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Abstract

With the emergence of Just-in-Time manufacturing, production control mechanisms that react rapidly to actual
occurrences of demand are gaining importance. Several pull type control mechanisms have been proposed to date, but it is
usually di$cult to quantify how good these mechanisms are, as well as understanding the structural properties that make
them desirable. By using a two stage model and an optimal control framework, we study some of these issues here. Our
framework permits quantifying the performance of classical mechanisms such as base stock and kanban and more complex
mechanisms such as generalized and extended kanban. We also analyze the tradeo!s between single versus multiple control
points and service level constraints on the backorders. ( 2000 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

The emergence of Just-in-Time manufacturing
approach has underlined the importance of pro-
duction control and coordination mechanisms that
react to actual occurrences of demand rather than
future demand forecasts. This issue is especially
important for manufacturing systems consisting of
multiple stages where there is also the additional
complexity of coordinating the di!erent stages of
production in addition to the e!ort to follow the
realizations of demand. Production control mecha-
nisms that use the actual occurrences of demand
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rather than future demand forecasts to control the
#ow of material are known as pull type control
mechanisms. Several control mechanisms have
been proposed for pull type manufacturing. How-
ever due to the complexity of the problem, it is
di$cult to quantify, in terms of cost, the advantages
and disadvantages of these existing mechanisms, as
well as understanding, in general, the properties
of good control mechanisms. In this paper, we
attempt to clarify some of these issues using
a simple two stage model that admits an exact
analysis.

Two of the better known pull control mecha-
nisms are base stock and kanban (see [1] for
example). These mechanisms resolve the trade-
o! between unsatis"ed demand and holding costs
in di!erent ways. The base stock system was
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originally proposed for production/inventory sys-
tems with in"nite production capacity and uses
the idea of a safety stock for "nished good inven-
tory as well as safety bu!ers between stages for
coordination. Kanban mechanism, on the other
hand, has its emphasis on coordinating production
by using a "nite number of production authoriz-
ation cards that transmit demand requests. Both
systems are fairly simple to implement requiring the
de"nition of a single parameter per each stage
which corresponds to safety stocks and production
authorization cards respectively for base stock and
kanban.

Since the base stock mechanism o!ers the feature
of rapid reaction to demand and the kanban mech-
anism achieves better coordination and controlled
work in process inventories, intuitively, combining
the respective merits of base stock and kanban
control mechanisms would entail many potential
bene"ts. Buzacott [2] and Zipkin [3] initiate the
"rst implementation of this approach. The resulting
mechanism, called the generalized kanban, borrows
the idea of safety stocks from the base stock system
and production authorization cards from the kan-
ban system. As a relative drawback however, this
hybrid system is de"ned by two parameters per
stage, one de"ning the safety stocks and the other
de"ning the number of production authorization
cards.

Recently, Dallery and Liberopoulos [4] have
introduced a new pull type control mechanism
called extended kanban which is also a mixture of
base stock and kanban. This mechanism is also
de"ned by two parameters per stage but is concep-
tually clearer than generalized kanban and is
potentially easier to implement. The generalized
kanban as well as the extended kanban include
both the base stock and kanban systems as special
cases (see [4]).

Although the two parameter per stage mecha-
nisms such as generalized or extended kanban o!er
potential improvements over single parameter
mechanisms, it is not obvious how these improve-
ments translate into savings in cost and whether or
not it is worth investing in a more complex mecha-
nism. Our aim in this paper is to explicitly quantify
these trade-o!s albeit in a rather simpli"ed frame-
work.

The model we study is the simplest system that
captures the key issues in pull type control in
a multi stage production environment: we consider
two single machines in tandem with a work in
process inventory in between the two stages and
a "nished goods inventory after the second stage.
Demands that arrive to the system are satis"ed
from the "nished goods inventory whenever pos-
sible and are backordered otherwise. This system
allows us to analyze the important tradeo! between
backorders and the cost of holding "nished goods
and work in process inventory that help reduce
backorders. To quantify this tradeo!, we consider
two di!erent cases. In the "rst case, linear holding
and backorder costs are incurred for the items that
are held in stock and those that are backordered
respectively. In the second case, a certain service
level with respect to backordered items is required.
When processing times of both machines are expo-
nentially distributed and demands occur according
to a Poisson process, these production control
problems can be set as optimal control problems.
The "rst case (i.e. with linear backorder costs) has
been studied previously by Veatch and Wein [5]
who also give some numerical examples on the
performance of some of the pull type control
mechanisms considered here. We use the same
framework to compare the performance of many
alternative pull mechanisms ranging from simpler
mechanisms to more complicated ones than those
considered in [5].

One interesting issue that we can analyze
through our framework is single versus multiple
control points in the system. When a system con-
sisting of multiple machines in tandem is viewed as
a single stage system, control mechanisms that con-
trol the system only at the point where the raw
parts enter the system can be de"ned. CONWIP
[6] is such a mechanism where the shipment of
a "nished part to the customer causes a raw part to
enter the system. We give theoretical and numerical
results that explain some of the tradeo!s in single
stage versus multiple stage decompositions of the
system.

