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1. Introduction

Recent advances in information technology, such as EDI and web-
based platforms, have made information exchange between supply chain
partners cheaper and more secure. These advances also arrived at a
time when the concepts of collaboration and partnership within supply
chains are being recognized and developed. The principle premises of
such concepts are rather simple and natural: more collaboration and
more shared information should lead to better supply chain performance.
The details, on the other hand, on how to achieve better performance
through increased collaboration and information are not always trivial.
This chapter focuses on the following particular issue regarding increased
information exchange: how should advance demand information be used
to increase performance in production/inventory systems and what is the
extent of the performance increase that can be expected?

In order to address the above issues in an analytical framework, we
adopt a stylized viewpoint of advance demand information (ADI). In
our context, ADI refers to firm customer orders that are placed a fixed
number of periods in advance of their due-dates. This type of firm ADI
is quite common when the “customer” is a downstream partner of the
supply chain. A typical case is a manufacturer-supplier relationship in
the automotive industry where the manufacturer shares its production
plan with the supplier.

The supply system that receives advance customer orders is a produc-
tion/inventory system (with limited production capacity). In particular,
production capacity is represented by the server of a queueing system
within the framework established by Buzacott and Shanthikumar [4].
Analytical models involving ADI within this framework were introduced
and analyzed by Buzacott and Shanthikumar [3], [5]. The same mod-
eling approach is followed here with the objective of exploring some of
the issues that were not addressed in the above book and papers.

The focus of our investigation is single-stage systems with ADI. The
analysis of the simpler make-to-order systems paves the way for more
complicated make-to-stock systems. Interestingly most results on make-
to-order systems have their counterparts for make-to-stock systems. In
particular, production lead times play a determining role on the par-
ticular control policy to be employed and on the benefits that can be
attained. The importance of average production lead times can be ex-
tracted from the previous work of Buzacott and Shanthkumar [3], [5]
and will be reviewed here within a unified framework. We complement
this with new results on the influence of production lead time variability.
Along the way, we propose a new approximation scheme for an M/G/1
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make-to-stock queue with advance customer orders, which is fairly ac-
curate and is of interest in itself. The existing results are scarce for the
much more complicated multi-stage case. We describe a natural exten-
sion of a control policy introduced in the single-stage case and review
some of the known results for completeness.

The chapter is organized as follows: Section 2 reviews the literature on
ADI in the context of production/inventory systems. Section 3 presents
single-stage systems, including make-to-order systems (Section 3.1) and
make-to-stock systems (Section 3.2). The extensions to multi-stage sys-
tems are presented in Section 4. Section 5 gives the conclusions and
perspectives for future research.

2. Literature Review

The literature on inventory systems with ADI is growing fast. Below,
we classify several articles according to the modelling framework of the
supply system and distinguish articles that model exogenous supply lead
times and those that model finite production capacity.

The first class of papers investigate ADI for supply systems with ex-
ogenous supply lead times. Lambrecht, Muckstadt and Luyten [22] do
not explicitly model ADI but remark that in a standard multi-stage
system, safety times have a similar influence to safety stocks. Milgrom
and Roberts [26] present a model of ADI in a single-period newsven-
dor setting, where ADI can be obtained by having market surveys at
a cost. Hariharan and Zipkin [16] model ADI through orders placed in
advance and present a thorough study on the benefits of customer or-
der information for continuous-time inventory systems. Their analysis
reveals that ADI is a substitute for supply lead times and can reduce
safety stock levels and costs significantly when used effectively. Bour-
land, Powell and Pyke [2] study a two-stage supply system where demand
information from the downstream stage can be interpreted as ADI for
the upstream stage (if transmitted in a timely manner). It is shown that
timely demand information transmission can lead to significant supply
chain savings. Giillii [15] demonstrates that the value of forecast infor-
mation can be significant in a two-echelon allocation problem consist-
ing of a single depot and multiple retailers. DeCroix and Mookerjee
[8] analyze a periodic-review system where the supplier has the option
to purchase ADI. They characterize the optimal information purchase
policy and the value of dynamically purchasing ADI. Gallego and Ozer
[10] obtain the structure of optimal replenishment policies for a single
stage periodic-review inventory system with ADI. Their numerical re-
sults show that under the optimal replenishment policy, ADI can lead to
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significant cost reductions. The extension of the single-stage model to
the multi-stage case is analyzed in Gallego and Ozer [11]. Chen [6] mod-
els and investigates a market segmentation problem where customers get
price discounts as a function of the ADI they provide. Van Donselaar,
Kopczak and Wouters [9] investigate the benefits of ADI in a project-
based (i.e., a pure make-to-order) setting. Lu, Song and Yao [25] study
fill-rate type service levels for assemble-to-order systems with ADI and
show that ADI improves service levels for such systems. Finally, Tan,
Gillii and Erkip [30] explore optimal ordering policies under imperfect
demand information.

For capacitated supply systems which generate endogenous lead times
due to congestion effects, Buzacott and Shanthikumar [3], [5] present a
detailed analysis of a single-stage make-to-stock queue with ADI in the
form of firm orders placed a fixed amount of time in advance of their
due-dates. They then investigate how the optimal safety stock varies
as a function of the lead time parameter which determines how ADI
is utilized. Part of this chapter builds on the same basic model but
presents an extended investigation to shed light onto some other issues
particularly addressing the relationship between demand lead times and
supply lead times.

