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The Finite Capacity GI/M/1 Queue with Server
Vacations

FIKRI KARAESMEN and SURENDRA M. GUPTA
Northeastern University, Boston, Massachusetts, USA

We consider the GI/M/1/K queue where the server takes exponentially distributed vacations when there
are no customers left to serve in the queue. We obtain the queue length distribution at arrival epochs and
random epochs for the multiple vacation case. We present heuristic algorithms to compute the blocking
probability for this system. Several numerical examples are presented to analyze the behaviour of the
blocking probability and to test the performance of the heuristics.
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INTRODUCTION

The finite capacity M/G/1 queue with server’s vacations has been studied by Courtois! and Lee?.
Lee obtains the performance measures of the queue in terms of Laplace-Stieltjes transforms
(LSTs). Keilson and Servi*#, reveal important structural properties of the M/G/1/K queue by
relating the queue length distribution of the corresponding infinite buffer queue to the finite buffer
queue. Blondia® presents an analysis of the finite capacity queue with a Markovian Arrival
Process (MAP) and arbitrarily distributed service and vacation times.

The analysis of the GI/M/1 queue with vacations is considerably more difficult than the corre-
sponding M/G/1 queue. In the M/G/1 queue with arbitrarily distributed vacations, the state of the
system can be completely described by two discrete and one continuous variable. For example,
consider a triplet (i, j, x) where i (i = 0, 1) denotes the status of the server, j (j = 0, 1, 2, ...) denotes
the number of customers in the queue and x (x = 0) is the elapsed time since the beginning of the
last service (vacation) when i =1 (i = 0). This triplet is a complete description of the Markov
process for the M/G/1 queue with vacations. On the other hand, for the GI/M/1 queue with
general vacations a complete description of the state space requires one discrete but two contin-
uous variables. The triplet describing the state space in this case is (j, x, y) where j (j =0, 1,2, ...)
is the queue length, x (x > 0) is the elapsed time since the last arrival and y (y > 0) is the elapsed
time since the beginning of the last vacation period. These facts make the M/G/1 queue with
vacations much more amenable to analysis and necessitates imposing a restriction on the distribu-
tion of the vacation period in the analysis of the GI/M/1 queue.

The infinite capacity GI/M/1 queue with vacations has been independently studied by Chat-
terjee and Mukherjee® and by Tian et al.”. Chatterjec and Mukherjee incorrectly claim that their
solution is valid for generally distributed vacation times (see Appendix 1). Tian et al. perform a
similar kind of analysis for the case of exponential vacations. Using matrix-geometric solutions,
they are able to obtain closed form solutions in terms of a constant r, that can be obtained as the
solution of a simple equation.

In this paper, we obtain the queue length distribution of the GI/M/1/K under a multiple exhaus-
tive vacation scheme. Under this vacation policy, the server takes repeated vacations unless there
is a customer to serve upon return from a vacation. However, once service starts the server will
keep on serving until the queue is exhausted. This problem is motivated by approximation algo-
rithms for queueing networks with finite buffers where blocking takes place. Many heuristic pro-
cedures decompose the network into individual nodes as in Dallery and Frein® and Gershwin®.
The approximation procedures then simplify to iteratively analyzing finite buffered single queues
and the blocking effects are incorporated using the blocking probabilities of the decomposed
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queues. The arrival process to the decomposed nodes are usually approximated by a Poisson
process. We attempt to remove this restriction by allowing more flexible renewal process arrivals
that can capture the variance of the real input process better (see for example, Whitt!® and
Albinl?).

In addition to its use in approximation algorithms for queueing networks, the system here
would also be useful in manufacturing type models in which the arrival process may be determin-
istic due to automated operations. This is the case when items are transported to special work-
stations by an automated system such as an assembly line.

Finally, the model may also be useful in certain polling models where the trade-off between
service and vacation times is more important to analyze than capturing processing and polling
times accurately.