It is frequently argued that in many cases linear
backorder costs are not appropriate and a service
level approach is more desirable. We discuss the
extension of the basic model to a case with a
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Fig. 1. The two-stage production system.

constraint on the proportion of un"lled demand
and give numerical examples.

By quantifying the tradeo!s between single and
two parameter policies per stage and single versus
two stage control, our comparisons shed further
light into the desirable properties and shortcom-
ings of a given pull control mechanism.

The outline of the paper is as follows: in Sec-
tion 2, we introduce the model and the correspond-
ing control problem. We also describe the pull
control mechanisms to be analyzed and provide
a qualitative comparison based on the control
space descriptions of the mechanisms. Single stage
control mechanisms di!er from multi-stage mecha-
nisms, we describe them brie#y and give a struc-
tural result. In Section 3 we give numerical results
on the performance of various pull control mecha-
nisms and discuss some of the tradeo!s involved.
Section 4 studies the extension of the basic model
to the case with service level constraints. Our con-
clusions are given in Section 5.

2. De5nitions and qualitative results

We consider two single machines in tandem
which are connected by an intermediate bu!er.
Whenever a part is "nished in the "rst machine, it is
placed in an intermediate bu!er and whenever
a part is "nished in the second machine, it is placed
in the "nished goods inventory. The input bu!er of
the "rst machine consists of raw material which is
always available, so the "rst machine is never star-
ved. The demand that arrives to the system is satis-

"ed from the "nished goods inventory whenever
possible and is backlogged otherwise. This system
is displayed in Fig. 1. Holding costs are incurred for
the parts held in the intermediate bu!er and the
"nished goods inventory. Furthermore, whenever
a demand is backordered, backorder costs are in-
curred. We are interested in controlling the release
of parts from a bu!er to the downstream machine
so that the sum of the long-run average holding and
backorder costs are minimized.

To give a precise description of the model, con-
sider the case where demands arrive to the system
according to a Poisson process with rate j and the
machine in stage i has exponentially distributed
service times with rate k

i
(i"1, 2). Let X

1
(t) denote

the number of parts in the intermediate bu!er plus
the part that is currently in production in the sec-
ond machine at time t and let X

2
(t) be the number

of parts in the "nished goods inventory at time t.
Linear holding costs of h

1
proportional to X

1
(t) is

incurred in the "rst stage. As for the second stage,
holding costs are incurred at rate h`

2
whenever the

"nished goods inventory is non-negative and back-
order costs are incurred at rate b whenever there
are backorders. To simplify the notation, we can
de"ne the piecewise linear cost function h

2
, such

that

h
2
(x)"G

h`
2

x if x*0,

bx if x(0.
(1)

A part release control policy, n determines dynam-
ically whether the machines should be authorized
to work or not. Our objective is to "nd a part
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release policy n such that the long-run average cost
per unit time,

lim
T?=

sup EC
T

P
0

h
1
X

1
(t)#h

2
(X

2
(t)) dtDN¹, (2)

is minimized.
By standard results in Markov decision pro-

cesses, an optimal stationary policy n* exists for the
above problem and can be obtained through the
solution of the optimality equation:
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where<(x
1
, x

2
) is the relative value function and g*

is the optimal cost per unit time. Note that we have
set j#k

1
#k

2
"1 without loss of generality as

well as using the convention that minM<(x
1
, x

2
),

<(x
1
!1, x

2
#1)N"<(x

1
, x

2
) when x

1
"0.

2.1. Control mechanisms

Below, we introduce the details of the pull type
control mechanisms that will be analyzed in the
sequel. The development here follows closely that
of Liberopoulos and Dallery [7] where more
details can be found.

For ease of exposition, we represent all control
mechanisms by queueing networks with synchroni-
zation stations. All the mechanisms that follow can
be represented using at most "ve di!erent type of
queues: one corresponding to "nished parts in stage
i (denoted by P

i
), one corresponding to demands

for production of new parts in stage i (D
i
), one that

corresponds to production authorizations in stage
i (A

i
), one corresponding to pairs of "nished parts

and production authorizations in stage i (PA
i
) and

the "nal one corresponding to pairs of demands for
production and production authorizations in stage
i (DA

i
). Note that P

0
corresponds to the raw parts

bu!er which is assumed to be always non-empty.
One can also de"ne the queue of parts waiting to be
processed in stage i, I

i
, for a complete description

although this queue is not critical for our purpose
here.

2.1.1. Base stock mechanism
The base stock mechanism is displayed in Fig. 2.

In the "gure, D
3
corresponds to customer demands.