Karaesmen, Buzacott and Dallery [20] investigate the structure of op-
timal release timing and inventory control decisions based on a discrete-
time make-to-stock queue. Even though the exact optimal policy turns
out to be complicated, there is a simple class of policies that are near-
optimal. These policies, which are called BSADI (Base Stock with ADI),
require, in addition to the base-stock level, a parameter that sets the
release lead time. The close-to-optimal performance of these policies
justifies their use as a benchmark to assess the value of ADI. Karaes-
men, Liberopoulos and Dallery [21] explore the value of ADI for the
single stage continuous time make-to-stock queue and demonstrate the
influence of average utilization. For a corresponding two-stage make-to-
stock queueing system, Liberopoulos and Koukoumialos [23] present a
simulation-based investigation of BSADI policies for a two-stage make-
to-stock system. Some of their findings are described in detail in Section
4. Benjaafar and Kim [1] investigate ADI for a make-to-stock queue in
the context of demand variability. Wijngaart [33] studies M/D/1 type
make-to-stock queues with ADI and characterizes the cost reduction due
to ADI.

In other articles that investigate production/inventory systems from a
slightly different perspective, Giillii [14] and Toktay and Wein [32] model
the effects of forecast evolution on system performance for discrete-time
make-to-stock queues. Specifically, Giillii [14] investigates the structure
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of optimal policies and shows that using forecast information leads to
inventory and cost reductions. Toktay and Wein [32] extend and quantify
these findings through an approximate heavy-traffic analysis.

Finally, in other related work on production and inventory systems,
Gilbert and Ballou [13] investigate the capacity planning problem of a
make-to-order supplier that can receive advance demand commitments
through a pricing policy. Gavirneni, Kapuscinski and Tayur [12] con-
sider a two-stage supply chain with a capacitated production system
upstream. Using simulation, they provide a comparison of the case
where the only information transmitted to the upstream stage is through
downstream orders and the case where the upstream stage has access to
end-client demand information. The simulation results confirm the ben-
efits of early demand information. Ozer and Wei [27] explore optimal
production control policies under ADI for a discrete-time system with
limited production capacity. They characterize the optimal policy both
with and without production setup costs and provide numerical results
on the benefits of ADI. Hu, Duenyas and Kapucsinki [17] investigate a
production/inventory system (in discrete time) that has an outsourcing
option as well as ADI. They characterize the structure of optimal pro-
duction/outsourcing policies and analyze the sensitivity of optimal costs
with respect to various parameters.

In another chapter of this volume, Liberopoulos and Tsikis [24] present
a unified modelling framework to facilitate the precise description and
comparison of the dynamic behavior of simple production-inventory con-
trol policies with ADI, develop hybrid policies by combining simpler
policies, and bring to light properties of these policies.

3. Single Stage Systems with Advance Demand
Information

This section investigates single-stage production/inventory systems.
By a single-stage system, we mean a system where the release (input)
of parts into the system is controlled only at the entry of the stage.
The system itself can consist of a network of machines in parallel or in
tandem. We make the following assumption throughout this section:
Assumption 1:

m  All arriving orders enter to the supply system one at a time, remain
in the system until they are fulfilled (there is no blocking, balking
or reneging) and leave one at a time.

m  Orders leave the system in the order of arrival (FIFO).
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s New orders do not affect the supply lead time of previous orders
(lack of anticipation).

3.1. Make-to-Order Systems

Let us consider a single-stage system where all customers order exactly
T time units in advance of their required due-dates. As in Hariharan
and Zipkin [16], 7 is referred to as the demand (or customer) lead time.
Obviously inventory related costs in such a system can be decreased if
orders can be processed in advance of their due-dates. Our interest is
in a simple release timing mechanism. Let us define the parameter L
corresponding to the planned release lead time. Under the mechanism
proposed, each order is released exactly L units of time in advance of
its due-date. Since order information is obtained 7 units in advance, the
release lead time L is constrained to be less than or equal to 7.

In such a system two types of costs may occur: processing of parts
may end before their due-dates causing inventory holding costs or parts
may be late with respect to their due-dates causing backorder (lateness)
costs. The basic inventory related optimization problem is to minimize
the average inventory and backorder costs by choosing the release lead
time L (where L < 7). Let us denote the total average cost for a release
lead time of L by C(L). Then:

C(L) = hE[I(L)] + bE[B(L)] (10.1)

where E[I(L)] and E[B(L)] are respectively the average inventory and
backorder levels when the release lead time is equal to L, and A and b
are respectively the unit holding and backorder costs (per item per unit
time).

Let us denote by W the production lead time (or flow time), which
is the time between the release of an order to the production stage and
its delivery to the finished goods buffer. Using the equivalence between
average inventories and flow times, we can equivalently express the cost
function in equation (10.1) as:

o0

L
C(L)= X Av\ (L — w)dFw (w) + @\ (w — E&u%?;v ,  (10.2)
0 L
where X is the order arrival rate and Fyy (.) is the cumulative distribution
function of the production lead time. The above expression is similar
to the well-known news-vendor formulation of a single-period inventory
problem with random demand. While the standard news-vendor formu-
lation has no timing dimension, expression (10.2) is essentially a timing
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problem without the inventory (order quantity) dimension. This parallel
can be exploited to lead to the following properties:

Property 10.1 The optimal release lead time for a single-stage make-
to-order system with demand lead time 7 can be expressed as:

L* = min{L} , 7}, (10.3)

where L% is called the optimal unconstrained release lead time and is
given by:

b

L = Ab : Fy (L) = aw if W is continuous. (10.4)

and by:

b
L*, = min T . Fy (L) > »|+L if W is discrete. (10.5)

Proof: The proof of this property parallels that of the standard news-
vendor problem and can be found in Karaesmen, Liberopoulos and
Dallery [21]. |

Property 10.1 characterizes the optimal release lead time. The result-
ing minimum total average cost will be denoted by C*, i.e. C* = C(L*).

The next two properties establish the influence of production lead
times on inventories and costs. They can be interpreted as the tim-
ing equivalents of the corresponding properties for standard inventory
systems without ADI (see Song [29], for example).

