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Abstract� We develop a method for computing the optimal double band �b� B�

policy for switching between two di�usions with continuous rewards and switch�

ing costs
 The two switch levels �b� B� are obtained as perturbations of the single

optimal switching point a of the control problem with no switching costs
 More

precisely� we �nd that in the case of average reward problems the optimal switch

levels can be obtained by intersecting two curves� a� the function� ��a�� which

represents the long run average reward if we were to switch between the two

di�usions at a and switches were free and b� an horizontal line whose height de�

pends on the size of the transaction costs
 Our semi�analytical approach reduces�

for example� the solution of a problem recently posed by Perry and Bar�Lev ����

to the solution of one non�linear equation
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� Introduction

Consider a bounded storage system whose level is governed at any time by one of two

Markov processes
 A controller decides which of the two mechanisms will be used� with

the goal of optimizing some reward� for example there might be continuous rewards for

keeping the level in the interior of some state space and penalties for hitting its boundaries


Problems of this nature are common in both inventory control and in queueing systems


Continuous di�usion models have been used quite successfully as approximations of the

discrete Markov models under conditions of heavy tra�c for the above queueing�storage

problems
 Some early examples are in the work of Newell ����� Harrison ���� Reiman ��
�

and Foschini ���


Our motivation for considering di�usions is however more modest� we study them just

as an example of one instance of a process for which the optimal policy may be obtained

explicitly� yielding thus insight into the interplay between the various parameters of the

problem� means� variances and costs
 The �rst attempts to use explicitly solvable di�usion

control models in optimization problems arising in operations research� statistics or �nance

are due to Bather �������� Cherno� ���� Benes and Shepp �
� and Samuelson and Mc Kean

����
 Di�usion methods have been ever since a hot area in the �nance literature
 For some

recent examples� see Taksar et al
 ����� Davis and Norman ���� Shreve et
 al ���� and Shepp

and Shiryaev����


�



One dimensional di�usion models have also been successfully employed to gain insights in

inventory control models� for example by Harrison and Taksar ���� and Taksar ����
 Harrison

and Reiman have pioneered the use of multidimensional re�ected Brownian motion to study

queueing network problems in Harrison ���� Harrison and Reiman ���� and Reiman ��
�


Multidimensional re�ected brownian motion problems display lots of intriguing features

missing in the one dimensional problems� as revealed in the work of Williams �for example

see Varadhan and Williams �����


The one dimensional problem of drift control with switching costs we consider below

is similar to those studied by Rath ����� ����� Cherno� and Petkau ���� Krichagina et al


����� ���� and by Perry and Bar�Lev ����
 The methods we use� the dynamic programming

approach� the equation for the di�erential rewards and the �smooth �t� equation were �rst

used in this context by Bather �������


Rath ���� studied the following decision problem in a queueing system� any one of two

servers can be selected to serve customers at any time� there are holding costs associated

with the customers waiting in the queue and there are switching costs associated with

changing between servers
 He showed that under heavy tra�c conditions� the queue length

process for this queueing system converges to a re�ected Brownian Motion process with

two di�erent sets of parameters corresponding to each server
 Furthermore� the costs also

converge� therefore a discrete state space control problem motivates a control problem with

a continuous state space


In a later paper� Rath ���� obtained the optimal policy for the continuous time control

problem by approximating the Brownian motion processes using the corresponding random

walks
 The policy is determined by a band of type �b� B� and it is optimal to use the

�rst Brownian motion starting from the time the queue length reaches B from below and

continue with it until the queue length falls to b
 Similarly� use the second Brownian motion

from the time the queue length falls to b until the time the queue length builds up to B


Cherno� and Petkau ��� noted that Rath�s problem of switching between two Brownian

motions can be treated in continuous time using dynamic programming
 Perry and Bar�Lev

���� also considered a similar drift control problem in the context of inventory control
 They

studied a bounded storage system where there are penalties for hitting the boundary and

the inventory level is controlled by controlling the drift of the process


Finally� Krichagina et al
 ���� studied a manufacturing control problem which converges

to a one dimensional stochastic control problem that can be solved explicitly
 In a later

paper� Krichagina et al
 ����� studied another manufacturing control problem that involves

setup costs
 The limiting case of this problem is a one dimensional impulse control problem