The base stock mechanism is completely described
by two parameters S

1
and S

2
corresponding to the

base stock levels in stages 1 and 2, respectively.
Initially, there are S

1
(S

2
) parts in queue P

1
(P

2
)

while all other queues are empty. Whenever a cus-
tomer demand arrives, it joins the queue D

3
and

requests the release of a "nished part from P
2
. At

the same time, this demand is also transmitted to
D

2
and D

1
thereby requesting a release of parts

from P
0

to I
1

and P
1

to I
2
. Hereon, we use the

notation TSBS(S
1
, S

2
) to denote the two stage base

stock policy with parameters S
1

and S
2
.

2.1.2. Kanban mechanism
The kanban mechanism can be seen in Fig. 3.

Initially, the queue PA
1

(PA
2
) contains K

1
(K

2
)

"nished parts each part with a kanban card at-
tached on it while all the other queues are empty.
Whenever a customer demand arrives to the sys-
tem, it joins queue D

3
and requests the release of

a "nished part from queue PA
2
. If a part is avail-

able in PA
2
, it is released to the customer after

having detached the kanban card attached to it.
The freed kanban card then joins the queue DA

2
and requests the release of a "nished part from PA

1
to I

2
. If PA

1
is not empty, this release will be

performed with the kanban detached from the part
transferred to DA

1
where it will cause the release of

a raw part into I
1
. This way, customer demands are

transmitted upstream in the system using the kan-
ban cards. The control is exerted through the avail-
ability of a card in a given stage (if the card is not
available at the time of request, demand will not be
transmitted upstream until a card becomes avail-
able). Once again, the mechanism will be com-
pletely described by the initial number of kanban
cards at each stage, K

1
and K

2
. We will denote this

system by TSK(K
1
, K

2
).

2.1.3. Generalized kanban mechanism
The generalized kanban mechanism [2,3] is

displayed in Fig. 4. Initially, the queue P
1

(P
2
)
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Fig. 2. The base stock mechanism.

Fig. 3. The kanban mechanism.

Fig. 4. The generalized kanban mechanism.

contains S
1

(S
2
) parts and the queue A

1
(A

2
) con-

tains K
1

(K
2
) production authorizations while all

other queues are empty. The evolution of gener-
alized kanban is very similar to that of the kan-
ban mechanism except for the e!ects of the
additional (initially) free kanban cards. In the
kanban mechanism whenever there are no "nish-
ed parts in a certain stage, demand requests cannot
be transferred upstream. The additional kanbans
in the generalized kanban system serve the pur-
pose of relaxing this constraint. In this case, de-
mand can be transferred upstream from a stage
even in the absence of "nished parts as long as
a kanban card is available. We denote the two-
stage generalized kanban system with parameters
S
1
, S

2
and K

1
, K

2
by TSGK(S

1
, K

1
, S

2
, K

2
). Note

that, TSGKS(K
1
, K

1
, K

2
, K

2
) is equivalent to

TSK(K
1
, K

2
) and TSGK(S

1
, R, S

2
, R) is equiva-

lent to TSBS(S
1
, S

2
) (see [1,4]).

2.1.4. Extended kanban mechanism
The extended kanban mechanism [4] is dis-

played in Fig. 5. In this mechanism, there are

Fig. 5. The extended kanban mechanism.

initially S
1
(S

2
) parts with kanbans attached to each

of them in queue PA
1
(PA

2
) and K

1
!S

1
(K

2
!S

2
)

free kanbans in queue A
1

(A
2
) while all other

queues are empty. Note that, this mechanism has
the condition that K

i
*S

i
(i"1, 2). When a de-

mand arrives to the system, it joins the queue D
3

as
well as the queues D

2
and D

1
(as in the base stock

mechanism). The demand that joins the queue
D

3
requests a "nished part from queue PA

2
, if there

is a part available in PA
2
, it is released to the

customer and the detached kanban is transferred to
the queue of free kanbans A

2
. Concurrently, the

demand that has joined D
2

requests the release of
a "nished part from PA

1
. The release is now depen-

dent on the availability of "nished parts in PA
1

as
before but also on the availability of free kanbans in
the queue A

2
. If PA

1
and A

2
are both non-empty,

the release takes place, the part from moves PA
1

to
I
2
while a kanban card is transferred from A

2
to A

1
.

A similar type of synchronization is required for the
release of raw parts from P

0
to A

1
. We denote the

extended kanban system with parameters, S
1
,

S
2

and K
1
, K

2
by TSEK(S

1
, K

1
, S

2
, K

2
). As in the

generalized kanban system, setting the parameters
K

1
and K

2
to in"nity in a TSEK results in an

equivalence to TSBS(S
1
, S

2
). On the other hand,

setting K
i
"S

i
(i"1, 2) in TSEK leads to an equiv-

alence to TSK(K
1
, K

2
) (see [1,4]).

