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Scope and Purpose—We present queue length duality results for queues with finite buffer space. Our results
apply to queueing systems in which either arrivals or services are subject to control. These queues are common
in manufacturing systems where the processing or the routing of parts can be stopped and restarted. Our results
are free of the common restrictions (i.e. exponential distributions and independence) for arrival and service time
distributions. The duality relationship enables us to obtain the stationary queue length distributions for two
systems at once. We demonstrate the usefulness of this feature through examples.

Abstract—We consider finite buffered queues with service or arrival control. In the case of service control,
service may be stopped and restarted depending on the queue length. In the case of arrival control, the arrival
stream can be turned off and on or arrivals may be rejected depending on the queue length. We give duality
relations for various systems with arrival and service control that enables us to relate their stationary queue
length distributions. We use physical coupling arguments which imply the stochastic coupling necessary to relate
the queue lengths, We also discuss special cases for which queue length relationships can be obtained by
analyzing the underlying Markov process. Two examples are provided to demonstrate the application of the
duality property. The first example is a case where the existing queue length distribution for a given model can
be used to obtain the queue length distribution of another model. In the second example, we obtain the previously
unknown queue length distributions for two related models at once. © 1997 Elsevier Science Ltd

INTRODUCTION

In many instances, queueing systems are controlled by turning off the service or the arrival process. The
service control problem was introduced by Yadin and Naor [1] in the context of the M/G/1 queue. Yadin
and Naor’s problem includes holding costs for customers waiting in line and set up costs for starting and
stopping the server. To optimize the system, they suggest using the following operating policy: shut down
the server when the server becomes idle and restart it when the queue length reaches a threshold level
N. This operating policy was termed ‘N-policy’. Heyman (2] proves that N-policy is the optimal policy
for operating M/G/1 queues under various cost criteria.

Now, consider the case where the service process cannot be interrupted but instead arrivals can be
controlled by turning off the arrival stream. For this arrival control policy, the arrivals can be stopped
when the queue is full and restarted when the queue length decreases to a certain threshold level F. This
policy is called ‘F-policy’ [3].

In this article, we study the relationships between the queue lengths for finite capacity queues operating
under N-policy [4] and F-policy. In particular we study duality relationships for the queue lengths as
previously studied by Gupta [5-8] and by Gupta and Melachrinoudis [9] for uncontrolled Markovian
queues and Gupta [3] for controlled Markovian queues. The queue length duality for finite buffered
queues is a relationship between two queueing systems of equal buffer capacity K. Consider, two such
queueing systems referred to as the ‘primal’ (P) and ‘dual’ (D) systems respectively. Let 7wt A 7D (for
i=0, 1, 2..., K) denote the stationary probability of having i customers in the primal and dual systems
respectively. The duality relationship is given by:
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Tr,‘-’=7r£,,-fori=0,l,2,...,K. 08

Gupta [3], established the duality relationship in Eq. (1) for finite buffered Markovian queues under
arrival and service control. Here we consider a more general setup that allows us to establish similar
relationships for non Markovian systems. In related work, duality relations of finite buffer size M/G/1
type queueing systems were previously studied by Harris [10], Hlynka and Wang [11] and Yang [12]. In
Hlynka and Wang [11], duality relations were introduced for finite buffered G/G/1 queues without arrival
or service control. Yang [12] studied the case of queue length dependent arrivals and service and allowed
multiple service (or arrival) rates. However, the inter-departure (or the interarrival) times were restricted
to be exponential. Note that, our definition of ‘state dependency’ is stronger than in [12] as the status
of the service or (arrival) process is also part of the state description.

The service control (N-policy) or arrival control (F-policy) problems studied in this article frequently
arise in capacitated production systems. For systems with infinite production capacity that are frequently
studied in inventory theory, a classical problem is the determination of the economic order quantity. The
service control problem for a queueing system is analogous to production systems with finite production
capacity and random demands and production times. The arrival control problem also deals with
determination of the optimal production batch sizes for a two stage capacitated production system where
control can be applied in the first stage only.

The notion of duality has recently been used to tackle some queueing control problems. Sparragis et
al. [13] note the duality between routing and scheduling problems for finite buffered multiple class
queues. Xu and Shantikumar [14] and Xu [15] use the duality between admission control and expulsion
control for a queueing system to obtain new structural results on these problems. The identification of
arrival and service control problems as duals of each other is also an initial step in this direction.