�



which also yields explicit solutions
 Furthermore� the optimal policy for this problem is

shown to be of double band type


Our main result in this paper� given in Section 
� is an easily implementable method

for �nding the optimal double band policies for the drift control problems of Rath ���� and

Perry and Bar Lev ����� for the case of long run average reward optimization
 �We also

report in the Appendix on a characterization of the switch levels for the case of optimizing

the total cost until absorption on the boundaries
 Unfortunately� the result in this case

does not lead to signi�cant simpli�cations over the extensive search for the optimal levels

proposed in earlier papers
�

Our results are similar to those obtained in ���� for a di�erent problem �inventory impulse

control with linear holding costs and discounting�
 In Section �� as a warm up� we show

how our method works in a setup similar to the one in ����� that of �s� S� inventory impulse

control


� �s� S� Inventory Control

Under quite general assumptions� the optimal inventory control policy is to order �S � s�

units from an outside supplier whenever the inventory level drops to s
 We examine �rst

our method on this well known problem
 Suppose a di�usion process fX�t�� t � �g with

generator G � ��x� d
dx � ���x�d�

�dx�
�i
e
 with drift ��x� and variance ���x�� accumulates

rewards of h�x� dt while running� where h is a positive continuous function
 We control the

movement by impulse control� whenever the inventory hits a certain level s� we bring it up

to a higher level S� while paying a fee of k
 The levels �s� S� are to be chosen so that the

long run average cost is minimized
 For a �xed policy � � �s� S�� let c�x� �� t� denote the

total cost up to time t

c�x� �� t� � Ex

�Z t

�
h�X�s��ds� kN�t�

�
���

where N�t� is the number of switches up to time t
 The controller�s objective is to choose

�s� S� to minimize the long run average cost�

���� � lim
t��

c�x� �� t�

t
�

�the limit is independent of the starting point x�


We will approach the problem in two steps
 In the �rst step� we assume the switching

cost is zero and obtain the single optimal switching point
 In the next step� we expand the

single point obtained in step � into the optimal double band







STEP �� In the case of no switching costs� the optimal policy is known �cf
 ���� and �����

to be instantaneous control� or �regulation� at some point a� which informally means that

all negative increments of X�t� occurring while X�t� is at a are cancelled
 Suppose a �xed

regulating boundary a is chosen
 The invariant measure of the resulting process on �a��� is

proportional to exp�M�x��� where M is an antiderivative of ����� �see� for example �����


Let

�t�x� �
Z �

x
exp�M�y�� dy ���

and

�f�x� �
Z �

x
h�y� exp�M�y�� dy� �
�

The average cost when switching at a ��a� is thus

��a� � �f �a���t�a� ���

�assuming the integrals in ��� and �
� are well de�ned� and the optimal a� must be chosen

so that it minimizes �f��t
 For example� in the case of constant variance �� � � and constant

negative drift � we �ndM�y� � exp���y�a�� and so we have to minimize ��a� � Eh�a�Z��

where Z is exponentially distributed with parameter ��


Remark� A di�erent interpretation of the functions �f� �t is provided by the heuristic method

of di�erential rewards pioneered by Bather ���� used in the next step


STEP �
 In the presence of transaction costs� the optimal policy is of double band type

�i
e
 � is determined by the pair �s� S�
 Due to the transaction cost� the controller lets the

level drop to a level s below the instantaneous control point a� before restocking
�

The dynamic programming approach� which can be justi�ed rigorously by an application

of the generalized Ito Lemma �see ���� Theorem �
�� pg
 ���� implies that the cost c�x� �� t�

satis�es the partial di�erential equation

�

�t
c � Gc�x� � h�x� ���

with the boundary condition

c�s� �� t� � c�S� �� t� � k� ���




Bather�s approach constitutes in assuming that

c�x� �� t�� �t� V �x�� ���

�



where � is the long run average cost per time unit and V �x�� called the di�erential cost

starting at x� and measures the relative di�erences of order O��� between the various starting

points after the common long run average �t is subtracted
 Plugging this expansion in