Property 10.2 For two single-stage systems with identical customer
lead times 7 and respective production lead times W) and W2 where
EWM] = EW®)] and where W (1) is greater than or equal to W in
the sense of convex stochastic order (see Buzacott and Shanthikumar
[4]), we have:

1. (L) > c®(L)

2. Q*AC > Q*VAMV

Proof: Noting that the cost function (10.2) is a convex function of W,
by definition of a convex stochastic order we obtain part 1. For part
2, because part 1 of the property holds for any L, the overall minimum
cost of the second system must be lower than (or equal to) the overall
minimum cost of the first system. O

Property 10.2 states roughly that increased production lead time vari-
ability (in the sense of convex stochastic order) increases optimal costs
for make-to-order systems even in the presence of customer lead times.
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Property 10.3 For two single-stage systems with identical customer
lead times 7 and respective flow times W) and W® where W) ig
greater than or equal to W () in the sense of stochastic order (see Buza-
cott and Shanthikumar [4]), we have:

LM > x2)

Proof: The proof is a direct consequence of Property 10.1, using the fact
that the cumulative distribution functions can be ordered (i.e. Fj(z) <
F5(z), Vx) by definition of a stochastic order . O

Property 10.3 states that as production lead times increase stochas-
tically, unconstrained release lead times also increase. This could be
interpreted as: more ADI (increased demand lead times) is required in
systems with higher production lead times.

These properties enable us to make general qualitative statements
about the performance of make-to-order systems with ADI whenever we
can make qualitative statements about production lead time distribu-
tions.

Example 10.4 Let us compare two M/G/1 make-to-order systems with
identical demand lead times and order arrival rates but differing in their
processing times. Let the respective processing times be Ay and Ag. It
is known that if Ay >g Ao, then W >, W@ (see Wolff [34]). By
Proposition 10.3, L*1) | the optimal planned release lead time of system
1 is greater than or equal to L*@ | the optimal planned release lead time
of system 2.

The next two examples present quantitative results on two special
systems which can be analyzed explicitly.

Example 10.5 Let us consider an M/M/1 make-to-order system with
order arrival rate A and order processing rate p (where p = A/u). Adapt-
ing the results of Buzacott and Shanthikumar [5], we can obtain:

EIB(L)] = ¢ #1-nL_P
B = et L
and

E[I(L)] = AL — (1 — e #(1=P)Ly_P_

L—p
These expressions summarize the effects of customer lead times. As
demand lead time increases, using the proposed policy (with L = 7)
decreases the expected number of backlogs by a decreasing exponential
factor related to the average production lead time (noting that E[W] =
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1/u(1 — p)). On the other hand, expected inventory is increasing in the
release lead time L.

The optimal release lead time, L*, can be obtained using Property
10.1, noting that the M/M/1 production lead time is exponentially dis-
tributed with parameter p(1 — p). This yields:

om0

Property 10.3 established that, for the general case, stochastically
larger production lead times lead to longer optimal release lead times.
For the M/M/1 case, this ordering is simplified to a single parameter p;
optimal release lead times are increasing in p.

Example 10.6 Another system that can be explicitly analyzed is the
make-to-order version of an infinite-server deterministic processing time
system with Poisson demand arrivals (see Hariharan and Zipkin [16]).
Assuming that the order arrival rate is A and the constant supply lead
time is Lg, the results of Hariharan and Zipkin imply:

vfﬁhmlhv if L < Lg

otherwise

and

o if L < Lg
m?@zl A Khlhmvogmwémmm

In contrast with the limited capacity case, in this case the backorders
decrease at a linear rate as a function of the release lead time. Since
supply lead times are constant, this system has either zero backorder
costs or zero inventory costs. This makes the optimization of the release
lead time trivial. For consistence, let us blindly apply the discrete part
of Property 10.1 which gives:

L* =min{Lg, 7}

3.2. Single-Stage Make-to-Stock Systems

Let us now consider single-stage Make-to-Stock systems (under the
conditions of Assumption 1). The setup is identical to that of Section
3.1 on the demand side and the cost structure: all customers order
7 units in advance of the required due-date and the goal is to mini-
mize total inventory related costs (holding costs + backorder costs). On
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the production side, however, this time finished goods inventories can
be held and customer orders can be satisfied from existing inventories.
Obviously this adds a new dimension to the problem of minimizing in-
ventory costs: how to coordinate finished goods inventories with release
lead times. Karaesmen, Buzacott and Dallery [20] address this problem
for a discrete-time make-to-stock queue and show that the optimal re-
lease/inventory policy can be complicated in general but that a relatively
simple policy performs surprisingly well. Our investigation is based on
this policy referred to as a Base Stock policy with ADI (BSADI).

The BSADI combines the release timing mechanism of Section 3.1
with the usual base stock inventory mechanism in the following way.
There are two policy parameters: the release lead time L and the base
stock level S. The system starts with a base stock of S end-items in
the finished goods inventory. When an order arrives, the release time
of the corresponding replenishment production order is determined by
an MRP-system like offset that is based on the release lead time L. In
particular, the production replenishment order is issued with no delay,
if 7 < L, or with a delay equal to 7 — L with respect to the demand
arrival time, if L < 7. In other words, the (planned) delay in issuing the
replenishment order is: max{7 — L,0}. As soon as the order is issued,
a new part is released into the production facility. In order to clarify
the connection with the standard base stock policy, let us consider the
special case where there is no ADI (i.e. 7 = 0). In this case, each demand
arrival triggers simultaneously the consumption of an end-item from FG
inventory and the replenishment production order. The resulting policy
is, of course, a standard base stock policy. A queuing network model of
a base stock policy with ADI is shown in Figure 10.1.