In the sections to follow, we first obtain the queue length distribution at arrival epochs by using
the embedded Markov Chain and then relate it to the distribution at random times by using the
underlying semi-Markov process. This computation enables us to compute the key performance
measures such as the blocking probability and the waiting time distribution. We analyze the
blocking probability for this system in detail and present numerical examples that demonstrate the
sensitivity of the blocking probabilities to the arrival distribution. Finally, we suggest heuristic
procedures for efficient computation of the blocking probability through explicit solutions of
special arrival processes.

NOTATION

The following notation will be used throughout the paper. Additional notation will be intro-
duced when necessary.
F4(x) the probability distribution function of the random variable X
random variable denoting the time between arrivals

S random variable denoting the service times

vV random variable denoting the vacation times

1/4 mean time between arrivals = [§ x dF 4(x)

1/p mean service time = [§ x dFg(x) = (& uxe™** dx

1/6 mean vacation time = [§ x dFy(x) = [& Oxe™ % dx

v random variable denoting the remaining vacation time distribution (with respect to a

random arrival)
Fplx) =0[5(1—-Fyy)dy=1-e""

A* the random variable denoting the amount A exceeds V
Fo) =i=o bmo /iy +9) dy ds
4 Pr{d >V}
Ik the probability that there are exactly k service completions in a period of length A
[ e (ux)
=)l T dF 4(x)
hy the probability that there are exactly k service completions in a period of length A*
foo o—px k
I R Lo
b TR
® the probability that ¥ exceeds
(* o0
A = | Fix)fp(x)dx
JO

ANALYSIS OF PERFORMANCE MEASURES

The embedded Markov Chain

Consider a GI/M/1/K queueing system where the server takes an exponentially distributed
vacation when the queue is empty. Arriving customers that find the queue full are assumed to be
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blocked and lost to the system. The vacation discipline is such that if, upon return from a vaca-
tion, the server finds the queue empty, another vacation is started.

To analyze the above queueing system, we first observe that there is a Markov chain embedded
at arrival epochs. The stationary distribution of this embedded Markov chain can be obtained
once the transition probabilities are available.

Formally, let the state of the system be denoted by (i, j) where i = 0 (or 1) denotes that the
server is on vacation (not on vacation) and there are j customers in the system. Then, the following
equations hold for the limiting probabilities, p; ;, of the embedded Markov chain:

K—1 K—1
Pi,1= D P1,,9r+P1,x9k-1 + (1 — a))|: Do, b, + pO,KhK—l] (1)
r=1 ¥=0
K—j K—j
P1,j= D P1, j-1+:9r + P1,x9k—; + (1 — cu)|: Y. Po,j—14rh + Po,xhx—j] Jor2<j<K-1 (2
r=0 r=0
Pi,k=P1, k-1 + P1, 090 + (1 — ®)[(po, k-1 + Po, Dho] 3
K-1 K-1
Po.o= Y Pi,+95+1 +P1,x9x + (1 — w)[ Y Do, By + Po,thvc:l o
r=1 r=0
Po,j=®Po,j—1 for 1<j<K-—1 ®)
Po,x = @(Po, k-1 + Po, x) (6)

where g5 = Y2 g, and h§ =Y h,.
The above system can be solved together with the boundary condition:

K K
Y Do+ Xp1,=1 ()
r=0 r=1

Although, we are unable to obtain closed form solutions for the above system as in the case
where K — oo (see Tian et al.”), the numerical solution of the above system is straightforward as
long as g;’s and h;’s are computable.

The queue length distribution at random times

Let {L(z), &)}, be the semi-Markov process that corresponds to the queue length and the server
status (where &(f) = 0, 1) at time t with embedded points at arrival times. Note that this semi-
Markov process changes state at arrival times and therefore the time spent in a state at each visit
is an interarrival time. If T; ; are the expected sojourn times of this process at state (i, j), then:

T,,=E[A] foralli=0,1, j=0,1,2,..., K. @®)

As all sojourn times are equal, the stationary distribution of the semi-Markov process is equal to
the stationary distribution at embedded points that was obtained in the previous section (see
Ross!?).