The main utility of the duality relationships studied in this article is in that, queue length distributions
for two systems can be obtained at once. This is particularly helpful when one of the systems has a known
queue length probability distribution and the other does not (though they are equally difficult in structure,
one may seem less intuitive than the other). To establish the duality relationships, we introduce physically
dual systems. This distinguishes our approach from the previous research in similar problems. In the
sections to follow, we first discuss the case of controllable arrivals. To demonstrate the approach, we
study the M/G/1/K queue operating under N-policy in detail. Next, we consider queue length duality for
the case of uncontrollable or uninterruptable arrivals. Finally, we present two examples that highlight the
use of the duality relations and provide some conclusions.

THECASEOFCONTROLLABLE ARRIVALS

We first study a model where the arrival stream can be turned on and off at the controller’s discretion.
We derive duality relationships for queues with controllable arrivals and controllable service which
generalize some of the results obtained thus far.

In the rest of the article, the terms ‘controlled’ arrival stream and ‘interrupted’ arrival stream will be
used frequently. In particular, controlled arrival streams refer to F-policy queues where the arrival stream
is stopped when the queue is full and restarted when the queue length drops to F. In the context of this
article ‘interrupted’ arrivals refer to queue operating under N-policy, where the arrival stream is turned
off when the buffer is full and turned on when the buffer space becomes available. To summarize, arrivals
can be controlled by stopping and restarting the arrival stream for F-policy queues and can be interrupted
when the queue is full for N-policy queues.

Our general setup is as follows: we consider G/G/1/K queues for which either the service process or
the arrival process can be shut down and restarted. Interarrival times, A and service times, S are random
variables with mean 1/A and 1/u respectively. When the service process is controlled the server can be
stopped (removed) depending on the length of the queue, however, the removal of the server itself may
take a random time denoted by a (with distribution F,). The server can then be turned on depending on
the queue length after a random delay denoted by 8 (with distribution F). Similarly, the arrival process
can be stopped and restarted depending on the queue length with random delays at stopping and restarting
times. For a concise description, we use the shorthand notation GI/G/1/K (N/e,/By) for the N-policy
system and GI/G/1/K (F/as/ B¢) for the F-policy system operating under service and arrival control with
interruption delay times a; and restart delay times B, respectively (i=N or F).

The duality relationships that we seek are relationships between random variables. The relationships
between the variables are difficult to establish. Rather than trying to characterize these random variables
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explicitly, we consider coupled physical systems that have the desired duality property. In the case of
controllable arrivals, the duality phenomenon can be explained by viewing the finite capacity queue as
a node in a cyclic network of two tandem queues. Lavenberg [16] used this fact to obtain the waiting
times in an M/G/1 queue with finite capacity.

We state the following theorem for the case of controlled arrivals or service.

Theorem 1: Let #),(i=0,1,2,....K) be the steady state probability of having i customers in a G,/G,/1/K
(N/ay, 1By) queue with interruptable arrivals. Also, let #f,(i=0,1,2,...,K) be the steady state queue length
probability in a G,/G,/1/K (F/a/B:) queue with controllable arrival stream. If N=K — F, ay=a, and
By= B then:

7=y fori=0,12,..K ®

Proof: To prove the above relationship, we only need to argue that there is a physically coupled dynamic
system for which the above relationship holds. If such a dynamic system can be found, then the existence
of a stationary queue length distribution is sufficient for Eq. (2) to hold. Consider a cyclic network of two
tandem nodes and K customers and let {w,}.{7,}.{«,} and {B,} be the sequences of service times at node
1, service times at node 2, shut-down delay times and startup delay times respectively. Without loss of
generality, assume that node 1 of the tandem network operates under N-policy (where 1= N=<K), i.e. the
dynamics of the first node of this network is identical to the dynamics of a G,/G,/1/K (N/a,/B,) queue
with interrupted arrivals when the same input sequences are used. Note that, {w,} is sampled from G,,
{n,} from G, {a,) from F, and {8, } from Fj