WIP(0)
raw parts( ) FG(9 parts to
customers
OH(0) BD(0)
QQmVxlA m ) BmXAO, 7— _lv O_.n_um_.mmmu T customer
“ : demands

Figure 10.1. The single-stage base stock system with Advance Demand Information

The symbolism used in Figure 10.1 is the same as that used in Dallery
and Liberopoulos [7] or Karaesmen, Buzacott and Dallery [20] and has
the following interpretation. The oval represents the production facility,
and the circles represent time delays. The queues followed by vertical
bars represent synchronization stations linking the queues. A synchro-
nization station is a server with instant service time that “fires” (serves
customers) as soon as there is at least one customer in each of the queues
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that it synchronizes. Queues are labeled according to their content, and
their initial value is indicated inside parentheses. Notice that queue OH
is always equal to zero, because we assume that there are infinite raw
parts.

Next, we focus on the evaluation of the performance of BSADI policies
for single-stage systems. Let us start by outlining some of the known
results for a special case: order arrivals are Poisson with rate A and there
is a single server with exponentially distributed processing times with
rate p (where p > X for stability), the demand lead time is still 7. This
is the system investigated by Buzacott and Shanthikumar [3], [5] and is
referred to as the M/M/1 make-to-stock (MTS) queue.

Because the BSADI has two parameters, policy optimization is the
joint optimization of the parameters S and L. Let us refer to the jointly
optimal pair as (S*, L*). The first property below concerns the opti-
mal planned release lead time, L* (when base stock levels are selected
optimally).

Property 10.7 For the M/M/1 MTS queue with constant demand lead
times 7, the optimal planned release time is given by (see Karaesmen,
Liberopoulos and Dallery [21]):

*|EE|§S\S+$:
b= ﬁ p(l-p) W (106)

One interesting point about Property 10.7 is that the optimal planned
release lead time is identical to that of the corresponding make-to-order
system (see Example 10.5). The property also states that it is almost
trivial to set optimal release lead times because the optimization is sim-
ply a comparison of the given demand lead time with a known quantity.
In order to provide a meaning to this quantity, let us define L?_, the op-
timal unconstrained release lead time. L} is defined to be the optimal
planned release lead time as the demand lead time 7 goes to infinity and
is given by:

. —log(h/(h + b)) (10.7)
(1 —p)

The release timing principle is then simple: if 7 < L7, release the
production order as soon as the customer order arrives; otherwise delay
the release of the production order such that it is released exactly L%,
time units before its due-date. It should be noted that under this release
policy, demand lead times larger than L}  are not useful for controlling
the system in the sense that the policy never allows such release lead
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times. In other words, the quantity L’ determines the planning horizon
of BSADI policies.

Having resolved the issue of setting the release parameter by Property
10.7, we focus on the issue of setting the optimal base stock level for a
given demand lead time.

Property 10.8 For the M/M/1 MTS queue with constant demand lead
times 7, the optimal base stock level is given by (see Buzacott and
Shanthikumar [5]):

log(h/(h +b 1-
log p log p
(where |z] gives the greatest integer that is less than z) and by S* =0

otherwise.

Property 10.8 states, first, that if 7 > L% then the system should op-
erate in a make-to-order mode (where each production order is released
L} time units before its due-date). Second, if we momentarily relax the
condition that the base stock levels are integer valued, it can be seen
that equation (10.8) implies that:

ﬂ
E[W]log p
where S*(0) is the optimal base stock level for the corresponding system
with zero demand lead time (i.e. for 7 = 0) and E[W] = 1/(u(1 — p)) is
the average production lead time. Expressing the base stock level this
way leads to the following interpretation: the effect of the demand lead
time

7 is a reduction of the base stock level with respect to the standard
(t = 0) base stock level (note that logp is negative). Moreover, this
reduction depends on two factors: 1. the ratio of the demand lead time
to the average supply lead time (7/E[W]) and 2. the average utilization
of the system p. This leads to some simple guidelines for improving
inventory reduction through demand lead times: increase demand lead
times, reduce average supply lead times, or reduce the average utilization
of the system.

At this point it is interesting to compare the above intuition with
the one obtained in a corresponding system with exogenous supply lead
times. For a single-stage system with Poisson demand arrivals, constant
demand lead times 7 and constant supply lead times, W, Hariharan
and Zipkin [16] show that increasing the demand lead time has exactly
the same effect as decreasing the supply lead time. In particular, in
that case, the difference between demand and supply lead times, W — T,

S*(r) = S*(0) + if 7 < L% (10.9)
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determines performance. As usual, this is in contrast to what is observed
in the capacitated system where the average utilization enters the picture
as a significant element.

The next property explores optimal costs (for optimally selected re-
lease lead times and base stock levels) as a function of the demand lead
time.

Property 10.9 For the M/M/1 MTS queue with constant demand lead
times 7, the optimal cost is given by (see [5], [21]):

log(h/(h+b)) p(1—p) : *
C*(r) = i Tog +A log +va“ if 1< Lo

hlog (%5) 125, if 7> L.

In order to identify the significant factors appearing in Proposition
10.9, let us express the optimal cost as:

C*(1) = C*(0) + h Am T

where C*(0) is the optimal cost for a corresponding standard (i.e. 7 = 0)
system. As in the base stock level reduction (equation(10.9)), the frac-
tion 7/E[W] and the average utilization rate p appear as significant
factors. The last term of the right hand side of (10.10), A7, corresponds
to the increase in the inventory cost because of early releases (i.e. some-
times parts may arrive earlier than their due-dates which causes the in-
ventory level to surpass the base stock level). Fortunately, this increase
is offset by the reduction in the overall base stock level.