2.2. A qualitative comparison: state space repres-
entations

It has been shown by Veatch and Wein [8] that
optimal control policies have certain monotonicity
properties. In particular, the authors show that
for both machines the `produce/do not producea

F. Karaesmen, Y. Dallery/Int. J. Production Economics 68 (2000) 59}71 63



Fig. 6. Optimal switching curves.

regions are separated by monotone switching
curves. Fig. 6 displays typical switching curves and
the control regions. As can be seen in the "gure,
machine 1 is authorized to produce when, x

1
, the

level of work in process is below a decreasing (in x
2
)

switching curve. Similarly, machine 2 is authorized
to produce when, x

2
, the level of "nished goods

inventory is below a second (increasing in x
1
)

switching curve. In fact, note that the regions where
only machine 1 or machine 2 is authorized to pro-
duce are transient. Monotone control policies can
be completely characterized by a pair of switching
curves which de"ne the region where both machin-
es are authorized to produce. Also note that, the
point where the two switching curves intersect is
the hedging point of the system, the point which the
control policy drives the system towards. The
monotonicity properties provide interesting quali-
tative insights into the structure of good control
policies. The implications of the monotone struc-
ture is quite intuitive; good policies must constrain
the work in process levels in addition to the level of
"nished goods inventory. At the same time, the
work-in-process levels should change depending on
the level of the "nished items bu!er with higher
levels of backlog (or lower levels of "nished items)
requiring higher (or equivalent) levels of work-in-
process. We can qualitatively analyze the perfor-

mance of the pull control mechanisms described
earlier keeping these concerns in mind.

Fig. 7 displays the state space representations of
the base stock and kanban policies. Note that, the
second stage parameters S

2
and K

2
play identical

roles with respect to the control of the second
machine. On the other hand, in the base stock
mechanism the "rst machine works as long as
x
1
#x

2
(S

1
#S

2
whereas in the kanban mecha-

nism the "rst machine will work as long as
x
1
#x

2
(K

1
#K

2
and x

1
(K

1
#K

2
. As a

result, while the work in process inventory x
1

may
grow unboundedly in the base stock mechanism, it
is bounded by the total number of production auth-
orization cards in the kanban mechanism. In fact,
Veatch and Wein [5] prove that the base stock
mechanism can never be exactly optimal due to this
drawback.

Fig. 8 displays the extended and generalized
kanban control mechanisms. The roles of the para-
meters S

1
, S

2
, K

1
and K

2
in de"ning the respective

switching curves can be seen on this "gure. The
basic di!erence between these two mechanisms and
the kanban mechanism is apparent from the "gure.
In particular, generalized and extended kanban
handle the work in process constraints in a di!erent
way than standard kanban. While the "rst switch-
ing curve of the kanban mechanism changes its
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Fig. 7. Base stock and kanban policies.

Fig. 8. Generalized and extended kanban policies.

slope from !1 to R when x
2
"0, the other two

mechanisms have further #exibility in selecting the
point where this change occurs. While extended
kanban permits changing the slope at levels x

2
)0,

generalized kanban permits changing the slope at
both positive and negative levels of x

2
. In fact, in

the particular case of the model considered in this
paper, extended kanban can be viewed as a special
case of the generalized kanban mechanism. This is
an interesting feature of the particular model, since
in general both mechanisms have distinctly di!er-

ent behavior and properties as elaborated by Dal-
lery and Liberopoulos [4]. The equivalence of the
two mechanisms for this model can be explained as
follows: although in the TSGK the parameter
K

1
does not seem to play a role (see Fig. 8), the

de"nition of the mechanism enforces setting
K

1
*1 as otherwise, the "rst machine would never

have the authorization produce. Alternatively, in
Fig. 8, initially K

1
seems to be a crucial parameter

but a closer investigation reveals that the selection
of K

1
does not really matter in itself (as long as
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K
1
*S

1
), since the switching curve (and thus the

behaviour) is de"ned by the sum K
1
#K

2
which

can always be adjusted by the choice of K
2
.

2.3. Single-stage control

In the previous sections, we discussed in detail
the coordination mechanisms which control the
release of material both to the "rst and the second
machine. An alternative approach is to view the
system as consisting of a single stage which has two
machines in tandem and control the release of
material only to the "rst machine. In this case,
while the "rst machine is directly controlled as
before, the second machine is not directly control-
led and produces whenever it can (i.e. whenever
there are items completed in the "rst stage and
waiting to be produced). The single stage kanban
system, also known as the CONWIP system (see
[6]) has received particular attention. However,
single-stage basestock, kanban, generalized kanban
mechanisms can also be de"ned analogous to their
previously described two stage versions. It turns
out that in this case generalized and extended kan-
ban policies with identical parameters are equiva-
lent [9]. Hence, it will su$ce to consider SSGK
from the point of view of performance. We use the
shorthands SSBS(S), SSK(K) and SSGK(S, K) to
denote these mechanisms having parameters S and
K. Our framework enables us to quantify the single
stage versus two-stage control tradeo!s through
the optimal control framework, but "rst we elabor-
ate on some qualitative issues.