To pass from the distribution of the semi-Markov process to the distribution at random times,
let A and A denote the forward and backward recurrence times of an interarrival time respectively.
Then:

F3(x) = F3(x) = Lxl(l — Fu(y) dy. ©

To relate the semi-Markov process to the random time process, also let d, denote the probabil-
ity that there are k service completions in the backward recurrence time of an arrival given the
server was available at the time of arrival, and d;/ denote the same probability given the server
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was on vacation at the time of arrival. Then:

foo o—px, k
d = | e (10)
“O k!
and
foo ,—pux k
g = | B e (1)
Jo k!

where A* is the random variable denoting the amount of time A exceeds ¥ and

o im0 o Ay + 5) dy ds
Fz.(x)= Pr{ﬁ>?} .

12)

Finally, if 7; /s denote the stationary probabilities at random times, then we can proceed as in
Ross!? to obtain:

K-

1 K—1
Ty,1 = Y, P1,rb + Py gdg—g + (1 — K)[ Po,,d + pO,KdIJE—l:| (13)

r=1 r=0

K—-j K—j
Ty, ;= ZP1,j—1+rdr‘f‘l’1,1<d1<—j‘l‘(1—K)I:ZIJO,J'—1+rd:r +P0,Kd;€—j:l
r=0 r=0

for2<j<K-1 (14

Ty, x = (D1, k-1 + P1,0do + (1 — ©)[(Po, k-1 + Do, ¥)do ] (15)
K-1 k-1
To,0= 0. P1,rdf+1 + Py, xdic + (1 — ’C)I: Y Po, d, 1) + po, K(d;cr)c:l (16)
r=1 r=0
Ty, j = KPo, j-1 for 1<j<K-—1 17
Ty, xk = K(Po, k-1 + Po, ®) (18)

where d§ = Y2 ; d,, (df) =Y,2,d," and

k= LwFa(X)fv(x) dx 19)

(ie. x is the probability that 7 exceeds A).

Blocking probabilities

A particularly important measure of performance for a finite buffer queue is the blocking prob-
ability. In our case, as the Markov Chain is embedded at arrival epochs, the blocking probabilities
can be immediately obtained as:

P{arriving customer is blocked} = p; x + po. k- (20)
We will denote the blocking probability by P, .

W aiting time distribution

Having computed the probability distribution at arrival epochs, it is straightforward to obtain
the waiting time distribution. Due to the memoryless property of the service and vacation dis-
tributions, a customer who arrives when the system is in state (0, j), 0 < j < K will have to wait for
a vacation completion and j service completions. Similarly, if the customer arrives when the
system is in state (1, j), 1 <j < K, the waiting time will consist of j service completions. These



F. Karaesmen and S. M. Gupta—Gl/M/1/K Queue with Vacations 821

translate into the following expression for the LST of the waiting time distribution, W(s):

= RV K-1 Y
W) = jgo po'j<ﬂ + 5) (0 + S) - j§1pl’j<# + S) . @

NUMERICAL EXAMPLES

In this section, we present numerical examples using the exact solution of the embedded
Markov chain. The purpose of the examples is two fold. Firstly, we are interested in the effects of
the arrival process on the blocking probability. The renewal arrival process enables us to model
non-Poisson arrivals with different variations. However, the motivation to use alternative arrival
processes exists only if the performance of the system differs significantly from the Poisson arrival
case. The second purpose of the numerical experimentation is the necessity to develop a practi-
cally usable heuristic for general arrival processes that is computationally more efficient than
explicit solution of the embedded chain.

In addition to the deterministic and exponential arrival cases, we also experiment with mixtures
of exponential distributions to obtain different coefficients of variation (CV). In particular, we use
a hyperexponential distribution obtained by mixing two exponential distributions (denoted H,)
and the two stage generalized Erlang distribution (denoted E,).

In the H, distributions used, we assume balanced means (as in Whitt!®) which corresponds to
the following density function:

fx)=gre ™+ (1 —gle > x>0 (22)
where 0<g<1 and 17! =gi;! + (1 — g)A,'. Note that, the assumption of balanced means
corresponds to gA; ' = (1 — g)A; L.