the dynamic programming equations for c�x� �� t� shows that V �x� satis�es the di�erential

equation

GV � �h � � ���

and the boundary condition

V �s� � V �S�� k� ���

A rigorous but less direct approach to ��� is to replace long run averages by discounted

averages and let the discounting approach �� Since the focus of our paper is to simplify the

actual numerical computing of optimal double band policies� we will remain at the informal

level


Letting now v�x� denote the derivative of V we replace the second order equation ���

by the �rst order equation

gv � �h � �� ����

where g denotes the operator ��d
�dx � �� Finally we decompose v�x� as v � f � �t� where t

and f are solutions of

g f � �h and ����

g t � �� ����

respectively
 The one boundary condition needed to determine f and t uniquely is pro�

vided by their behaviour at �� By choosing a large truncation boundary B� specifying the

boundary conditions f ��B� � �� t��B� � � �corresponding to re�ection� and letting B � �

we �nd that the exponentially growing homogeneous solutions to ���� and ���� fall down


The particular solutions are f � � �f��� and t � ��t��� where �f and �t were de�ned in STEP

� in ��� and �
�
 Thus� f and t may be viewed both as averages of x and � with respect to

the stationary measure and as a decomposition of the derivative v of Bather�s di�erential

cost
 For �xed S� s� � and k we have determined now v and also V up to a constant and

the extra constraint ��� determines �� When S and s vary� the optimal values of �s�� S��

will be such that the partial derivatives of � with respect to �s� S� are �
 Taking this into

account and di�erentiating ��� with respect to S and s yields the equations

v�s� � v�S� � �� ��
�

�



which may also be put in the form

f�s��t�s� � f�S��t�S� � �� ����

Note that the function f�a��t�a� was shown in STEP � to be precisely the average cost

when regulating at a and no switching costs are charged


De�nition� Two points satisfying equation ���� �i
e
 which lead to equal long run averages

in the problem with no transaction costs� will be called conjugate points


Theorem �� Suppose the function � � f�t is unimodal
 Then each value�

� � ���a���minf������ ����g� determines a unique pair of conjugate points which are

optimal for the problem with transaction cost k which is related to � by ���

Z S

s
�f � � t�dy � k� ����

The optimal switch levels can thus be determined by four integrations �the computations

of f� t and their integrals and the solution of one nonlinear equation� the conjugacy equa�

tion�
 For simple holding cost functions� these computations may be performed analytically

as demonstrated in the example below


Example �� This example demonstrates how to �nd the optimal regulation point and

then compute the optimal �s� S� band for a storage system with quadratic holding and

backordering costs h�x� � hx�
 Solving the di�erential equations ���� and ���� with � � �

and �� � � yields�

f�x� �
��h

��
�
�hx

��
�
hx�

�

and

t�x� � �
�

�
�

The optimal regulation point a is the point where the function f�x��t�x� is minimized


Taking derivatives� it is seen that

a� �
�

�
�

The optimal cost per unit time � � f�a���t�a�� is

� �
h

��
�

The integration in ���� may also be performed explicitly and the conjugacy equation for

d � S � a � a� s is just �

d� �

k����

�h
�

�



k s S �

� �� �� �

�
��� ��
� ��
� �
��

�
��� ��
� ��
� �
��

�



 �� � �

��
��� �
 � �


�
��� �� � ��

Table �� Results of Example �

Table � gives the optimal band �s� S� and the corresponding transaction cost k� for a

few values of �� for the parameter values � � �� and h � �
 Figure � displays the function

f�x��t�x� � ��x�
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Figure �� Optimal �s� S� pairs

� Optimal Drift Control to Maximize Expected Reward per

Unit Time

In this section we study the problem of optimally switching between two di�usion processes

to maximize the expected reward per unit time
 The general setup is as follows� a controller

�



decides at every time t to use one of two available di�usion operators with constant coe��

cients Gi �
��d�

� dx�
� �i

d
dx � i � �� �� depending on which of two control regions the di�usion

process Y �t� lies in
 An important simplifying assumption made throughout the paper will

be that in the case of no switching costs the optimal policy uses exactly one switchpoint a


