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Control of arrivals in a ®nite buffered queue with
setup costs
F Karaesmen1 and SM Gupta2

1 UniversiteÂ Pierre, Paris, France and 2 Northeastern University, USA

We consider ®nite buffered queues where the arrival process is controlled by shutting down and restarting the arrival
stream. In the absence of holding costs for items in the queue, the optimal (s, S) policy can be characterised by relating
the arrival control problem to a corresponding service control problem. With the inclusion of holding costs however,
this characterisation is not valid and ef®cient numerical computation of the queue length probability distribution is
necessary. We perform this computation by using a duality property which relates queue lengths in the controlled
arrival system to a controlled service system. Numerical results which analyse the effect of setup and holding costs and
the variability of the arrival process on the performance of the system are included.
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Introduction

Admission control problems for single queues and queue-

ing networks are well studied. In typical admission control

problems, queue lengths are controlled by rejecting the

incoming arrivals. A closely related problem is that of input

control, in which arrival streams are controlled by a router

and the router can interrupt and restart the arrival stream.

We consider such a routing control problem in this paper

for a ®nite buffered queue.

Finite buffered queues lead to the blocking phenomenon

in which arrivals that ®nd the buffer full are considered lost

to the system. In this paper, we treat a different kind of

®nite buffered queue; one in which items are not lost as the

arrival stream is turned off when the buffer is full. Hence,

instead of modeling arrivals as external to the system as

usual, we consider them as internal processes such as the

®rst stage of a two stage production line.

Buzacott et al1 consider a version of the above lossless

®nite buffered queue. They are motivated by multistage

¯ow lines (see Buzacott and Shantikumar2 for more details)

in which the upstream machine stops production when the

downstream buffer is full and restarts production when

downstream buffer space is available. This is the `manufac-

turing type blocking' phenomenon that occurs in multistage

production lines with limited buffer space between the

production stages and is known as `blocking before service'.

In the case of two machine ¯ow lines which are the basis of

approximation algorithms of multistage ¯ow lines, the

downstream buffer behaves like a G/G/1/K queue with a

stopped arrival process. Ef®cient approximation algorithms

for this queue are given in Buzacott et al.1 Our model is

different. For the G/G/1/K queue with stopped arrivals, the

arrival process is restarted when the queue length decreases

to K7 1 whereas in our model, the arrival process can be

restarted at any buffer level between 0 and K7 1.

A related problem to the arrival control problem consid-

ered here is that of service control introduced by Yadin and

Naor3 in the context of the M/G/1 queue. In the service

control problem, the server is shut down when the queue

length is small and restarted at a higher queue length. To

optimise the system, Yadin and Naor suggested using the

following operating policy: shut down the server when the

server becomes idle and restart it as the queue length

reaches a threshold level N. This operating policy was

termed N-policy. Later, Heyman4 proved that N-policy is

the optimal policy for operating M/G/1 queues under

various cost criteria.

Most of the results in this paper are based on a queue

length relationship for two different (but related) ®nite

buffered queues. This relationship is called queue length

duality. An early example by Harris5 considers the ®nite

buffered M/G/1 queue and its dual. Other duality relations

were obtained by Gupta6±9 and by Gupta and Melachrinou-

dis10 for uncontrolled Markovian queues. Queue length

duality relations for non-Markovian queues can be found

in Hlynka and Wang11 and Yang.12 For controlled queues,

this relationship has been studied by Gupta13 and Karaes-

men and Gupta.14

Sparaggis et al15 have introduced a different kind of

duality. They have shown that the problems of dynamically

routing customers into multiple buffers and dynamically
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scheduling between different classes of customers are

equivalent when the buffer sizes are ®nite. This is an

important result as the solution of either dynamic optimisa-

tion problem also provides the solution to the other. Using a

similar approach, Xu and Shantikumar16 and Xu17 related

the admission control/scheduling for queues to expulsion/

scheduling type counterparts to solve dynamic control

problems. We employ a similar strategy here to relate a

dynamic arrival control problem to a dynamic service

control problem for a single class queue under a certain

type of routing policy. In this sense, our results are less

generic than those of Sparragis et al,15 however we are not

restricted to exponential service times and Poisson arrivals.

The paper is arranged as follows. In the next section, we

give a detailed description of the problem and introduce

some notation. Then, we concentrate on the optimisation

problem. After discussing the speci®c class of control

policies to study, we obtain some structural results using

queue length duality. We then focus on computing the

optimal revenue for a given set of policy parameters.

Ef®cient computation requires a fast method to obtain the

stationary queue length distribution for the given set of

parameters and we provide this method by obtaining the

queue length distribution in closed form. To gain further

insight, we give numerical results of experiments with

different cost and traf®c parameters. Finally we summarise

our results.

De®nitions and notation

We consider a modi®ed version of the GI/M/1/K queue.