As a result of the cyclic structure, the departure times from each node are also the arrival times to the
other node. Next, we argue that if node | operates under N policy in the above network, then node 2 is
operating under F-policy. To understand this property, let L(t)={L,(r), L,(t)} be the queue length at nodes
(1,2) at time ¢. Consider a departure instance, 7, from node 1 that leaves the first queue empty (i.e.
L(r7)={1.K—1} and L(77)={0,K}). As a result of N-policy, at time 7 the service process is turned off
at node 1 after a delay of a;, which in turn implies the arrival process is turned off at node 2 after a delay
of . Similarly, the first time after 7+ ¢, that the service process has to be restarted is o+ 8, where o is
the departure instance from node 2 (o> 7+ ;) such that L(¢ " )={N—1, K—N+1}, and 8, is the startup
delay. Therefore, at time o+ £, a restart for service is initiated which is equivalent to a restart for the
arrival process for node 2. In other words, the arrival turn off is initiated at node 2 when the queue length
is K with the next arrival restart initiation occuring when the queue length is X — N which is F-policy
(with F=K — N) with controlled arrivals as described earlier. That is, the sequences of inputs to node
2 can be used as the sequences of inputs to a G/G/I/K (K — N/a,/By) queue with {w,} as the
interarrival time sequence and {7,} as the service time sequence.

Once the equivalence of the cyclic network to N-policy and F-policy queues is clear, the statement of
duality in Eq. (2) immediately follows as L,(r) + L,()=K, for all r=0 and the queue lengths at both queues
change at the same time (either by a departure from node 1 or by a departure from node 2). As the tandem
network is regenerative, by regeneration arguments the state occupation times in state, {j,*} is equal to
the state occupation times in state {*,K — j} for j=0, I, 2,..., K in a regenerative cycle. In other words,
starting from identical conditions and using the same sequences of random variables the duality
relationship is always satisfied. Therefore we have constructed a case where duality holds with
probability one. However, as the stationary queue length distributions are unique and do not depend on
the initial conditions, the duality relationship holds regardless of initial conditions and the particular
random variables sequence used. This establishes the equality in Eq. (2).

The above proof does not require the fact that interarrival and service time distributions be
independent. Thus, the interarrival, service, startup and shutdown times can be dependent processes and
can have dependencies between each other (as long as stationary queue length distributions exist).

An immediate extension to the theorem is to consider duality of the queue length probabilities at
certain embedded epochs. For example, important performance measures for finite buffered queues such
as blocking probabilities and waiting time distributions require the computation of the queue length
distributions at arrival epochs. The following lemma establishes duality relationships for N-policy and F-
policy queues for queue length probabilities at certain embedded epochs.

Lemma 1: Let p'(i=0,1,2,....K) be the (steady state) queue length probability at arrival times for a G,/G,/
1/K (N/0/0) queue and let p{(j=0,1,2,....K) be the queue length probability at service completion times
for a G,/G,/1/K (F/0/0) queue with controllable arrival stream. Then:
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Pi=pk-; 3)
Proof: Once again viewing the two queues in tandem, it can be argued that the embedded points are the
departure sequence from node 1, {7, i=0,1,2,...}. As L,(7)+L,()=K, for all 7, i=1,2,..., then the number

of transitions into state {j,*} must equal the number of transitions into state {¢,K — Jj} forall j=0,1,2,...,
K. This implies Eq. (3).

Remark: To establish the equivalence in Eq. (3), the embedded epochs have to be selected carefully. In
particular, if embedded epochs for the N-policy queue are the epochs immediately after a service
completion, the embedded epochs for the F-policy queue are the epochs immediately after an arrival.

Example: M/G/1/K under N-policy

We use the M/G/1/K (N/0/0) queue to clarify the duality relationships in Egs (2) and (3). Note that,
with Poisson arrivals the assumption of an ‘interrupted arrival stream’ to the N-policy queue 1s
unnecessary. As a result of our definition for an interrupted arrival stream, the arrival stream is turned on
when space becomes available. At this instance, for the M/G/1/K queue, the remaining time until an
arrival is an exponentially distributed random variable. By the memoryless property of the exponential
distribution, the remaining arrival time would be identical to the regular interarrival time as if the arrivals
were not interrupted.