Properties 10.7-10.9 are extracted from the exact analysis presented in
Buzacott and Shanthikumar [5] and are further investigated in Karaes-
men, Liberopoulos and Dallery [21]. Even though this exact analysis
requires that the processing times are exponential, previous experience
with similar models leads us to think that the qualitative insights from
Properties 10.7-10.9 are relatively robust to distributional assumptions.
This intuition is confirmed by the approximate results for a correspond-
ing discrete time system in Toktay and Wein [32] and the exact results
for a special case in discrete time in Karaesmen, Buzacott and Dallery
[20]. On the other hand, it was seen in Section 3.1 that certain impor-
tant qualitative properties depend on second-order effects of randomness
such as the influence of “production lead time variability” which can-
not be addressed within the exponential processing time assumption. In
the rest of this section, we focus on make-to-stock systems with general
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processing times in order to identify some of the significant second order
properties.

In order to motivate the results that can be expected, let us focus
on a numerical example that compares the M/M/1 MTS system (with
processing rate u) with a corresponding system that has deterministic
processing times equal to 1/ (the second system is referred to as the
M/D/1 system). Figure 10.2 presents the optimal base stock levels and
the optimal costs for different demand lead times for these two systems.
For the M/D/1 system, the results reported in the figure were obtained
by simulation.

M/D/1 MTS Queue M/M/1 MTS Queue

-
~

B
1SN

—=—s*
—A—C*

and Optimal Cost

ORr NMWAUOON®
%

Optimal Base Stock Level

Optimal Base Stock Level
and Optimal Cost

oN N O ®

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Demand lead time Demand lead time

Figure 10.2. Optimal Base Stock Levels and Costs for M/D/1 and M/M/1 MTS
Systems (A =0.7, p =1, h =1, b = 100)

Let us compare the performance of the two systems depicted in Figure
10.2. First, for any given 7 the M/M/1 system requires higher base stock
levels and generates higher costs than the M/D/1 system as expected.
More interestingly, the relative gain ((the highest (7 = 0) cost- the
lowest cost)/the highest cost) due to using ADI is 16.7 percent in the
M/M/1 case but is 30.6 percent in the M/D/1 case. In addition, the
M/D/1 system reaches its optimal cost at 7 = 8 whereas the M/M/1
system requires twice as much demand lead time to reach its lowest
cost. Finally, in the M/D/1 system both optimal base stock levels and
optimal costs decrease at a higher rate than in the M/M/1 system. If
this example is “typical”, increased variability in processing times have
a negative effect on performance regardless of the measure taken.

In order to obtain some analytical insights into to the properties ob-
served in Figure 10.2, we develop an approximation for an M/G/1 MTS
system with constant demand lead times. Let us denote the processing
time by the random variable A (whose cumulative distribution function
is denoted by F4()). A simple but useful approximation for the station-
ary queue length distribution, m(n), of an M/G/1 queue is the following
geometric tail approximation whose justification is provided in Tijms

[31].
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w(n) = on™ for n sufficiently large (10.11)

where 7 is the solution of the below equation

y\ e M=0/M) (1 — Fy(t))dt =1
0

Tijms also proposes an expression for the constant o of (10.11) that
is asymptotically exact. In order to simplify the final form, we simply
assume that the approximation given by equation (10.11)is valid for all n
(n =0,1,2...) and choose o to satisfy the normalization condition which
gives:

l-n
o=p—.
n
where p = AE[A4]

Next, we relate the approximate stationary queue length distribution
of the M/G/1 queue to the the stationary distribution of the identical
system with constant demand lead times (denoted by 7*(n)). Following
the corresponding argument of Buzacott and Shanthikumar [5] for the
M/M/1 case, we propose the following approximate shortfall distribution
with ADI:

7' (n) = P{W > 7}m(n) forn >1
where W is the production lead time (flow time) of the M/G/1 system.
Finally, let us approximate P{WW > 7} by e 7" where v = A((1/n) — 1).
This tail approximation is also asymptotically exact up to a constant
factor (see Tijms [31]).
The resulting approximation for the shortfall distribution of an M/G/1
MTS system with constant demand leadtime 7 is:

n*(n) =on"e 77 forn >1 (10.12)
The optimal base stock level can now be obtained as summarized in

the next property.

Property 10.10 For an M/G/1 MTS system with demand lead time
7, the optimal base stock level can be approximated by:

S*(r) = meﬁ_omg\\@._. 7 = n/o) + 7 ow (10.13)

logn logn’

Proof: Let N* be the random variable denoting the stationary shortfall
with respect to the base stock level. By standard results, the optimal
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b=10 b=100 [[b=1000 |
7 ' S" [ Sapp || S* [ Sapp || S* | Samp
0 [[12] 12 [[24] 22 [[36 | 33
48] 8 [[20] 18 [[32] 29
8 4] 4 [[16] 14 [[ 28] 25
2o o 2] 10 [[24] 21
6o o 8 1 6 [20] 17
20 0] 0 4 2 16 | 13

Table 10.1. Optimal Base Stock Levels Obtained by Simulation and the Approxima-
tion for an M/D/1 System (h =1, A=0.9, p = 1)

base stock level S*(7) is the smallest S satisfying the condition Fy-(S) >
b/(b+ h). Computing Fy+ (the cumulative distribution of N*) from
equation (10.12) leads to the above expression for S*(7). O

S*(7) can again be alternatively expressed as:

§*(7) = max{8*(0) + 3 0}

by recognizing that the first term of the right-hand side of equation
(10.13) is the optimal base stock level, S*(0), of a system with 7 = 0
and by assuming that the tail approximation P{W > 7} ~ ¢™77 is also
an average production lead time approximation with 1/y = E[W].

Before discussing the qualitative properties of the approximation in
Property 10.10, it is useful to assess its accuracy. To start with, it is
important to note that the approximation is exact for the M/M/1 system
(where n = p and v = (1 —p)). For other processing time distributions,
we present simulation results below.

The first example reports the comparison results for deterministic pro-
cessing times for a system with a utilization rate of 0.9. In Table 10.1,
S* is the optimal base stock level obtained by simulation and Sg,, is the
value given by the approximation of Property 10.10. It is observed that
the approximation is fairly accurate. It also seems that the approxima-
tion is remarkably accurate for estimating the rate at which base stock
levels decrease as a function of demand lead times.