The arrivals occur according to a renewal process with

mean rate l when the arrival stream is not interrupted due

to the control policy. The service times are exponentially

distributed with mean 1/m and the buffer size is K (includ-

ing the item that is in service). The buffer size restriction

states that the queue lengths can be at most K regardless of

the arrival control policy employed, however the particular

control policy can impose further restrictions on the maxi-

mum queue length. For example, the particular control

policy may not allow for more than S (where S4K)

items in the buffer thereby decreasing the effective buffer

size to S. One important characteristic of the system

we study is that arrivals are never lost regardless of the

effective buffer size. This is achieved in the following way:

an arrival process only takes place if there is (effective)

buffer space available. Otherwise, the arrival process will

be delayed until this space becomes available. To avoid any

confusion, whenever we refer to queue lengths in this

paper, this should be understood as the number of items

in the system including the item that is currently in service.

The cost structure is as follows: the system earns rewards

at rate R1 for each processed job. In addition, a reward of R2

dollars per unit time is earned when the arrival stream is off.

Each time the arrival stream is turned off and on, setup costs

of c1 and c2 dollars are incurred respectively. Finally,

holding costs are incurred at rate h dollars per item for

the items in the system (including the item that is in

service).

We want to ®nd an operating policy that will maximise

the expected revenues per unit time. We restrict our search

to stationary policies. This allows us to express the

expected revenue per unit time as a function of the

stationary queue length distribution. Let f be a stationary

control policy for this problem, poff be the long run

proportion of time that the arrival stream is off and p0 be

the long run fraction of the time that the server is idle. Also,

let L denote the average queue length. Note that the

stationary queue length distribution of the system is

induced by the stationary policy f and that poff, p0 and L

are all functions of f. (We do not express this dependence

explicitly for the sake of keeping the notation simple.)

Finally, let C( f, t) be the total switching cost incurred until

time t when an operating policy f is used. Hence we can

write our objective as:

max
j

R1�1ÿ p0�m� R2poff ÿ hLÿ lim
T!1

C� f ; T �
T

� �
�1�

In the next section, we discuss the above optimisation

problem in detail.

Optimisation

(s, S) policies for arrival control

As stated in the previous section, our objective is to ®nd an

operating policy that will maximise the revenue function.

We start by restricting our search to the following policy:

turn the arrival stream off when the queue length is S and

turn it back on when the queue length decreases to s, where

04 s< S4K. We refer to this policy as the (s, S) policy

for arrival control. Frequently used for controlling inven-

tory systems (s, S) policies are attractive as they are easy to

understand and easy to implement. Furthermore, for un-

capacitated production systems, (s, S) policies are optimal.

On the other hand, for capacitated production systems,

Sobel18 has shown that the expected revenue per unit time

for any stationary policy is equal to that of an (s, S) policy.

By following the same argument, we can argue that (s, S)

policies are as good as any other stationary policy for our

problem.

In the absence of setup costs, optimal admission control

policies are shown to be of threshold type where the

incoming arrivals are rejected when the queue length is S

and are accepted when the queue length is less than S. For

our purposes, these single parameter threshold policies can

be treated as special cases of the (s, S) policy with

s� S7 1.

The restriction to the (s, S) policy reduces our problem to

optimisation with respect to the parameters s and S. More-
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over, under the assumption of an (s, S) policy, it is possible

to write an alternative expression for the expected cost per

unit time, instead of (1), using the regenerative behaviour

of the queue length process. Consider the regenerative

cycle which starts when the queue length increases to S

(and the arrival process is stopped) and lasts until the next

time the queue length goes up to S. Note that, each

regenerative cycle consists of an off period (starting at S

and ending at s) where the arrival process is inactive and an

on period (starting at s and ending at S) where the arrival

process is active. Let Toff denote the expected time of an off

period. (Note that, as mentioned in the previous section

Toff, poff, and L are functions of the control policy. In this

case, these quantities are implicitly dependent on s and S).

Then we have:

lim
T!1

C� f ; T �
T

� �c1 � c2�
poff

Toff

�2�

Noting that Toff is the expected time for S7 s service

completions, we can write:

Toff �
S ÿ s

m
�3�

Hence, we can express the objective function in (1) in terms

of the stationary queue length distribution as:

max
�s;S�

R1�1ÿ p0�m� R2poff ÿ hLÿ �c1 � c2�
mpoff

S ÿ s

n o
: �4�

Note that in the above expression, if the value of S is less

than or equal to K, any change in K has no effect on the

total revenue.

Arrival and service control duality

Queue length duality is a relationship between the station-

ary distributions of two ®nite buffered queueing systems.

Consider two queueing systems with buffer size K and

stationary queue length distributions pP
i and pD

i

�i � 0; 1; 2; . . . ;K) respectively. Duality implies the

following relationship:

pP
i � pD

Kÿi for i � 0; 1; 2; . . . ;K �5�
In this section, we establish a queue length duality

relationship as in equation (5) between a queueing system

with controlled arrivals through (s, S) policies and another

queueing system with controlled service. To this end we

state the following theorem.