With the above definitions, it is possible to obtain different CVs (where CV > 1) by altering q.
The CV of the distribution is given by:
CV=(1+(2q—-1’)/1-@2q— 1) (23)
As for E, distributions, we alter A; and use the fact that A=! = A7 ! + A5 ! to obtain A,. The
density will be given by:

Ad (e Mx — g7 H42%)
(A2 — 4y)
when A; # 4,. When A, = 4, = 2/, this reduces to the regular 2 stage Erlang distribution with

mean 4 (i.e. f(x) = (24)*xe ~2**, x > 0). Note that, the CV of the E, distribution is given by:

CV = (A3 + A)/(Ay + A))'" (25)

flx)= x>0 4)

and is between 1/,/2 and 1.

Thus, in the examples, we start with a deterministic arrival process (D) that has CV = 0. Next
we use the E, processes for CVs less than 1, the Poisson process (M) that has CV =1 and the H,
processes for CVs greater than 1. We will fix the buffer size K at 10, and the service rate u at 1 and
analyze the effect of different loads by varying A. To have an understanding of the vacations effect
we experiment with two vacation levels, the long vacations (0 = u/4) and short vacations (0 = 4p).
The results are summarized in Table 1.

Figure 1 is a brief summary of Table 1. This is a typical display of the behaviour of the blocking
probability which is monotonically increasing in p and the CV of the arrival process in all of the
examples we ran.

In addition to supporting the monotonicity properties of the blocking probability, the numeri-
cal experiments indicate that the changes in the coefficient of variation of the arrival process can
alter the blocking probability by a factor larger than 300,000 as is evident in row 1 of Table 1.
This observation highlights the importance of estimating the arrival process correctly.
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TaBLE 1. Exact blocking probabilities

Short Vacations (6 = 4y)
p D(0)* E(0.71) E(0.73) E(0.77) E0.85  M(1) H(1.29) H(1.71) H(3.09)

0.5 89 x 1078 0.00004 0.00005 0.00007 0.00013 0.00056 0.00179 0.00555 0.02841
0.6 71 % 10°°¢ 0.0004 0.0005 0.0006 0.0010 0.0027 0.0069 0.0173 0.0683

0.7 0.0002 0.0026 0.0029 0.0035 0.0049 0.0094 0.0191 0.0392 0.1198
0.8 0.0023 0.0112 0.0119 0.0133 0.0165 0.0249 0.0414 0.0713 0.1739
0.9 0.0144 0.0330 0.0341 0.0363 0.0414 0.0527 0.0748 0.1109 0.2257
1.0 0.0496 0.0720 0.0733 0.0758 0.0813 0.0930 0.1168 0.1548 0.2731
11 0.1071 0.1243 0.1254 0.1275 0.1321 0.1419 0.1638 0.1999 0.3159
1.2 0.1716 0.1815 0.1823 0.1838 0.1870 0.1941 0.2122 0.2443 0.3543
1.3 0.2323 0.2374 0.2378 0.2388 0.2408 0.2455 0.2595 0.2867 0.3888
14 0.2862 0.2887 0.2890 0.2895 0.2907 0.2937 0.3041 0.3264 0.4199
1.5 0.3335 0.3347 0.3349 0.3352 0.3359 0.3378 0.3452 0.3633 0.4481

Long Vacations (6 = (1/4)p)

p D(0)* E0.71)  B073)  E0.77)  E(085) M(1) H(129) HQ71)  HG.09)
0.5 0.0052 00100  0.0103 0.0109 00125 00171 0.0248 00384  0.0800
0.6 0.0106 0.0186 0.0191 00202 00227 00300 00422 00634 01286
0.7 0.0172 0.0303 0.0311 0.0328 0.0368 000472 00650 00945  0.1825
0.8 0.0265 0.0471 0.0483 00507 00564 00699  0.0933 01303 02359
0.9 0.0433 00718 00734 00765 00835 00990 01267 01690 02854
1.0 0.0749 0.1063 0.1081 0.1115 01189  0.1345 01642 02087 03299
1.1 0.1227 0.1496 0.1513 0.1544  0.1611 01752 02041 0.2481 0.3695
12 0.1790 01980  0.1993 0.2018 02072 02186 02448 02862  0.4048
1.3 02354 02472 0.2481 02499 02539 02625 02849 03225 04361
14 02875 0.2943 0.2949 0.2961 02989 03051 03235 03567 04642
15 0.3340 03379 0.3382 0.3391 03409 03452  0.3598 03887  0.4895

* The values in parentheses denote the CVs.