Intuitively, the necessity to control the entry of
material at multiple stages seems to stem from the
fact that as material moves downstream in the
production system some value is added to the part
in process and as a result the holding costs at
upstream stages can be considerably smaller than
those at downstream stages. Hence, the di!erence
in upstream and downstream holding costs moti-
vates keeping inventories upstream whenever pos-
sible which implies that it would be necessary
to control the release of material in some inter-
mediate stages. On the other hand, when hold-
ing costs do not change signi"cantly between
di!erent stages of the system, it is plausible that

intermediate control points are unnecessary, since
in this case what matters is the total number of
parts in the system regardless of their particular
positions (upstream or downstream). Within our
framework, we can concretize this last point by the
following proposition which states that whenever
holding costs are identical, the optimal policy is to
always authorize the machine in the second stage to
produce.

Proposition 1. =hen h
1
"h`

2
, the optimal control

policy in the second stage is to produce whenever
possible (i.e. when x

1
*0).

Proof. See the appendix.

Remark 1. Proposition 1 can be interpreted as
follows: if holding costs are identical for succesive
manufacturing stages, upstream inventories must
be transferred to the next stage as fast as possible. It
should be noted that some pull control mechanisms
violate this proposition by de"nition of their be-
havior. This is the case, for instance, of the TSK, for
which any positive value of K

1
, parts will be held in

queue PA
1

(see Fig. 3) at certain times. On the
other hand, in TSBS for example, setting S

1
to zero

in TSBS(S
1
, S

2
) results in an equivalence with

SSBS(S
2
). The same equivalence also holds true

between TSGK and SSGK, as well as between
TSEK and SSEK.

Remark 2. Note that Veatch and Wein [5] provide
a proof for the case when h

1
'h`

2
using an entirely

di!erent approach.

3. Performance analysis

To analyze the performance of control mecha-
nisms, we use the following setup. We set the
demand rate j to 1 without loss of generality and
vary k

1
and k

2
as well as the cost parameters. The

18 di!erent sets of data used in the following nu-
merical experiments are displayed in Table 1. The
"rst three data sets have also been used by Veatch
and Wein [5] (but note that their de"nition of the
parameters for control mechanisms is slightly dif-
ferent than ours).
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Table 2
The cost of the optimal policy and the percentage suboptimality of the best policy within each pull control mechanism

Set Opt. SSBS SSK SSGK TSBS TSK TSGK

1 22.10 1.79 (11) 6.04 (13) 1.55 (11,22) 0.44 (4,8) 3.73 (6,8) 0.37 (4,1,8,16)
2 15.75 10.08 (7) 1.50 (7) 1.46 (7,6) 10.08 (0,7) 2.92 (1,6) 1.46 (0,1,7,6)
3 11.77 13.67 (7) 15.70 (7) 13.67 (7,30) 0.11 (7,2) 0.84 (7,2) 0.11 (7,1,2,13)
4 15.97 2.42 (8) 9.42 (11) 1.57 (8,18) 1.81 (2,6) 6.45 (6,6) 0.66 (3,1,6,14)
5 11.02 16.63 (4) 3.02 (5) 2.56 (5,6) 18.56 (1,4) 3.78 (1,4) 2.56 (0,1,5,6)
6 8.23 8.33 (4) 15.8 (6) 8.33 (4,30) 0.04 (5,1) 3.13 (6,1) 0.04 (5,1,1,15)
7 29.08 2.01 (15) 4.40 (17) 2.01 (15,30) 0.22 (5,11) 1.96 (6,12) 0.81 (5,1,11,15)
8 21.45 7.49 (9) 2.69 (9) 2.11 (10,7) 7.49 (0,9) 3.68 (1,8) 2.11 (0,1,10,7)
9 16.02 19.09 (9) 19.69 (10) 19.09 (9,30) 0.31 (9,3) 1.96 (10,3) 0.31 (9,1,3,11)

10 13.40 2.47 (11) 3.05 (12) 1.16 (11,17) 2.47 (0,11) 3.15 (1,11) 1.16 (0,1,11,17)
11 9.12 22.22 (7) 4.96 (6) 4.20 (7,5) 22.22 (0,7) 7.69 (1,5) 4.20 (0,1,7,5)
12 7.19 0.05 (7) 1.57 (7) 0.05 (7,30) 0.05 (0,7) 1.59 (1,6) 0.05 (0,1,7,30)
13 17.16 1.15 (15) 1.98 (16) 1.00 (15,23) 1.15 (0,15) 2.05 (1,15) 1.00 (0,1,15,23)
14 12.08 16.04 (9) 7.05 (9) 3.97 (10,6) 16.04 (0,9) 9.28 (1,8) 3.97 (0,1,10,6)
15 10.03 0.13 (9) 0.59 (10) 0.13 (9,30) 0.13 (0,9) 0.60 (1,9) 0.13 (0,1,9,30)
16 21.20 0.64 (20) 1.02 (20) 0.63 (20,27) 0.64 (0,20) 1.07 (1,19) 0.63 (0,1,20,27)
17 15.47 12.24 (13) 8.37 (12) 3.80 (13,7) 12.24 (0,13) 10.43 (1,11) 3.80 (0,1,13,7)
18 13.35 0.32 (13) 0.35 (13) 0.32 (13,30) 0.32 (0,13) 0.35 (1,12) 0.32 (0,1,13,30)