Theorem 1 Consider the GI/M/1/K queue with (s, S)

arrival control. Let pA
i �i � 0; 1; 2; . . . ;K� be its stationary

queue length distribution. The dual system is an M/G/1/K

queue with (K7 S, K ÿ s) service control and arrival and

service processes interchanged, namely

pA
i � pS

Kÿi �6�

where pS
i �i � 0; 1; 2; . . . ;K� is the stationary queue length

distribution of the M/G/1/K queue with (K7 S, K ÿ s)

service control.

Proof Consider a (closed) cyclic network of two nodes

with K customers. The service times at node 1 are expo-

nentially distributed and the service times at node 2 have an

arbitrary probability distribution function FA. Assume that

node 1 of the above network operates using (s, S) arrival

control. Thus, when the queue length at node 1 increases to

S, the service process at the second node is stopped. The

service process (of node 2) will restart the next time the

queue length at node 1 falls down to s. First note that, node

1 of the above network, is identical to GI/M/1/K queue with

stopped arrivals under (s, S) type arrival control. Further-

more, the departure times from node 1 are the arrival times

to node 2 and the departure times from node 2 are the

arrival times to node 1. Due to the arrival control policy,

the arrival process to node 1 becomes inactive when the

queue length at node 1 becomes S which corresponds to a

departure from node 2 that leaves K7 S customers behind.

The next time the arrival process becomes active is when

the queue length at node 1 falls down to s. At the same

instance the queue length at node 2 will increase to K7 s.

Hence, the second node of the cyclic network is an

M/G/1/K queue operating under (K7 S, K7 s) service

control policy. To ®nalise the proof, let L1(t) and L2(t)

denote the queue length processes at nodes 1 and 2 of the

above network respectively. By the cyclic nature of the

network, we have:

L1�t� � K ÿ L2�t� �7�
To summarise the argument, consider a sequence of

interarrival times, {on}, sampled from FA and a sequence

of service times, {Zn}, sampled from an exponential distri-

bution with rate m. One can construct a sample path of the

queue length process for the GI/M/1/K queue with (s, S)

arrival control from the above sequences. Moreover, this

sample path is symmetric around K to the sample path of

M/G/1/K queue with (K7 S, K7 s) service control that is

constructed by using {Zn} as the interarrival time sequence

and {on} as the service time sequence (provided that

symmetry holds at time 0). In other words, this symmetry

can be achieved under certain initial conditions with prob-

ability one. However, if a unique stationary queue length

distribution exists, it is independent of the initial conditions.

This implies the duality of the stationary queue length

distributions for the two systems. u

Structure of the optimal arrival control policy in the absence

of holding costs

In the previous section, we studied the relationship between

the queue lengths of GI/M/1/K and M/G/1/K operating

under (s, S) arrival and (K7 S, K ÿ s) service policies

respectively. In this section, we discuss the structure of
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the optimal arrival control policy when holding costs are

zero, using the dual service control problem.

For negligible holding costs, the arrival control problem

is:

max
�s;S�

R1�1ÿ p0�m� R2poff ÿ �c1 � c2�
mpoff

S ÿ s

n o
�8�

As a corrollary to Theorem 1 we can state an equivalent

problem to (8).

Corollary 1 De®ne Q�K7 S and q�K7 s, and

consider the optimisation problem in (8). An equivalent

problem is to ®nd the optimal (q, Q) policy that will

maximise the total revenue minus the setup costs for an

M/G/1/K queue with arrival rate m and service rate l (and

identical cost parameters). The optimal revenues for both

problems are equal and the optimal threshold levels are

related as follows: s* � K ÿ Q* and S* � K ÿ q* (where

(s*, S*) and (q*, Q*) are the optimal policies for the arrival

and service control problems respectively).

Proof In the corresponding service problem, R1 dollars

are earned per item processed. However, this time a fraction

of the arriving items are lost. Hence, the throughput of the

system is: �1ÿ pK �m and the objective function can be

written as:

max
�q;Q�

R1�1ÿ pK �m� R2poff ÿ �c1 � c2�
mpoff

Qÿ q

� �
�9�

By duality, when s�K7Q and S�K ÿ q, p0 in (8) is

equal to pK in (9), furthermore the proportion of off times in

both systems are also equal. Hence, the problems are

identical and yield the same optimal value. That is, if

(q*, Q*) is the optimal pair for (9) then the dual pair

(K ÿ Q*;K ÿ q*) must be optimal for (8).

The service control problem given by (9) has been

studied in detail by Hersh and Brosh19 and Teghem.20

The following important result is reported in Teghem20:

the optimal (s, S) policy for (9) is of the form (0, S) where

04 S4K� 1. The (0, 0) policy corresponds to never

turning the server off and the (0, K� 1) policy corresponds

to keeping the server closed at all times. We can immedi-

ately transform this result into an arrival control result

using duality and Corollary 1.

