the fact that E
[
(DNα

T
− y)+ | Nα

T

]
is an increasing convex function of Nα

T by Lemma

3. Then it follows that

E
[
P

(1)
T (D

N
α(1)
T

− y)+
]

= E
[
P

(1)
T E

[
(D

N
α(1)
T

− y)+ | P (1)
T

]]
≤ E

[
P

(2)
T E

[
(D

N
α(2)
T

− y)+ | P (2)
T

]]
= E

[
P

(2)
T (D

N
α(2)
T

− y)+
]
.

Lemma 5 is a major result proving that a more volatile price process in terms of convex order

leads to higher expected mismatch costs between supply and demand for the same markup and

starting inventory. This is since the mismatch cost is convex in customer demand and a more

variable price process yields a more variable customer arrival process.

We are now ready to state the following theorem that uses the previous lemmas and is the main

result of this section.

Theorem 3 If P(1) ≤
cx
P(2), then g(1)(y, α) ≥ g(2)(y, α) for all y ≥ 0 and α ≥ 0.

Proof. The result follows by Proposition 3 and Lemma 5 considering the expected profit function

in (3) for a given inventory level y and markup α.
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Theorem 3 establishes that a more volatile price process leads to lower expected profits for a

given markup and starting inventory under general conditions. Please note that no specification of

the price process is necessary for the result (apart from the fact that the price processes have to

be comparable). Next, we can extend the result to optimal expected profits using first principles

of optimization.

Corollary 2 Let g(i)∗ = max
(α,y)∈R+×R+

g(i)(y;α) denote the optimal expected profit under market price

process P(i). If P(1) ≤
cx
P(2), then g(1)∗ ≥ g(2)∗.

Proof. Let y∗(i) and α∗(i) denote the optimal order-up-to level and markup under price process

P(i), i = {1, 2}. Since P(1) ≤
cx
P(2), we have g(1)(y∗(2), α∗(2)) ≥ g(2)(y∗(2), α∗(2)) by Theorem 3. By

optimality, g(1)(y∗(1), α∗(1)) ≥ g(1)(y∗(2), α∗(2)) which gives g(1)(y∗(1), α∗(1)) ≥ g(2)(y∗(2), α∗(2))

We conclude that more volatile price processes lead to lower optimal expected profits under joint

markup pricing and ordering. This is certainly of interest for the model in this paper and its special

cases and we hope that the toolbox we use to establish the comparisons based on convex ordering

of stochastic processes may be useful to other research that investigates inventory problems with

random prices.

5 Conclusion

In this paper, we investigate a single-period joint inventory/pricing problem of a retailer that

faces stochastic price volatilities. Unlike classical single-period models, selling prices, customer

arrival rates and demand amounts are affected by a continuous-time stochastic price process. Our

contributions can be summarized as follows:

• We extend the single-period inventory modeling framework to take into account situations

where the sales revenue depends on the arrival time of customers during the season. In

addition, the demand arrival rates and amounts are modulated by a continuous external

process.

• We establish that the optimal ordering policy is an order-up-to policy for a fixed markup level

and optimal markup level can be characterized for a fixed inventory level. In addition, we
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prove that as the inventory level increases, the optimal markup decreases and as the markup

increases, the optimal base-stock level decreases.

• By using stochastic orders for processes, we establish comparison results for two ordered price

processes. In particular, we show that as the price process becomes more volatile (variable) the

expected revenues and profits decrease while the expected sales increase. To our knowledge,

the use of this class of stochastic orders is new for joint inventory/pricing models.

Since our modeling assumptions are quiet general, many other relevant cases can be covered

with some modifications. For instance, if the price process is constant and demand is not price

dependent, our model becomes an alternate version of Grubbström (2010) but we use a probabilistic

analysis not requiring Laplace transforms. If, in addition to the constant price assumption, demand

is price dependent, then markup pricing is equivalent to regular static pricing. The resulting model

would be a version of Grubbström (2010) with joint pricing. With additional modifications, we

can also capture demand dependence on other external processes than the price. For instance, the

demand arrival rate could depend on the random weather conditions (temperature, rainfall etc.).