Average suboptimality 7.60 5.96 3.76 5.24 3.59 1.32
Worst-case suboptimality 22.22 19.69 19.09 22.22 10.43 4.2

Table 1
Sets of parameters used

Set no k
1

k
2

h
1

h`
2

b

1 1.2 1.2 1 2 4
2 2 1.2 1 2 4
3 1.2 2 1 2 4
4 1.2 1.2 1 2 2
5 2 1.2 1 2 2
6 1.2 2 1 2 2
7 1.2 1.2 1 2 8
8 2 1.2 1 2 8
9 1.2 2 1 2 8

10 1.2 1.2 1 1 2
11 2 1.2 1 1 2
12 1.2 2 1 1 2
13 1.2 1.2 1 1 4
14 2 1.2 1 1 4
15 1.2 2 1 1 4
16 1.2 1.2 1 1 8
17 2 1.2 1 1 8
18 1.2 2 1 1 8

Using the parameter sets in Table 1, we perform
the following experiment: for each control mecha-
nism of interest, i.e., single-stage base stock (SSBS),

single-stage kanban (SSK), single-stage generalized
kanban (SSGK), two-stage base stock (TSBS),
two-stage kanban (TSK) and two-stage generalized
kanban (TSGK) (we omit extended kanban, since it
is a special case of the generalized kanban for this
problem), we "nd the values of the parameters that
give the minimum cost by performing a search in
the state space combined with the value iteration
algorithm (see [10] for example). We also compute
the optimal policy for the given parameters by
using value iteration in a truncated state space
(state spaces of dimension up to 50 by 100 have
been used). The comparisons are hence between the
best performances that can be obtained from
a given mechanism. In Table 2, we report the cost
achieved by the optimal policy (denoted by `Opt.a
in the table) and the percentage suboptimality of
the minimum cost achieved by each mechanism as
well as the parameters of each mechanism yielding
the minimum cost (given in parenthesis after the
suboptimality value). The parameters are given in
the order de"ned in the previous sections. In dis-
playing the parameters, we set K

1
to 1 in TSGK,

since it does not play any role in our problem.
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Consider the columns of Table 2, that corres-
pond to single-stage control mechanisms. We
observe in general that in most cases, either SSBS
or SSK performs well. A more careful observa-
tion reveals that for the cases where both
machines have equal production rates (data sets
1, 4, 7, 10, 13 and 16) SSBS performs better than
SSK and for the cases where the second mac-
hine is slower than the "rst machine (data sets 2, 5,
8, 11, 14 and 17) SSK performs better. In either case
(when data sets 3, 6, 9, 12, 15 and 18 are
excluded), SSGK is the clear winner with a
maximum error of 4.2%. One would be tempted
to state that single stage policies are extremely
e$cient if it were not for the less than satis-
factory results obtained in data sets 3, 6 and 9.
The common characteristics of these sets are a fas-
ter production rate in the second machine and
higher holding costs in stage 2 than stage 1. The
imbalance between the machines necessitates
a considerable amount of safety stock in between
but since holding "nished goods inventory is
expensive, this safety stock should not be converted
into "nished goods until necessary and this can
only be achieved by controlling the machine in
the second stage.

The columns of Table 2 corresponding to two
stage policies reveal other interesting properties.
Firstly, TSBS performs better than TSK in all cases
except those where the "rst machine is faster than
the second machine. The problem, however, is that
when TSBS performs worse that TSK, it performs
poorly whereas TSK seems more robust. In any
case, when robustness is the issue TSGK is con-
siderably more reliable than either TSK or TSBS.
Once again, the interesting observation here is that
usually either TSK or TSBS performs well while
TSGK always performs well since it can imitate the
better system by an appropriate choice of the para-
meters.

Finally, note that in rows corresponding to para-
meter sets 10}18 of Table 2 SSKS performs better
than TSKS while SSBS and SSGK perform as well
as TSBS and TSGK respectively. This is not sur-
prising in light of our previous results since this
part of the data set corresponds to the the cases
where the holding costs are identical in both stages
of the system.

4. Service level constraints

It is frequently argued that although backorder-
ing demand is an important concern, backlog costs
are di$cult to quantify. An alternative approach to
analyze the tradeo! due to un"lled demand is
through service level constraints. A frequently used
service level is ,ll rate de"ned as the proportion of
demands that can be satis"ed from on hand inven-
tory upon arrival. In this section, we extend the
previous discussion on qualitative properties
of good control policies to systems with "ll rate
constraints.