Corollary 2 For the arrival control problem in (8), the

optimal (s, S) policy is of the form (s, K) where

ÿ14 s4K. The (K, K) policy corresponds to never inter-

rupting the arrival process and restarting it as soon as

space opens up and the (71, K) policy corresponds to

always keeping the arrival process off.

In summary, for negligible holding costs, we have shown

that, the optimal (s, S) pairs are characterised by S�K. If a

search procedure is required to solve (8), then one can keep

S ®xed at K and perform a one-dimensional search for s

which saves a lot of computational time.

The case with holding costs

In the previous section, we have seen that the absence of

holding costs leads to a simpli®cation in the structure of the

optimal policy. In this section, we discuss some of the

implications of relaxing this requirement.

We begin with the dual service control problem with

holding costs to gain insight into its arrival control counter-

part. The problem is:

max
�q;Q�

R1�1ÿ pK �m� R2poff ÿ hLÿ �c1 � c2�
mpoff

Qÿ q

� �
�10�

First note that, if the buffer size were not restricted

(namely as K! 1 and the mean traf®c load, r, is less

than 1) in (10), the optimal (s, S) policy would have s� 0 as

shown by Heyman.4 When the buffer size is ®nite, this

property seems hard to prove, but numerical results suggest

that for most problems, s� 0 continues to hold (Karaesmen

and Gupta21). As a heuristic argument, (0, S) policies

perform better than other policies when holding costs are

not considered but the fact that they continue to perform

well when holding costs are added implies that (0, S)

policies are good with respect to holding costs as well.

This argument can be made concrete in the case of in®nite

buffers as it is possible to prove that (0, S) policies lead to

shorter expected queue lengths than (s, S) policies with

s � 1; 2; . . . ; S (Karaesmen and Gupta21).

Going back to the arrival control problem, the above

argument suggests that as (0, S) service control policies

lead to shorter expected queue lengths, (K7 S, K) type

policies will lead to longer expected queue lengths due to

duality. Therefore we may expect that the queue lengths

will decrease by decreasing the upper threshold in the

arrival control problem. In terms of optimisation, this

decrease brings complications, as setup costs and revenues

favor large values of the upper threshold but holding costs

favor lower thresholds. The potential optimality of any

(s, S) pair prevents the reduction of optimisation problem to

a single dimensional search. However, for an exhaustive

search over all (s, S) pairs ef®cient computation of the

stationary queue lengths is necessary. This will be handled

in the next section.

The stationary queue length distribution

In this section, we study the stationary queue length

distribution of the GI/M/1/K queue with (s, S) arrival

control policy. Note that, by duality the stationary distribu-

tion of the GI/M/1/K queue with (s, S) arrival control can be

obtained from that of the corresponding M/G/1/K queue

with service control. The stationary distribution for the

1116 Journal of the Operational Research Society Vol. 48, No. 11



service controlled M/G/1/K queue is reported by Teghem20

and Takagi22. However, in both cases the computation of the

distribution is not straightforward. To facilitate the compu-

tation we may follow an approach pioneered by Morse23 and

later systematically developed by Neuts24 and consider

phase-type service distributions. In fact, when the service

distribution is of phase-type, the queue length distribution

can be obtained in closed form (Karaesmen and Gupta21).

Thus, the stationary queue length distribution of the GI/M/1/

K queue with (s, S) arrival control policy is easily compu-

table when the arrivals are of phase-type. As the effective

buffer size of this queue will be determined by S, we can

simplify notation by considering (s, K) type arrival control

and eliminate S from the following discussion.

Let the arrival distribution be of phase-type with repre-

sentation (b, T) where b is a vector of the initial distribu-

tion of the phases and T is a matrix which characterises the

transition probabilities between phases (see Neuts24). If the

distribution has n phases, then pi � �pi;0; pi;1; . . . ; pi;n�
with pi; j denoting the stationary probability that there are

i�i � 1; 2; . . . ;K� customers and the arrival phase is

j� j � 0; 1; 2; . . . ; n�. Also, to specify the matrix-geometric

solution, let:

R � m�mIÿ mB00 ÿ T�ÿ1 �11�
B00 � eb: �12�

and

D � Iÿ R �13�
with I denoting the n6 n identity matrix and e denoting a

16 n (or n6 1) vector (1; 1; 1; . . . ; 1).