We may then call� without loss of generality� by Gi the di�usion mechanism used near the

boundary point i


We assume constant variance and piecewise constant drift� depending on which side

of the switch point �a� the process lies
 The resulting process is thus a di�usion with

�bang�bang� drift� described by the following stochastic di�erential equation�

dY �t� � ��Y �t��dt� �dB�t�� ����

where B�t� is a Brownian motion with � � � and �� � �


The existence and uniqueness of the solution of this equation follows for example from

Theorem ��
� of ���� where an explicit computation of the density in a particular case may

be also found in Exercise �� pg
 ���
 An interesting fact about this process is that its

distribution is uniquely determined by the controller�s decision o� the control boundary�

and thus the value of the drift at the in�nite set of times at which the process crosses from

one region to the other is irrelevant
 For a discussion of this in a similar context we refer

to ����


For the double band policies� the construction of the process is simpler� the di�usion

mechanism is switched at each of the alternating sequence of hitting times of B and b


Finally� the process is regulated both at � and �� which means that we observe the process

X�t� restricted to the interval ��� �� modelled by the equation

X�t� � Y �t� � L��t�� L��t� ����

where Li�t�� i � �� �� are the unique minimal nondecreasing continuous functions which

may increase only when X�t� is at the respective boundaries
 �The fact that the minimal

�regulators� Li are uniquely de�ned �pathwise� on the space of continuous functions� due

to Harrison and Reiman� may be found for example on page �� of ��
��


We assume the following reward structure� using the i�th generator yields a reward of

hi�x� dt per time interval dt� switching from one mechanism to the other costs k�� and

the regulation leads to a penalty of 	i per unit of regulation at i� that is a regulation

cost of
P�

i�� 	iLi�t� is incurred up to time t
 The total reward associated with a partition

�



� � ���� ��� of the state space is thus

Ux���t � Ei�x��

�Z t

�

�X
i��

hi�X�s����X�s���i�ds�
�X

i��

	iLi�t�� kN�t���

�
����

where N�t� is the number of policy switches prior to time t� The objective is to maximize

the long run average reward

� � sup� lim
t��

Ux���t

t
����

�which is independent of the starting point x�


Example �� Assume that both the switching costs and the boundary costs are �
 The

stationary density of the process is truncated exponential on both sides of the switch point

a� with parameters ri � ��i��
�� i � �� � respectively
 Since the density has to be continuous

at a it follows that

��a� � f�a��t�a�� ����

where f�a� �
R a
� h��x�e

r��x�a��dx����
R �
a h��x�e

r��x�a��dx��� and t�a� �
R a
� e

r��x�a��dx����R �
a e

r��x�a��dx��� �the normalization factor ���� is convenient in the sequel� 


Thus� the optimum switch point is the maximum of the function f�t �for example� in

the case �� � �� the optimum switch point reduces to precisely the root of the equation

h��x� � h��x�� the �myopic� solution�
 We will show again that the functions f � t may also

be used for locating the optimum switch points


Theorem �� a� The policy of switching between the two di�usions at a �xed point x

achieves the long run average value of

��x� �
f�x�

t�x�
� ����

b� If a double band policy �b� B� is optimal for some transaction cost k� then the switch

levels �b� B� and the corresponding long run average � satisfy�

f�B�

t�B�
�
f�b�

t�b�
� � �conjugacy equation� ����

and Z B

b
�f�x�� �t�x�� dx� k �cost equation� ��
�

where f� t �which take now into account also the boundary costs� are de�ned below


A graphical interpretation is provided in Figure �
 ��a� is the average reward when

switching at a the absence of switching costs
 Note that if ��a� is unimodal� for any value

�



s � �max������ ������ ��a�� Theorem � provides a unique k 
 � determined by ��
� and a

double band �b� B� which is optimal for that k�

b B

k=0

γ = s

x

γ(x)

γ(a)*

a*

Figure �� Graphical Interpretation of Theorem �

Proof of Theorem ��

a�We will extend �rst the de�nitions of f� t from the previous example so that they take into

account the long run boundary costs
 The most convenient way is via Bather�s approach