Duality at embedded epochs

Consider the M/G/1/K (N/0/0) queue with arrival rate A and S denoting the random variable that
corresponds to service times. We denote by F(x). the distribution function of S. Let g, (i=0, 1, 2.,...) be
the probability of having i arrivals in a service time, i.e.:

~ Ax /\X i
gl S AR )

Also let g7 be the probability that there are more than / arrivals during a service time, i.e.:

gi= j=§l &) (5)
In the arbitrary time process, the state of the M/G/1/K (N/0/0) queue has to be represented with a couplet
(i,j) where i denotes the queue length (i=0, 1, 2..... K) and j denotes the status of the server with j=0 and
J=1 corresponding to the server being off and on respectively. Now consider the Markov chain embedded
at service completion epochs and service restart epochs for this system. The restart epochs are those
points in time where the server is turned on after an off period. One advantage of this particular selection
of embedded epochs is that it enables us to use a one dimensional state space {0, 1, 2,..., K— 1} where
state 0 denotes an aggregate off state. In the one dimensional representation, all states {0,..., N—1} X
{0} (in the two dimensional representation) are lumped into a single state 0 (disaggregation of this
lumped state will be handled later). Note that, this chain resembles the embedded chain of the regular M/
G/1/K queue. However, in this case, transitions starting from state O can only occur to state N as the
service process is turned off when the queue length becomes zero.
Letp,, i=0, I, 2..., K — 1, denote the steady state probability of being in state i in the embedded chain,
then the probability distribution of the queue length observed at the selected times can be obtained as the
solution of the following system:

P= 2 P for i=0.1,..K = 2ii%N ©6)
N
py=F+ j§0 Dnei-8; €))
k=2 )
Px-1= EO Pivi8k-1-j ®)

along with the normalizing condition:
K-1
% pel ®

Similarly, consider a GI/M/1/K (F/0/0) queue with mean service time 1/u and the random variable
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denoting the time between arrivals as A. We denote by A, (1=0,1,2,...) the probability that there are i
service completions between two consecutive arrivals, then:

I
h= | ¢ Y 4E . (10)
i
and
he= 3 b, (11)
j=i+l

where 4 is the probability that there are more than i service completions between two consecutive
arrivals.To match the M/G/1/K (N/0/0) system, let the embedded times be the instances immediately after
arrivals and the end of off periods for the arrival stream. Note that this is a different selection than the
embedded chain at pre-arrival epochs that is common for the GI/M/1/K queue. In fact our selection is
valid only because the arrivals are not blocked (since F<K) and so it is not necessary to account for
arrivals that do not change the state of the system.

Once again all off states can be lumped into a single state K and the state space for the embedded
Markov Chain is {1, 2, 3,..., K}. The steady state queue length distribution at embedded times denoted
by p,’ is obtained as the solution of:

K-1
pi= "5 i 12
K—i+l
pl= EO Djsi-1 B for i=23,  Kii#F (13)
, K—F+1 , ,
Py = EO Piar—1 h+pg (14)
where
K
2 p'=1 (15)

Lemma 2: (special case of Lemma 1) Consider the queue length distributions at above specified
embedded times for the M/G/1/K (N/0/0) and the GI/M/1/K (F/0/0) queues. Let p, (i=0, 1, 2,..., K —1)
and p;'(j=1,2,...,K) denote respectively the stationary queue length distribution at the specified embedded
times for the M/G/1/L (N/0/0) and the GI/M/1/K (F/0/0) queues respectively. If A=y, A=S and N=K —
F then:

pi=Py./ fori=0,12,..K—1 (16)

Proof: If we relabel the states of the first (M/G/1/K (N/0/0)) embedded chain in reverse order (such that
state i becomes state K — i (for i=0, 1, 2,..., K — 1), we obtain a system of equations identical to Eqs
(12)-(15). Going back to the original state labeling gives the relationship in Eq. (16).

Remark: The above relationship is noted by Harris [10] and Hlynka and Wang [11] for the case of N=1
and F=K — 1. In addition, the above relationship can be easily generalized for any arbitrary time.