Lemma 1 The stationary queue length distribution for

the PH/M/1/K queue with (s, K) arrival control is given by:

p0 �
�1ÿ �1=r��as�K�
�1ÿ �1=r�as�K��

pi �
k�1ÿ �1=r��

K ÿ s
�bRsÿi�1�Iÿ RKÿs�Dÿ1�e

for i � 1; 2; . . . ; s

pi �
k�1ÿ �1=r��

K ÿ s
�1� ��b�Iÿ RKÿi�1�Dÿ1 ÿ I�e��

for i � s� 1; s� 2; . . . ;K ÿ 1

pK � k
�1ÿ �1=r��

K ÿ s
�14�

where

as�K� �
�1ÿ �1=r��

K ÿ s
b�Dÿ1 ÿ Ds�Iÿ RKÿs�Dÿ1�e �15�

and

k � 1

�1ÿ �1=r�as�K��
�16�

Proof Consider the dual system, namely the M/PH/1/K

queue with (0, Q) service control where Q�K7 s with

mean arrival rate m, mean service rate l and traf®c intensity

r� m/l. The stationary queue length distribution of this

queue can be obtained by relating it to the identical queue

with in®nite buffer capacity (Karaesmen and Gupta21). This

requires the computation of a normalisation constant, k.

Using the results of Keilson and Servi,25 this normalisation

constant can be written in terms of the random variable L1 ,

which denotes the queue length in the in®nite capacity

queue (for the service control problem). In particular, k
turns out to be a function of the probability P{L1 >K},

and is given by:

k � 1

1ÿ rPfL1 > Kg �17�

Note that, since P{L1 >K} depends on the threshold Q as

well as the buffer size, we denote it by aQ(K). Moreover,

aQ(K) can be written in closed form as follows:

aQ�K� �
�1ÿ r�

Q
b�Dÿ1 ÿ DKÿQ�Iÿ RQ�Dÿ1�e �18�

Now, letting pi denote the stationary distribution for the

M/PH/1/K queue with (0, Q) service control, we obtain

(Karaesmen and Gupta21):

p0 � k
�1ÿ r�

Q

pi �
k�1ÿ r�

Q
�1� ��b�Iÿ Ri�1�Dÿ1 ÿ I�e��

for i � 1; 2; . . . ;Qÿ 1

pi �
k�1ÿ r�

Q
�bRiÿQ�1�Iÿ RQ�Dÿ1�e

for i � Q;Q� 1; . . . ;K ÿ 1

pK �
�1ÿ r�aQ�K�
�1ÿ raQ�K��

�19�

Returning to the arrival control problem, by Theorem 1,

we have:

pi � pKÿi for i � 0; 1; 2; . . . ;K �20�
Therefore a relabeling of the states and the appropriate

conversion of the required constants by interchanging l and

m yield the stationary queue length distribution for the

arrival control problem. u

Remark Note that the stationary distribution depends on

the particular values of the parameters s and S (�K). This

dependence is exhibited in (14) as the stationary probabil-

ities are obtained as functions of s and K (or as(K)) as well

as the traf®c parameters.

Numerical examples

In this section we compute the optimal (s, S) values for

various traf®c parameters, cost parameters and arrival

distribution types using the stationary distribution obtained

in the previous section. Arrival processes may be highly

variable and it is important to understand how the optimal
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policy and the optimal revenue change as a function of this

variability. For this purpose, we experiment with arrival

distributions with coef®cients of variation (standard devia-

tion/mean) ranging from 0.44±2.0. The distributions used

here are a subset of distributions also used in Neuts and

Rao.26 The detailed properties of these distributions are

given in Table 1.

The general experimental setup is as follows. The arrival

rate l is set to 1. We then tabulate the optimal values of the

thresholds s and S and the optimal revenue z* as the service

rate m changes between 0.1 and 1.9. For most of the

experiments, the buffer size, K is ®xed at 10 so that the

effect of ®nite buffers is not negligible. However, we also

report a case with larger buffers to analyse the effect of the

buffer size restriction. The results of the experiments are

suummarised in Tables 2±9.

Tables 2, 3 and 4 display the effect of increasing setup

cost. As expected, the adjustment in policy for a setup cost

increase is an increase in the difference S7 s forcing less

setups per unit time. The difference in optimal revenue is

negligible for very high and very low values of the service

rate but can cause a difference of about 3% for a 4-fold

increase in the setup costs. Figure 1 is a summary taken

from Tables 2, 3 and 4 (with m� 1.1 and D3).

Table 1 Some properties of the arrival distributions used

Type CV Properties Mixing probabilities

D1 0.44721 E6 with a rate of 6 in each phase
D2 0.70711 E2 with a rate of 2 in each phase
D3 1 Exponential distribution with rate 1
D4 1.5 H2 with rates 2.82085228 and 0.50806659 0.6, 0.4
D5 2.0 H2 with rates 0.22540333 and 1.77459677 0.11270167, 0.88729833

Notation: CV repesents the coef®cient of variation, Ek is the k-stage Erlang distribution and H2 is the 2-
stage hyperexponential distribution.