Some other interesting extensions of the model requiring additional work are to consider the case

with lost sales (instead of backorders) and a multi-period version of the joint pricing and ordering

problem. Both cases present non-trivial technical challenges. Other potential ideas for future

work include dynamic markup pricing in the presence of input price fluctuations and downside risk

management issues.
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6 Appendix

Let P = {Pt : t ∈ [0, T ]}. Then

rT (α) = E

Nα
T∑

n=1

e−rTnαPTnXn

 = E

Nα
T∑

n=1

e−rTnαPTnµ (αPTn)


= EP

E
Nα

T∑
n=1

e−rTnαPTnµ (αPTn) |P


= EP

ENα
T |P

∑
k≥0

P {Nα
T = k|P}E

[
k∑

n=1

e−rTnαPTnµ (αPTn) |P, Nα
T = k

]
where the second equality is due to E[ξ] = 0. Note that conditioned on Nα

T = k and P, Tn is the

order statistics of k i.i.d. random variables on [0, T ] with cumulative distribution function

Φ (t) =

t∫
0

λ(αPu)du

T∫
0

λ(αPu)du

(8)

and probability distribution function

φ (t) = Φ′ (t) =
λ(αPt)

T∫
0

λ(αPu)du

.

Then

rT (α) = EP

E
∑
k≥0

P {Nα
T = k|P} kE

[
e−rT̃αP

T̃
µ
(
αP

T̃

)
|P
]

where T̃ is a r.v. with distribution Φ given in (8) . Since

∑
k≥0

P {Nα
T = k|P} k = E [Nα

T |P] =

T∫
0

λ(αPu)du
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we have,

rT (α) = EP
[
E [Nα

T |P]E
[
e−rT̃αP

T̃
µ
(
αP

T̃

)
|P
]]

= EP

[
E [Nα

T |P]

∫ T
0 e−rtαPtµ (αPt)λ (αPt) dt∫ T

0 λ (αPu) du

]

= E
[∫ T

0
e−rtαPtµ (αPt)λ (αPt) dt

]
=

∫ T

0
e−rtE[αPtλ (αPt)]dt

where λ = λµ. In a similar manner, expected total demand during the sales season is

dT (α) =

∫ T

0
e−rtE

[
λ (αPt)

]
dt.

Derivation of Partial Derivatives of g(y, α)

The first order derivative of g (y, α) with respect to α is

gα (y, α) =
∂

∂α
E
[
RαT − (b+ PT )DNα

T
− (b+ PT ) (y −DNα

T
)+
]
.

Assume µ(x) = µ. Then, we find

∂

∂α
E
[
(b+ PT )DNα

T

]
=

∂

∂α
E
[
E
[
(b+ PT )DNα

T
| P
]]

= E
[
(b+ PT )

∂

∂α
E
[
DNα

T
| P
]]

= µE
[
(b+ PT ) (Mα

T )
′
]

and

∂

∂α
E
[
(b+ PT ) (y −DNα

T
)+
]

=
∂

∂α
E
[
E
[
(b+ PT ) (y −DNα

T
)+ | P

]]
= E

[
(b+ PT )

∂

∂α
E
[
(y −DNα

T
)+ | P

]]
(9)
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where

∂

∂α
E
[
(y −DNα

T
)+ | P

]
=

∂

∂α

∞∑
k=0

P {Nα
T = k | P}E

[
(y −Dk)

+
]

=
∂

∂α

∞∑
k=0

(
e−M

α
T (Mα

T )k

k!
E
[
(y −Dk)

+])

=
∞∑
k=0

(
(Mα

T )′
(
−
e−M

α
T (Mα

T )k

k!
+
e−M

α
T (Mα

T )k−1

(k − 1)!