DUALITY WITHEXOGENOUS ARRIVALSAND REJECTION

In this section, we study the case where the arrival stream is exogenous and therefore not controllable
or interruptable. The only decision in this case is whether to accept or reject an arriving customer from
the arriving stream. When arrivals are interruptable, the stream is turned on as soon as the queue length
reaches the threshold, the time until the first arrival in this case is the random variable, A, with
distribution F,. In the case where arrivals are rejected when the buffer is full and accepted when there
is a buffer space available, the time from the moment a buffer space becomes available until the first
arrival, is not distributed as F,. In this section we study such a model and derive its dual.

We first define the following service discipline: the server does not become idle when the queue length
is zero but starts a virtual service. If an arrival occurs during a virtual service, then the service time of
the first arrival is not a regular service time but the remaining time of the ongoing virtual service. If no
arrival occurs, then the server starts another virtual service. In other words, the first customer served in
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a busy period receives a special service while the rest of the customers receive regular service.

The above service discipline was referred to as the ‘zransportation variant’ of the M/G/1 queue by
Keilson [17] who considered the case of Poisson arrivals. Iglehart and Whitt [18) used the identical
discipline to obtain heavy traffic limits for the G/G/s queue.

Under this new service discipline, we modify the definition of N-policy as follows: the server does not
become idle when the queue length becomes zero but instead starts a series of virtual services. As soon
as N customers build up, the service will start for the first customer that arrived during the virtual services
period and the actual service time of the first customer is equal to the remaining service time of the
current virtual service time.

Theorem 2: Let 7,(i=0,1,2,...,K) be the steady state probability of having i customers in a G,/G,/1/K
(N/0/0) queue with virtual service. Also, let 7rf,(i=0,1,2,...,K) be the steady state queue length probability
in a G/G,/1/K (F/0/0) queue with arrival rejection and virtual service. If N=K — F, then:

m¥=7k_ fori=0,12,..K (17)

Proof. To prove the above equality, we use the idea of job-hole duality of Gordon and Newell [19] to
construct an analogous argument to that in the proof of Theorem 1. Let (L,(#),L,(?)) represent the state of
the N-policy system where L,(r) denotes the number of jobs in the system and L,(z) denotes the number
of holes (available buffer spaces). Arguing as in the proof of Theorem 1, the sequence of interarrival
times {w,} for the jobs queue is the sequence of service times to the holes queue and the sequence of
service times {7,} in the jobs queue is the sequence of interarrival times in the holes queue. To
understand the dynamics, let 7 be an instance where the server is turned off (i.e. L,(77)=1 and L,
(7%)=0) and let the first startup instance after 7be 7+6 (i.e. L(7+6 )=N — 1 and L,(7+8*)=N). For
T<t<7+48, the virtual service process continues, however the queue length does not change at the end of
service completions. As L (1)+L,(f)=K for all >0, at the instant that a virtual service period starts for
the queue of jobs an arrival starts for the queue of holes where each virtual service completion
corresponds to a rejected arrival and each real service completion corresponds to an accepted arrival. At
time 7+6, a virtual service is in effect. Let o denote the remaining service time. According to our
definition, o is the actual service time for the first customer to be served after 7, i.e. the next queue length
change due to a service completion takes place at 7+ 6+ o or in other words, L,(7+ 6+ 0" )=L,(T+6+0 ")
— 1. Note that 7+ & acts as a remaining arrival time for the queue of holes as Ly(7+ 6+ 0™ )=Ly(t+6+0 ")
+1. Therefore, when the job queue operates as an N-policy queue, the hole queue operates as a F-policy
queue and the equality in Eq. (17) follows by regeneration as {L,()} and {L,(#)} change states at the same
time while preserving L (9)+L,(1)=K.

Remark: It is possible to incorporate setup times to the above argument as in Theorem 1. The result
remains unchanged.
EXAMPLES

In this section we consider two examples that emphasize the utility of the results obtained in this
article. The first example is the case where the queue length distribution of one of the systems is already
known. This immediately yields the queue length distribution of the second system. In the second
example, we solve a new problem which implies that we have solved its dual as well.

M/G/1/K queue under N-policy

Consider the M/G/1/K (N/0/0) queue which was studied in detail in the second section. We continue
to use the notation introduced in that section with the following additions:

BY: random variable denoting the length of a busy (on) period for a K capacity queue operating
under N-policy
By random variable denoting the busy period for a regularly operating K capacity queue (=By).