Table 3 Summary results of data set 2

Cost parameters: R1� 20, R2� 10, c1 � c2 � 10, h� 0.5, Buffer Size� 10

D1 D2 D3 D4 D5

m s S z* s S z* s S z* s S z* s S z*

0.1 0 11 10.00 0 11 10.00 0 11 10.00 0 11 10.00 0 11 10.00
0.3 6 10 11.15 0 4 11.15 0 4 11.13 0 4 11.11 0 4 11.08
0.5 5 10 12.78 0 5 12.75 0 5 12.70 0 5 12.58 0 5 12.49
0.7 4 9 14.61 1 6 14.51 1 6 14.36 1 7 14.07 1 7 13.86
0.9 3 8 16.44 2 7 16.24 2 8 15.98 2 8 15.50 1 8 15.21
1.1 1 7 18.02 3 9 17.74 3 10 17.40 3 10 16.79 2 10 16.41
1.3 0 4 18.97 5 10 18.73 5 10 18.40 4 10 17.75 3 10 17.40
1.5 11 11 19.35 7 10 19.20 6 10 18.95 6 10 18.41 4 10 18.13
1.7 11 11 19.53 11 11 19.43 11 11 19.26 6 10 18.84 5 10 18.65
1.9 11 11 19.62 11 11 19.55 11 11 19.43 11 11 19.12 6 10 19.00

Table 2 Summary results of data set 1

Cost parameters: R1� 20, R2� 10, c1 � c2 � 5, h� 0.5, Buffer Size� 10

D1 D2 D3 D4 D5

m s S z* s S z* s S z* s S z* s S z*

0.1 0 2 10.02 0 2 10.02 0 2 10.02 0 2 10.02 0 2 10.02
0.3 0 3 11.51 0 3 11.49 0 3 11.48 0 3 11.45 0 3 11.42
0.5 1 4 13.13 1 4 13.08 1 4 13.00 0 4 12.88 0 4 12.80
0.7 1 5 14.91 1 5 14.79 1 5 14.62 1 6 14.34 1 6 14.15
0.9 2 6 16.63 2 6 16.41 2 7 16.16 2 7 15.69 1 7 15.41
1.1 4 8 18.08 4 8 17.81 4 9 17.48 3 9 16.89 2 9 16.54
1.3 6 10 18.98 6 10 18.75 6 10 18.44 5 10 17.84 4 10 17.49
1.5 8 10 19.36 8 10 19.21 7 10 18.98 6 10 18.47 5 10 18.21
1.7 8 10 19.53 8 10 19.43 8 10 19.27 7 10 18.88 6 10 18.70
1.9 9 10 19.62 8 10 19.55 8 10 19.44 7 10 19.15 7 10 19.04
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The effect of increased holding costs on the optimal

policy can be viewed in Tables 2, 5 and 6. The ®rst notable

point here is that a change in holding costs lead to

signi®cant changes in the values of the parameters s and

S. The striking difference caused by the change in holding

costs is not only the difference S7 s but the positions of s

and S as well. For m� 1.1 and D5 for example, s� 2 and

S� 9 for a holding cost of $0.5 per item per unit time and

s� 0 and S� 4 for a holding cost of $2 per item per unit

time. Intuitively, for large values of the holding cost the

system reduces the effect of holding cost by keeping the

maximum number of items that can be buffered at a low

level. Note that, this supports our argument in the section

on the stationary queue length distribution, where it was

suggested that expected queue lengths and hence the

holding costs decrease by decreasing the upper threshold.

Figure 2, taken from Tables 2, 5 and 6 (with m� 1.1 and

D� 3) displays this decrease in S as holding costs increase.

Tables 7, 2, 8 display the effects of an increase in the off-

time revenues. For moderate values of the service rate, an

increase in the secondary revenue does not affect S7 s

signi®cantly, however pushes the optimal values of s lower.

For m� 1.1 and D3 the values of the optimal pair are (5,10)

and (2,7) respectively for R2� 5 and R2� 20. Figure 3,

extracted from Tables 7, 2 and 8 (with m� 1.1 and D3),

displays this effect.

The buffer size effect can be viewed in Tables 2 and 9 in

which the buffer sizes are 10 and 20 respectively. Increased

buffer size improves the performance only slightly, for the

given set of cost parameters. The values of s and S vary, but

the optimal revenue does not change signi®cantly. For

Table 4 Summary results of data set 3

Cost parameters: R1� 20, R2� 10, c1 � c2 � 20, h� 0.5, Buffer Size� 10

D1 D2 D3 D4 D5

m s S z* s S z* s S z* s S z* s S z*

0.1 0 11 10.00 0 11 10.00 0 11 10.00 0 11 10.00 0 11 10.00
0.3 0 5 10.63 0 5 10.62 0 5 10.62 0 5 10.60 0 5 10.57
0.5 0 6 12.27 0 6 12.24 0 6 12.19 0 6 12.09 0 6 11.99
0.7 1 7 14.15 1 7 14.05 1 7 13.91 0 8 13.66 0 8 13.46
0.9 1 8 16.16 1 8 15.95 1 9 15.70 1 10 15.23 1 10 14.89
1.1 3 10 17.94 3 10 17.64 3 10 17.27 2 10 16.59 2 10 16.17
1.3 11 11 18.96 5 10 18.70 4 10 18.33 4 10 17.60 3 10 17.21
1.5 11 11 19.35 11 11 19.20 11 11 18.95 11 11 18.33 4 10 18.00
1.7 11 11 19.53 11 11 19.42 11 11 19.26 11 11 18.82 11 11 18.60
1.9 11 11 19.62 11 11 19.55 11 11 19.43 11 11 19.12 11 11 19.00