— 0.5 1 1.5 2 2.5

3
cv.
F1G. 1. The blocking probability as a function of the CV.

HEURISTICS FOR THE BLOCKING PROBABILITY

When arrival processes are modelled by more complicated probability distributions than the
two stage exponential mixtures considered in the previous section, it is difficult to compute the
transition probabilities in the embedded chain. In this case, two alternative strategies emerge. The
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first strategy is modelling the arrival process with an E, or H, distribution with the same coeffi-
cient of variation as the original and computing the blocking probability exactly. The second
strategy is directly approximating the blocking probability without fitting the distribution to E, or
H, distributions. In this section, we employ the second strategy and develop an approximation
scheme for the blocking probability.

As a first step in approximation, we propose heuristic bounds for the blocking probability. The
numerical experiments suggest that the blocking probability is monotonically increasing in the CV
of the arrival process. Therefore, special cases for CV for which the blocking probabilities are easy
to compute give heuristic bounds for the more general cases. Below, we study the blocking prob-
ability for the case of Poisson and deterministic arrival processes. The heuristic argument is that
when the CV of the arrival process is between 0 and 1, the blocking probability will be bounded
by the blocking probabilities in the deterministic arrival and the Poisson arrival case. Similarly,
when
the CV > 1, the blocking probability is bounded from below by the blocking probability of the
Poisson arrival case.

The blocking probability for the M/M/1/K queue with vacations

Gupta!? obtains the probability distribution of the M/M/1/K queue with multiple vacations in
closed form. As the probability distribution is not needed here, an alternative approach to obtain
the blocking probability will be used. ,

Vinod!* uses matrix-geometric methods (see Neuts'®) to give the following probability distribu-
tion for the infinite capacity M/M/1 queue with vacations:

w _Op—0)
0w —2) A0(u— ,1))
° = , 27
P ((z 0P’ (4 + O 7
py =pYR™! forj=2 (28)
where p?° = (pg.;, py ;) (forj=1,2,...) and
_A 4
R=|*t? "l (29)
0 —
u

We, now relate the above probability distribution of the infinite capacity queue to that of the
finite capacity queue using scaling properties of the queues with Poisson arrivals as studied by
Keilson and Servi®**. Keilson and Servi give the following relation that relates the probabilities of
the infinite capacity queue to the blocking probability in the finite capacity queue:

P{arriving customer is blocked} = (1 — p)x/(1 — px). (30)

where « is the probability that there are K or more customers in the infinite capacity queue. Now,
using the above results for the infinite capacity queue, we obtain:

k=) prR Y1, 1) (31)
i=K
At this point noting that:

Peo+ LPYRTIA, DT =1, (32)
i=1

1
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we get the following expression for «:
K-1
k=1-— <p8°, o+ Y PERT(1, I)T) (33)
i=1

=1—(p§o+pPU— R NI —R)"'(1, 1)T) (34)

Substituting the right hand side of equation (34) in (30), we have a formula for the blocking
probability in the M/M/1/K queue. Since computing the Kth power of the matrix R requires a
computation of the order of log K, the computational complexity of obtaining the blocking prob-
ability is O(log K).

Remarks

1. Note that both Vinod’s'# and Keilson and Servi’s® relations are valid for p < 1. However, the
formula (34) holds independently of this assumption. The matrix R has no probabilistic
meaning.

2. Computing the blocking probability using equation (34) has a computational advantage over
using the result in Gupta®3 which has a computational complexity of O(K).

3. As the constant x is obtained, the whole queue length distribution is explicitly available
through the scaling property. In fact, this seems to be the only case where the scaling property
leads to an explicit solution for queues with vacations.