Teghem Jr [20] gives the steady state queue length probability distribution for the M/G/1/K (N/0/0)
queue in closed form in terms of expected busy periods of M/G/1/K queues. Takagi [21] covers the case
with nonzero start up times. By the results of the second section, the queue length distributions of the dual
systems are readily available. We discuss the M/G/1/K (N/0/0) case here (see [20] for details).

The key relationship for any busy periods of the M/G/1/K (N/0/0) queue is:
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N K
E[Byl= 2  E[B] (18)
i=K~N+1
The queue length distribution can be written in terms of the busy periods as (see Teghem Jr [20]):

t

N

70 N¥AE(BY] (19)
N_ _‘__E[BHI] N < _
T EISIN+ AEB) Jor |=i=N-1 (20)
oo EBLIZEBY o
T ESINeAEBY) YT
e NEIS1= (L= PE[B o

EISIIN+AE[BY])

where p=A/u Using Theorem 1, we can obtain the dual queueing system by inspection. The dual of the
above system is a GI/M/1/K (F/0/0) queue with the arrival and service processes interchanged in the first
system and F=K — N. This yields the following steady state distribution for the queue length in the dual
queue:

r_ (K= F)E[A] = (1 = (WA)EIBK ']

"T EIA(K— P+ uEBE D) =

™ EaN- P Bl T .

ai= o EBead e isk- (25)
" EIAI(K - F)+ uE[BY )

S N (26)

(K—F)+uE[BY "]

GI/M/1/K queue under N-policy with controlled arrivals

Here, we study the GI/M/1/K (N/0/Q) queue. As the arrival process can be non-Poisson, it is necessary
to emphasize that the arrival mechanism is of the interrupted type. Hence, the arrival stream is stopped
when the system is full and restarted when a space becomes avatlable.

The queue length distribution. Let p,; denote embedded probabilities where (i,j) is the queue length
and the status of the server, respectively, at epochs immediately after an arrival. Let S, denote the state
space, then:

S,={12,.N—1}X{0}U{23,..K} X {1}

It can be seen that the embedded probabilities satisfy the following system of equations:

Pro= %, hiputpcihi, @7)

Dpo=pigfor2=n=N-—1 (28)

Pri= % Pion-vih+Drihy— for 2<n=N-—1 (29)
K-§-1

Pwi= & PinaPitPribgon-1+Py-10 (30)

D= Ifg" Dien— 1Mt Py b, for N+ 1=n=K (€2))]

0

The normalizing condition is:
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1

N- K
EI Piot I.;z pu=1 (32)

To pass to the semi-Markov process, we need to consider the expected sojourn times, 7T;; in each state.
We have T;y=E[A]=1/Afori=1,2,..N —land T;,=E[A]=1/Afor i=2, 3,..., K — 1. But the sojourn time
in state (K,1) includes the time that the arrival process is shut off and is given by Ty ,=E[A] +E[S]. For
the steady state distribution of the semi-Markov process, we have:

- pi,j
(1 =px A +p, Tk,
where in writing the denominator, we have used the identity:

Pu=l ~ Pk (34)

qij for (ij)es, (33)

gres, — {(K.1))

Finally, the above semi Markov process is related to the general time queue length process as follows:

K—1
o= £, Gualh)+ (1= K= D" (35)
To=quoforn=12,. . .N—1 (36)
K—n—1
7Tn.)= ‘2:0 qi+n.|hi++(l - K)q,mh,?,,,_lfor n:l,2,3,,_,,](— l (37)
Ty 1=Kk (38)
where
LF e Mot
hi= | = dFs (39)

i=K+1

and A is the backward recurrence time of A with distribution function

1—=F,(»
Fin=| —2-"d
=] o
and k=E[SI/E[S]+E[A]). To gain some insight into the probabilistic meaning of «, consider a random
point that falls into state (K, 1) of the semi Markov process. As mentioned before, a sojourn time in this
state consists of a service interval and an arrival interval. In other words the n'th sojourn in state (X, 1),
Tx.1,.n consists of two periods where the first period has distribution Fs and the second period has

distribution F,. Hence, « is the probability that the random point falls in a service interval given that it
falls in state (K, 1).

(41)

Numerical results. As a numerical example for the GI/M/1/K (N/0/0) queue, consider the case where
the arrival distribution is Erlang-2, i.e. f,(x)=(2A)% ~**. Let A=0.9, #=1 and K=15.

For comparison, we consider the dual system to the one above, i.e. the M/G/1/K (F/0/0) queue with
service distribution fy(x)=(2u)% ~** where ©=0.9, A=1 and K=15. Fig. 1 displays the average queue

Ly L

8 8 .
6 ) 6 '
4 4
2 2
2 4 6 8 10 1z 14 3 4 6 8 10 1z
N F

Fig. 1. The average queue lengths as a function of N and F.
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length Ly as N varies between 3 and 14 for the first queue and the average queue length, L, as F varies
between 1 and 12 for the dual queue.

It is known that the variability of the interarrival and service time distributions has an important effect
on the performance of a queueing system. A good measure of variability of a random variable is its
coefficient of variation (standard deviation divided by the mean). As a second example, we compare the
expected queue lengths for a number of GI/M/1/K (N/0/0) queues that have arrival processes with
different coefficients of variation. By duality, same comparison can easily be performed on the dual
system to analyze the effects of changing the coefficient of variation of the service times.

Let A=0.95, u=1 and K=20. We use five different interarrival time distributions: the Erlang-2
distribution (denoted by E,) which has a coefficient of variation (CV) of 0.77, the Poisson (denoted by
Po) distribution which has a CV of 1 and three distributions from the two stage hyperexponential
distribution family with CV's of 1.18, 1.46 and 2.13 (denoted by H1, H2 and H3 respectively). Therefore,
H1, H2 and H3 have a probability density function of the type:

fu0=grie " +(1—pAe M (42)

where g is a mixing probability between 0 and 1 and A, and A, are the arrival rates in stages 1 and 2 of
the distribution respectively. As the effective arrival rate A is 0.95 for this example, it is required that:

gA7 ' +(1 = @)As '=0.95 (43)

Further, the distributions H1, H2 and H3 have the property that they have balanced means in each of the
two stages, i.e.:

g =1 = @Ay (44)

The above restrictions ensure that H1, H2 and H3 are similar except for the differences in their respective
variances.

Table | reports the expected queue lengths for each arrival distribution for the threshold values of
N=35, 10 and 15. Also Table 1 confirms the deteriorating effect of variability on the performance of the
queueing system. As the coefficient of variation increases, the average queue lengths also increase for the
identical threshold value, N. In contrast Table 1 also implies an interesting property for the dual M/G/1/K
(F/0/0) queue. Using duality properties, we know that queue lengths in this queue change in the reverse
direction to the change in the original system (GI/M/1/K (N/0/0). Consequently, the average queue
lengths in the M/G/1/K (F/0/0) queue decrease with increasing variability in the service process.

Remark: Until recently, the computations similar to those presented in the above examples were
considered a major challenge. The advances in symbolic computational tools have facilitated this
computation. All numerical values reported here are exact and have been computed through symbolic
integration using Mathematica Version 2.2 for SPARC stations.

CONCLUSION

In this articie, the queue length duality relationship for controlled arrival and service processes has
been extended to non-Markovian queues. Computation of the performance measures for controlled
queues is important for optimization purposes. If N-policy or F-policy is implemented for controlling the
service or the arrival process, the optimal values of N or F must be obtained through a search procedure.
This search procedure requires computation of the average queue length and the average length of the
busy period for the server or the on period for the arrival process. Through duality, these performance
measures can be obtained in pairs.

We made use of physically dual systems to establish stochastic duality relationships. Most queue
length duality relations established so far were algebraic results based on the analysis of the probability
transition matrices. In comparison, our approach yields easier and more general proofs for the

Table |. Expected queue lengths as a function of N for different
arrival distributions

N E, Po HI H2 H3

5 9.08605  9.43632  9.64230  9.93319  10.4693
10 106237 10.8659  11.0223  [1.2417  11.6247
15 11.8522 12,0146  12.1330  12.3004  12.5817
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relationships we sought avoiding the algebra and the Markovian structure used in the previous results.

As an example for the utility of the results obtained here, we provided an analysis of the GI/M/1I/K

queue operating under N-policy. By obtaining the queue length distribution for this server control
problem, the queue length distribution for the dual arrival control problem was automatically obtained.
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