Figure 1 Change in optimal thresholds with respect to setup
cost (l� 1, m� 1.1, distribution�D3, R1� 20, R2� 10, h� 0.5,

buffer size� 10)

Table 5 Summary results of data set 4

Cost parameters: R1� 20, R2� 10, c1 � c2 � 5, h� 1, Buffer Size� 10

D1 D2 D3 D4 D5

m s S z* s S z* s S z* s S z* s S z*

0.1 0 11 10.00 0 11 10.00 0 11 10.00 0 11 10.00 0 11 10.00
0.3 0 2 10.81 0 2 10.80 0 2 10.78 0 2 10.75 0 2 10.74
0.5 0 3 12.25 0 3 12.21 0 3 12.15 0 3 12.04 0 3 11.98
0.7 1 4 13.84 1 4 13.70 0 4 13.53 0 4 13.29 0 4 13.17
0.9 1 4 15.48 1 5 15.24 1 5 14.96 1 5 14.50 1 5 14.29
1.1 2 6 16.96 2 6 16.63 2 6 16.24 1 6 15.61 1 5 15.36
1.3 3 7 18.07 3 7 17.73 3 7 17.30 2 7 16.58 2 6 16.29
1.5 5 9 18.72 5 9 18.45 4 9 18.08 3 9 17.38 2 8 17.09
1.7 7 10 19.06 6 10 18.86 6 10 18.58 4 10 17.98 3 9 17.74
1.9 8 10 19.25 7 10 19.11 7 10 18.89 6 10 18.41 4 10 18.24
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example, for m� 1.9 and for D5, the values of (s, S) are

(7,10) versus (12,20) in Tables 2 and 9 respectively.

However, the corresponding change in optimal revenue is

from 19.04 to 19.10 only. In many cases, the effect of the

increase on the buffer size on the total revenue is not even

visible in the tables as the change occurs only in the 8th or

9th decimal place (and the tables only display the ®rst two

decimal places).

The degrading effect of the variability of the arrival

process in the performance of the system is apparent from

all of the Tables 2±9. In all of the experiments reported,

optimal revenue of the system decreases as the coef®cient

of variation of arrival process increases. The difference in

the optimal revenue between D1 and D5 can be as large as

9.3% as in the row corresponding to m� 1.1 of Table 2.

Even so, variability does not seem to affect the optimal

Table 6 Summary results of data set 5

Cost parameters: R1� 20, R2� 10, c1 � c2 � 5, h� 2, Buffer Size� 10

D1 D2 D3 D4 D5

m s S z* s S z* s S z* s S z* s S z*

0.1 0 11 10.00 0 11 10.00 0 11 10.00 0 11 10.00 0 11 10.00
0.3 0 11 10.00 0 11 10.00 0 11 10.00 0 11 10.00 0 11 10.00
0.5 0 2 11.01 0 2 10.97 0 2 10.92 0 2 10.85 0 2 10.82
0.7 0 3 12.35 0 3 12.24 0 3 12.11 0 3 11.91 0 2 11.87
0.9 1 3 13.83 0 3 13.59 0 3 13.35 0 3 13.02 0 3 12.94
1.1 1 4 15.32 1 4 14.96 1 4 14.55 0 4 14.00 0 4 13.86
1.3 2 5 16.57 1 5 16.13 1 5 15.63 0 4 14.91 0 4 14.76
1.5 2 6 17.51 2 6 17.08 2 6 16.54 1 5 15.75 1 5 15.58
1.7 3 7 18.12 3 7 17.76 2 7 17.27 1 6 16.45 1 5 16.29
1.9 4 8 18.49 4 8 18.22 3 8 17.80 2 7 17.05 2 6 16.89

Figure 2 Change in optimal thresholds with respect to holding
cost (l� 1, m� 1.1, distribution�D3, R1� 20, R2� 10,

c1 � c2 � 5, buffer size� 10)

Figure 3 Change in optimal thresholds with respect to off-time
revenues (l� 1, m� 1.1, distribution�D3, R1� 20, h� 0.5,

c1 � c2 � 5, buffer size� 10)