Consider a "ll rate constraint of the following
type: the probability of ful"lling an order from on
hand inventory upon arrival must be at least
(1!a). To make this de"nition more precise, let
t
n
be the time corresponding to the nth event (arri-

val of demand or service completion in either stage)
in the system. Let I

A
( ) be the indicator function

that corresponds to the demand arrival event, i.e.,
I
A
(t
n
)"1 if the nth event is an arrival and I

A
(t
n
)"0

otherwise. Furthermore, we can de"ne a second
indicator function, I

b
( ) that marks demand arrivals

that are not satis"ed from on-hand inventory.
Hence,

I
b
(t
n
)"G

1 if I
A
(t
n
)"1 and X

2
(t~
n
))0,

0 otherwise.

The "ll rate constraint is then

lim
n?=

EC
n
+
0

I
b
(t
n
)D

EC
n
+
0

I
A
(t
n
)D
)a. (4)

In other words, by setting the backorder cost
b"0, we obtain the identical objective function as
in Eq. (2), however this time the minimization is
subject to the constraint Eq. (4).

If we consider truncated state spaces, we can
solve the above problem exactly using a linear
programming formulation. However, this ap-
proach will not provide a lot of insight, since the
optimal policy will be randomized and will not be
easy to implement. To obtain a close to optimal
non randomized solution of the above problem,
we use a Lagrangian relaxation by adding the
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constraint to the objective function with a penalty
of r. The resulting problem is referred to as the
problem with un,ll penalties.

To analyze the problem with un"ll penalties,
note that the Lagrangian leads to the following
optimality equations:

<(x
1
, x

2
)

"h
1
x
1
#h`

2
x
2
#j<(x

1
, x

2
!1)

#k
1
minM<(x

1
!1, x

2
#1), <(x

1
, x

2
)N

#k
2
minM<(x

1
, x

2
#1), <(x

1
, x

2
)N if x

2
'0,

<(x
1
, x

2
)

"h
1
x
1
#j(r#<(x

1
, x

2
!1))

#k
1
minM<(x

1
!1, x

2
#1), <(x

1
, x

2
)N

#k
2
minM<(x

1
, x

2
#1), <(x

1
, x

2
)N if x

2
)0,

(5)

once again with the convention that minM<(x
1
!1,

x
2
#1), <(x

1
, x

2
)N automatically equals <(x

1
, x

2
)

whenever x
1
"0.

Examining the above optimality equations, we
note that the un"ll penalties can be converted into
equivalent backorder costs. The equivalent backor-
der cost function is given by

h
2
(x)"G

h`
2

x if x'0,

jr if x)0.
(6)

The only di!erence between the backorder cost
and un"ll penalty problems is the backorder cost
function. This prompts the question as to whether
the monotonicity properties are retained for this
problem as well. Unfortunately, the new holding
cost function does not satisfy the directional sub-
modularity conditions used by Veatch and Wein
[8] to prove monotonicity which rules out an
inductive proof. Furthermore, there are numerical
examples in which optimal switching curves are
not monotone. Nevertheless, in most numerical
examples the optimal switching curves seem to be
monotone.

To relate the problem with un"ll penalties to the
one with service level constraints, note that each
un"ll penalty r induces an associated "ll rate a(r).

One can then vary r until a(r) is su$ciently close to
the desired service level a. The optimal holding cost
under this policy can then be computed by "xing
the policy and recomputing the cost by setting
r"0.

Table 3 reports the optimal performance of
single stage base stock, kanban and generalized
kanban policies for di!erent parameter sets under
two di!erent "ll rate constraints, 10% and 20%.
The `Opt.a column reports the results of the min-
imum cost found by the Lagrangian heuristic
(which is not necessarily the minimum cost that can
be obtained by a stationary policy, in fact in the last
row of the table the all three control mechanisms
perform better than the Lagrangean heuristic.).

Table 3 is consistent with the preceding numer-
ical results on the case with linear backorder
costs. The SSGK performs signi"cantly better
than SSBS and SSK on the average. Furthermore,
the di!erence in the average performance is sharp-
ened due to the existence of cases where single
parameter policies can perform quite poorly (such
as the case in the rows corresponding to parameter
sets 2 and 11).

5. Conclusion and future research

Using a two stage model and an optimal control
approach, we presented performance comparisons
between various control mechanisms. It turns out
that simple mechanisms such as kanban, base stock
and even their single-stage variants are very e!ec-
tive for the model considered. On the other hand,
these simple mechanisms have a major drawback in
that under certain conditions they can perform
poorly. This highlights the signi"cant advantage of
more complicated mechanisms such as generalized
or extended kanban. These mechanisms do not
necessarily perform signi"cantly better than
simpler ones for a given case but they are guaran-
teed to perform well under all circumstances.