For a �xed switch point a� on each side of a the dynamic programming equations�

obtained by plugging Bather�s approximation for large t in the reward function U�x� �� t�

are

GiVi � �hi � � ����

V �
i � ����i	i ����

i � �� � �the boundary conditions follow from the generalized Ito formula ��
�
�� in ���
���

see also ������ theorem �
��


By letting vi � V �
i denote the derivatives of Bather�s di�erential costs� these become�

givi � �hi � � ����

vi � ����i	i ����

where gi denote the �rst order di�erential operators
��d
� dx � �i�

��



Let now fi and ti be decompositions of vi in the form vi � �ti � fi� We choose fi� ti as

solutions of the following di�erential equations���
� gi fi � hi

fi�i� � ����i	�	i
����

and ��
� gi ti � �

ti�i� � ��
����

It is easy to check then that �ti� fi satisfy ����
 Finally� let f � f�� f� and t � t�� t�


In the absence of boundary costs f and t are precisely the integrals de�ned in Example �


We now use the continuity of vi at the switch point �t�� f� � �t�� f� to conclude that

the long run average reward is � � f�t�

b� We �x a double band �b� B� which is optimal for some cost k and note that the control

policy translates into the boundary conditions���
� V��B� � V��B�� k��

V��b� � V��b�� k��
�
��

which when added yield the cost equation�

Z B

b
�v� � v��dx �

Z B

b
�f�x�� �t�x�� dx � k �
��

Di�erentiating �
�� with respect to �b� B� and taking into account that the partial deriva�

tives of � with respect to B� b have to be � yields��
� v��b� � v��b�

v��B� � v��B��
�
��

also called smooth �t equations
 Using the decomposition of vi they can also be put in

the form

�t�b�� f�b� � � �

�

and

�t�B�� f�B� � � �
��

which yields the conjugacy equations ����


�

��



Remarks� ��Besides locating the maximum of f�t� another method to obtain the optimum

switchpoint a� is to equate the common value m of vi�a� obtained by two methods�

A� by plugging the value � � f�a��t�a� in vi � �ti � fi� which yields�

m � vi�a� �
f�t� � f�t�
t� � t�

�
��

and

B� heuristically� the smooth �t of vi at �b� B� will result in a double �t as �b� B� reduces to

the singlepoint a� and thus we expect that the derivatives of vi have also to be equal at a


Letting m � vi�a�� n � v�i�a�� and using the di�erential equations givi � �hi � � yields a

linear system for m�n� whose solution is

m �
h� � h�
�� � ��

� �
��

Equating the two expressions for m in the equations �
�� and �
�� yields an alternative

equation for determining a��

��Let ka denote the switching cost for which the corresponding long run average �a equals

max������ ������ For transaction costs larger than ka the optimal policy becomes to always

use di�usion � or � depending on which of the rewards ���� or ���� is larger


We end this section with some numerical examples that utilize the above results


Example � �the symmetric case	� Consider the following parameters� �� � ��� �� � ��

��� � ��� � �� h��x� � � � �x� h��x� � �x � � and 	� � 	� � �
 The reward structure

is symmetric around ��� which results in ��� being the switching point in the absence of

switching costs
 The optimal �b� B� �also symmetric� and the associated cost k correspond�

ing to a list of values � are summarized in Table �
 In this case a no switching policy �using

either one of the two servers all the time� results in � � �����
 This implies that a double

band type policy is better than a no switch policy only when k � ���


Example 
 �small variances	� The speci�c set of parameters is� �� � �� �� � �� and

��� � ��� � ���� h��x� � � � x�� h��x� � �x� 	� � �� 	� � � and the state space is the

interval �����
 Figure 
 displays the function �� � f�t as well as the limit �� obtained

when the variances are �
 In fact� an easy explicit expression may be obtained for the zero

variance case� and� �� � p�h� � p�h� where p� � ������� � ��� and p� � ������ � ����

The goodness of the �t �when � � ���� the two functions are indistinguishable� raises the

possibility of getting good results by perturbation analysis


Remark� Let a��� be the optimal switching point in the previous example for � � � �i
e a��

maximizes �� � p�h��p�h��
 Using perturbation arguments as in Hopkins and Blankenship