Table 7 Summary results of data set 6

Cost parameters: R1� 20, R2� 5, c1 � c2 � 5, h� 0.5, Buffer Size� 10

D1 D2 D3 D4 D5

m s S z* s S z* s S z* s S z* s S z*

0.1 0 2 5.50 0 2 5.50 0 2 5.50 0 2 5.50 0 2 5.49
0.3 0 3 7.87 0 3 7.85 0 3 7.83 0 3 7.77 0 3 7.74
0.5 1 4 10.51 1 4 10.42 1 5 10.31 1 5 10.11 1 5 9.95
0.7 2 5 13.18 2 6 13.01 2 6 12.81 2 7 12.38 1 7 12.06
0.9 3 7 15.76 3 7 15.49 3 8 15.14 3 9 14.49 3 9 14.01
1.1 5 9 17.85 5 10 17.52 5 10 17.10 5 10 16.29 4 10 15.73
1.3 8 10 18.96 8 10 18.70 7 10 18.32 7 10 17.54 6 10 17.06
1.5 11 11 19.35 11 11 19.20 11 11 18.95 11 11 18.33 7 10 17.98
1.7 11 11 19.53 11 11 19.43 11 11 19.26 11 11 18.82 11 11 18.60
1.9 11 11 19.66 11 11 19.55 11 11 19.43 11 11 19.12 11 11 18.99
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(s, S) pairs signi®cantly. In general, an increase in the

coef®cient of variation increases S7 s but the increase in

S is not that signi®cant. Figure 4, taken from Table 2 (with

m� 1.1) displays the change in revenue for three levels of

the traf®c load.

Conclusion

In this paper, we analysed the arrival control problem for a

lossless ®nite buffered queue. Our model allows setup costs

for interrupting and restarting the arrivals, holding costs for

customers, and revenues that depend on the status (on/off)

of the arrival stream. To gain insight into the structure of

the optimal policy, we related the the queue lengths in the

arrival control problem to the queue lengths in a service

control problem. This queue length relationship also led to

a relationship in terms of the optimal policies through

which properties on the optimal control parameter values

can be obtained in the case of negligible holding costs.

When holding costs are not negligible, the properties of

the parameters of the optimal policy are not evident from

the related service control problem. For this case, we

presented a fast method to compute the optimal revenue

for a given set of policy parameters. The method permits

phase-type arrival distribution that can model a wide range

of arrival distributions with varying coef®cients of varia-

tion. Using this method, we experimented with different

traf®c and cost structures to study the effects of setup and

holding costs, off-time revenues, buffer size and arrival

process variability on the optimal revenue and the para-

meters of the optimal policy. As a result of the numerical

examples, the considerable effects of the cost structure on

the optimisation problem was revealed. It was also seen

that the variability of the arrival process has a signi®cant

effect on the optimal revenue. Based on these results, it is

likely that the variability of the service process also has

deteriorating effect on the optimal revenue. This motivates

Table 8 Summary results of data set 7

Cost parameters: R1� 20, R2� 15, c1 � c2 � 5, h� 0.5, Buffer Size� 10

D1 D2 D3 D4 D5

m s S z* s S z* s S z* s S z* s S z*

0.1 0 11 15.00 0 11 15.00 0 11 15.00 0 11 15.00 0 11 15.00
0.3 0 3 15.14 0 3 15.14 0 3 15.13 0 3 15.11 0 3 15.11
0.5 0 3 15.88 0 3 15.86 0 4 15.83 0 4 15.78 0 4 15.74
0.7 0 4 16.72 0 4 16.65 0 4 16.57 0 5 16.45 0 4 16.38
0.9 1 5 17.61 1 5 17.48 1 6 17.33 0 6 17.09 0 5 16.98
1.1 2 6 18.42 2 6 18.24 2 7 18.03 1 7 17.70 1 6 17.55
1.3 3 8 19.02 3 8 18.84 3 8 18.62 2 8 18.23 1 7 18.06
1.5 5 10 19.36 4 10 19.22 4 10 19.03 3 10 18.66 2 9 18.50
1.7 7 10 19.53 6 10 19.43 5 10 19.28 4 10 18.97 3 10 18.85
1.9 8 10 19.62 7 10 19.55 6 10 19.44 5 10 19.19 4 10 19.11

Table 9 Summary results of data set 8

Cost parameters: R1� 20, R2� 10, c1 � c2 � 5, h� 0.5, Buffer Size� 20

D1 D2 D3 D4 D5

ma s S z* s S z* s S z* s S z* s S z*

1.3 6 11 18.98 6 11 18.75 6 12 18.45 5 12 17.86 4 11 17.50
1.5 10 15 19.36 9 15 19.22 9 15 19.00 8 15 18.54 6 14 18.25
1.7 14 20 19.53 13 20 19.43 13 20 19.29 11 19 18.95 9 17 18.77
1.9 17 20 19.62 17 20 19.55 16 20 19.44 14 20 19.20 12 20 19.10

a For 0.14m4 1.1, the values of s, S, and z* are identical to those in the corresponding rows of Table 2.

Figure 4 Change in optimal revenue with respect to arrival
distribution (l� 1, R1� 20, R2� 10, h� 0.5, c1 � c2 � 5, buffer

size� 10)
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future research where both arrival and service time distri-

butions are modeled by general distributions. If the effects

of variability in both service and arrival times can be

quanti®ed, it may be possible to allocate marginal effort

on demand/supply management in a more effective way.
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