Many interesting research issues remain unad-
dressed. An important problem is the optimization
of the parameters of a given control mechanism.
This is especially important for generalized and
extended kanban mechanisms which require more
parameters than the others. One of our results that
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Table 3
Service level constraint results

Set 10% "ll rate 20% "ll rate

Opt SSBS SSKS SSGKCS Opt SSBS SSKS SSGKCS

1 27.46 15.48 (23) 14.86 (23) 14.86 (23,23) 19.16 9.81 (17) 6.58 (17) 5.85 (17,16)
2 20.66 15.00 (15) 13.02 (15) 3.29 (15,6) 13.50 23.40 (11) 17.40 (11) 6.81 (11,6)
3 14.95 19.60 (14) 19.60 (14) 19.26 (14,9) 10.20 7.94 (10) 7.75 (10) 7.25 (10,8)
10 16.73 9.56 (23) 8.37 (23) 8.37 (23,23) 12.01 8.91 (17) 4.08 (17) 3.08 (17,16)
11 11.72 23.12 (15) 19.54 (15) 3.92 (15,6) 8.13 33.21 (11) 23.25 (11) 7.38 (11,6)
12 9.36 0.85 (14) 0.85 (14) 0.53 (14,9) 6.08 !1.32 (10) !1.32 (10) !1.97 (10,8)

Average suboptimality 13.94 12.71 8.37 13.66 9.62 4.73
Worst-case suboptimality 23.12 19.60 19.26 33.21 23.25 7.38

could be useful from the design point of view is that
good generalized (or extended) kanban policies in
general tend to imitate the better of base stock and
kanban policies. It seems plausible then to consider
an approach where a good base stock or kanban
policy is improved upon by iteratively adjusting the
additional parameters to obtain a good generalized
or extended kanban policy.

Another interesting and relevant extension is
to consider multiple part types. This brings in
the additional di$culty of sharing manufacturing
resources between di!erent part types in addition
to the decisions of whether or not to produce that
were considered for the single part type case. The
design of simple but e!ective multistage pull mech-
anisms for multiple part type systems remains as
a challenging issue for future research.

Appendix A.

Proof of Proposition 1. Consider the case of min-
imizing the total discounted costs over an in"nite
horizon with discount factor a, i.e., we would like to
"nd the policy that minimizes

lim
T?=

sup EC
T

P
0

e~at(h
1
X

1
(t)#h

2
(X

2
(t))) dtD. (A.1)

Let j#k
1
#k

2
#a"1 without loss of general-

ity, the corresponding optimality equations are as

follows:
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We would like to argue through value iteration
by using the fact that the optimal in"nite horizon
cost <(x

1
, x

2
) can be obtained as the limit of corre-

sponding k-horizon cost functions as the hor-
izon k tends to in"nity. To this end let <k(x

1
, x

2
)

denote the the minimum total cost incurred over
k stages starting from state (x

1
, x

2
). Furthermore,

let <0(x
1
, x

2
)"0 for all x

1
and x

2
.

To obtain the necessary result, we need to show
that

minM<(x
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1
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or equivalently <(x
1
!1, x

2
#1))<(x

1
, x

2
), when-

ever x
1
'0.

The above property holds trivially for <0(x
1
, x

2
),

now we assume that it also holds true for<k(x
1
, x

2
),

to complete the proof we need to show that
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and
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Now we will perform a term by term comparison:
"rstly, since h
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assumption: k
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x
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#1). Hence, we are left with the terms corre-

sponding to production in the "rst stage. We con-
centrate on these terms by considering all four
possible combinations of control actions:

Case 1: Optimal kth stage actions are to produce
in stage 1 in both (x

1
, x

2
) and (x

1
!1, x

2
#1). In

this case, the resulting term on the right-hand side
of (A.4) is <k(x
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2
) and the term on the right-

hand side of (A.5) is: <k(x
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#1). By the in-

duction assumption, we have: <k(x
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).

Case 2: Optimal kth stage actions are not to
produce in machine 1 in both (x

1
, x

2
) and

(x
1
!1, x

2
#1). The desired inequality is obtained

exactly as in the previous case by the induction
assumption.

Case 3: Optimal kth stage actions for machine
1 are to produce in state (x

1
, x

2
) and not produce in

state (x
1
!1, x

2
#1). This case can not happen

since it contradicts the monotonicity property pro-
ved in Veatch and Wein [8] which states that if it is
optimal to produce in machine 1 in state (x

1
, x
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), it

is also optimal to produce in machine 1 is state
(x

1
!1, x

2
#1).

Case 4: Optimal kth stage actions for machine
1 are not to produce in state (x

1
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2
) and produce in

state (x
1
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#1). Since the optimal action in

state (x
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#1). However, <k(x
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desired inequality.
We have proved that the desired property propa-

gates through value iteration. To complete the
proof, we note that the in"nite horizon problem
will also inherit the desired property by letting
kPR. Furthermore, under standard assump-
tions, limits can be taken as the discounting factor
a approaches 1 to show that average cost per unit
time problem also has the identical property.
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