��



k b B �

� �
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� �
���

�
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�
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�
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�
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Table �� Results of Example 
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���� we expect to see a�� � a�� � �� for a small variance of �
 In fact� an explicit expression

for the perturbation paramater � can be obtained�

� �
p�

h��
�
�a�

�
�

��
� p�

h��
�
�a�

�
�

��

p�h����a
�
�� � p�h����a

�
��

�
��

Note that� this expression agrees with equation ��
�a� in ���� for the case of �� � ��


Example �� �inventory with linear holding cost and restocking reward	 As a last

example which is analytically tractable� consider the problem of switching between �� � ��

�demand� and �� � � �restocking� on the half line ����� to minimize the long run average

cost induced by the linear holding costs h� � x and h� � x�rs �rs represents the restocking

reward�
 We will choose rs � �ea
�

� � � �a� which has the e�ect of making switching at

a� optimal �this is the �Gittins index� of a��
 Letting w � ��x� � ��a�� we �nd that

B � a�� b� a� are the roots of the equation �ded � ed � ����ed � e�a
�

��� � w� The plot of

w is provided in Figure �� for a� � ��

-2 -1 1 2
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x

Figure �� �b� B� values for Example �

� Conclusions and Future Research

In this paper we developed an e�cient procedure to handle the problem of switching between

two di�usion processes in the presence of transaction costs
 The continuous state space

��



makes the analysis considerably easier than the discrete analog problem which has been

studied a lot in queuing theory
 The optimal switching points found may be used as e�cient

approximations for the analogous queueing problems


We are currently investigating the application of similar ideas for optimal switching

problems in multi�dimensional di�usion processes
 The multi�dimensional case is of spe�

cial interest as the optimization of the discrete models of multi�class queueing networks is

typically very hard
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Appendix

Optimal Switching to Maximize the Total Reward Until Reaching the Bound�

aries

In the previous sections� an ergodic reward problem for switching between two di�usion

processes was considered
 Another related problem of interest is thecase where the pro�

cesses run until reaching one of the boundaries and receive �nal penalties depending on the

boundary reached
 Unfortunately� the method introduced before for ergodic problems does

not lead to signi�cant simpli�cation in the transient case


This time the problem is alternating between two di�usion operators� Gi�i � �� �� which

are stopped at both � and �
 Stopping at i leads to a �nal penalty 	i
 Once again� each

��



switch costs k and while running the i�th di�usion rewards are incurred at the rate of

hi�x� dt
 Then� the problem is maximizing with respect to ��

Ux�� � Ex��

�Z A

�

�X
i��

hi�Xi�Ti�s���dTi�s��
�X

i��

	iIfX�A��ig � kN�A�

�
� �
��

where � � �T��t�� T��t�� is a time allocation� A is the �rst exit time from the interval ��� ���

and N�A� is the number of switches until reaching � or �


We start with the case k � �
 We assume again that there is only one switch point� a�

so that the optimal solution is to use the i�th di�usion on the interval Ii� where I� � ��� a��

and I� � �a�� ��
 We will also assume that �� and ��� are nonnegative� which ensures

that both di�usions will reach a� almost surely
 We consider �rst an auxilliary problem� in

which� upon reaching some point a� the i�th di�usion is stopped and a rewardMi is received


Running the i�th di�usion starting from x produces then an expected reward Ui�x��

Ui�x� � Ex

�Z Ai

�
�hi Xi�s� ds� �MiIfX�Ai��ag

�� 	iIfX�Ai�i�g

�
� �
��

where Ai � min�Ai� Aa�
 Thus� Ui is the solution of�����
����

Gi Ui � �hi

Ui�i� � �	i

Ui�a� � Mi

����

Now� note that� Ui may be written as

Ui�x� � Hi�x� �
Si�x�

Si�a�
�Mi �Hi�a�� ����

where Hi� Si are any solutions of ��
� Gi Hi � �hi

Hi�i� � �	i
����

and �����
����

Gi Si � �

Si�i� � �

Si�x� � �� �x � Ii

��
�

�LettingWi � exp��
R x �i� dy� it follows that S��x� � R x

� W��x�dx� S��x� �
R �
x W��x�dx�

H��x� � �	� �W��
�

R x
� h�W� dy and H��x� � �	� � W��

�

R �
x h�W� dy
� The principle of

smooth �t states that at the optimal switch point a� of the original problem� the expected