The complexity of the deterministic arrival case

When the arrival process is deterministic, the transition probabilities in the embedded chain can
be computed through simple exponential integrals. In particular:

e~ 1/p
9i =" (35)
p'i!
w=e % (36)
and
eui 1/2 _ ;
e j R (37)

Note that, h; i =0, 1, 2, ..., K) can be computed recursively (see Appendix 2 for the explicit
computation), therefore the computational complexity of obtaining the blocking probability is
determined by the solution of the embedded chain. Ignoring the special structure of the Markov
Chain and solving a K x K linear system of equations leads to a computational complexity of
O(K?3).

Heuristic bounds for the blocking probability

In general, obtaining the blocking probability for the GI/M/1/K queue with server vacations
may require numerical integration. However, it was seen that for the special cases of Poisson and
deterministic arrival processes the blocking probability can be computed very efficiently. On the
other hand, numerical experimentation suggests that the blocking probability is monotonically
increasing with respect to the CV of the arrival process. Combining these two pieces of informa-
tion, one can establish bounds on the blocking probability utilizing the Poisson and deterministic
arrival streams.

Table 1 displays this bounding behaviour. Whenever the CV of the arrival process is between
the CVs of the deterministic and Poisson arrival processes, the blocking probability also stays
between the corresponding blocking probabilities. Furthermore, whenever the arrival process is
more variable than the Poisson process, the corresponding blocking probability is greater than
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that of the Poisson. Figure 2 is extracted from Table 1 and displays the bounds. Note that the
bounds become tighter when p > 1 and the blocking probability can be approximated through
the bounds in practice. When p is close to zero the blocking probability becomes very small and
the bounds seem to be tight numerically, however the percentage error is large.

R 0.35p0 OV
u CV=0.71
o CV=0

0.3

0.25}

0.2

0.1

1 1.2 1.4

0.6 0.8

F1G. 2. Typical behaviour of the bounds.

Approximations using the infinite capacity queue

Although the proposed heuristic bounds provide a rough approximation of the blocking prob-
ability, better approximations may be useful in practice. A promising strategy is to relate the
corresponding infinite capacity queue to the finite capacity queue on hand. In this case, explicit
results for the infinite capacity queue are readily available which ensures the computational effi-
ciency of the approximation. On the other hand, a drawback of this type of approximation is that
it is only valid for the cases where the infinite capacity queue is stable (p < 1). Nevertheless, the
approximation range (0 < p < 1) covers most models of practical interest.

It was recently reported in Tijms!® that the following formula provides a good approximation
for the blocking probability in the GI/G/c/K queue:

P{arriving customer is blocked} = (1 — p)x/(1 — px). (38)

where x is the probability that an arriving customer sees K or more customers in the infinite
capacity GI/G/c queue with the same parameters. Numerical experimentation suggests the above
approximation performs well for GI/G/c/K queues. On the other hand, by the results of Keilson
and Servi3, equation (38) is exact for the vacation system when the arrival process is Poisson.
Encouraged by this fact, we tested the performance of the Tijms heuristic for the GI/M/1/K queue
with exponential vacations.

As in the case of Poisson arrivals, the following expression can be obtained for «:

k=1—(p%o+pPU—RH-R'(1 17 (39

Tian et al.” give the matrix R, p§ o and pP. It is required to solve a simple nonlinear equation to
obtain the explicit expression but that presented no computational difficulty in the examples con-
sidered.
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Table 2 displays the approximate blocking probabilities for the identical systems as in Table 1.
Figure 3 displays a comparison of the approximation with the exact results for the cases of short

and long vacations respectively.

TABLE 2. Approximate blocking probabilities

Short Vacations (6 = 4u)

p E(0.73)* E(0.77) E(0.85) H(1.29) H(1.71) H(3.09)
0.5 0.00005 0.00007 0.00013 0.00193 0.00667 0.04740
0.6 0.0005 0.0006 0.0010 0.0074 0.0206 0.1124
0.7 0.0029 0.0034 0.0048 0.0203 0.0458 0.1850
0.8 0.0117 0.0131 0.0164 0.0437 0.0810 0.2503
0.9 0.0337 0.0361 0.0412 0.0778 0.1228 0.3050

Long Vacations (6 = (1/4)p)

p E(0.73)* E(0.77) E(0.85) H(1.29) H(1.71) H(3.09)
0.5 0.0101 0.0107 0.0124 0.02623 0.04448 0.1286
0.6 0.0187 0.0198 0.0226 0.0447 0.0738 0.2090
0.7 0.0305 0.0323 0.0366 0.0687 0.1093 0.2844
0.8 0.0475 0.0501 0.0561 0.0982 0.1487 0.3464
0.9 0.0724 0.0758 0.0831 0.1326 0.1895 0.3957

* The values in parentheses denote the CVs.

]

0.3 6=4p
o exact
@ approximale

0=(1/4) p

D exact
@ approximate

F1G. 3. A comparison of the approximation with the exact results.
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Our numerical experimentation suggests that the approximation is very good when the CV of
the arrival process is either less than 1 or close to 1. Furthermore, all numerical results indicate
that the approximation underestimates the blocking probability when CV < 1 and overestimates
the blocking probability when CV > 1. This property is conjectured in Miyazawa and Tijms!” for
GI/G/c/K queues. Our numerical experiments support this conjecture.

CONCLUSIONS

Research in performance analysis of queueing systems has focused on finding general ways to
model tractable service processes while restricting the arrival process. This is considered a good
trade-off as in many cases service processes may not be exponentially distributed whereas the
Poisson approximation to arrival processes is acceptable. On the other hand, there are cases
where the arrival process is non-Poisson such as in the case of automated arrivals to a manufac-
turing centre. Our results show that poor estimation of the arrival process to such nodes can cause
large errors in performance measures. This implies that in certain cases it might be better to use a
general model of the arrival process and restrict the service processes including vacations and
interruptions.

The model used here captures a reasonable approximation of the service vs. vacations trade-off.
This enables the decision maker to experiment with different service/maintenance (vacation) ratios
to develop a better schedule. In that direction the approximation procedures are fast enough to be
useful in practical what if type analysis and the exact procedures provide accurate solutions in
reasonable time.

To approximate networks consisting of nodes with interruptions, the blocking probability for
the GI/M/1/K queue with vacations has to be computed efficiently. We showed that the blocking
probability can be obtained explicitly for the M/M/1/K case. Note that, the approach used to
obtain the blocking probability immediately leads to explicit expressions for the stationary queue
length distribution. This is of practical interest as it provides an easily obtained benchmark and
can be used in approximations. Further numerical results suggest that explicit solutions for special
cases can be used as heuristic bounds which may be useful in practical computation. Finally, the
performance of an efficient approximation algorithm for the blocking probability was tested. It
was seen that the approximation is accurate for the practically interesting range of parameters of
the arrival process. Therefore the approximation algorithm also has the potential to be integrated
in manufacturing network approximation algorithms.

APPENDIX 1

Consider equation (2b) of Chatterjee and Mukherjee®:
Do,j= P(V > A)po, j-1 (40)

This equation fails to hold when there are more than one arrivals during a vacation period
because the arrival process does not constitute a random incidence for the vacation distribution
anymore. For example, if one arrival has already occured during the vacation period, the second
arrival occurs during the forward recurrence time of the vacation which has the distribution Fp
(not Fy). In this case, the relationship in equation (40) has to be corrected as:

Do, ;= P(I7(2) > A)po, j-1- 41)

where 17(2) denotes the forward recurrence time of ¥, Note that, the relationship (40) holds for the
special case where vacations are exponentially distributed because in that case the forward recur-
rence time of a vacation is equal to itself due to the memoryless property of exponential distribu-
tion, i.e.:

V=v. (42)
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APPENDIX 2

In the deterministic arrival case, h; i =0, 1, 2, ..., K) can be computed recursively. Below, we

give the explicit expressions for this recursion. Let

oy
Ci= (€* — 1)i! “3)
and
1/A )
= j 0wyl gy, (44)
0
then
ho = CO vo (45)
e~ Wtoa _ q
=Cy———m—— 46
"TO-n )
Using integration by parts, for i > 1, we have:
iO—-w/A _ 5
0 —p
Finally, fori = 1,2,..., K, h; can be obtained as:
hi = Ci Ui (48)
(1/A) @M% — iy, _,
= Ci . 49
0w )
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