The second example reports the comparison results for Erlang-2 pro-
cessing times for a system with a utilization rate of 0.9 (Table 10.2).
Once again despite some accuracy problems for extreme backorder costs,
the overall results are quite satisfactory.

The last example reports the comparison results for deterministic pro-
cessing times for a system with a lower utilization rate (0.7) than the



Production/Inventory Control with Advance Demand Information 259

b=10 b=100 [[b=1000 |
7 | S" [ Sapp || S* [ Sapp || S* | Sarw
0 [17] 17 [[32] 33 [[44 [ 49
4 [13] 14 [[29] 29 [[40 ] 46
8 Jl10] 10 J[25] 26 [[36] 42
6 7 [[21] 23 |33 ] 39
6] 2] 3 J[17] 19 [[29] 36
0 [ o [[13] 16 [[25] 32

Table 10.2. Optimal Base Stock Levels Obtained by Simulation and the Approxima-
tion for an M/E>/1 System (h =1, A=0.9, p = 1)

b=10 b=100 [/b=1000 |
T [ S" [ Sapp || S™ [ Sapp || S* | Sarw
ol 4] 4 7 7 [[10] 10
2] 2 2 5 5 8 | 8
4] o 0 3 3 6 6
6] 0 0 1 1 4] 4
8 0 0 0 0 2 2

Table 10.3. Optimal Base Stock Levels Obtained by Simulation and the Approxima-
tion for an M/D/1 System (h =1, A=0.7, p = 1)

previous examples. For this particular case, the results in Table 10.3
indicate that the approximation gives excellent results.

Encouraged by the quality of the approximation for estimating opti-
mal base stock levels, we next propose approximations for the optimal
unconstrained release lead time and the optimal cost.

The unconstrained release lead time is an important quantity because
it gives the planning horizon of BSADI policies and is used to set the
release lead time parameter L. The following property develops an ap-
proximation for this quantity.

Property 10.11 For an M/G/1 MTS system with demand lead time
7, the optimal unconstrained release lead time can be approximated by:

. _ —log(h/(h +b))

L, >

Proof: Recall that the unconstrained optimal release lead time is ob-
tained as a critical fractile of the production lead time distribution
for make-to-order systems (equation (10.4)) and the M/M/1 MTS sys-
tem (equation 10.7). Because the stationary distribution approximation
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(10.12) is based on the exponential tail approximation P{W > t} ~ e 7,
the property follows. |

Next is the approximation for the optimal cost. The approximation
is motivated by Property 10.9.

Property 10.12 For an M/G/1 MTS system with demand lead time
7, the optimal cost can be approximated by:

* * \%\ﬁ . *
H A .
QT.VQAS._.b A_om: + yﬂv _T.Ihoo Cogv

where C*(0) = h(C*(0) — (p — 1) /(1 — 7))

We do not report here a detailed assessment of the performance of
the cost approximation of Property 10.12. The results indicate that the
quality is comparable to that of the approximation of the base stock level.
Figure 10.3 reports a typical example case. The approximation is fairly
accurate in terms of absolute error but more importantly it captures the
trend (the cost reduction as a function of demand lead time) in a very
accurate manner.

12,5

12 .
11,5 2~ /

—e—C*
10,5 / = Capp

;
|

=
o

©
3

Optimal Cost (exact and
approximate)

©

0 2 4 6 8 10 12 14 16 18 20
Demand lead time

Figure 10.3. Optimal Exact and Approximate Costs for an M/D/1 MTS system
A=09,p=1,Ah=1,b=10)

The next two properties address the influence of variability of process-
ing times on the optimal cost and the optimal base stock levels based
on the cost approximation of Property 10.12.

Property 10.13 For two M/G/1 make-to-stock systems with identical
customer lead times 7 and respective processing times AWM and A®
where E[A()] = E[A®)] and where A() is greater than or equal to A®) in
the sense of convex stochastic order, we have under the approximations
given in properties 10.10 and 10.12:
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1. §*(1) > §*(2)
w.Q*ENQ*@

Proof: For part 1, let us first note that A™) greater than or equal to
A® in convex stochastic order implies that n(*) > n®. It was shown in
Jemai and Karaesmen [18] that the first term of the right hand side of
equation (10.13) is increasing in 7. Since y/logn (the second term right
hand side of equation (10.13)) is also increasing in 7, part 1 follows. In
order to prove part 2, Jemai and Karaesmen have shown that C*(0) of
equation (10.10) is increasing in 7. Since the second term of the right
hand side of (10.10) is also increasing in 7, the result follows. O

Property 10.13 states that increased processing time variability (in the
sense of convex order) leads to increased base stock levels and increased
costs for M/G/1 MTS systems with constant demand lead times. A
similar property was shown to be true for a make-to-order system in
Property 10.2. The reasoning is somewhat less direct for the make-to-
stock system but the principal insight is the same: increased processing
time variability leads to increased production lead time variability which
has a negative effect on system performance.

Property 10.14 For two M/G/1 make-to-stock systems with identical
customer lead times 7 and respective processing times AWM and A®
where E[A)] = E[A®)] and where A is greater than or equal to A in
the sense of convex stochastic order, we have under the approximations
given 5 properties 10. Ho and 10.12:

1. dst A )/dr < dS®* (1) /dr

2. dCW* (1) /dr < dC®*(7)/dT

Proof: For Part 1, from equation(10.13), it is known that dS*(7)/dr =
v/ logn which is increasing in 7. Since convex order ensures that M >
n?, the result follows. For Part 2, a similar argument holds because
dC*(r)/dT = h(X + 7/ logn) by equation (10.10). 0

Property 10.14 states that when processing times are less variable,
the benefits of increased demand lead time in terms of cost reduction
and base stock level are higher. In addition, it seems plausible that
deterministic processing times should provide an upper bound for the
cost and base stock level reduction. The next property establishes this
bound.

Property 10.15 According to the approximations in Properties 10.10
and 10.12, for an M/G/1 make-to-stock system:

1. dS*(1)/dr > —1/E[A]

2. dC*(7)/dT > h(XA — 1)/E[A]
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Proof: For Part 1, From equation(10.13), it is known that dS*(7)/dr =
v/ logn which is increasing in 1 and is always greater than or equal to
-1/E[A]. For Part 2, from equation (10.10) dC*(7)/dT = h(X + v/ logn)
which is bounded from below by h(\ — 1)/E[A] O

Property 10.15 states that the base stock level reduction as a function
of demand lead time due to ADI is bounded from above by 7/E[4] (i.e.
S*(0) — S*(7) < 7/E[A]) and that the cost reduction due to ADI is
bounded from above by —h(A — 1)7/E[A] (i.e. C*(0) — C*(7) < —h(X —
1)7/E[A]. It is also interesting to note that both bounds are attained by
a deterministic processing time distribution.

4. Multi-Stage Systems with Advance Demand
Information

This section proposes an extension of the ideas developed above for
the single stage manufacturing system to a serial multi-stage setting.
The system now consists of I stages where stage 1 is fed by the raw-
materials inventory and stage I feeds the finished goods buffer. We
first present the classical multi-stage base stock mechanism and then
present the construction of the proposed mechanism as in Karaesmen,
Buzacott and Dallery [19]. Finally, we present some qualitative insights
on parameter optimization in the presence of demand lead times.

The multi-stage base stock mechanism is defined by a single param-
eter, S;m, the base stock level, for each manufacturing stage i. As in
Dallery and Liberopoulos [7], the system can be represented as a queue-
ing network with synchronization stations. Figure 10.4 displays this
representation of a two stage Base Stock control system.

WIP,(0 WIP,(0
raw parts( ) & FG.(S) 20) FG(S)
parts to
OH1(0) o BD(0) customers
m..v - m...v
oa_lem customer
i . demands

Figure 10.4. The multi-stage base stock system

In Figure 10.4, the buffers F'G1 and F'G4 correspond to the outputs
of stages 1 and 2 respectively. Buffers OH; correspond to orders not yet
fulfilled and BD is the backordered demand. Nodes MF; represent the
manufacturing facilities of stage . The multi-stage base stock mecha-
nism works in the following manner: Initially, there are S; parts (which
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have been processed by stage ¢) in buffers F'G; (i = 1,2). When a cus-
tomer demand arrives, it is immediately transmitted to all intermediate
demand buffers due to the base stock mechanism. The arrival of an
order to buffer O H; triggers the release of parts from F'G;_; to the ith
manufacturing stage (MF;) if there are parts available in FG;_1, other-
wise the order is held in buffer OH; waiting for the arrival of parts to
buffer F'G;_; for a release into the manufacturing stage.

To incorporate advance information in the base stock policy described
above, we associate with each stage of production a release lead-time pa-
rameter L; as well as a base stock level S;. The main difference between
the single-stage and multi-stage cases is that the release decision in the
multi-stage case is viewed to be a function of the total downstream lead
SBPMMH& L;), (rather than the stage lead time L;).

Let us start with the following general description: the n’th order
arrival to the system occurs at time ¢, and has demand lead time
7, (or equivalently has a due-date t, + 7,). The proposed mecha-
nism then authorizes the release of a part into stage ¢ at the instance
tn + max(0, 7, — AMUMHN L;)). Note also that, unlike in the single stage
case, the effective release instance now depends also on the availabil-
ity of inventory in the upstream stages (but cannot be earlier than
tn + max(0,7, — (YX5_; L;))). In other words, a part will be requested
from the stock between stages ¢ — 1 and 4 for release into stage ¢ at time
tn + max(0, 7, — AMUMHN L;)). At a given stage, if the immediate down-
stream stock is available, the release takes place immediately; otherwise
the release will take place as soon as the required stock is replenished.

Figure 10.5 represents a queueing network representation of the pro-
posed policy for a two stage system. Initially, there are S; and Sy parts in
the buffers FG; and FG4 respectively while all other buffers are empty
(except for raw materials where the supply is assumed to be infinite). As
in the single stage system, the nth demand joins the buffer BD (claims
a finished part) at time ¢, 4+ 7,,. If a finished part is available in FGs
at this time, the request is fulfilled immediately, otherwise the request
waits in buffer BD (i.e. is backlogged) until the delivery of a part from
MF2 to FFG2. As for upstream stages, the demand signal is transmitted
to the buffer OH; with a delay of max{0, 7, — L1 — Lo} and causes the
release of a part into stage 1 at precisely ¢,, +max{7, — L; — L9,0} (since
raw material supply is infinite). The signal is transmitted to the buffer
OHy at t, + max{r, — Lo, 0}. If parts are available in FG at this time,
a release to stage 2 takes place, otherwise the request waits in buffer
OH,; until the delivery of a part from stage 1 to F'G;.

As in the single stage case, when all demand lead times are zero (i.e
7 = 0), the mechanism reduces to the classical base stock mechanism
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Figure 10.5. The two stage base stock system with lead time parameters

described by base stock levels S; for stage . This is obvious from the
queueing network representations of Figures 10.4 and 10.5. In the spe-
cial case where all demand lead times are constant (i.e., 7, = 7), the
above policy reduces to the MRP interpretation of the Production Au-
thorization Control (PAC) system of Buzacott and Shanthikumar [4].
In the PAC system, arriving demand signals are delayed by an amount
of H; (where H; > 0) at stage 7. Recall that in our system, demand
signals are delayed by an amount of max{r, — MUMHN L;,0} for stage 1.
When 7,, = 7, the PAC delay parameters can be obtained by the relation
H; = max{T — Mumns L;,0}.