��



total rewards Ui� as well as their �rst two derivatives have to be equal
 We will determine

now �nal rewardsMi for the auxiliary problem� stopped at an arbitrary point a� so that the

�rst two derivatives of Ui �but not necessarily Ui themselves� are equal
 Letting U �
��a� �

U �
��a� �� m� we note �using U ��

i �a� � ��iU
�
i � hi� that U

��
� �a� � U ��

� �a� is equivalent with

m � m�a� �
h� � h�
�� � ��

����

Since

U �
i�a� � H �

i�a� �
S�i�a�

Si�a�
�Mi �Hi�a�� � m�a� ����

we get �nally that

Mi �Mi�a� � �m�H �
i�
Si
S�i

�Hi� ����

Mi�a� may be interpreted as subsidies we would have to pay for stopping at a in such

a way that the �rst two derivatives of the value functions �t smoothly
 If� in addition� we

had M��a�� �M��a�� at some point a��then a� could be a switch point
 If not� it turns out

that it is better to use the di�usion requiring a lower subsidy�

Theorem �� The policy which maximizes the reward in the case of no switching costs

is to use the di�usion for which Mi is minimal
 For example� if M���� � M���� and

M���� � M���� and M�� M� intersect at a unique point a�� then the optimal policy is to

use the � di�usion on ��� a�� and the � di�usion on �a�� ��
 Unfortunately� the proof of the

theorem does not exploit the intuition above


Proof of Theorem �� Let

Ui�x� � Hi�x� �
Si�x�

Si�a�
�
 �Hi�a�� ����

Below� we will use only the smooth �t of the �rst derivatives U �
��a� � U �

��a�� and then

optimize with respect to a
 Letting fi � S�i�Si� we note �rst that the equation above implies

that


 �f� � f�� � H �
� �H �

� � f� H� � f� H� ����

and �
 �Hi� �f� � f�� � �H �
� �H �

� � f��i �H� �H�� ����

�from here on whenever the argument of a function is missing� it will mean the function is

evaluated at a�
 Now� we can simplify the expression of Ui to�

Ui � Hi�x� �
Si�x� �H

�
� �H �

� � f��i �H� �H���

Si�a� �f� � f��
����

�
� Hi�x� �

Si�x�

Si�a�

Ai�a�

f� � f�
����

��



where we denoted by Ai the numerator above
 Before taking partial derivatives with respect

to a� we note that

f �i �
S��i
S
�

�
S�i
Si

	�

����

� �fi ��i � fi� ��
�

�by substituting ��i S
�
i for S

��
i � from the equation�
 Thus�

f �� � f �� � �� f� � �� f� � �f� � f�� �f� � f���R� �f� � f�� �f� � f�� ����

where we introduce R � �� f���� f�
 Now� we make the key observation that the domain

in which the � ��� di�usion is used is the domain in which the condition

�Ui

�a
� ��� �� if i � � �i � �� ����

is satis�ed
 Letting now H� �H� � D� ���� becomes�



�D�� � f��i ����i � f��i� D � f��i D

�� Si �f� � f�� � ����
�D� � f��i D


 

S�i �f� � f�� � Si ���f� � f�� �f� � f�� �R�

�
�	 ����


�D�� � f��i �D
� �D f��i��D f��i ���i

�
�f� � f�� � ����

�D� � f��i D


��f��i �f� � f�� �R� �	 ����

�f� � f�� ��D
�� �D f��i ���i� � ���

�R ��D� � f��i D� �	 ����

D�� �f� � f�� � R D� � ���

D f��i fi ��� � ��� ����

Finally� noting that D�� � h� � h� � �� H
�
� � �� H

�
�� we have�

�f� � f�� �h� � h� � �� H
�
� � �� H

�
�� � ���

�H� �H�� f� f� ��� � ���� �� f� H
�
��

�� f� H
�
� � �� f� H

�
� � �� f� H

�
� �	 ����

�f� � f�� �h� � h�� � ���

��� � ���


f� f� �H� �H��� f� H

�
� � f�H

�
�

�
����

and since f� 
 � and f� � �� dividing by f�f� �and letting ki � f��i we get �

�m �k� � k�� � ��� H� �H� � k� H
�
� � k� H

�
� �	 ����

M� � ��� M� ��
�

��



�

Theorem 
� If a double band policy is optimal for a certain switching cost k� then the