)
E
[
(y −Dk)

+])

= − (Mα
T )′

∞∑
k=0

P {Nα
T = k | P}E

[
(y −Dk)

+]
+ (Mα

T )′
∞∑
k=0

P {Nα
T = k | P}E

[
(y −Dk+1)

+] .
We defined earlier that 4k (y −Dk)

+ = (y −Dk+1)
+ − (y −Dk)

+ . This makes

∂

∂α
E
[
(y −DNα

T
)+ | P

]
= (Mα

T )′
∞∑
k=0

P {Nα
T = k | P}E

[
4k (y −Dk)

+]
= (Mα

T )′ E
[
4
(
y −DNα

T

)+ | P] (10)

Finally, we have

gα (y, α) = r′T (α)− µE
[
(b+ PT ) (Mα

T )′
]
− E

[
(b+ PT ) (Mα

T )′ E
[
4
(
y −DNα

T

)+ | P]]
= r′T (α)− µE

[
(b+ PT ) (Mα

T )
′
]
− E

[
(b+ PT ) (Mα

T )′ 4
(
y −DNα

T

)+]
= r′T (α)− µE

[
(b+ PT ) (Mα

T )′
]

+ E
[
(b+ PT ) (Mα

T )′min
{(
y −DNα

T

)+
, XNα

T+1

}]
.

By (9), second order derivative with respect to α is

gαα (y, α) = r′′T (α)− µE
[
(b+ PT ) (Mα

T )′′
]
− E

[
(b+ PT )

∂2

∂α2
E
[
(y −DNα

T
)+ | P

]]

where we can write by (10) that

∂2

∂α2
E
[
(y −DNα

T
)+ | P

]
= (Mα

T )′′ E
[
4
(
y −DNα

T

)+ | P]+ (Mα
T )′

∂

∂α
E
[
4
(
y −DNα

T

)+ | P] .
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Performing a similar analysis for finding (10), one can write

∂

∂α
E
[
4
(
y −DNα

T

)+ | P] = (Mα
T )′ E

[
42
(
y −DNα

T

)+ | P]

which leads to

∂2

∂α2
E
[
(y −DNα

T
)+ | P

]
= (Mα

T )′′ E
[
4
(
y −DNα

T

)+ | P]+
(
(Mα

T )′
)2 E [42

(
y −DNα

T

)+ | P]

and

gαα (y, α) = r′′T (α)− µE
[
(b+ PT ) (Mα

T )′′
]
− E

[
(b+ PT ) (Mα

T )′′ E
[
4
(
y −DNα

T

)+ | P]]
−E

[
(b+ PT )

(
(Mα

T )′
)2 E [42

(
y −DNα

T

)+ | P]]
= r′′T (α)− µE

[
(b+ PT ) (Mα

T )′′
]
− E

[
(b+ PT ) (Mα

T )′′ 4
(
y −DNα

T

)+]
−E

[
(b+ PT )

(
(Mα

T )′
)2 42

(
y −DNα

T

)+]
.

Finally, partial derivative with respect to each variable is

gy(y, α) = −P0 + E
[
(b+ PT ) 1{

DNα
T
≥y

}] = −P0 + b+ E [PT ]− E
[
(b+ PT ) 1{

DNα
T
<y

}]

∂

∂α
gy(y, α) = − ∂

∂α
E
[
(b+ PT ) 1{

DNα
T
<y

}]
= −E

[
(b+ PT )

∂

∂α
E
[
1{

DNα
T
<y

} | P
]]

= −E
[
(b+ PT )

∂

∂α
P
{
DNα

T
< y | P

}]
= −E

[
(b+ PT )

∂

∂α

∞∑
k=0

(
e−M

α
T (Mα

T )k

k!
F (k) (y)

)]

= −E

[
(b+ PT ) (Mα

T )′
( ∞∑
k=0

−
e−M

α
T (Mα

T )k

k!
F (k) (y) +

∞∑
k=1

e−M
α
T (Mα

T )k−1

(k − 1)!
F (k) (y)

)]

= −E

[
(b+ PT ) (Mα

T )′
( ∞∑
k=0

−
e−M

α
T (Mα

T )k

k!
F (k) (y) +

∞∑
k=0

e−M
α
T (Mα

T )k

k!
F (k+1) (y)

)]
= −E

[
(b+ PT ) (Mα

T )′
(
P
{
DNα

T
+ 1 < y | P

}
− P

{
DNα

T
< y | P

})]
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