The analysis of multi-stage production/inventory systems pose several
challenges even without advance order information. Unlike the uncapac-
itated case where echelon base stock policies are known to be optimal, for
capacitated systems, the exact optimal control policy is known to have a
complicated structure. Moreover, even when the analysis is restricted to
a particular class of policies such as base stock or kanban, performance
evaluation is difficult and approximations or numerical techniques are
necessary. We can expect that this complexity will be exacerbated with
the addition of advance order information. The exact optimal policies
have to take into account order lead-time information in a dynamic man-
ner on top of the already complicated switching-surface structure for
production.

To shed some light into the effect of ADI on the performance eval-
uation of multi-stage production/inventory systems, Liberopoulos and
Koukoumialos [23] carry out a numerical study of a two-stage base stock
policy with ADI, such as the one shown in Figure 10.5, where all de-
mand lead times are constant (i.e., I, = 7) and all stages have limited
production capacity. Specifically, they consider an optimization problem
similar to that considered in the single-stage case in Section 3.2, where
the objective is to find the values of S; and L;, 1 = 1,2, that minimize the
average inventory and backorder costs, assuming that there is a constant
cost rate h; for holding inventory in stage 4 (either in the manufacturing
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facility M F; or in the output buffer P;), i = 1,2, and a constant cost
rate b for backordering demand in the last stage.

If there in no ADI, i.e., if 7 = 0, the release lead-time parameters
Ly and Lo are irrelevant. Unfortunately, as was mentioned above, even
when there is no ADI, there are no analytical results available for the
optimal base stock levels S; and Ss, even when each facility consists
of a Jackson network of servers. Some approximation methods have
been developed in Buzacott and Shanthikumar [5] (sec. 10.7). The only
analytically tractable case is when S; = 0. In this case, the two-stage
base stock policy reduces to a single-stage base stock policy, where the
manufacturing facilities of stages 1 and 2 and the output buffer of stage
1 are merged into a single facility. For the single-stage case, Rubio
and Wein [28] provide a non-closed solution for the optimal base stock
level, assuming that the manufacturing facilities consist of a product-
form queueueing network. Note that if hy > ho, then ST = 0, so the
above reduction of a two-stage system into a single-stage system holds.
With this in mind, Liberopoulos and Koukoumialos [23] restrict their
attention to the case where hy < ho.

If there is ADI, i.e., if 7 > 0, there are no analytical results available
for the optimal parameter values. Intuitively, one would expect that as
T increases, the optimal base stock levels of both stages should decrease.
The question is how exactly do they decrease? To answer this question,
Liberopoulos and Koukoumialos [23] optimize via simulation the base
stock levels and release lead-time parameters for different values of 7
for a particular but representative instance of the system, in which each
facility consists of a Jackson network of two identical exponential single-
server stations in series, each with mean service time equal to 1, demand
arrivals are Poisson distributed with rate 0.8, and the cost rates are
\:HHJ \sm”wu and b=9.

They find that as 7 increases away from zero, S| remains constant,
while S5 decreases linearly with 7 and reaches zero just below 7 = L3.
Moreover, as 7 increases away from L3, S5 remains zero, while S} de-
creases linearly with 7 and reaches zero just below 7 = L] + L3. A plot
of S and S} versus 7 of this behaviour is shown in Figure 10.6. In
the figure, the orders of magnitude of ¢; and ¢ are respectively L3 and
L} + Ls.

The results imply that as 7 increases and therefore more demand
information becomes available in advance, the optimal base stock levels
of all stages drop to zero one after the other, starting from the last
stage. An alternative way of looking at this is that as 7 increases, the
optimal echelon base stock level of every stage drops to zero, where
by echelon base stock of a stage we mean the sum of the base stock
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Optimal base-stock levels
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Figure 10.6. Sy and S5 as a function of the demand lead time 7

levels of the stage and all its downstream stages. Moreover, the optimal
echelon release lead time is the smallest demand lead time 7 for which
the optimal echelon base stock level is zero.

5. Conclusions

There is no doubt that ADI enhances the performance of produc-
tion/inventory systems. In this paper, in order to refine this intuition,
we investigated the factors that have an impact on the extent of the cost
reduction that can be achieved through ADI.

The first important remark relates to capacitated production. The
average system load is a determining factor for the value of ADI. The
relative benefits of ADI disappear in high system loads. Moreover, in
heavy load conditions, the cost reduction per additional unit demand
lead time is extremely small and the optimal planning horizon (demand
lead time) is extremely long. The consolation is that the absolute value
of ADI can be significant even at high loads provided that demand lead
times are sufficiently long.

The second finding is that “production lead times” also have a sig-
nificant influence on the benefits that can be expected from ADI. Re-
duction of average production lead times increase the benefits of ADI.
Furthermore, even a reduction in the variability of production lead times
improves the performance that can be obtained using ADI.

In conclusion, our investigation reveals that while ADI always en-
hances performance, this enhancement is much more significant for sys-
tems that have shorter and less variable production lead times. In other
words, certain potential benefits of ADI are offset by long and highly
variable production lead times. This places the focus on working both
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on the demand side by obtaining ADI and on the supply side by keeping
the emphasis on production lead time reduction.

An important area for future research is the exploration of capacitated
multi-stage systems with ADI. Existing simulation results indicate that
such systems may manifest some relatively simple structure in terms
of parameter optimization. Analytical approaches would help to clarify
this important point. There are also interesting perspectives on the
modeling of ADI. Even though more comprehensive models have been
proposed, in general these do not lead to simple analytical results. It
would be useful to develop finer models of ADI that are also analytically
tractable. Finally, another important open area is the exploration of
how to obtain ADI by enticing the customers through price discounts or
improved service offers.
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