switching points �b� B� must satisfy the system�

a� � A�A
��
� a� ����

where A� is the matrix �
� � � S��b�

S��B�

�
S��B�
S��b�

�

�
A

a� is the vector �H��b��H��b�� k� H��B��H��B�� k��� A� is the matrix�
� S�

�
�b�

S��b�
�

S�
�
�b�

S��B�

�
S�
�
�B�

S��b�
S�
�
�B�

S��B�

�
A

and a� is the derivative of a�
 The proof is omitted


Remark� It is also possible in this case to eliminate k and retrieve the conjugacy equation

�H��B� �H��b��H��B� �H��b���S
�
��B�S

�
��b�� S���B�S

�
��b�� �

S���S
�
��b�d�B� � S ���B�d�b�� �

S���S
�
��B�d�b� � S���b�d�B�� ����

where d � H �
� �H �

�
 However� note that solving the conjugacy equation ���� is not in this

case signi�cantly easier than solving the system ����


We conclude this section with two examples
 Example �� is a numerical application of

the procedure
 Example � considers a special case where the indices �Mi� are explicitly

computable


Example �� Let �� � �� �� � ��� ��� � ��� � �� h��x� � �� h��x� � � and 	� � ��

	� � ��
 In this case� the indices are given by� M��x� � �������ex � ���x � ������� and

M��x� � ������
e���
x� x� �������
 Figure � displays the index functions� the switching

point a is �
���
 and it is optimal to use di�usion � when x � �����
 and to use di�usion

� otherwise


Example �� Suppose that �� � � 
 �� �� � � � �� h� and h� are constants
 Then�

H��x� � �	� � �h�x���� H��x� � �	� � �h���� x�� ��� S��x� � �� � e��x���� S��x� �

�e����x� � ���� and m � �h� � h������ ��
 The indices are�

M� � �
h�
�
x � 	� �

�
e�x � �

�

��
m�

h�
�

	
� ����

M� �
h�
�
��� x�� 	� �

�
e�����x� � �

�

��
m�

h�
�

	
����

��
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Figure �� Optimal Switching Point for Example �

The conditions for the existence of a switch point can be obtained by noting that ��U���a���� 


� and ��U���a���� � � must hold
 These two conditions translate into���
� �	� �

h�
� �

e����
� � ��� 	� �m e����

�
h�
� �

e���
� � ��� 	� �m e���

� 
 �	�

����

�	

��
� 	� � 	� � � e���

�
�h���	h����

��	�� � h�
�

	� � 	� � � e���
�

�h���	h����
��	�� � h�

�

����

Letting� k � ��h����� �h����� ���� �� yields

�

�
�e�� � ��k �

h�
�
� 	� � 	� � �

h�
�
�
�

�
�e� � ��k ����

Now�
�

�
�e�� � ��k �

h�
�
� �

h�
�
�
�

�
�e� � ��k�	

�

�
�e�� � ��k � k��� ���

�

�
�e� � ��k�	

Since � 
 � and �� 
 �� we get�

k

�
��

��� ��

e� � �

�
�

�

��� ��

e�� � �

��
� �

�

 �

which reduces to

k 
 � ����

��



since the multiplier of k in ���� above is positive
The result of this example will be summa�

rized in the following corollary


Corollary� Consider the set of parameters in Example �
 A switch point a� exists if and

only if h���� h��� 
 � and if 	� � 	� satis�es ���� in which case a� is given by

M��a
�� �M��a

�� ����

For example� if � � �� and h� � h� � h� ���� is satis�ed and ���� is equivalent to

j	� � 	�j �
h�exp���� �� ��

��

The switch condition ���� becomes

h�e�a � �� �a�

��
�
h�e����a� � �� ���� a��

��
� 	� � 	�

If furthermore 	� � 	�� the solution is a � ���� and if 	� � 	� � h�exp���� � � ���� the

solution is a � �


�



